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Dense subgraphs



What is a dense subgraph?

a set of vertices with abundance of edges

a highly connected subgraph

key primitive for detecting communities

related problem to community detection and
graph partitioning, but not identical

e not constrainted for a disjoint partition of all vertices
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Applications of finding dense subgraphs

e thematic communities and spam link farms
[Kumar et al., 1999]

e graph visualization [Alvarez-Hamelin et al., 2005]

e real-time story identification [Angel et al., 2012]

o motif detection [Fratkin et al., 2006]

e epilepsy prediction [lasemidis et al., 2003]

e finding correlated genes [Zhang and Horvath, 2005]

® many more ...
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Density measures

e consider subgraph induced by S C V of G = (V. E)

clique: each vertex in S is connected
to every other vertex in S

e o-quasiclique: the set S has at least |S|(|S| —1)/2
edges

e J/-core: every vertex in S is connected to at least k other
vertices in S
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Density measures

e consider subgraph induced by S C V of G = (V E)

e density:
5(S) = e[S]  2e[S]

~ () T IsI0SI- 1)

e average degree:

2e[S]
d(S) =
(5) 5|

e k-densest subgraph:

2¢e[S]
S|

i(S) = such that |S| = k
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Density measures

compare with measures we saw previously....
graph expansion:

- e[S, V'\ 5]
a(G) = min min{|S,|V \ S[}

graph conductance:

o e[S, V\ 5]
$(G) = min min{vol(S), vol(V \ S)}

edges within (e[S]) instead of edges accross (e[S, V \ S])
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Complexity of density problems — clique

. find the max-size clique in a graph:
NP-hard problem

e strong innaproximability result:

for any ¢ > 0, there cannot be a polynomial-time
algorithm that approximates the maximum clique problem
within a factor better than O(n' ), unless P = NP

[Hastad, 1997]
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Complexity of other density problems

density i(S) = (e‘[SS‘]) pick a single edge
average degree d(S) = 2‘65] in P

k-densest subgraph  §(S) = 21 |S| = k' NP-hard

DalkS 6(S) = 21 1S >k NP-hard

DamkS 6(S) = 221 |S| <k L-reduction to DkS
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Densest subgraph problem

e find set of vertices S C V' with maximum average degree

d(S) = 2¢[5]/15]

e solvable in polynomial time

e max-flow [Goldberg, 1984]
o LP relaxation [Charikar, 2000]

e simple linear-time greedy algorithm gives factor-2
approximation [Asahiro et al., 2000, Charikar, 2000]
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Greedy algorithm for densest subgraph

[Asahiro et al., 2000, Charikar, 2000]

input: undirected graph G = (V. E)
output: S, a dense sungraph of G

1 set G, G
2 for k «+— n downto 1
2.1 let v be the smallest degree vertex in G,

2.2 Gk,1 — Gk \ {V}
3 output the densest subgraph among G,, G, 1,...,G;
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example

N
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Greedy algorithm for densest subgraph — example

N
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Approximation guarantees

Let's overload the notation d(S) in what follows. Let
5

d(S) « @, namely d(S) = %

The greedy algorithm achieves a 2-approximation for the
densest subgraph problem in undirected networks.

Let the optimal value be d(5*) = A. Consider the vertex with
the smallest (induced) degree in S*. Let this degree be dp,
and |S*| = s*.

O
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Approximation guarantees

Cont.

By the optimality of S*

)= e[S] < e[S*] — dmin
S*

- dmin Z A

st —

Consider the moment when the greedy algorithm removes a
vertex that belongs in $*. By the way the algorithm iterates,
all remaining vertices have induced degree at least . Let S be
the set of these vertices, |S| =s. Then, the subgraph has
As/2 edges and the density is d(S) = A/2. This guarantees an
approximation ratio 1/2. ]

v
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Tightness [Khuller and Saha, 2009]

Run the greedy approximation algorithm on

Kd,D Uf(d+1 Uu...u Kd+£.
D;rrnes

What is the output?
What is the optimal solution?
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Other notions and generalizations

e k-core: every vertex in S is connected to at least k other
vertices in S

e c-quasiclique: the set S has at least o|S|(|S| —1)/2
edges

e enumerate all a-quasicliques [Uno, 2010]
e dense subgraphs of directed graphs: find sets S, 7 C V

to maximize
e[S, T]

A1) =

[Charikar, 2000, Khuller and Saha, 2009]
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Edge-surplus framework

e Introduced in
[Tsourakakis et al., 2013, Tsourakakis, 2013]

e for a set of vertices S define edge surplus

f(5) = g(e[S]) — h(IS])

where g and h are both strictly increasing

e optimal (g, h)-edge-surplus problem:
find S* such that

f(S7) > f(S), forallsets SC S*
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Edge-surplus framework

e edge surplus 7(S) = g(e[S]) — h(|S])

e example 1
g(x) = h(x) = log x
find S that maximizes log ‘[5‘]

densest-subgraph problem

e example 2

0 if x =k
+00 otherwise

g =x he) = {
k-densest-subgraph problem
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The optimal quasiclique problem

[Tsourakakis et al., 2013, Tsourakakis, 2013]
e edge surplus 7(S) = g(e[S]) — h(|S])

e consider

find S that maximizes e[S] — o ('i‘)

optimal quasiclique problem

e theorem: let g(x) = x and h(x) concave

then the optimal (g. h)-edge-surplus problem is
polynomially-time solvable
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The optimal quasiclique problem

theorem: let g(x) = x and h(x) concave

then the optimal (g, h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular

—h(x) is supermodular

g(x) — h(x) is supermodular

maximizing supermodular functions is solvable in
polynomial time
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The optimal quasiclique problem

theorem: let g(x) = x and h(x) concave

then the optimal (g, h)-edge-surplus problem is
polynomially-time solvable

e However, this is not a particularly interesting case. The
output will be too big, if not the whole graph.
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Optimal quasicliques in practice

densest subgraph vs. optimal quasiclique

Dolphins
Football
Jazz

Celeg. N.

C.E. Tsourakakis

densest subgraph

optimal quasi-clique

[S]

[S]

|V| 1) D T m 1) D T

032 033 3 0.04 | 0.12 0.68 2 0.32

1 009 4 003010 073 2 034

050 034 3 008015 1 1 1

046 013 3 0.05)0.07 061 2 0.26
[Tsourakakis et al., 2013]
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Understanding the objective

[Tsourakakis, 2013]
e o = 0: Optimal solution=G. Not interesting

e 0 < a < 1:In general hard. Let's see.

Assume that finding a hidden clique of order O(n'/2-9)
where § > 0 in a random binomial graph G ~ G(n,1/2)
is hard.

Hidden clique score = (1 — a)(”l/;é).
1/2—6
Score of a random set= (1/2 — a)("", ).

Set a > 1/2 to solve the problem in expectation.
By settinga=1— ﬁ we solve the max-clique
problem.

Straightforward inapproximability results.
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Understanding the objective

e o = 1: Clearly optimal score is always 0 and achieved by
an edge. In general all cliques achieve this score.

e o > 1 Not interesting. Let &« =1+ ¢, where ¢ > 0. The
S
score is of the form e[S] — (‘2|> —¢(B3). Hence, a single

<0
edge minimizes the score.
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Finding and optimal quasiclique

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V. E)

output: a quasiclique S

1 setG,« G

2 for k < n downto 1

2.1 let v be the smallest degree vertex in G,

2.2 Gi_1 < Gk \ {v}

3 output the subgraph in G,, ..., Gy that maximizes 7(S)

additive approximation guarantee [Tsourakakis et al., 2013]
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top-k densest subgraphs and quasicliques
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Multiplicative Approximation: a
0.796-approximation algorithm

[Tsourakakis, 2013]
o f(S) — fu(S) + a(3). Then £,(S) >0 forany SC V.

e This shifting is not necessary since the optimal objective
value is positive in the interesting range of 0 < a < 1 as
a single edge results in a positive score 1 — .

e Adds a huge additive error but does not render the
objective useless for all graphs.

e Result of limited value due to the large additive error for
realistic cases.
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Multiplicative Approximation: a
0.796-approximation algorithm

e We introduce a variable x; € {—1,+1} for each vertex
i€V ={1,...,n} and an extra variable xy which
expresses whether a vertex belongs to S or not:

Itis i € S if and only if xox; = 1.

e Notice that the term w‘w equals 1 if and only if

both /i, belong in S, otherwise it equals 0. Furthemore,
the term (g) enters the objective as %Z,# 1.
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Multiplicative Approximation: a
0.796-approximation algorithm

Therefore, we get the following integer program:

1 i ' iXj
max Z +X0X+XOXJ+XXJ+

~ 4
e=(ij)
@ 1+ XxoX; + XoXj + XiX; 1
N~ (- ) (1)
72 ;

subject to x; € {—1,+1}, for all i € {0,1,..,n}.
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Multiplicative Approximation: a
0.796-approximation algorithm

We relax the integrality constraint and we allow the variables
to be vectors in the unit sphere in R™!. By using the variable
transformation y;; = x;x;, we obtain the following semidefinite

programming relaxation:

1+ yoi + yoj + Yi
@) i

max

+
e=(i,)

1 1+ yoi + Yoj + ¥is
z 1—
32 i
i#j
subject to y; = 1, for alli € {0,1, .., n}
and Y > 0, Y symmetric.

(C.E. Tsourakakis T-79.7003, Introduction
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Multiplicative Approximation: a
0.796-approximation algorithm

SDP-Edge-Surplus
e Relaxation: Solve the semidefinite program and compute a
Cholesky decomposition of Y. Let vy, vy, ..., Vv, be the
resulting vectors.

e Randomized Rounding: Randomly choose a unit length
vector r € R™! and set
S ={i€[n]:sgn(vir) = sgn(vor)}.

e Boosting Success Probability: Repeat steps 1-2 for
t =1,.., T and output the best solution found over the
T = c.oplognruns. Here, 1 > ¢ > 0 is a small positive

(1—e)38
1- 2(a+1)

_35
€2(a+1)

constant and ¢, 3 =
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Multiplicative Approximation: a
0.796-approximation algorithm

Theorem ([Tsourakakis, 2013])

Algorithm SDP-Edge-Surplus is a (3-approximation algorithm
for f where (3 > 0.79607 with probability at least 1 — O(n™').
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The community-search problem

a dense subgraph that contains a given subset
of vertices @ C V/ (the query vertices)

e the problem

e the problem

e the problem
applications

e find the community of a given set of users

e a meaningful way to address the issue of
overlapping communities

¢ find a set of proteins related to a given set

e form a team to solve a problem
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Center-piece subgraph [Tong and Faloutsos, 2006]

e given: graph G = (V/, E) and set of query vertices Q C V/
e find: a connected subgraph H that

(a) contains @
(b) optimizes a goodness function g(H)

e main concepts:

e k_softAND: a node in H should be well connected to at
least k vertices of @)

e r(i,J) goodness score of j wrt g; € @Q

e r(Q,)) goodness score of j wrt @

e g(H) goodness score of a candidate subgraph H
o H* = argmaxy g(H)
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Center-piece subgraph

[Tong and Faloutsos, 2006]

e r(i,J) goodness score of j wrt g; € Q

probability to meet j in a random walk with restart to g;

e r(Q,) goodness score of j wrt @

probability to meet ;j in a random walk with restart to k
vertices of @

e proposed algorithm:

1. greedy: find a good destination vertex j ito add in H
2. add a path from each of top-k vertices of () path to j
3. stop when H becomes large enough
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Center-piece subgraph — example results

;
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(b) “AND query”

[Tong and Faloutsos, 2006]
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The community-search problem
[Sozio and Gionis, 2010]

e given: graph G = (V/, E) and set of query vertices Q C V/
e find: a connected subgraph H that

(a) contains @
(b) vertices of H are close to @
(c) optimizes a density function d(H)

e distance constraint (b):

d(Q.j) =) d*(a.j)<B

qgeqQ
e density function (c):

average degree, minimum degree, quasiclique, measured
on the induced subgraph H

C.E. Tsourakakis T-79.7003, Introduction 48 / 96



The community-search problem

both the distance constraint and the minimum-degree density
help addressing the problem of free riders
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The community-search problem

algorithm proposed by [Sozio and Gionis, 2010]
adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V/, E), query vertices Q C V/
output: connected, dense subgraph H
1 setG,« G
2  for k «+ n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in G,
among all vertices not in )
2.3 Gk 1 < Gk\{V}
2.4 if left only with vertices in () or disconnected graph, stop
3 output the subgraph in G, ..., Gy that maximizes 7 (H)
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Properties of the greedy algorithm

e returns optimal solution if no size constraints or
lower-bound constraints

e heuristic variants proposed when upper-bound constraints

e generalized for monotone constraints and monotone
objective functions
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The community-search problem — example results

(a) Database theory (b) Complexity theory

(from [Sozio and Gionis, 2010])
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Conclusions (dense subgraphs)

summary
e discussed a number of different density measures
e discussed a number of diiferent problem formulations
e polynomial-time solvable or NP-hard problems
e global dense subgraphs or relative to query vertices
promising future directions

e explore further the concept of a-quasiclique (no shifting,
better additive guarantees)

better algorithms for upper-bound constraints

top-k versions of dense subgraphs

adapt concepts for labeled graphs

local algorithms
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Streaming Graph partitioning



Need for scalable algorithms

° : : algorithms
. to very large graphs
e handle datasets with of vertices and edges

e facebook: ~ 1 billion users with avg degree 130
e twitter: > 1.5 billion social relations

e google: web graph more than a trillion edges (2011)

e design algorithms for scenarios

e real-time story identification using twitter posts

e election trends, twitter as election barometer
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Graph partitioning

e graph partitioning is a way to split the graph vertices in
multiple machines

e graph partitioning objectives guarantee low
communication overhead among different machines

e additionally balanced partitioning is desirable

G=(V.E)

e each partition contains =~ n/k vertices
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Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

e popular family of algorithms and software
e multilevel algorithm

° phase in which the size of the graph is
successively decreased

e followed by (based on spectral or KL method)

e followed by phase in which the bisection is
successively refined and projected to larger graphs
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Off-line k-way graph partitioning

Krauthgamer, Naor and Schwartz [Krauthgamer et al., 2009]

e problem: minimize number of edges cut, subject to
cluster sizes ©(n/k)

e approximation guarantee: O(+/log k log n)

e based on the work of Arora-Rao-Vazirani for the
sparsest-cut problem (k = 2) [Arora et al., 2009]
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streaming k-way graph partitioning

e input is a
e graph is ordered

o arbitrarily
o breadth-first search
o depth-first search

e generate an balanced graph partitioning

/ each partition
-

holds O(n/k)
graph stream — T 5 vertices
partitioner

P L R Y e R T e R |
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Graph representations

e adjacency stream

e at time t, a vertex arrives with its neighbors

e edge stream

e at time t, an edge arrives
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Partitioning strategies

e hashing: place a new vertex to a cluster/machine chosen
uniformly at random

e neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

e non-neighbors heuristic: place a new vertex to the

cluster/machine with the minimum number of
non-neighbors
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Partitioning strategies

[Stanton and Kliot, 2012]

e d.(v): neighbors of v in cluster ¢
e t.(v): number of triangles that v participates in cluster ¢

e balanced: vertex v goes to cluster with least number of
vertices

e hashing: random assignment

e weighted degree: v goes to cluster ¢ that maximizes
de(v) - w(c)

e weighted triangles: v goes to cluster j that maximizes

te(v)/(*5") - wc)

C.E. Tsourakakis T-79.7003, Introduction 62 / 96



Weight functions

e s.: number of vertices in cluster ¢

unweighted: w(c) =1

linearly weighted: w(c) =1 — s.(k/n)

sc—n/k)

exponentially weighted: w(c) =1 — el
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FENNEL algorithm

[Tsourakakis et al., 2012]
minimize p—(s,,..s,) |0 e(P)|
subject to 1Si| < V%, forall 1 </<k

e hits the ARV barrier

minimize p—s,,..s,) |0 E(P)| + an(P)

where ¢ (P) = > . s(|S

), so that objective self-balances

e relax hard cardinality constraints
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FENNEL algorithm
[Tsourakakis et al., 2012]
e for S C V, f(S)=elS] — a|S]7, with v > 1
e given partition P = (5;,...,5;) of V in k parts define

e the goal: maximize g(7) over all possible k-partitions

g(P) =Y elsl- ad IS

i
—— ——
number of minimized for
edges cut balanced partition!

e notice:
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Connection

notice

() = eS| —a<|§>

e related to modularity

e related to quasicliques (see next)
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FENNEL algorithm

theorem [Tsourakakis et al., 2012]

e ~ = 2 gives approximation factor log(k)/k
where k is the number of clusters

e random partitioning gives approximation factor 1/k

e no dependence on n

mainly because relaxing the hard cardinality constraints
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FENNEL algorithm — greedy scheme

e v = 2 gives non-neighbors heuristic
e v =1 gives neighbors heuristic

e interpolate between the two heuristics, e.g., v = 1.5
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FENNEL algorithm — greedy scheme

[eP o0t s—0 g0 o2 0 0 %0 o]

/ each partition
-

holds O(n/k)
graph stream —> 1 5 vertices
partitioner

e send v to the partition / machine that maximizes

F(Siu{v}) —£(S)
=e[S;U{v}] — o
— ds(v) - a0(|$;

S," + 1)ﬂ — (6‘[5,] — O(‘S,'
7*1)

")

e fast, amenable to streaming and distributed setting
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FENNEL algorithm — results

d t S;

= edgescuty 1 15
m 1<i<k n/k

Fennel METIS
m k A p A p

7185314 [ 4 [ 625 % | 1.04 | 65.2% | 1.02
6714510 | 8 | 82.2% | 1.04 | 81.5% | 1.02
6483201 | 16 | 92.9 % | 1.01 | 92.2% | 1.02
6364819 | 32 | 96.3% | 1.00 | 96.2% | 1.02
6308013 | 64 | 98.2% | 1.01 | 97.9% | 1.02
6279566 | 128 | 98.4 % | 1.02 | 98.8% | 1.02

e v=15
e comparable results in quality, but FENNEL is lightway,
fast, and streamable
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Conclusions (graph partitioning)

summary
e spectral techniques, modularity-based methods,
graph partitioning
e well-studied and mature area

future directions

e develop alternative notions for communities,

e.g., accounting for graph labels, constraints, etc.

e further improve efficiency of methods

e overlapping communities
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Rainbow connection



Rainbow connection

e Suppose we wish to route messages in a cellular network
G, between any two vertices in a pipeline, and require that
each link on the route between the vertices (namely, each
edge on the path) is assigned a distinct channel (e.g., a
distinct frequency). The minimum number of distinct
channels we need to use is the rainbow connectivity of G.
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Rainbow connection

e An edge colored graph G is rainbow edge connected iff
any two vertices are connected by a path whose edges
have distinct colors. The rainbow connectivity rc(G) of a
connected graph G is the smallest number of colors that
are needed in order to make G rainbow edge connected.

e rc(G) < n—1 Exercise

c(G) =
e rc(G) = 1iff G is the complete graph K|, Exercise
(G) < n*%8™53 [Caro et al., 2008]

=n—1iff G is a tree Exercise

e rc(G

I/\
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Rainbow connection

Let
log n

= 3
log log n (3)

and let A~ B denote A= (1+ 0(1))B as n — oco. We shall
sketch the proof of the following theorem

[Frieze and Tsourakakis, 2012a,

Frieze and Tsourakakis, 2012b].

Theorem

Let G = G(n,p),p = "8 & — 0o,w = o(log n). Also, let
Z; be the number of vertices of degree 1 in G. Then, with
high probability(whp)

rc(G) ~ max{Zi, L},
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Rainbow connection

Let a vertex be large if deg(x) > log n/100 and small
otherwise.

Whp, there do not exist two small vertices within distance at
most 3L /4.

L
Pr {Elx,y € [n] : deg(x),deg(y) < logn/100, dist(x,y) < 37]

2

3L/4 log n/100

< ('27) ; Ly A Y (n - T N k) p'(1—p)tk

i=0
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Rainbow connection

3L/4 |
k n logn/100(1 _ . \n—1—logn/100
< 2 n(2logn) (2 (Iog n/1oo>p (1-p) )
k=1
3L/4
< Z n(2log n)* (2(100e1+0(1))log n/100,771+o(1))2
k=1
3L/4

n(2log n)<n=1*°

(]

il
n(2log n)3t/4p=19
—1

IA TN
=) N x
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Rainbow connection

High-level sketch of the proof

® Randomly color the edges of the graph in question, using
a uniformly random coloring.

® To prove that this works, we have to find, for each pair of
vertices x, y, a large collection of edge disjoint paths
joining them. It will then be easy to argue that at least
one of these paths is rainbow colored.

©® To find these paths we pick a typical vertex x. We grow a
regular tree T, with root x. The depth is chosen
carefully. We argue that for a typical pair of vertices x, y,
many of the leaves of T, and T, can be put into 1-1
correspondence f so that (i) the path P, from x to leaf v
of T is rainbow colored, (ii) the path P, from y to the
leaf f(v) of T, is rainbow colored and (iii) Py, P, do not
share color.
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Rainbow connection

© We argue that from most of the leaves of T,, T, we can
grow a tree of depth approximately equal to half the
diameter. These latter trees themselves contain a bit
more than n'/? leaves. These can be constructed so that
they are vertex disjoint. Now we argue that each pair of
trees, one associated with x and one associated with y,
are joined by an edge.

©® We now have, by construction, a large set of edge disjoint
paths joining leaves v of T, to leaves f(v) of T,. A
simple estimation shows that whp for at least one leaf v
of T, the path from v to f(v) is rainbow colored and
does not use a color already used in the path from x to v
in T, or the path from y to f(v) in T,.
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Rainbow connection

Fix t € Z* and 0 < o < 1. Then, whp there does not exist a
subset S C [n], such that |S| < atL and e[S] > |S| + t.

For convenience, let s = |S| be the cardinality of the set
S.Then,

Pr(3S:s<atL and e[S]>s+1t] < Z (:) (s(j—)t) pott
s<atlL
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Rainbow connection

es’p

<> (%)

s<atlL (

2(s+t
Z (62—1—0(1) log n)s

s<atL <

< atl ((e2+°(1) log )t <
1

n(I—a—o(1))t’

€s
<

<

))

log n
n

)

eatlog?® n

nloglogn

)
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Rainbow connection

Lemma

Whp for all pairs of large vertices x,y € [n] there exists a
subgraph G ,(V,, Ex,) of G as shown in the next figure.
The subgraph consists of two isomorphic vertex disjoint trees
T., T, rooted at x,y each of depth k. T, and T, both have a
branching factor of log n/101. le. each vertex of Ty, T, has
at least log n/101 neighbors, excluding its parent in the tree.
Let the leaves of T, be x1,xa, . .., x, where T > n*/> and
those of T, be y1,y»,...,y.. Then y; = f(x;) where f is a
natural isomporphism that preserves the parent-child relation.
Between each pair of leaves (x;,y;),i = 1,2,...,7 thereis a
path P; of length (1 + 2¢)L. The paths P,, i = 1, 2,...,T are

edge disjoint.
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Rainbow connection

k=¢L (1+2¢)L k=cL
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Rainbow connection

Top-down coloring, think of it as an evolutionary process. We
show that there are many “alive” pairs.
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Rainbow connection

Color each edge of G using one color at random from q
available. Then, the probability of having at least one rainbow

path between two fixed large vertices x,y € [n] is at least
1
n3-

Two key steps

a .. .
e STEP 1: Existence of at least n5° living pairs of leaves
e STEP 2: Existence of rainbow paths between x,y in G,
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Rainbow connection

Taking care of small vertices.
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Rainbow connection

Also results for random regular graphs
[?, Frieze and Tsourakakis, 2012b].

Theorem

Let G = G(n, r) be a random r-regular graph where r > 3 is a
fixed integer. Then, whp

_ | O(log*n) r=3
re(C) = {O(Iog n) r>A4

Open problem: r =3
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Best wishes for the rest of your
studies!
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