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Abstract. Data stream values are often associated with multiple as-
pects. For example, each value observed at a given time-stamp from
environmental sensors may have an associated type (e.g., temperature,
humidity, etc) as well as location. Time-stamp, type and location are
the three aspects, which can be modeled using a tensor (high-order
array). However, the time aspect is special, with a natural ordering,
and with successive time-ticks having usually correlated values. Stan-
dard multiway analysis ignores this structure. To capture it, we propose
2 Heads Tensor Analysis (2-heads), which provides a qualitatively dif-
ferent treatment on time. Unlike most existing approaches that use a
PCA-like summarization scheme for all aspects, 2-heads treats the time
aspect carefully. 2-heads combines the power of classic multilinear analy-
sis (PARAFAC [6], Tucker [13], DTA/STA [11], WTA [10]) with wavelets,
leading to a powerful mining tool. Furthermore, 2-heads has several other
advantages as well: (a) it can be computed incrementally in a streaming
fashion, (b) it has a provable error guarantee and, (c) it achieves signifi-
cant compression ratio against competitors. Finally, we show experiments
on real datasets, and we illustrate how 2-heads reveals interesting trends
in the data.

1 Introduction

Data streams have received attention in different communities due to emerg-
ing applications, such as environmental monitoring, surveillance video streams,
business transactions, telecommunications (phone call graphs, Internet traffic
monitor), and financial markets. Such data is represented as multiple co-evolving
streams (i.e., time series with an increasing length). Most data mining operations
need to be redesigned for data streams, which require the results to be updated
efficiently for the newly arrived data. In the standard stream model, each value
is associated with a (time-stamp, stream-ID) pair. However, the stream-ID itself
may have some additional structure. For example, it may be decomposed into
(location-ID, type) ≡ stream-ID. We call each such component of the stream
model an aspect. Each aspect can have multiple dimensions. This multi-aspect
structure should not be ignored in data exploration tasks since it may provide
additional insights. Motivated by the idea that the typical “flat-world” view



may not be sufficient. How should we summarize such high dimensional and
multi-aspect streams? Some recent developments are along these lines such as
Dynamic Tensor Analysis [11] and Window-based Tensor Analysis [10], which
incrementalize the standard offline tensor decompositions such as Tensor PCA
(Tucker 2) and Tucker. However, the existing work often adopts the same model
for all aspects. Specifically, PCA-like operation is performed on each aspect
to project data onto maximum variance subspaces. Yet, different aspects have
different characteristics, which often require different models. For example, max-
imum variance summarization is good for correlated streams such as correlated
readings on sensors in a vicinity; time and frequency based summarizations such
as Fourier and wavelet analysis are good for the time aspect due to the temporal
dependency and seasonality.

In this paper, we propose a 2-heads Tensor Analysis (2-heads) to allow more
than one model or summarization scheme on dynamic tensors. In particular, 2-
heads adopts a time-frequency based summarization, namely wavelet transform,
on the time aspect and a maximum variance summarization on all other aspects.
As shown in experiments, this hybrid approach provides a powerful mining capa-
bility for analyzing dynamic tensors, and also outperforms all the other methods
in both space and speed.

Contributions. Our proposed approach, 2-heads, provides a general framework
of mining and compression for multi-aspect streams. 2-heads has the following
key properties:

– Multi-model summarization: It engages multiple summarization schemes on
various aspects of dynamic tensors.

– Streaming scalability: It is fast, incremental and scalable for the streaming
environment.

– Error Guarantee: It can efficiently compute the approximation error based
on the orthogonality property of the models.

– Space efficiency: It provides an accurate approximation which achieves very
high compression ratios (over 20:1), on all real-world data in our experiments.

We demonstrate the efficiency and effectiveness of our approach in discovering
and tracking key patterns and compressing dynamic tensors on real environmen-
tal sensor data.

2 Related Work

Tensor Mining: Vasilescu and Terzopoulos [14] introduced the tensor singular
value decomposition for face recognition. Xu et al. [15] formally presented the
tensor representation for principal component analysis and applied it for face
recognition. Kolda et al. [7] apply PARAFAC on Web graphs and generalize the
hub and authority scores for Web ranking through term information. Acar et
al. [1] applied different tensor decompositions, including Tucker, to online chat
room applications. Chew et al [2] uses PARAFAC2 to study the multi-language



translation probem. J.-T. Sun et al. [12] used Tucker to analyze Web site click-
through data. J. Sun et al. [11, 10] proposed different methods for dynamically
updating the Tucker decomposition, with applications ranging from text anal-
ysis to environmental sensors and network modeling. All the aforementioned
methods share a common characteristic: they assume one type of model for all
modes/aspects.

Wavelet: The discrete wavelet transform (DWT) [3] has been proved to be
a powerful tool for signal processing, like time series analysis and image analysis
[9]. Wavelets have an important advantage over the Discrete Fourier transform
(DFT): they can provide information from signals with both periodicities and
occasional spikes (where DFT fails). Moreover, wavelets can be easily extended
to operate in a streaming, incremental setting [5] as well as for stream mining
[8]. However, none of them work on high-order data as we do.

3 Background

Principal Component Analysis: PCA finds the best linear projections of a set
of high dimensional points to minimize least-squares cost. More formally, given n
points represented as row vectors xi|ni=1 ∈ RN in an N dimensional space, PCA
computes n points yi|ni=1 ∈ Rr (r � N) in a lower dimensional space and the
factor matrix U ∈ RN×r such that the least-squares cost e =

∑n
i=1 ‖xi −Uyi‖22

is minimized.5

Discrete Wavelet Transform: The key idea of wavelets is to separate
the input sequence into low frequency part and high frequency part and to do
that recursively in different scales. In particular, the discrete wavelet transform
(DWT) over a sequence x ∈ RN gives N wavelet coefficients which encode
the averages (low frequency parts) and differences (high frequency parts) at all
lg(N)+1 levels.

At the finest level (level lg(N)+1), the input sequence x ∈ RN is simultane-
ously passed through a low-pass filter and a high-pass filter to obtain the low
frequency coefficients and the high frequency coefficients. The low frequency co-
efficients are recursively processed in the same manner in order to separate the
lower frequency components. More formally, we define

– wl,t: The detail component, which consists of the N
2l wavelet coefficients.

These capture the low-frequency component.
– vl,t: The average component at level l, which consists of the N

2l scaling coef-
ficients. These capture the high-frequency component.

Here we use Haar wavelet to introduce the idea in more details.
The construction starts with vlg N,t = xt and wlg N,t is not defined. At each

iteration l = lg(N), lg(N) − 1, . . . , 1, 0, we perform two operations on wl,t to
compute the coefficients at the next level. The process is formally called Analysis
step:

5 Both x and y are row vectors.



– Differencing, to extract the high frequencies: wl−1,t = (vl,2t − vl,2t−1)/
√

2
– Averaging, which averages each consecutive pair of values and extracts the

low frequencies: vl−1,t = (vl,2t + vl,2t−1)/
√

2

We stop when vl,t consists of one coefficient (which happens at l = 0). The
other scaling coefficients vl,t (l > 0) are needed only during the intermediate
stages of the computation. The final wavelet transform is the set of all wavelet
coefficients along with v0,0. Starting with v0,0 and following the inverse steps,
formally called Synthesis, we can reconstruct each vl,t until we reach vlg N,t ≡ xt.

(a) (b)

Fig. 1. Example: (a) Haar wavelet transform on x = (1, 2, 3, 3)T. The wavelet coef-
ficients are highlighted in the shaded area. (b) The same process can be viewed as
passing x through two filter banks.

In the matrix presentation, the analysis step is

b = Ax (1)

where x ∈ RN is the input vector, b ∈ RN consists of the wavelet coef-
ficients. At i-th level, the pair of low- and high-pass filters, formally called
filter banks, can be represented as a matrix, say Ai. For the Haar wavelet
example in Figure 1, the first and second level filter banks A1 and A0 are

A1 =


r r

r r
r −r

r −r

 A0 =


r r
r −r

1
1

 where r = 1√
2
.

The final analysis matrix A is a sequence of filter banks applied on the input
signal, i.e.,

A = A0A1. (2)

Conversely, the synthesis step is x = Sb. Note that synthesis is the inverse of
analysis, S = A−1. When the wavelet is orthonormal like Haar and Daubechies
wavelets, the synthesis is simply the transpose of analysis, i.e.,S = AT.

Multilinear Analysis: A tensor of order M closely resembles a data cube
with M dimensions. Formally, we write an M -th order tensor as X ∈ RN1×N2×···×NM

where Ni (1 ≤ i ≤ M) is the dimensionality of the i-th mode (“dimension” in
OLAP terminology).

Matricization. The mode-d matricization of an M -th order tensor X ∈ RN1×N2×···×NM

is the rearrangement of a tensor into a matrix by keeping index d fixed and



flattening the other indices. Therefore, the mode-d matricization X(d) is in
RNd×(

Q
i6=d Ni). The mode-d matricization X is denoted as unfold(X, d) or X(d).

Similarly, the inverse operation is denoted as fold(X(d)). In particular, we have
X = fold(unfold(X, d)). Figure 2 shows an example of mode-1 matricization of a
3rd-order tensor X ∈ RN1×N2×N3 to the N1× (N2×N3)-matrix X(1). Note that
the shaded area of X(1) in Figure 2 is the slice of the 3rd mode along the 2nd
dimension.

Fig. 2. 3rd order tensor X ∈ RN1×N2×N3 is matricized along mode-1 to a matrix
X(1) ∈ RN1×(N2×N3). The shaded area is the slice of the 3rd mode along the 2nd
dimension.

Mode product. The d-mode product of a tensor X ∈ Rn1×n2×···×nM with a matrix
A ∈ Rr×nd is denoted as X×d A which is defined element-wise as

(X×d A)i1...id−1jid+1...iM
=

nd∑
id=1

xi1,i2,...,iM
ajid

Figure 3 shows an example of a mode-1 multiplication of 3rd order tensor X

and matrix U. The process is equivalent to a three-step procedure: first we
matricize X along mode-1, then we multiply it with U, and finally we fold the
result back as a tensor. In general, a tensor Y ∈ Rr1×···×rM can multiply a

Fig. 3. 3rd order tensor X[n1,n2,n3] ×1 U results in a new tensor in Rr×n2×n3

sequence of matrices U(i)|Mi=1 ∈ Rni×ri as: Y ×1 U1 · · · ×M UM ∈ Rn1×···×nM ,

which can be compactly written as Y
M∏
i=1

×i
Ui. Furthermore, the notation for



Y×1U1 · · ·×i−1Ui−1×i+1Ui+1 · · ·×M UM (i.e. multiplication of all Ujs except
the i-th) is simplified as Y

∏
j 6=i

×jUj .

Tucker decomposition. Given a tensor X ∈ RN1×N2×···×NM , Tucker decom-
poses a tensor as a core tensor and a set of factor matrices. Formally, we
can reconstruct X using a sequence of mode products between the core ten-
sor G ∈ RR1×R2×···×RM and the factor matrices U(i) ∈ RNi×Ri |Mi=1. We use the
following notation for Tucker decomposition:

X = G

M∏
i=1

×i
U(i) ≡ JG ;U(i)|Mi=1K

We will refer to the decomposed tensor JG ;U(i)|Mi=1K as a Tucker Tensor. If
a tensor X ∈ RN1×N2×···×NM can be decomposed (even approximately), the
storage space can be reduced from

∏M
i=1 Ni to

∏M
i=1 Ri +

∑M
i=1(Ni × Ri), see

Figure 4.

4 Problem Formulation

In this section, we formally define the two problems addressed in this paper:
Static and Dynamic 2-heads tensor mining. To facilitate the discussion, we refer
to all aspects except for the time aspect as “spatial aspects.”

4.1 Static 2-heads tensor mining

In the static case, data are represented as a single tensor D ∈ RW×N1×N2×···×NM .
Notice the first mode corresponds to the time aspect which is qualitatively dif-
ferent from the spatial aspects. The mining goal is to compress the tensor D

while revealing the underlying patterns on both temporal and spatial aspects.
More specifically, we define the problem as the follows:

Problem 1 (Static tensor mining). Given a tensor D ∈ RW×N1×N2×···×NM , find
the Tucker tensor D̂ ≡ JG ;U(i)|Mi=0K such that 1) both the space requirement
of D̂ and the reconstruction error e =

∥∥∥D− D̂
∥∥∥

F
/ ‖D ‖F are small; 2) both

spatial and temporal patterns are revealed through the process.

The central question is how to construct the suitable Tucker tensor; more specif-
ically, what model should be used on each mode. As we show in Section 6.1,
different models on time and spatial aspects can serve much better for time-
evolving applications.

The intuition behind Problem 1 is illustrated in Figure 4. The mining oper-
ation aims at compressing the original tensor D and revealing patterns. Both
goals are achieved through the specialized Tucker decomposition, 2-heads Tensor
Analysis (2-heads) as presented in Section 5.1.



Fig. 4. The input tensor D ∈ RW×N1×N2×···×NM (time-by-location-by-type) is ap-
proximated by a Tucker tensor JG ;U(i)|2i=0K. Note that the time mode will be treated
differently compared to the rest as shown later.

4.2 Dynamic 2-heads tensor mining

In the dynamic case, data are evolving along time aspect. More specifically, given
a dynamic tensor D ∈ Rn×N1×N2×···×NM , the size of time aspect (first mode) n
is increasing over time n→∞. In particular, n is the current time. In another
words, new slices along time mode are continuously arriving. To mine the time-
evolving data, a time-evolving model is required for space and computational
efficiency. In this paper, we adopt a sliding window model which is popular in
data stream processing.

Before we formally introduce the problem, two terms have to be defined:

Definition 1 (Time slice). A time slice Di of D ∈ Rn×N1×N2×···×NM is the
i-th slice along the time mode (first mode) with Dn as the current slice.

Note that given a tensor D ∈ Rn×N1×N2×···×NM , every time slice is actually a
tensor with one less mode, i.e., Di ∈ RN1×N2×···×NM .

Definition 2 (Tensor window). A tensor window D(n,W ) consists of a set of
the tensor slices ending at time n with size W , or formally,

D(n,W ) ≡ {Dn−W+1, . . . ,Dn} ∈ RW×N1×N2×···×NM . (3)

Figure 5 shows an example of tensor window. We now formalize the core
problem, Dynamic 2-heads Tensor Mining. The goal is to incrementally compress
the dynamic tensor while extracting spatial and temporal patterns and their
correlations. More specifically, we aim at incrementally maintaining a Tucker
model for approximating tensor windows.

Problem 2 (Dynamic 2-heads Tensor Mining). Given the current tensor window
D(n,W ) ∈ RW×N1×N2×···×NM and the old Tucker model for D(n−1,W ), find the
new Tucker model D̂(n,W ) ≡ JG ;U(i)|Mi=0K such that 1) the space requirement

of D̂ is small 2) the reconstruction error e =
∥∥∥D(n,W ) − D̂(n,W )

∥∥∥
F

is small

(see Figure 5). 3) both spatial and temporal patterns are reviewed through the
process.



Fig. 5. Tensor window D(n,W ) consists of the most recent W time slices in D. Dynamic
tensor mining utilizes the old model for D(n−1,W ) to facilitate the model construction
for the new window D(n,W ).

5 Multi-model Tensor Analysis

In Section 5.1 and Section 5.2, we propose our algorithms for the static 2-heads
and dynamic 2-heads tensor mining problems, respectively. In Section 5.3 we
present mining guidance for the proposed methods.

5.1 Static 2-heads Tensor Mining

Many applications as listed before exhibit strong spatio-temporal correlations
in the input tensor D. Strong spatial correlation usually benefits greatly from
dimensionality reduction. For example, if all temperature measurements in a
building exhibit the same trend, PCA can compress the data into one principal
component (a single trend is enough to summarize the data). Strong temporal
correlation means periodic pattern and long-term dependency. This is better
viewed in the frequency domain through Fourier or wavelet transform.

Hence, we propose 2-Heads Tensor Analysis (2-heads), which combines both
PCA and wavelet approaches to compress the multi-aspect data by exploiting
the spatio-temporal correlation. The algorithm involves two steps:

– Spatial compression: We perform alternating minimization on all modes ex-
cept for the time mode.

– Temporal compression: We perform discrete wavelet transform on the result
of spatial compression.

Spatial compression uses the idea of alternating least square (ALS) method
on all factor matrices except for the time mode. More specifically, it initializes all
factor matrices to be the identity matrix I; then it iteratively updates the factor
matrices of every spatial mode until convergence. The results are the spatial core
tensor X ≡D

∏
i 6=0

×iU
(i) and the factor matrices U(i)|Mi=1.



Temporal compression performs frequency-based compression (e.g., wavelet
transform) on the spatial core tensor X. More specifically, we obtain the spatio-
temporal core tensor G ≡ X×0 U(0) where U(0) is the DWT matrix such as the
one shown in Equation (2)6. The entries in the core tensor G are the wavelet
coefficients. We then drop the small entries (coefficients) in G, result denoted as
Ĝ, such that the reconstruction error is just below the error threshold θ. Finally,
we obtain Tucker approximation D̂ ≡ JĜ ;U(i)|Mi=0K. The pseudo-code is listed
in Algorithm 1.

By definition, the error e =
∥∥∥D− D̂

∥∥∥2

F
/ ‖D ‖2F . It seems that we need to

construct the tensor D̂ and compute the difference between D and D̂ in order
to calculate the error e. Actually, the error e can be computed efficiently based
on the following theorem.

Theorem 1 (Error estimation). Given a tensor D and its Tucker approxi-
mation described in Algorithm 1, D̂ ≡ JG ;U(i)|Mi=0K, we have

e =

√
1−

∥∥∥ Ĝ
∥∥∥2

F
/ ‖D ‖2F (4)

where Ĝ is the core tensor after zero-out the small entries and the error estima-
tion e ≡

∥∥∥D− D̂
∥∥∥

F
/ ‖D ‖F .

Proof. Let us denote G and Ĝ as the core tensor before and after zero-outing the
small entries (G = D

∏
×iU

(i)).

e2 =

∥∥∥∥∥D− Ĝ

M∏
i=0

×i
U(i)T

∥∥∥∥∥
2

F

/ ‖D ‖2F def. of D̂

=

∥∥∥∥∥D

M∏
i=0

×iU
(i)T − Ĝ

∥∥∥∥∥
2

F

/ ‖D ‖2F unitary trans

=
∥∥∥G− Ĝ

∥∥∥2

F
/ ‖D ‖2F def. of G

=
∑

x

(gx − ĝx)2/ ‖D ‖2F def. of F-norm

= (
∑

x

g2
x −

∑
x

ĝ2
x)/ ‖D ‖2F def. of Ĝ

= 1−
∥∥∥ Ĝ

∥∥∥2

F
/ ‖D ‖2F def. of F-norm

Computational cost of Algorithm 1 comes from the mode product and diagonal-
ization, which is O(

∑M
i=1(W

∏
j<i Rj

∏
k≥i Nk + N3

i )). The dominating factor

6 U(0) is never materialized but recursively computed on the fly.



is usually the mode product. Therefore, the complexity of Algorithm 1 can be
simplified as O(WM

∏M
i=1 Ni).

Algorithm 1: static 2-heads

Input : a tensor D ∈ RW×N1×N2×···×NM , accuracy θ
Output: a tucker tensor D̂ ≡ JĜ ;U(i)|Mi=0K
// search for factor matrices

initialize all U(i)|Mi=0 = I1

repeat2

for i← 1 to M do3

// project D to all modes but i

X = D
Q
j 6=i

×jU
(j)

4

// find co-variance matrix

C(i) = XT
(i)X(i)5

// diagonalization

U(i) as the eigenvectors of C(i)
6

// any changes on factor matrices?

if Tr(||U(i)TU(i)| − I|) ≤ ε for 1 ≤ i ≤M then converged7

until converged ;8

// spatial compression

for i← 1 to M do X = D
MQ

i=1
×iU

(i)

9

// temporal compression

G = X×0 U(0) where U(0) is the DWT matrix.10

Ĝ ≈ G by setting all small entries (in absolute value) to zero, s.t.11 r
1−

‚‚‚ Ĝ
‚‚‚2

F
/ ‖D ‖2F ≤ θ

5.2 Dynamic 2-heads Tensor Mining

For the time-evolving case, the idea is to explicitly utilize the overlapping infor-
mation of the two consecutive tensor windows to update the co-variance matrices
C(i)|Mi=1. More specifically, given a tensor window D(n,W ) ∈ RW×N1×N2×···×NM ,
we aim at removing the effect of the old slice Dn−W and adding in that of the
new slice Dn.

This is hard to do because of the iterative optimization. Recall that the
ALS algorithm searches for the factor matrices. We approximate the ALS search
by updating factor matrices independently on each mode, which is similar to
high-order SVD [4]. This process can be efficiently updated by maintaining the
co-variance matrix on each mode.



More formally, the co-variance matrix along the ith mode is as follows:

C(i)
old =

[
X
D

]T [
X
D

]
= XTX + DTD

where X is the matricization of the old tensor slice Dn−W and D is the ma-
tricization of tensor window D(n−1,W−1) (i.e., the overlapping part of the tensor
windows D(n−1,W ) and D(n,W )). Similarly, C(i)

new = DTD + YTY, where Y is
the matricization of the new tensor Dn. As a result, the update can be easily
achieved as follows:

C(i) ← C(i) −DN−W
T
(i)DN−W(i) + DN

T
(i)DN(i)

where DN−W(i)(DN(i)) is the mode-i matricization of tensor slice Dn−W (Dn).
The updated factor matrices are just the eigenvectors of the new co-variance

matrices. Once the factor matrices are updated, the spatio-temporal compression
remains the same. One observation is that Algorithm 2 can be performed in
batches. The only change is to update co-variance matrices involving multiple
tensor slices. The batch update can significantly lower the amortized cost for
diagonalization as well as spatial and temporal compression.

Algorithm 2: dynamic 2-heads

Input : a new tensor window
D(n,W ) = {Dn−W+1, . . . , Dn} ∈ RW×N1×N2×···×NM , old co-variance

matrices C(i)|Mi=1, accuracy θ
Output: a tucker tensor D̂ ≡ JĜ ;U(i)|Mi=0K
for i← 1 to M do1

// update co-variance matrix

C(i) ← C(i) −DN−W
T
(i)DN−W(i) +DN

T
(i)DN−W(i)2

// diagonalization

U(i) as the eigen-vectors of C(i)
3

// spatial compression

for i← 1 to M do X = D
MQ

i=1
×iU

(i)

4

// temporal compression

G = X×0 U(0) where U(0) is the DWT matrix.5

Ĝ ≈ G with setting all small entries (in absolute value) to zero, s.t.6 r
1−

‚‚‚ Ĝ
‚‚‚2

F
/ ‖D ‖2F ≤ θ

5.3 Mining Guide

We now illustrate practical aspects concerning our proposed methods.
The goal of 2-heads is to find highly correlated dimensions within the same

aspect and across different aspects, and monitor them over time.



Spatial correlation. A projection matrix gives the correlation information among
dimensions for a single aspect. More specifically, the dimensions of the i-th aspect
can be grouped based on their values in the columns of U(i). The entries with
high absolute values in a column of U(i) correspond to the important dimensions
in the same concept. The SENSOR type example shown in Figure 1 correspond
to two concepts in the sensor type aspect — see Section 6.1 for details.

Temporal correlation. Unlike spatial correlations that reside in the projection
matrices, temporal correlation is reflected in the core tensor. After spatial com-
pression, the original tensor is transformed into the spatial core tensor X —
line 4 of Algorithm 2. Then, temporal compression applies on X to obtain the
(spatio-temporal) core tensor G which consists of dominant wavelet coefficients
of the spatial core. By focusing on the largest entry (wavelet coefficient) in the
core tensor, we can easily identify the dominant frequency components in time
and space — see Figure 7 for more discussion.

Correlations across aspects. The interesting aspect of 2-heads is that the core
tensor Y provides indications on the correlations of different dimensions across
both spatial and temporal aspects. More specifically, a large entry in the core
means a high correlation between the corresponding columns in the spatial as-
pects at specific time and frequency. For example, the combination of Figure
6(b), the first concept of Figure 1 and Figure 7(a) gives us the main trend in the
data, which is the daily periodic trend of the environmental sensors in a lab.

6 Experiment Evaluation

In this section, we will evaluate both mining and compression aspects of 2-heads
on real environment sensor data. We first describe the dataset, then illustrate our
mining observations in Section 6.1 and finally show some quantitative evaluation
in Section 6.2.

The sensor data consists of voltage, humidity, temperature, and light intensity
at 54 different locations in the Intel Berkeley Lab (see Figure 6(a)). It has 1093
timestamps, one for each 30 minutes. The dataset is a 1093 × 54 × 4 tensor
corresponding to 22 days of data.

6.1 Mining Case-studies

Here, we illustrate how 2-heads can reveal interesting spatial and temporal cor-
relations in sensor data.

Spatial correlations. The SENSOR dataset consists of two spatial aspects, namely,
the location and sensor types. Interesting patterns are revealed on both aspects.

For the location aspect, the most dominant trend is scattered uniformly
across all locations. As shown in Figure 6(b), the weights (the vertical bars)



(a) Lab floor map (b) SENSOR Concept 1 (c) SENSOR Concept 2

Fig. 6. Spatial correlation: vertical bars in (b) indicate positive weights of the corre-
sponding sensors and vertical bars (c) indicate negative weights. (a) shows the floor
plan of the lab, where the numbers indicate the sensor locations. (b) shows the distri-
bution of the most dominant trend, which is more or less uniform. This suggests that
all the sensors follow the same pattern over time, which is the daily periodic trend (see
Figure 7 for more discussion) (c) shows the second most dominant trend, which gives
the negative weights to the bottom left corner and positive weights to the rest. It in-
dicates relatively low humidity and temperature measurements because of the vicinity
to the A/C.

Sensor-Type voltage humidity temperature light-intensity

concept 1 .16 -.15 .28 .94
concept 2 .6 .79 .12 .01

Table 1. SENSOR type correlation

on all locations have about the same height. For sensor type aspect, the dom-
inant trend is shown as the 1st concept in Table 1. It indicates 1) the positive
correlation among temperature, light intensity and voltage level and 2) negative
correlation between humidity and the rest. This corresponds to the regular daily
periodic pattern: During the day, temperature and light intensity go up but hu-
midity drops because the A/C is on. During the night, temperature and light
intensity drop but humidity increases because A/C is off. The voltage is always
positively correlated with the temperature due to the design of MICA2 sensors.

The second strongest trend is shown in Figure 6(c) and the 2nd concept
in Table 1 for the location and type aspects, respectively. The vertical bars on
Figure 6(c) indicate negative weights on a few locations close to A/C (mainly at
the bottom and left part of the room). This affects the humidity and temperature
patterns at those locations. In particular, the 2nd concept has a strong emphasis
on humidity and temperature (see the 2nd concept in Table 1).

Temporal correlations. Temporal correlation can be best described by frequency-
based methods such as wavelets. 2-heads provides a way to capture the global
temporal correlation that traditional wavelets cannot capture.
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(a) 1st period: “normal” (b) last period: “low battery”

Fig. 7. SENSOR time-frequency break-down on the dominant components. Notice that
the scalogram of (a) only has the low-frequency components (dark color); but the
scalogram of (b) has frequency penetration from 300 to 340 due to the sudden shift.
Note that dark color indicates high value of the corresponding coefficient.

Figure 7(a) shows the strongest tensor core stream of the SENSOR dataset
for the first 500 timestamps and its scalogram of the wavelet coefficients. Large
wavelet coefficients (indicated by the dark color) concentrate on low frequency
part (levels 1-3), which correspond to the daily periodic trend in the normal
operation.

Figure 7(b) shows the strongest tensor core stream of the SENSOR dataset
for the last 500 timestamps and its corresponding scalogram. Notice large co-
efficients penetrate all frequency levels from 300 to 350 timestamps due to the
erroneous sensor readings caused by low battery level of several sensors.

Summary. In general, 2-heads provides an effective and intuitive method to
identify both spatial and temporal correlation, which no traditional methods
including Tucker and wavelet can do by themselves. Furthermore, 2-heads can
track the correlations over time. All the above examples confirmed the great
value of 2-heads for mining real-world, high-order data streams.

6.2 Quantitative evaluation

In this section, we quantitatively evaluate the proposed methods in both space
and CPU cost.

Performance Metrics We use the following three metrics to quantify the mining
performance:



1. Approximation accuracy: This is the key metric that we use to evaluate
the quality of the approximation. It is defined as: accuracy = 1−relative SSE,
where relative SSE (sum of squared error) is defined as ‖D− D̂‖2/‖D‖2.

2. Space ratio: We use this metric to quantify the required space usage. It
is defined as the ratio of the size of the approximation D̂ and that of the
original data D. Note that the approximation D̂ is stored in the factorized
forms, e.g., Tucker form including core and projection matrices.

3. CPU time: We use the CPU time spent in computation as the metric to
quantify the computational expense. All experiments were performed on the
same dedicated server with four 2.4GHz Xeon CPUs and 48GB memory.

Method parameters. Two parameters affect the quantitative measurements of all
the methods:

1. window size is the scope of the model in time. For example, window size
= 500 means that a model will be built and maintained for most recent 500
time-stamps.

2. step size is the number of time-stamps elapsed before a new model is con-
structed.

Methods for comparison. We compare the following four methods:

1. Tucker: It performs Tucker2 decomposition [13] on spatial aspects only.
2. Wavelets: It performs Daubechies-4 compression on every stream. For ex-

ample, 54×4 wavelet transforms are performed on SENSOR dataset since it
has 54×4 stream pairs in SENSOR.

3. Static 2-heads: It is one of the proposed method in the paper. It uses
Tucker2 on spatial aspects and wavelet on temporal aspect. The computa-
tional cost is similar to the sum of Tucker and wavelet methods.

4. Dynamic 2-heads: It is the main practical contribution of this paper, due
to handling efficiently the Dynamic 2-heads Tensor Mining Problem.

Computational efficiency. As mentioned above, computation time can be af-
fected by two parameters: window size and step size.

In general, the CPU time increases linearly with the window size as shown
in Figure 8(a).

Wavelets are faster than Tucker, because wavelets perform on individual
streams, while Tucker operates on all streams simultaneously. The cost of Static
2-heads is roughly the sum of wavelets and Tucker decomposition, which we omit
from Figure 8(a).

Dynamic 2-heads performs the same functionality as Static 2-heads . But,
it is as fast as wavelets by exploiting the computational trick which avoids the
computational penalty that static-2-heads has.

The computational cost of Dynamic 2-heads increases as the step size, be-
cause the overlapping portion between two consecutive tensor windows decreases.
Despite that, for all different step sizes, dynamic-2-heads requires much less CPU
time as shown in Figure 8(b).
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Fig. 8. a): (step size is 20% window size): but (dynamic) 2-heads is faster than Tucker
and is similar to wavelet. However, 2-heads reveals much more patterns than wavelet
and Tucker without incurring computational penalty. b): Step Size vs. CPU time:
(window size 500) Dynamic 2-heads requires much less computational time than Static
2-heads. c): Space vs. Accuracy: 2-heads and wavelet requires much smaller space to
achieve high accuracy(e.g., 99%) than Tucker, which indicates the importance temporal
aspect. 2-heads is slightly better than wavelet because it captures both spatial and
temporal correlations. Wavelet and Tucker only provide partial view of the data.

Space efficiency. The space requirement can be affected by two parameters: ap-
proximation accuracy and window size. For all methods, Static and Dynamic
2-heads give comparable results; therefore, we omit Static 2-heads in the follow-
ing figures.

Remember the fundamental trade-off between the space utilization and ap-
proximation accuracy. For all the methods, the more space, the better the ap-
proximation. However, the scope between space and accuracy varies across dif-
ferent methods. Figure 8(c) illustrates the accuracy as a function of space ratio
for both datasets.

2-heads achieves very good compression ratio and it also reveals spatial and
temporal patterns as shown in the previous section.

Tucker captures spatial correlation but does not give a good compression
since the redundancy is mainly in the time aspect. Tucker method does not
provide a smooth increasing curve as space ratio increases. First, the curve is not
smooth because Tucker can only add or drop one component/column including
multiple coefficients at a time unlike 2-heads and wavelets which allow to drop
one coefficient at a time. Second, the curve is not strictly increasing because there
are multiple aspects, different configurations with similar space requirement can
lead to very different accuracy.

Wavelets give a good compression but do not reveal any spatial correlation.
Furthermore, the summarization is done on each stream, which does not lead to
global patterns such as the ones shown in Figure 7.

Summary. Dynamic 2-heads is efficient in both space utilization and CPU time
compared to all other methods including Tucker, wavelets and Static 2-heads.
Dynamic 2-heads is a powerful mining tool combining only strong points from



well-studied methods while at the same time being computationally efficient and
applicable to real-world situations where data arrive constantly.

7 Conclusions

We focus on mining of time-evolving streams, when they are associated with
multiple aspects, like sensor-type (temperature, humidity), and sensor-location
(indoor, on-the-window, outdoor). The main difference from previous and our
proposed analysis is that the time aspect needs special treatment, which tradi-
tional “one size fit all” type of tensor analysis ignores. Our proposed approach,
2-heads, addresses exactly this problem, by applying the most suitable models to
each aspect: wavelet-like for time, and PCA/tensor-like for the categorical-valued
aspects.

2-heads has the following key properties:

– Mining patterns: By combining the advantages of existing methods, it is able
to reveal interesting spatio-temporal patterns.

– Multi-model summarization: It engages multiple summarization schemes on
multi-aspects streams, which gives us a more powerful view to study high-
order data that traditional models cannot achieve.

– Error Guarantees: We proved that it can accurately (and quickly) measure
approximation error, using the orthogonality property of the models.

– Streaming capability: 2-heads is fast, incremental and scalable for the stream-
ing environment.

– Space efficiency: It provides an accurate approximation which achieves very
high compression ratios - namely, over 20:1 ratio on the real-world datasets
we used in our experiments.

Finally, we illustrated the mining power of 2-heads through two case studies
on real world datasets. We also demonstrated its scalability through extensive
quantitative experiments. Future work includes exploiting alternative methods
for categorical aspects, such as nonnegative matrix factorization.

8 Acknowledgement

This material is based upon work supported by the National Science Founda-
tion under Grants No. IIS-0326322 IIS-0534205 and under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344. This work is also partially supported by
the Pennsylvania Infrastructure Technology Alliance (PITA), an IBM Faculty
Award, a Yahoo Research Alliance Gift, with additional funding from Intel, NTT
and Hewlett-Packard. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation, or other funding parties.



References
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