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Properties of real-world networks
diverse collections of graphs arising from different phenomena

are there typical patterns?

• static networks

1 heavy tails
2 clustering coefficients
3 communities
4 small diameters

• time-evolving networks

1 densification
2 shrinking diameters

• web graph

1 bow-tie structure
2 bipartite cliques
3 compressibility
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Heavy tails
What do the proteins in our bodies, the Internet, a
cool collection of atoms and sexual networks have in
common? One man thinks he has the answer and it
is going to transform the way we view the world.

Scientist 2002

Albert-László Barabási
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Degree distribution

• Ck = number of vertices with degree k

• problem : find the probability distribution that fits best
the observed data
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Power-law degree distribution

• Ck = number of vertices with degree k , then

Ck = ck−γ

with γ > 1, or

ln Ck = ln c − γ ln k

• plotting ln Ck versus ln k gives a straight line with
slope −γ

• heavy-tail distribution : there is a non-negligible fraction
of nodes that has very high degree (hubs)

• scale free : average is not informative
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Power-law degree distribution

power-laws in a wide variety of networks ([Newman, 2003])
sheer contrast with Erdős-Rényi random graphs
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Power-law degree distribution

do the degrees follow a power-law distribution?

three problems with the initial studies

• graphs generated with traceroute sampling, which
produces power-law distributions, even for regular graphs
[Lakhina et al., 2003].

• methodological flaws in determining the exponent
see [Clauset et al., 2009] for a proper methodology

• other distributions could potentially fit the data better
but were not considered, e.g., lognormal.

disclaimer: we will be referring to these distributions as
heavy-tailed, avoiding a specific characterization
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Power-law degree distribution

• frequently, we hear about “scale-free networks”
correct term is networks with scale-free degree
distribution

all networks above have the same degree sequence but
structurally are very different (source [Li et al., 2005])
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Maximum degree

• for random graphs, the maximum degree is highly
concentrated around the average degree z

• for power-law graphs

dmax ≈ n1/(α−1)

• hand-waving argument: solve n Pr[X ≥ d ] = Θ(1)
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Heavy tails, eigenvalues

log-log plot of eigenvalues of the Internet graph in
decreasing order

again a power law emerges [Faloutsos et al., 1999]
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Heavy tails, triangles

• triangle distribution in flickr

• figure shows the count of nodes with k triangles vs. k in
log-log scale

• again, heavy tails emerge [Tsourakakis, 2008]
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Clustering coefficients

• a proposed measure to capture local clustering is the
graph transitivity

T (G ) =
3× number of triangles in the network

number of connected triples of vertices

• captures “transitivity of clustering”

• if u is connected to v and
v is connected to w , it is also likely that
u is connected to w
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Clustering coefficients

• alternative definition

• local clustering coefficient

Ci =
Number of triangles connected to vertex i

Number of triples centered at vertex i

• global clustering coefficient

C (G ) =
1

n

∑
i

Ci
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Community structure
loose definition of community: a set of vertices densely
connected to each other and sparsely connected to the rest of
the graph

artificial communities:
http://projects.skewed.de/graph-tool/
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Community structure

[Leskovec et al., 2009]

• study community structure in an extensive collection of
real-world networks

• authors introduce the network community profile plot

• it characterizes the best possible community over a range
of scales
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Community structure

dolphins network and its NCP
(source [Leskovec et al., 2009])
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Community structure

• do large-scale real-world networks have this nice artifical
structure? NO!

NCP of a DBLP graph (source [Leskovec et al., 2009])
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Community structure

important findings of [Leskovec et al., 2009]

1. up to a certain size k (k ∼ 100 vertices) there exist good
cuts

- as the size increases so does the quality of the community

2. at the size k we observe the best possible community

- such communities are typically connected to the
remainder with a single edge

3. above the size k the community quality decreases

- this is because they blend in and gradually disappear
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Small-world phenomena

small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)

• small-World experiment (1967)

• we live in a small-world

• for criticism on the small-world experiment, see “Could It
Be a Big World After All? What the Milgram Papers in
the Yale Archives Reveal About the Original Small World
Study” by Judith Kleinfeld
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Small-world experiments

• letters were handed out to people in Nebraska to be sent
to a target in Boston

• people were instructed to pass on the letters to someone
they knew on first-name basis

• the letters that reached the destination (64 / 296)
followed paths of length around 6

• Six degrees of separation : (play of John Guare)

• also:
• the Kevin Bacon game
• the Erdős number

• small-World project:
http://smallworld.columbia.edu/index.html
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Small diameter

proposed measures

• diameter : largest shortest-path over all pairs.

• effective diameter : upper bound of the shortest path of
90% of the pairs of vertices.

• average shortest path : average of the shortest paths over
all pairs of vertices.

• characteristic path length : median of the shortest paths
over all pairs of vertices.

• hop-plots : plot of |Nh(u)|, the number of neighbors of u
at distance at most h, as a function of h
[Faloutsos et al., 1999].
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Time-evolving networks

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2005]

• densification power law:

|Et | ∝ |Vt |α 1 ≤ α ≤ 2

• shrinking diameters: diameter is shrinking over time.
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Web graph

• the Web graph is a particularly important real-world
network

Few events in the history of computing have
wrought as profound an influence on society as
the advent and growth of the World Wide Web

[Kleinberg et al., 1999a]

• vertices correspond to static web pages

• directed edge (i , j) models a link from page i to page j

• will discuss two structural properties of the web graph:

1. the bow-tie structure [Broder et al., 2000]
2. abundance of bipartite cliques

[Kleinberg et al., 1999a, Kumar et al., 2000]
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Web is a bow-tie

(source [Broder et al., 2000])
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Bipartite subgraphs

• websites that are part of the same community frequently
do not reference one another

(competitive reasons, disagreements, ignorance)
[Kumar et al., 1999].

• similar websites are co-cited

• therefore, web communities are characterized by
dense directed bipartite subgraphs

(source [Kleinberg et al., 1999a])
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Compressibility
In general, a graph can be stored by using O(log n) bits for
edges. This is an upper bound. But what about lower bounds?
But can be do better?

• Erdös-Rényi graphs require Ω(log n) bits for each edge.

• Boldi and Vigna in a series of papers
[Boldi and Vigna, 2004] demonstrate empirically that the
Web-graph requires significantly smaller amount of bits
per edge. Empirical evidence suggests O(1) bits suffices.

• Work by Chierichetti et al.
[Chierichetti et al., 2009b, Chierichetti et al., 2009a]
shows that various models (preferential attachment, ACL
model, copying, Kronecker multiplication model,
Kleinberg’s model) are incompressible and suggests a
model for the Web graph that complies with the empirical
findings of Boldi and Vigna.

Charalampos Tsourakakis T-79.7003, Graphs and Networks, Lecture 6 27 / 88



Models of real-world networks



Models

1 classic
• grown versus static random graphs (CHKNS)
• growth with preferential attachment
• structure + randomness → small-world networks

2 more models
• Copying model
• Cooper-Frieze model
• Kronecker graphs
• Chung-Lu model
• Forest-fire model
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CHKNS model

Callaway, Hopcroft, Kleinberg, Newman and Strogatz
[Callaway et al., 2001]

• simple growth model for a random graph without
preferential attachment

• main thesis: grown graphs, however randomly they are
constructed, are fundamentally different from their static
random-graph counterparts

CHKNS model

• start with 0 vertices at time 0.

• at time t, a new vertex is created

• with probability δ add a random edge by choosing two
existing vertices uniformly at random

Charalampos Tsourakakis T-79.7003, Graphs and Networks, Lecture 6 30 / 88



CHKNS model

let dk(t) be the number of vertices of degree k at time t

then

E [d0(t + 1)] = E [d0(t)] + 1− δ2E [d0(t)]

t

E [dk(t + 1)] = E [dk(t)] + δ
(2E [dk−1(t)]

t
− 2E [dk(t)]

t

)
it turns out that

E [dk(t)]

t
=

1

2δ + 1

( 2δ

2δ + 1

)k
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CHKNS model

size of giant component for a CHKNS random graph and a
static random graph with the same degree distribution

• why are grown and static random graphs so different?
• intuition:

- positive correlation between the degrees of connected
vertices in the grown graph

- older vertices tend to have higher degree, and to link with
other high degree vertices, merely by virtue of their age
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Preferential attachment

R. Albert L. Barabási B. Bollobás O. Riordan

growth model:

• at time n, vertex n is added to the graph

• one edge is attached to the new vertex

• the other vertex is selected at random with probability
proportional to its degree

• obtain a sequence of graphs {G (n)
1 }.
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Preferential attachment — generalization

• The case of G
(n)
m where instead of a single edge we add m

edges reduces to G
(n)
1 by creating a G

(nm)
1 and then

collapsing vertices km, km − 1, . . . , (k − 1)m + 1 to
create vertex k .

• An equivalent way of generating G
(n)
m is the following: we

start with a single vertex consisting of m self-loops. At
time t we add a new vertex vt with m edges adjacent to
it. The endpoints of these edges are chosen sequentially
and preferentially. In other words, after we add each edge,
we update the degrees.
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Preferential attachment

at time t, vertices 1 to 1
d2 have degrees greater than d (Source

[Hopcroft and Kannan, 2012])

heuristic analysis
• degi(t) the expected degree of the i -th vertex at time t

• the probability an edge is connected to i is degi (t)
2t

• therefore
∂degi(t)

∂t
=

degi(t)

2t

• the solution is degi(t) =
√

t
i
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Preferential attachment

∫ d

0

Pr [degree = d ]∂d = Pr [degree ≤ d ] = 1− 1

d2

by using the fact that di(t) < d if i > t
d2 and by taking the

derivative

Pr [degree = d ] =
∂

∂d

(
1− 1

d2

)
=

2

d3

power law distribution!

these results can be proved rigorously using the linearized
chord diagrams (LCD) model and also prove strong
concentration around the expectation using martingales
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Preferential attachment

Theorem
Let degi(t) be the degree of vertex i at time t in the
preferential attachment model with m = 1a Then,

E [degi(t)] =
Γ(t + 1)Γ(i − 1

2
)

Γ(t + 1
2
)Γ(i)

.

where Γ(t) =
∫ +∞
0

x t−1e−xdx.

aSelf-loops contribute 2 to the degree.

Proof.
On whiteboard.
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Preferential attachment

Let Pk(t) = 1
t

∑t
i=1 1(degi(t) = k), pk = 2m(m+1)

k(k+1)(k+2)
.

Theorem
There exists a constant C such that as t → +∞

Pr

[
max
k
|Pk(t)− pk(t)| ≥ C

√
log t

t

]
= o(1).

Proof.
On whiteboard.
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Generalized preferential attachment

log-linear plot of the exponents of all the networks reported as
having power-law (source [Dorogovtsev and Mendes, 2002])

many real-world networks have a power-law slope 2 < α < 3
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Generalized preferential attachment

how can we tune the power-law slope?

• [Buckley and Osthus, 2004] analyze a modified
preferential attachment process where α > 0 is a fitness
parameter

• when t vertex comes in, it chooses i according to

Pr [t chooses i ] =

{
degt−1(i)+α−1

(α+1)t−1 , if 1 ≤ i ≤ t − 1
α

(α+1)t−1 , if i = t
.

• α = 1 gives the Barabási-Albert/Bollobás-Riordan

G
(n)
1 model

• the power-law slope is 2 + α.
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Generalized preferential attachment

• clustering coefficient of G
(n)
m is (m−1) log2 n

8n
in expectation

• therefore tends to 0 [Bollobás and Riordan, 2003].

• can also be fixed by generalizing the model
[Holme and Kim, 2002, Ostroumova et al., 2012].

• triangle formation: if an edge between v and u was added
in the previous preferential attachment step, then add one
more edge from v to a randomly chosen neighbor of u.

Holme-Kim Model

• perform a preferential attachment step
• the perform with probability βt another preferential attach-
ment step or a triangle formation step with probability 1− βt
diameter for PA and GPA is log n

log log n
and log n respectively
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Random Apollonian networks
are there power-law planar graphs?

snapshots of a random Apollonian network (RAN) at:
(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 100

• at time t + 1 we choose a face F uniformly at random
among the faces of Gt

• let (i , j , k) be the vertices of F

• we add a new vertex inside F and we connect it to i , j , k
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Random Apollonian networks

Preferential attachment mechanism

what each vertex “sees” (boundary and the rest respectively)
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Random Apollonian networks

Theorem ([Frieze and Tsourakakis, 2013])

Let Zk(t) denote the number of vertices of degree k at time t,
k ≥ 3. For any t ≥ 1 and any k ≥ 3 there exists a constant bk

depending on k such that

|E [Zk(t)]− bkt| ≤ K , where K = 3.6.

Furthermore, for t sufficiently large and any λ > 0

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t

Corollary

The diameter d(Gt) of Gt satisfies asymptotically whp

Pr [d(Gt) > 7.1 log t]→ 0
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Random Apollonian networks

key idea: establish a bijection with random ternary trees
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Random Apollonian networks
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Random Apollonian networks
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Random Apollonian networks
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Small-world models

Duncan Watts Steven Strogatz

construct a network with

• small diameter

• positive density of triangles

Charalampos Tsourakakis T-79.7003, Graphs and Networks, Lecture 6 49 / 88



Small-world models

why should we want to construct a network with

• small diameter,

• positive density of triangles?

L(G ) =
∑

pairsu,v

d(u, v)(
n
2

) ,C (G ) =
1

n

∑
i

Ci .

Graph ∼ |V | 2|E |/|V | Lactual Lrandom Cactual Crandom

Film actors 225K 61 3.65 2.99 0.79 0.00027
Power grid 5K 2.67 18.7 12.4 0.08 0.005
C. elegans 0.3K 14 2.65 2.25 0.28 0.05
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Small-world models

model

• let G be the r -th power of the cycle on n vertices

- notice that diam(G ) = n
2r

and C (G ) = 3(r−1)
2(2r−1)

• let G (p) be the graph obtained from G by deleting
independently each edge with probability and then adding
the same number of edges back at random
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Small-world models

Watts-Strogatz on 1 000 vertices with rewiring
probability p = 0.05
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Small-world models

rewiring probability, p

even for a small value of p, L(G (p)) drops to O(log n),
which C (G (p)) ≈ 3

4
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Small-world models

0.005 0.010 0.050 0.100 0.500 1.000

10

20

30

40

0.005 0.010 0.050 0.100 0.500 1.000

0.1

0.2

0.3

0.4

0.5

0.6

average distance clustering coefficient

Watts-Strogatz graph on 4 000 vertices, starting from a
10-regular graph

• intuition: if you add a little bit of randomness to a
structured graph, you get the small world effect

• related work: see [Bollobás and Chung, 1988]
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Navigation in a small world

Jon Kleinberg

how to find short paths using only local information?

• we will use a simple directed model [Kleinberg, 2000].

• a local algorithm
• can remember the source, the destination and its current

location
• can query the graph to find the long-distance edge at

the current location.
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Navigation in a small world

d(u, v): shortest path distance using only original grid edges

directed graph model, parameter r :

• each vertex is connected to its four adjacent vertices

• for each vertex v we add an extra link (v , u) where u is
chosen with probability proportional to d(v , u)−r

notice: compared to the Watts-Strogatz model the long range
edges are added in a biased way

(source [Kleinberg, 2000])

Charalampos Tsourakakis T-79.7003, Graphs and Networks, Lecture 6 56 / 88



Navigation in a small world
• r = 0: random edges, independent of distance

• as r increases the length of the long distance edges
decreases in expectation

results

1. r < 2: the end points of the long distance edges tend to
be uniformly distributed over the vertices of the grid

- is unlikely on a short path to encounter a long distance
edge whose end point is close to the destination

- no local algorithm can find them

2. r = 2: there are short paths

- a short path can be found be the simple algorithm that
always selects the edge that takes closest to the
destination

2. r > 2: there are no short paths, with high probability
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Copying model

[Kumar et al., 2000] analyze the copying model of
[Kleinberg et al., 1999b].

• α ∈ (0, 1): copy factor

• d constant out degree.

evolving copying model, time t + 1

• create a new vertex t + 1
• choose a prototype vertex u ∈ Vt uniformly at random

• the i -th out-link of t + 1 is chosen as follows:

with probability α we select x ∈ Vt−1 uniformly at random, and

with the remaining probability it copies the i -th out-lin of u
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Copying model

in-degrees follow power-law distribution [Kumar et al., 2000]

Theorem

for r > 0 the limit Pr = limt→+∞
Nt(r)
t

exists and satisfies

Pr = Θ(r−
2−α
1−α ).

explains the large number of bipartite cliques in the web graph

static models with power-law degree distributions do not
account for this phenomenon!
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Cooper-Frieze model

Colin Cooper Alan Frieze

Cooper and Frieze [Cooper and Frieze, 2003] introduce a
general model

1 many parameters

2 generalizes preferential attachment, generalized
preferential attachment and copying models

3 whose attachment rule is a mixture of preferential and
uniform
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Cooper-Frieze model

findings

1. we can obtain densification and shrinking diameters

- add edges among existing vertices

2. power law in expectation and strong concentration under
mild assumptions.

3. novel techniques for concentration

martingales + Laplace
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Kronecker graphs

reminder: Kronecker product

A = [aij ] an m × n matrix

B = [bij ] a p × q matrix

then, A⊗ B is the mp × nq matrix a11B .. a1nB
.. .. ..

am1B .. amnB


[Leskovec et al., 2010] propose a model based on the
Kronecker product, generalizing RMAT
[Chakrabarti et al., 2004].
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Kronecker graphs

source [Leskovec et al., 2010]
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Kronecker graphs

source [Leskovec et al., 2010]
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Kronecker graphs
a stochastic Kronecker graph is defined by two parameters

• an integer k

• the seed/initiator matrix θ(
a b
b c

)
• we obtain a graph with n = 2k vertices by taking

repeatedly Kronecker products

• let Ak,θ = θ ⊗ . . .⊗ θ︸ ︷︷ ︸
l times

be the resulting matrix

• adjacency matrix Āk,θ obtained by a randomized rounding

• typically 2× 2 seed matrices are used;

however, one can use other seed matrices
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Kronecker graphs

in practice we never need to compute A, but we can actually
do a sampling based on the hierarchical properties of
Kronecker products.
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Kronecker graphs

consider G (V ,E ) such that |V | = n = 2k .

• Erdős-Rényi (
0.5 0.5
0.5 0.5

)
• core-periphery (

0.9 0.5
0.5 0.1

)
• hierarchical community structure(

0.9 0.1
0.1 0.9

)
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Kronecker graphs

• power-law degree distributions [Leskovec et al., 2010]

• power-law eigenvalue distribution [Leskovec et al., 2010]

• small diameter [Leskovec et al., 2010]

• densification power law [Leskovec et al., 2010]

• shrinking diameter [Leskovec et al., 2010]

• triangles [Tsourakakis, 2008]

• connectivity [Mahdian and Xu, 2007]

• giant components [Mahdian and Xu, 2007]

• diameter [Mahdian and Xu, 2007]

• searchability [Mahdian and Xu, 2007]
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Kronecker graphs

how do we find a seed matrix θ such that AG ≈ θ ⊗ . . .⊗ θ︸ ︷︷ ︸
k times

?

• maximum-likelihood estimation: argmaxθPr [G |θ]

- hard since exact computation requires O(n!n2) time, but

- Metropolis sampling and approximations allow O(m) time
good approximations [Leskovec and Faloutsos, 2007]

• moment based estimation: express the expected number
of certain subgraphs (e.g., edges, triangles, triples) as a
function of a, b, c and solve a system of equations
[Gleich and Owen, 2012]
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Chung-Lu model

Fan Chung Graham Linyuan Lu

• model is specified by w = (w1, . . . ,wn) representing
expected degree sequence

• certices i , j are connected with probability

pij =
wiwj∑n
k=1 wk

= ρwiwj .

• to have a proper probability distribution w 2
max ≤ ρ

• can obtain an Erdős-Rényi random graph by setting

w = (pn, . . . , pn)
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Chung-Lu model
how to set the weights to get power law exponent β?

• the probability of having degree k in power law

Pr [deg(v) = k] =
k−β

ζ(β)

• hence, for β > 1

Pr [deg(v) ≥ k] =
+∞∑
l≥k

k−β

ζ(β)
=

1

ζ(β)(β − 1)kβ−1

• assuming weights are decreasing and setting
wi = k , i/n = Pr [deg(v) ≥ k]

wi =
( i

ζ(β)(β − 1)i

)− 1
β−1
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Chung-Lu model
rigorous results on:
• degree sequence
• giant component
• average distance and the diameter
• eigenvalues of the adjacency and the Laplacian matrix
• ...

Complex graphs and networks, AMS
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Kronecker vs. Chung-Lu

“the SKG model is close enough to its associated CL
model that most users of SKG could just as well use
the CL model for generating graphs.”

[Pinar et al., 2011]

Comparison of the graph properties of SKG and an equivalent
CL.
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Forest-fire model

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2007] propose the forest fire model that is
able to re-produce at a qualitative scale most of the
established properties of real-world networks
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Forest-fire model
basic version of the model

1. p : forward burning probability

2. r : backward burning ratio

• initially, we have a single vertex

• at time t a new vertex v arrives to Gt

• node v picks an ambassador/seed node u uniformly at
random link to u

• two numbers x , y are sampled from two geometric
distributions with parameters p

1−p and rp
1−rp respectively

- then, v chooses x out-links and y in-links of u which are
incident to unvisited vertices

- let u1, . . . , ux+y be these chosen endpoints
• mark u1, . . . , ux+y as visited and apply the previous step

recursively to each of them
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Forest-fire model

(Few) Remarks

• There is a “flavor” of both preferential attachment and a
copying mechanism.

• The number of edges of an incoming vertex can vary a
lot, depending on its ambassador.

• We can have small fires but also large fires

Charalampos Tsourakakis T-79.7003, Graphs and Networks, Lecture 6 76 / 88



Forest-fire model
the forest-fire model is able to explain

• heavy tailed in-degrees and out-degrees
• densification power law
• shrinking diameter
• ...
• deep cuts at small size scales and the absence of deep

cuts at large size scales

reminder

NCP of a DBLP graph (source [Leskovec et al., 2009]).
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