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0 Introduction

In this paper we apply the method of ultraproducts to the study of graph
combinatorics associated with measure preserving actions of infinite, count-
able groups, continuing the work in Conley-Kechris [CK].

We employ the ultraproduct construction as a flexible method to produce
measure preserving actions a of a countable group I' on a standard measure
space (X, ) (i.e., a standard Borel space with its o-algebra of Borel sets and
a Borel probability measure) starting from a sequence of such actions a,, on
(Xn, ptn),n € N. One uses a non-principal ultrafilter & on N to generate the
ultraproduct action [], a,/U of (a,) on a measure space (X, ti), obtained
as the ultraproduct of ((X,, fin))nen via the Loeb measure construction. The
measure algebra of the space (Xy, 1/) is non-separable, but by taking appro-
priate countably generated subalgebras of this measure algebra one generates
factors a of the action [, a,/U which are now actions of I' on a standard
measure space (X, ) and which have various desirable properties.

In §2, we discuss the construction of the ultrapower (X, 1) of a sequence
of standard measure spaces (X, it,),n € N, with respect to a non-principal
ultrafilter U on N, via the Loeb measure construction. We follow largely the
exposition in Elek-Szegedy [ES], which dealt with the case of finite spaces
X,, with p, the counting measure.

In §3, we define the ultraproduct action [, a,/U on (Xy, fus) associated
with a sequence a,,n € N, of measure preserving actions of a countable group
[ on (X, it,,) and discuss its freeness properties. When a,, = a for all n, we
put ay = [, an/U.

In §4, we characterize the factors of the action [[ a,/U associated with
countably generated o-subalgebras of the measure algebra of ( Xy, ).
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For a measure space (X,u) and a countable group I', we denote by
A(T, X, ) the space of measure preserving actions of I" on (X, u) (where,
as usual, actions are identified if they agree a.e.). This space carries the weak
topology generated by the maps a € A(I', X, ) — ~+*A (v € I'; A € MALG,,),
from A(I', X, ) into the measure algebra MALG, (with the usual metric
d,(A,B) = n(AAB)), and where we put v* -z = a(y,z). When (X, p) is
standard, A(T", X, u) is a Polish space.

If a € AT, X, p),a, € AT, Xy, 1), n € N, and U is a non-principal
ultrafilter on N, we say that a is weakly U-contained in (a,), in symbols

a <y (an),
if for every finite I CI', Ay, ..., Ay € MALG,,, € > 0, for U-almost all n:
dB1,,...3Bn, € MALG, Vy € FVi,j <N

(Y- AN Aj) = p (V" - Bin N Bjp)| < e,

(where a property P(n) is said to hold for U-almost all n if {n: P(n)} € U).
In case a,, = b for all n, then a <y (a,) < a < b (in the sense of weak
containment of actions, see Kechris [Ke2]).

If a,b, € A(I', X, u),n € N, we write

lim b, = a
n—U

if for each open nbhd V of a in A(T', X, i), b,, € V, for U-almost all n. Finally
a = b denotes isomorphism (conjugacy) of actions.
We show the following (in 4.3):

Theorem 1 Let U be a non-principal ultrafilter on N. Let (X, ), (Xp, pin),
n € N be non-atomic, standard measure spaces and let a € AL, X, ), a, €
AT, X, pin). Then the following are equivalent:

(1) a <y (an),
(2) a is a factor of [], an/U,
(3) a = lim,_y b,, for some sequence (by,), with

b, € A(I', X, ), b, = a,,Vn € N,



In particular, fora € A(T', X, ), b € A(I',Y,v),a < bis equivalent to “a is
a factor of b,”. Moreover one has the following curious compactness property
of A(T', X, ) as a consequence of Theorem 1: If a,, € A(T', X, u),n € N, then
there is ng < ny < ny < ... and b,, € A(I', X, ), by, = a,,, such that (b,,)
converges in A(T', X, p).

In §5, we apply the ultraproduct construction to the study of combinato-
rial parameters associated to group actions. Given an infinite group I' with a
finite set of generators S, not containing 1, and given a free action a of I on
a standard space (X, u), the (simple, undirected) graph G(S,a) has vertex
set X and edge set E(S,a), where

(x,y) € E(S;a) & x#y& Ise S(s* - x=yors* y=ux).

As in Conley-Kechris [CK], we define the associated parameters x, (S, a)
(the measurable chromatic number), x;7(S,a) (the approrimate chromatic
number) and i,(S, a) (the independence number), as follows:

® x,.(5, a) is the smallest cardinality of a standard Borel space Y for which
there is a (u—)measurable coloring ¢: X — Y of G(S,a) (i.e., zE(S,a)y =
c(x) # c(y)).

e x;7(S,a) is the smallest cardinality of a standard Borel space Y such
that for each € > 0, there is a Borel set A C X with u(X \ A) < € and
a measurable coloring ¢: A — Y of the induced subgraph G(S,a)|A =
(A, E(S,A) N A?).

e i,(S,a) is the supremum of the measures of Borel independent sets,
where A C X is independent if no two elements of A are adjacent.

Given a (simple, undirected) graph G = (X, E), where X is the set of
vertices and E the set of edges, a matching in G is a subset M C E such
that no two edges in M have a common vertex. We denote by Xj, the set
of matched vertices, i.e., the set of vertices belonging to an edge in M. If
Xy = X we say that M is a perfect matching.

For a free action a of I' as before, we also define the parameter

m(S,a) = the matching number,

where m(S, a) is 1/2 of the supremum of p(X ), with M a Borel (as a subset
of X?) matching in G(S,a). If m(S,a) = 1/2 and the supremum is attained,
we say that G(S,a) admits an a.e. perfect matching.

The parameters i,(5, a), m(S, a) are monotone increasing with respect to
weak containment, while x{?(S,a) is decreasing. Below we let a ~,, b denote

3



weak equivalence of actions, where a ~, b< a <b& b < a, and welet a T b
denote that a is a factor of b. We now have (see 5.2)

Theorem 2 Let I' be an infinite, countable group and S a finite set of gen-
erators. Then for any free action a of I' on a non-atomic, standard measure
space (X, ), there is a free action b of I' on (X, ) such that

(i) @~y b and a T,

(i) X, (S, a) = X (S,0) = xu(5,b),
(i) i,(S,a) =1,(S,b) and i,(S,b) is attained,
(iv) m(S,a) =m(S,b) and m(S,b) is attained.

In §6, we study analogs of the classical Brooks” Theorem for finite graphs,
which asserts that the chromatic number of a finite graph G with degree
bounded by d is < d unless d = 2 and G contains an odd cycle or d > 3 and
GG contains the complete subgraph with d + 1 vertices.

Let I',.S be as in the preceding discussion, so that the graph G(95,a)
associated with a free action a of I' on a standard space (X, u) has degree
d = |S*Y, where S*' = S U S~L. It was shown in Conley-Kechris [CK] that
X7 (S;a) < d, so one has an “approximate” version of Brooks” Theorem.
Using this and the results of §5, we now have (see 6.11):

Theorem 3 Let I be an infinite group and S a finite set of generators. Then
for any free action a of T on a non-atomic, standard space (X, i), there is a
free action b on (X, u) such that a ~,, b and x,(S,b) < d (= |S*).

It is not the case that for every free action a of I' we have x,(S,a) < d,
but the only counterexamples known are I' = Z or (Z/27) x (Z/2Z) (with
the usual sets of generators) and Conley-Kechris [CK] show that these are
the only counterexamples if I" has finitely many ends.

The previous result can be used to answer a question in probability the-
ory (see Aldous-Lyons [AL]), namely whether for any I', S, there is an in-
variant, random d-coloring of the Cayley graph Cay(I',S) (an earlier result
of Schramm (unpublished, 1997) shows that this is indeed the case with d
replaced by d+1). A random d-coloring is a probability measure on the Borel
sets of the space of d-colorings of the Cayley graph Cay(T",S) and invariance
refers to the canonical shift action of I' on this space.

We now have (see 6.4):



Theorem 4 Let I' be an infinite group and S a finite set of generators with
d = |SE. Then there is an invariant, random d-coloring. Moreover for any
free action a of T' on a non-atomic, standard space (X, p), there is such a
coloring weakly contained in a.

Let Autrs be the automorphism group of the Cayley graph Cay(I',S)
with the pointwise convergence topology. This is a Polish locally compact
group containing I" as a closed subgroup. One can consider invariant, random
colorings under the canonical action of Autr g on the space of colorings, which
we call Autp g-invariant, random colorings. This appears to be a stronger
notion but we note in 6.6 that the existence of a Autr g-invariant, random
d-coloring is equivalent to the existence of an invariant, random d-coloring,
so Theorem 4 works as well for Autr g-invariant, random colorings.

One can also ask whether the last statement in Theorem 4 can be im-
proved to “is a factor of” instead of “weakly contained in”. This again fails
for I' = Z or (Z/27) % (Z/27) and a the shift action of I" on [0,1]", a case
of primary interest, but holds for all other I' that have finitely many ends.
Moreover in the case of the shift action one has also Autr g-invariance (see
6.7).

Theorem 5 Let I' be an infinite group and S a finite set of generators with
d = |SEY. IfT has finitely many ends but is not isomorphic to Z or (Z/27) %
(Z/)2Z), then there is a Autr g-invariant, random d-coloring which is a factor
of the shift action of Autp s on [0,1]".

In §7, we discuss various results about a.e. perfect matchings and invari-
ant, random matchings. Lyons-Nazarov [LN] showed that if T' is a non-
amenable group with a finite set of generators S and Cay(I,S) is bipartite
(i.e., has no odd cycles), then there is a Autp g-invariant, random perfect
matching of its Cayley graph, which is a factor of the shift action of Autr g
on [0,1]". This also implies that m(S, sp) = 3, where sp is the shift action
of T on [0,1]", and in fact the graph associated with this action has an a.e.
perfect matching. We do not know if m(S,a) = % actually holds for every
I', S and every free action a. We note in 7.5 that the only possible counterex-
amples are those I, S for which I' is not amenable and S consists of elements

of odd order. However we show in 7.6 the following:

Theorem 6 Let I' = (Z/3Z) = (Z/37) with the usual set of generators S =
{s,t}, where s> = t3 = 1. Then for any free action a of T on a non-atomic,
standard measure space (X, u), G(S,a) admits an a.e. perfect matching.
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In §8, we study independence numbers. In Conley-Kechris [CK], the
following was shown: Let I', S be as before. Then the set of independence
numbers i,(S5,a), as a varies over all free actions of I, is a closed interval.
The question was raised about the structure of the set of all i,(S, a), where
a varies over all free, ergodic actions of I'. We show the following (in 8.1).

Theorem 7 Let I' be an infinite group with S a finite set of generators. If
I' has property (T), the set of i,(S,a) as a varies over all the free, ergodic
actions of I" is closed.

We do not know what happens in general if I" does not have property (T)
but we show in 8.2 that for certain groups of the form Z % I' and generators
S, the set of i,(S, a), for free, ergodic «, is infinite.

In §9, we discuss the notion of sofic equivalence relations and sofic actions,
recently introduced in Elek-Lippner [EL1]. We use ultraproducts and a result
of Abért-Weiss [AW] to give (in 9.6) an alternative proof of the theorem of
Elek-Lippner [EL1] that the shift action of an infinite countable sofic group
in sofic and discuss some classes of groups I' for which every free action is
sofic.

Elek-Lippner [EL1] raised the question of whether every free action of a
sofic group is sofic.

Addendum. After receiving a preliminary version of this paper, Miklds
Abért informed us that he and Gabor Elek have independently developed
similar ideas concerning the use of ultraproducts in studying group actions
and their connections with weak containment and combinatorics. Their re-
sults are included in [AE]. In particular, [AE] contains versions of 4.7 and
Theorem 5.2 (i), (ii) below.

Acknowledgements. The research of ASK and RDT-D was partially sup-
ported by NSF Grant DMS-0968710 and of CTC by Marie Curie grant no.
249167 from the European Union. We would like to thank Russell Lyons for
many useful conversations.

1 Preliminaries

We review here some standard terminology and notation that will be used
throughout the paper.



(A) A standard measure space is a measure space (X, u), where X is
standard Borel space (i.e., a Polish space with its o-algebra of Borel sets)
and p a probability measure on the o-algebra B(X) of Borel sets. We do
not assume in this paper that (X, u) is non-atomic, since we do want to
include in this definition also finite measure spaces. If (X, ) is supposed to
be non-atomic in a given context, this will be stated explicitly.

The measure algebra MALG,, of a measure space (X, ) is the Boolean
o-algebra of measurable sets modulo null sets equipped with the measure p.

As a general convention in dealing with measure spaces, we will often
neglect null sets, if there is no danger of confusion.

(B) If (X, ) is a standard measure space and £ C X? a countable Borel
equivalence relation on X (i.e., one whose equivalence classes are countable),
we say that E is measure preserving if for all Borel bijections ¢: A — B,
where A, B are Borel subsets of X, such that p(z)Ez, p-a.e.(x € A), we have
that ¢ preserves the measure pu.

Such an equivalence relation is called treeable if there is a Borel acyclic
graph on X whose connected components are the equivalence classes.

(C) If T is an infinite, countable group and S a finite set of generators,
not containing 1, the Cayley graph Cay(T',S5), is the (simple, undirected)
graph with set of vertices I' and in which v, € I' are connected by an edge
iff 3s € S(ys =6 or ds = 7).

Finally for such I', S the number of ends of Cay ([, S) is the supremum of
the number of infinite components, when any finite set of vertices is removed.
This number is independent of S and it is equal to 1,2 or oc.

2 Ultraproducts of standard measure spaces

(A) Let (X, pn),n € N, be a sequence of standard measure spaces and
denote by B(X,,) the o-algebra of Borel sets of X,,. Let U be a non-principal
ultrafilter on N. For P C N x X (X some set) we write

UnP(n,z) < {n: P(n,z)} € U.

If UnP(n,z) we also say that for U-almost all n, P(n,z) holds. On [] X,
define the equivalence relation

(Tn) ~u (Yn) & Un(x, = yn),



let [(xy,)]u be the (~y)-equivalence class of (x,) and put
Xy = HX VU= {{(xn)|u: (xn) GHX}

Given now (4,) € [[,, B(X,), we define [(A,)]u € Xy by
[(zn)|u € [(An)|u & Un(x, € A,).
Note that

[(~ A =~ [(An)]u
[(An U Bn)]u - [(An)}u U (Bn)lu
[(An N Bo)lu = [(An)]u N [(Bn)lus

where ~ denotes complementation. Put

BY = {[(A)l: (4,) € [[ B(x

so that By, is a Boolean algebra of subsets of Xy,
For [(A,)]u € By, put

pu([(An)]u) = lim g, (Ar),

n—U

where lim,, .y, r,, denotes the ultrafilter limit of the sequence (r,). It is easy
to see that iy, is a finitely additive probability Borel measure on By,.
will extend it to a (countably additive) probability measure on a o-algebra

containing BY,.

Definition 2.1 A set N C Xy is null if Ve > 0JA € B(L), (N C A and

ty(A) < €). Denote by N the collection of nullsets.

Proposition 2.2 The collection N is a o-ideal of subsets of Xy.

Proof. It is clear that IN is closed under subsets. We will now show that

it is closed under countable unions.

Lemma 2.3 Let A" € By, i € N, and assume that lim,,, oo p (/o AY) =

Then there is A € By, with jy(A) =t and |J; A* C A.
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Granting this let N' € N,i € N, e > 0 be given. Let N* C A* € By, with
pu(AY) < €/2. Then py (U y AY) < € and py (U~ A’) increases with m. So

. i <
7;11131““(%14) t<e

and by the lemma there is A € By, with (A) < e and |J, N* C |, A® C A.
So J; N* is null.

Proof of 2.3. Put B™ = |J, A", so that py(B™) = t, — t. Let
A" = [(AY)]u, so that B™ = [(B!)|u, with B" = |, A. Let

1
T, — {n > i n(BI) — t] < 2—m}

so that (", T, = 0 and T,,, € U, as t,, = piy(B™) = limy,_yy pn (B)").
Let m(n) = largest m such that n € (., 7. Then m(n) — oo as
n — U, since for each M, {n: m(n) > M} D NY_, T,, € U. Also n € Ty

So
1

thus

lim g, (B™™) = t.

n—U

Let A = [(By™)]y. Then py(A) = t. Also for each i,
{n: AL C B™™Y D {n:m(n)>ilel,

so Al = [(AD)]y C [(BR™))y = A, thus |, A" C A. =

Put
By = {AC Xy;: 3A' € BY(AAA € N)},

and for A € By, put

pu(A) = (A
where A’ € By, AAA’ € N. This is clearly well defined and agrees with i,
on BS,.

Proposition 2.4 The class By is a o-algrebra of subsets of Xy containing
By, and ju, is a probability measure on By.
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Proof. It is easy to see that By is a Boolean algebra containing By,
and gy is a finitely additive probability measure on By,. It only remains to
show that if A, € By,n € N, are pairwise disjoint, then |, 4, € By and

(U, An) =22, tu(Ay).
For A, A’ € By, let

A=A < AAA" € N.

Let now A/ € By, be such that A, = A’. By disjointifying, we can assume
that the A] are disjoint. Note also that |J, A, =, 4}, It is thus enough
to find A’ € By, with A’ =, A! and py(A) =X, pu(AL) (=, pu(An)).

By Lemma 2.3, there is A’ € By, with [J, A, C A" and py(A) =
>t (AL). Then for each N,

N
AN\ JA, cAa\| 4, e B

n=0
and
N N
pir(A"\ U Ay) = pu(A) — Z pu(Ay,) — 0
n=0 n=0

as N — oo. So
AA A=A\ A, eN

ie, A =U,A4,. =
Finally, note that for A € By, uy(A) =0< A€ N.
(B) The following is straightforward.

Proposition 2.5 The measure py is non-atomic if and only if Ye > 0
V(An) € [, B(X,) (Un(pn(An) = €) = 30 > 0 3(B,) € [[,B(X,)
UNn(B, C A, & § < pn(Bn), pin(An \ Bn))])

For example, this condition is satisfied if each (X, yi,) is non-atomic or if
each X, is finite, p, is normalized counting measure and lim,, ., card(X,,) =
00.

Let MALG,,, be the measure algebra of (X, By, tu). If f14 is non-atomic,
fix also a function Sy: MALG,,, — MALG,,, such that Sy (A) C A and

1

p(Su(A)) = éﬂu(fu
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Let now By € MALG,,, be a countable subalgebra closed under Sy. Let
B = o(B,) € MALG,,, be the o-subalgebra of MALG,,, generated by Bi.
Since every element of B can be approximated (in the sense of the metric
d(A,B) = uy(AAB)) by elements of By, it follows that B is countably
generated and non-atomic. It follows (see, e.g., Kechris [Kel, 17.44]) that
the measure algebra (B, py|B) is isomorphic to the measure algebra of (any)
non-atomic, standard measure space, in particular MALG,, where p is the
usual product measure on the Borel sets of 2Y. Then we can find a Cantor
scheme (By),co<n, with B, € By, By = X, Bs-oN By1 =0, Bs = ByoU By,
pu(Bs) = 27", and (B;) viewed now as members of MALG,,,, belong to B
and generate B. Then define

B

0 Xy — 2N
by
plr)=aszx e ﬂBa|n.

Then ¢~ *(N,) = By, where N, = {a € 2V: s C a} for s € 2<N. Thus ¢
is By-measurable (i.e., the inverse image of a Borel set in 2V is in By,) and
Oupiy = p, so that (2V,p) is a factor of (Xy, ) and A — ¢ 1(A) is an
isomorphism of the measure algebra MALG, with (B, u|B).

3 Ultraproducts of measure preserving
actions

(A) Let (X, pn),U be as in §2. Let I' be a countable group and let {o,}
be a sequence of Borel actions «,,: I' x X,, — X,,, such that «,, preserves
1, ¥ € N. We can define then the action oz : I' x Xy — Xy by

Y ) = 1" - )]s
where we let v - x = ay(7y, z) and similarly for each «,.
Proposition 3.1 The action oy preserves Bg,, By, and the measure jiy.

Proof. First let A = [(A,)]y € Bj). We verify that 724 A = [(y*- A,)]y,
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from which it follows that the action preserves BY,. Indeed

(@)l € v [(An)lu & ()™ - [(w)lu € [(An)]
s Un((yHo -z, € A)
< Un(x, € v - Ay)
< [(@n)l € [(7*" - An)lu-

Also

Mu(’yau . A) = AI—I}Z}{ /Jln(fyan ' An)

n—U

so the action preserves 1| By

Next let A € N and for each € > 0 let A C A, € By, with 1(A.) < e.
Then v - A C v - A, and pgy (7% - Ae) < €, 80 y*4 - A € N, ie., N is
invariant under the action.

Finally, let A € By, and let A’ € B), be such that AAA’ € N, so that
YU (A)Ay i (A’) € N, thus y*(A) € By and iy (v - A) = py (v - A') =
/Lu(A/> = /,Lu(A) =

If (X, p1) is a probability space and o, 3: T'x X — X are measure preserv-
ing actions of I', we say the «, 3 are equivalent if Vy € I'(y* = ~?, p-a.e.). We
let A(T', X, i) be the space of equivalence classes and we call the elements of
A(T, X, ) also measure preserving actions. Note that if for each n, a,, o, as
above are equivalent, then it is easy to check that oy, aj, are also equivalent,
thus if a,, € A(T', X, ptn), n € N, is a sequence of measure preserving actions
and we pick «,, a representative of a,, then we can define unambiguously the

ultraproduct action
H an, /U

with representative ag,. This is a measure preserving action of I" on ( Xy, py),
ie, I, an/U € AT, Xu, pes). When a,, = a for all n, we put

ay = Ha/u.

(B) Recall that if a € A(T', X, ), b € A(I',Y,v), we say that b is a factor
of a, in symbols
bCa,
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if there is a measurable map ¢: X — Y such that p,u = v and p(y* - ) =
7’ - p(z), p-a.e.(z). We denote by MALG,, the measure algebra of (X, p).
Clearly I' acts on MALG, by automorphisms of the measure algebra. If
(Y,v) is a non-atomic, standard measure space, the map A € MALG, —
¢ 1(A) € MALG, is an isomorphism of MALG, with a countably generated,
non-atomic, o-subalgebra B of MALG,, which is I'-invariant, and this iso-
morphism preserves the I'-actions. Conversely, we can see as in §1,(B) that
every countably generated, non-atomic, o-subalgebra B of MALG,, which
is [-invariant, gives rise to a factor of a as follows: First fix an isomorphism
7 between the measure algebra (B, u|B) and the measure algebra of (Y, v),
where Y = 2% and v = p is the usual product measure. Use this to define the
Cantor scheme (By) eo<n for B as in §2, (B) and define ¢: X — Y as before.
Now the isomorphism 7 gives an action of I' on the measure algebra of (Y, v),
which by definition preserves the I'-actions on (B, x|B) and MALG,. The
[-action on MALG, is induced by a (unique) action b € A(I',Y,v) (see, e.g.,
Kechris [Kel, 17.46]) and then it is easy to check that ¢ witnesses that b C a
(notice that for each s € 2<N v € I, (72 - ) € N, & ~* - p(x) € N,, u-
a.e.()).

In particular, the factors b € A(I',Y,v) of a =[] a,/U where (Y,v) is
a non-atomic, standard measure space, correspond exactly to the countably
generated, non-atomic, I-invariant (for a) o-subalgebras of MALG,,,. For
non-atomic jyy, we can construct such subalgebras as follows: Start with
a countable Boolean subalgebra B, € MALG,,,, which is closed under the
[-action and the function Sy of §2, (B). Then let B = o(By) be the o-
subalgebra of MALG,,, generated by By. This has all the required properties.

(C) We will next see how to ensure, in the notation of the preceding
paragraph, that the factor corresponding to B is a free action. Recall that
a€ AT, X, p)is freeif Vy e T\ {1} (7" - = # z, prae. (x)).

Proposition 3.2 The action a =[], a,/U is free iff for each v € T'\ {1},
T pi ({0 9" -2 # ) = 1.
Proof. Note that, modulo null sets,
{veXy: 7" v #xr = [(A),
where A, = {z € X,,: v* - x # z}. =

In particular, if all a,, are free, sois [], a,/U.
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Proposition 3.3 Suppose the action a =[], a,/U is free. Then for each
A e MALG,,,,A # 0 and v € T'\ {1}, there is B € MALG,,, with B C A,
i (B) > tspu(A) and v* - BN B = 0.

Proof. It is clearly enough to show that if v # 1, A € B}, u(A) > 0,
then there is B € By, B C A, with 1/(B) > & p/(A) and 4* - BN B = 0.
Let A = [(An)]u and pg(A) = € > 0. Then there is U C N, U € U with
ne U= (n(An) > §and p({r € Xy,: vz # x}) > 1—F). We can assume
that each X, is Polish and v is represented (a.e.) by a homeomorphism
v of X,,. Let
Chn={x € A,: " -z #x},

so that u,(Cy) > §. Fix also a countable basis (V;");en for X,,.

If z € Cy, let V¥ be a basic open set such that v - V¥ N V¥ = () (this
exists by the continuity of y*» and the fact that v*» - x # z). It follows that
there is xg € C), with u,(C,,NV,*) > 0 and v*» - (C,,N V") N (C,, N V,*0) = ().
Thus there is C C C, with p,(C) > 0 and v*»-CNC = (). By Zorn’s Lemma
or transfinite induction there is an element B,, of MALG,,, which is maximal,
under inclusion, among all D € MALG,,, satisfying: D C C,, (viewing C,, as
an element of the measure algebra), p,(D) > 0, v - DN D = (). We claim
that p,(B,) > 5. Indeed let

E,=C,\ (B,U~" B, U (Vfl)a” - By).

If p1,(Bn) < 75, then E, # ), so as before we can find F,, C E, with
pn(Fy) > 0 and v - F,, N F,, = . Then v*» - (B, U F,)N (B, UF,) =0,

contradicting to maximality of B,. So u,(B.) > {5. Let now B = [(B,,)]y.

Remark 3.4 The above argument can be simplified by using [KST, 4.6].
Consider the graph G, on X, whose edges consist of all distinct z,y such
that y = (y*1)2" - 2. It has maximum degree 2, so admits a Borel 3-coloring.
Thus there is an independent (for G,,) set B,, C C,, with u,(B,) > u,(C,)/3.
Then % - B, N B,, = () and actually j,(B,) > 5.
So if the action a =[], a,/U is free, let

Ty: T x MALG,,, — MALG,,

be a function such that for each v # 1,A € MALG,,, \ {0}, Tu(y,A) C
A, 1(Tu(v, A)) > fgi(A) and 4 - Ty (v, A) N Ty(v, A) = 0. Now, if in
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the earlier construction of countably generated, non-atomic, I'-invariant o-
subalgebras of MALG,,,, we start with a countable Boolean subalgebra B
closed under the I'-action, the function Sy of §2, (B) and Ty (i.e., Vy(A €
By = Ty(v,A) € By)), then the factor b corresponding to B = o(By) is a
free action.

4 Characterizing factors of ultraproducts

In sections §4-8 all measure spaces will be non-atomic and standard. Also T’
1s an arbitrary countable infinite group.

(A) For such a measure space (X, ), Aut(X, p) is the Polish group of
measure preserving automorphisms of (X, ) equipped with the weak topol-
ogy generated by the maps T' — T'(A),A € MALG,, from Aut(X, p) into
MALG,, (equipped with the usual metric d,(A, B) = p(AAB)). We can
identify A(T", X, u) with the space of homomorphisms of T" into Aut(X, i), so
that it becomes a closed subspace of Aut(X, u) with the product topology,
thus also a Polish space.

Definition 4.1 Let a € A(T', X, u),a, € AT, Xy, itn),n € N. Let U be a
non-principal ultrafilter on N. We say that a is weakly U-contained in (a,),
i symbols

a <y (an),

if for every finite F' C 1", Ay, ..., Ay € MALG,, e > 0, for U-almost all n:
iBi, ... Byy, € MALG,, Vy € FVi,5 < N
(" - A OV Aj) — (Y - Bin N Byl < e

Note that if a,, = b for all n, then a <y (a,) < a < b in the sense of weak
containment of actions, see Kechris [Ke2].
One can also trivially see that a <y (a,) is equivalent to the statement:

For every finite FF C T', Ay, ... Ay € MALG,, € > 0, there are [(By,,)u, - -
[(Bx.n)]u € By (Xy) such that for U-almost all n:

*

Wy € FVi,j < N|u(y* - A0 Ay) = pn(r™ - Bin N Byl < ).
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Definition 4.2 For a,b, € A, X, u), we write

lim b, = a

if for each open nbhd V' of a in A(T', X, u), Un(b, € V).
Since the sets of the form
V ={b:Vy € FVi,j < N|u(y*- AN A;) — u(r? - AN A)| < e},

for Ay, ..., Ay a Borel partition of X, e > 0, F C I finite containing 1, form
a nbhd basis of a, lim,, 4 b, = a iff Un(b, € V'), for any V of the above form.
Below = denotes isomorphism of actions.

Theorem 4.3 LetU be a non-principal ultrafilter on N. Let a € A(T, X, p),
and let a, € A(T', Xy, pin),n € N. Then the following are equivalent

(1) a <y (a,),
(2) a C 1], an/U,

(3) a = lim,_y b,, for some sequence (b,), b, € A(l',X,u) with b, =
an,n € N.

Proof. Below put b =[], a,/U.

(1) = (2): Let 1 € Fp € F; C ... be a sequence of finite subsets of T’
with I' = {J,, F;n. We can assume that X = 28 1 = p (the usual product
measure on 2V). Let N, = {a € 2V: s C a}, for s € 2<N,

By (1), we can find for each m € N and for each s € 2<™, [(B3™)], € B,
such that U,, € U, where

Un=1{n>m:Vy e F,Vs,t € 2™
(v Ny OV Ne) = (v - By™ N B™)| < €m},

where €, — 0. Since (), U, = 0, let m(n) = largest m such that n €
Ni<m Ui- Then n € Uy and lim, gy m(n) = co. Put

B, = [(By™ ™)}y € BY.

Since n € Uy, for all n, it follows (taking v = 1,s = t in the definition of
Up,) that for all n with m(n) > length(s),

|1(Ns) — Mn(B:m(n)” < €m(n)- (*)
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So for any € > 0, if M > length(s) and €y < ¢, then Un(m(n) > M), so (*)
holds with € replacing €,,(,) for U-almost all n, thus

pu(Bs) = TILLHLl{ Nn(Bf{m(n)) = p(Ny).
In general, we have that for all v € F,(,) and all s, € 2=m(n),

(v - Ny NV Ny) — (3™ - BE™ 0 BE™ )| < 6y

So if v € F,s,t € 2N ¢ > 0, and if M is large enough so that M >
max{length(s),length(t)},v € Far,em < €, then on {n: m(n) > M} € U we
have

(3" Ny VN = (7 - By 0 B ™) < e,

SO
p( e B By = p(y* - N, O N). (x%)

Viewing each B, as an element of MALG,,,, we have By = Xy, Bso N
Bs1 = 0, By = By U By (for the last take v = 1,¢ = s in (xx)) and
py(Bs) = 27", if s € 2". Then the map w(N;) = B, gives a measure
preserving isomorphism of the Boolean subalgebra A, of MALG,, generated
by (Ns) and the Boolean algebra By in MALG,,,, generated by (B;). Let B
be the o-subalgebra of MALG,,, generated by (B;). Since 7 is an isometry
of Ay with By (with the metrics they inherit from the measure algebra), and
Ay is dense in MALG,,, By is dense in B, it follows that 7 extends uniquely
to an isometry, also denoted by 7, from MALG,, onto B. Since 7() =0, =
is actually an isomorphism of the measure algebra MALG,, with the measure
algebra B (see Kechris [Ke2, pp. 1-2]). It is thus enough to show that B is
[-invariant (for b) and that 7 preserves the [-action (i.e., it is I'-equivariant).

It is enough to show that m(y* - N,) = 4*- B, (since (B,) generates B).

Fix v € T,e > 0,5 € 2<N. There is A € Ay with u(y* - N,AA) < €/2.
Now A = [ [} Ny,,~ A= [/ Ny and ~ N, = [ [ N, (disjoint unions),
SO

Y N,AA = (7" NN (~ A)) U (v* - (~ N,) N A)

mo m3 mi
- (I_l 7a : Ns N Nt;) U (|_| |_|(’7a : Nsk N Ntz))
j=1 k=1i=1

17



If B=m(A) € By, then we also have

m2
7'+ BAB =(|_|1"- B.N By)U
j=1

m3 mi

(L0 Bo 0 B,

k=11:=1

so by ()
(7’ - B{AB) = pu(y* - NJAA) < €/2.

Since 7 preserves measure, we also have py (m(7* - Ns)AB) < €/2, thus
(Y’ - BoAT (" Ny)) < e.

Therefore 7 - B, = (v - N,).

(2) = (1): Suppose that a T b. Let 7: MALG,, — MALG,,, be a measure
preserving embedding preserving the I'-actions (so that the image 7(MALG,)
is a I'-invariant o-subalgebra of MALG,,,). Fix F C I finite, A;,..., A, €
MALG,, and € > 0. Let BY,..., BN € BY, represent 7(A;),...,7(Ay). Let
B = [(B!)]y. Then for v € F,j,k < N,

p(y" - Aj N Ag) = p(y” - B' N BY)
= lim i, (7" - BN BY),
so for U-almost all n,
(v - Ay N Ag) — (v - BN By)| < e,

and thus for U-almost all n, this holds for all v € F,j,k < N. Thus a <y
(an).

(3) = (1): Fix such b,, and let Ay,..., Ay € MALG,,F C T finite,
€ > 0. Then there is U € U such that for n € U we have

Vy € FVi,j < N(lu(y" - AN Aj) — p(y™ - Ain Aj)] < e).

Let ¢, (X, 1) — (X,, tn) be an isomorphism that sends b,, to a, and put
on(A;) = Bi. Then ¢, (v - A;N A;) =~ - B{ N Bi, so forn € U:

Yy € FYi,j < N(lp(y* - A0 Aj) = (Y™ - B, N BY)| < ¢),

18



thus a <y (a,).
(1) = (3): Suppose a <y (a,). Let

V={ce AL, X, p): Vy € FVi,j < N(|u(v*-AinNA;) —p(v*- AiNA;)| < o)},

where Ay,..., A, € MALG, is a Borel partition of X, ¢ > 0 and F C I is
finite with 1 € F', be a basic nbhd of a.

Claim. For any such V', we can find U € U such that for n € U there is
b, € V with b, = a,.

Assume this for the moment and complete the proof of (1) = (3).

Let Vo 2 V4 D V5 O ... be a nbhd basis for a consisting of sets of the
above form, and for each m let U,, € U be such that for n € U,,, there is
bom € Vi with by, ., = a,. We can also assume that (), U, = (. Let m(n) =
largest m such that n € (,.,,, Us;. We have a, = by, () € Vin(n), and for any
nbhd V of a as above, if M is so large that Vj; C V, then brnmn) € Vinm) €
Vg CV, forn € {n: m(n) > M} € U. So a = limy_y by m(n)-

Proof of the claim. Since a <y (a,), for any 6 > 0, we can find
[(Bio)lus -5 [(Byan)lu € Bg and Us € U such that for n € Us we have

VY € FVi, j < N(|lp(y* - AiNAj) — (Y™ - Biw 0 Byn)| < 0).
Taking § < ¢/20N? and U = Us, the proof of Proposition 10.1 in Kechris
[Ke2] shows that for n € U there is b, = a,, with b, € V. =
Corollary 4.4 Let U be a non-principal ultrafilter on N and consider the
actions a € A(T', X, ), b € A(T',Y,v). Then the following are equivalent:

(1) a <0,
(2) a E bz,{.

Theorem 4.3 also has the following curious consequence, a compactness
property of the space A(T", X, ).

Corollary 4.5 Let a, € A(I', X, u),n € N, be a sequence of actions. Then
there is a subsequence ng < ny < ng < ... and b,, € AL, X, 1), bp, = an,,
such that (b,,) converges in A(L', X, u).
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Proof. Let a € A(I', X, i) be such that a T[], a, /U (such exists by §3,
(B)). Then by 4.3, we can find b, = a,,, with lim,_;, b, = a. This of course
implies that there is ng < n; < ... with lim; .. b,, = a. =

Benjy Weiss pointed out that for free actions a stronger version of 4.5
follows from his work with Abért, see Abért-Weiss [AW]. In this paper it is
shown that if sp is the shift action of an infinite group ' on [0, 1]F, then
sp < a for any free action a of I'. From this it follows that given free
a, € A(l', X, u),n € N, there is b, = a,, with lim,,_., b, = sr.

Another form of compactness for A(I', X, 1) that is an immediate conse-
quence of 4.5 is the following:

Any cover of A(T', X, u) by open, invariant under = sets, has a finite
subcover. Equivalently, the quotient space A(I', X, u)/ = is compact.

(B) Consider now a € A(T', X, 1) and the action az; on (X, pize). Clearly
¢ 1s non-atomic as p is non-atomic. Fix also a countable Boolean subalgebra
A, of MALG,, which generates MALG,, and is closed under the action a. The
map

m(A) = [(A)u

(where (A) is the constant sequence (4,), A, = A,Vn € N) embeds A into
a Boolean subalgebra C of MALG,,,, invariant under ay, preserving the
measure and the I'-actions (a on A and aq; on Cy).

Let By 2 Cy be any countable Boolean subalgebra of MALG,,, closed
under the action ay and the function Sy, of §2, (B) and let B = o(By) be
the o-algebra generated by By. Let b be the factor of ay corresponding to
B, so that b C ay; and thus b < a by 4.4. We also claim that a C b and thus
a ~, b, where

ar~ybsa<b&b<a.

Indeed, let Dy = o(C)) be the o-subalgebra of B generated by Cy. Then
D is also closed under the action ay. The map 7 is an isometry of Ay
with Cy, which are dense in MALG,,, Dy, resp., so extends uniquely to an
isometry, also denoted by 7, of MALG,, with Dy. Since 7(0) = 0, it follows
that 7 is an isomorphism of the measure algebra MALG,, with the measure
algebra Dy (see Kechris [Ke2, pp. 1-2]). Fix now v € I'. Then v* on MALG,,
is mapped by 7 to an automorphism (%) of the measure algebra Dy. Since
w(y*-A) = yu-m(A), for A € Ay, it follows that w(y*)|Cy = v*“|C), so since
C) generates Dy, we have 7(y*) = | Dy, i.e., 7 preserves the I'-actions (a
on MALG,, and @y on Dy), thus a C b.
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Recall now that a € A(T', X, u) admits non-trivial almost invariant sets
if there is a sequence (A,) of Borel sets such that p(A,)(1 — u(A4,)) 4 0
but Vo (limy, o (7 - A,AA,) = 0). We call an action a strongly ergodic (or
Eqg-ergodic) if it does not admit non-trivial almost invariant sets. We now
have:

Proposition 4.6 Let a € A(', X, u). Then a is strongly ergodic iff Vb ~,, a
(b is ergodic) iff Vb < a (b is ergodic).

Proof. Assume first that a is not strongly ergodic and let (A,) be a
sequence of Borel sets such that for some 6 > 0, 06 < p(A,) < 1—46 and
Vy(limy, oo p(7* - AnAA,) = 0). Let U be a non-principal ultrafilter on N
and let A = [(A,)ly € By Then viewing A as an element of MALG,,, we
have yu-A = A, ¥y € I', and 0 < iy (A) < 1. Let By be a countable Boolean
subalgebra of MALG,,, containing A and closed under ay, the function Sy
and containing C\ as before. Let b be the factor of ay associated with
B = 0(By), so that a ~,, b. Since A € B, clearly b is not ergodic.

Conversely assume b < a and b is not ergodic. It follows easily then from
the definition of weak containment that a is not strongly ergodic. o

Finally we note the following fact that connects weak containment to
factors.

Proposition 4.7 Let a,b € A(I', X, ). Then the following are equivalent:
(i) a <D,
(i) Je € A(T, X, pu)(c ~y b & a Cc).

Proof. (ii) clearly implies (i), since a C ¢ = a < ¢ and < is transitive.

(i) = (ii) Let U be a non-principal ultrafilter on N. By 4.4, if a < b
then a C by. Then as in the first two paragraphs of §4, (B), we can find an
appropriate o-subalgebra of MALG,,, invariant under b, so that if c is the
corresponding factor, then ¢ ~,, b (and in fact moreover b C ¢) and a C ¢.

5 Graph combinatorics of group actions
Let I' be an infinite group with a finite set of generators S C I' for which

we assume throughout that 1 ¢ S. We denote by FR(I', X, u) the set of free
actions in A(I', X, ). If a € FR(I', X, u) we associate with a the (simple,
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undirected) graph G(S,a) = (X, E(S,a)), where X is the set of vertices and
E(S,a), the set of edges, is given by

(z,y) € B(S,a) &z #y & Is € ST (s -2 =),

where S = {s,571: s € S}. We also write xE(S, a)y if (z,y) € E(S,a). As
in Conley-Kechris [CK], we associate with this graph the following parame-
ters:

X (S, a) = the measurable chromatic number,
X,/ (S;a) = the approximate chromatic number,

i,(S,a) = the independence number,

defined as follows:

® X,.(S, a) is the smallest cardinality of a standard Borel space Y for which
there is a (u—)measurable coloring ¢: X — Y of G(S,a) (i.e., zE(S,a)y =
(x) # cly)).

e \iP(S,a) is the smallest cardinality of a standard Borel space Y such
that for each € > 0, there is a Borel set A C X with u(X \ A) < € and
a measurable coloring ¢: A — Y of the induced subgraph G(S,a)|A =
(A, E(S,A) N A?).

e i,(S,a) is the supremum of the measures of Borel independent sets,
where A C X is independent if no two elements of A are adjacent.

Given a (simple, undirected) graph G = (X, E), where X is the set of
vertices and E the set of edges, a matching in G is a subset M C E such
that no two edges in M have a common point. We denote by X,; the set
of matched vertices, i.e., the set of points belonging to an edge in M. If
Xy = X we say that M is a perfect matching.

For a € FR(T', X, u) as before, we also define the parameter

m(S,a) = the matching number,

where m(S, a) is 1/2 of the supremum of p(X,), with M a Borel (as a subset
of X?) matching in G(S,a). If m(S,a) = 1/2 and the supremum is attained,
we say that G(S,a) admits an a.e. perfect matching.

Note that we can view a matching M in G(S,a) as a Borel bijection
p: A — B, with A, B C X disjoint Borel sets and xF(S,a)p(z),Vr € A.
Then Xy = AU B and so pu(A) is 1/2u(Xa). Thus m(S,a) is equal to the
supremum of p(A) over all such .

22



It was shown in Conley-Kechris [CK, 4.2,4.3] that

a < b= 0,(5,a) < i,(S.5), \P(S,a) > X (S,D).

m

We note a similar fact about m(S, a).

Proposition 5.1 Let I be an infinite countable group and S C I' a finite set
of generators. Then

a<b=m(S,a) <m(S,b).

Proof. Let ¢: A — B be a matching for G(S,a). Then there are
Borel decompositions A = | [ | A,, B =|]", By, and s1,...,s, € S*! with
olA; = s?A;, ¢(A;)) = B;. Fix § > 0. Since a < b, for any € > 0, we can
find a sequence C1,...,C, of pairwise disjoint Borel sets such that for any
v € {1FU (ST, ju(y*- AinA)) —u(rb-CinG))| <€ for i <4,5 < n. Since
s¢-AiNA; =0, forall 1 <i,j <n,andsf-A;Ns$-A; =0, forall 1 <i# j <n,
it follows that |pu(A;) —pu(Ci)| < €,1 <i<n,u(st-C;NC;) <e,1<4,5<n,
and p(s? - C;N st - C)) < e,1 <i+# j <n. By disjointifying and choosing e
very small compared to 9, it is clear that we can find such pairwise disjoint
Cy,...,C, with $2-C;NC; = 0,1 < 4,5 <n, sf-C’iﬂs;’--C’j =0,1<i#j<n,
andif C = |, C;, D = ||, s?-C;, then |u(C) — u(A)| < 4. Clearly ¢: C —
D given by 1|C; = s%|C; is a matching for G(S,b) and u(C) > pu(A)—4. Since
d was arbitrary this shows that m(S,a) < m(S,b). —|

(B) The next result shows that, modulo weak equivalence, we can turn
approximate parameters to exact ones.

Theorem 5.2 Let I be an infinite countable group and S C I' a finite set
of generators. Then for any a € FR(T', X, u), there is b € FR(T', X, ) such
that

(i) @~y b and a T,

(it) x;P(S,a) = x{P(S,b) = x,u(S,b),
(i) i,(S,a) =1,(S,b) and i,(S,b) is attained,
(iv) m(S,a) =m(S,b) and m(S,b) is attained.
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Proof. Let U be a non-principal ultrafilter on N. The action b will be an
appropriate factor of the ultrapower ay,.

Let k = x{P(S, a). This is finite by Kechris-Solecki-Todorcevic [KST, 4.6].
Let i,,(S,a) = ¢ < 1 and let m(S,a) = m < i. Then for each n > 1, find the
following;:

(a) A sequence C!, ... CF of pairwise disjoint Borel sets such that s*-C! N
Ci =0, for 1 <i<k,seS* and p( ], C)>1-1L.

(b) A Borel set I,, such that s*- I, NI, = 0,s € S* and u(I,) > —

3|

(c) A pairwise disjoint family of Borel sets (A%),cs+1, such that s*- A% N
Al =0,s,t € ST s ANt AL =0, s,t € ST s £ ¢, and

p( || A =m-1

seS+l

Consider now the ultrapower action ay on (Xy, pi/) and the sets C* =
[(C)], € BS{, 1<i<k,I=|[,)]u € By and A®* = [(A%)]y € BY,s € S*..
Viewed as elements of MALG,,, they satisfy:

@) C"'NC’ =0,1 <i#j < ksu-CNC =0,1<i<kse
k i
Sﬂ;#u(uz‘zl C ) =1,

(W) su-INT=0,s€ S ul) >,

() A*NA =05 #t st € ST sU. ASNA =, s,t € ST s AS Nt .
At =0,s #t,s,t € Sil;u(usesil A®) > m.

Let now By be a countable Boolean subalgebra of MALG,,, closed under
the action ay, the functions Sy, Tj, of §2, (B), §3, (B), resp., and containing
the algebra Cy of §4, (B) and also C% (1 < i < k),I,A° (s € S*). Let
B = 0(By) and let b be the factor of a;; corresponding to B. (We can of
course assume that b € FR(I', X, u).) Then by §4, (B) again, a ~,, b and
a Cb. So, in particular, x/7(S,a) = xP(5,b) = k,i,(S,a) =i,(S,b) = ¢ and
m(S,a) = m(S,b) = m, since a ~,, b. The sets (C);<; give a measurable
coloring of G(S,b)|A, for some A with u(A) =1 and we can clearly color in
a measurable way G(S,b)| ~ A by ¢ colors, where ¢ is the chromatic number
of the Cayley graph Cay(I',S) of I', S. Since ¢ < k and the action is free,
it follows that x,(S5,0) <k, so x,(S,b) = x;F(S,b). Finally, (b'), (¢) show
that ¢,(5,b) = ¢ and m(S,b) = m are attained. =
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6 Brooks’ Theorem for group actions

(A) Brooks’ Theorem for finite graphs asserts that for any finite graph G with
degree bounded by d, the chromatic number x(G) is < d, unless d = 2 and G
contains an odd cycle or d > 3 and G contains a complete subgraph (clique)
with d+ 1 vertices (and the chromatic number is always < d+1). In Conley-
Kechris [CK] the question of finding analogs of the Brooks bound for graphs
of the form G(S, a) is studied. Let d = |S*!| be the degree of Cay(T', S). First
note that by Kechris-Solecki-Todorcevic [KST, 4.8], x,(S,a) < d+1 (in fact
this holds even for Borel instead of measurable colorings). A compactness
argument using Brooks’ Theorem also shows that x (5, a) < d, where x(S, a)
is the chromatic number of G(S,a). It was shown in Conley-Kechris [CK,
2.19, 2.20] that for any infinite I', x7(S,a) < d, for any a € FR(T', X, u), so
one has a full “approximate” version of Brooks’ Theorem. How about the full
measurable Brooks bound x,(S,a) < d? This is easily false for some action
a (e.g., the shift action), when I' = Z or I' = (Z/27Z) x(Z/27Z) (with the usual
sets of generators) and it was shown in Conley-Kechris [CK, 5.12] that when
[" has finitely many ends and is not isomorphic to Z or (Z/27)*(Z/2Z), then
one indeed has the Brooks” bound x,(S5,a) < d, for any a € FR(I', X, i) (in
fact even for Borel as opposed to measurable colorings). It is unknown if this
still holds for I with infinitely many ends but 5.2 shows that one has the full
analog of the Brooks bound up to weak equivalence for any group I'.

Theorem 6.1 For any infinite group I' and finite set of generators S with
d = |S*Y|, for any a € FR(T, X, i), there is b € FR(I', X, p), with b ~,, a
and x,(S,b) < d.

This also leads to the solution of an open problem arising in probability
concerning random colorings of Cayley graphs.

Let ' be an infinite group with a finite set of generators S. Let k£ > 1.
Consider the compact space k' on which I" acts by shift: v - p(d) = p(y~19).
The set Col(k, T, S) of colorings of Cay(I', S) with % colors is a closed (thus
compact) invariant subspace of k'. An invariant, random k-coloring of the
Cayley graph Cay(I',S) is an invariant probability Borel measure on the
space Col(k,T",S). Let d be the degree of Cay(I",S). In Aldous-Lyons [AL,
10.5] the question of existence of invariant, random k-colorings is discussed
and mentioned that Schramm (unpublished, 1997) had shown that for any
I', S there is an invariant, random (d + 1)-coloring (this also follows from the
more general Kechris-Solecki-Todorcevic [KST, 4.8]). They also point out
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that Brooks” Theorem implies that there is an invariant, random d-coloring
when I is a sofic group (for the definition of sofic group, see, e.g., Pestov
[P]). The question of whether this holds for arbitrary I remained open. We
show that 6.1 above provides a positive answer. First it will be useful to note
the following fact:

Proposition 6.2 Let I' be an infinite group, S a finite set of generators for
I and let k > 1. Then the following are equivalent:

(i) There is an invariant, random k-coloring,
(11) There is a € FR(I', X, u) with x,(S,a) < k.

Proof. (ii) = (i). Let ¢: X — {1,...,k} be a measurable coloring of
G(S,a). Define C: X — k' by C(x)(y) = ¢((y 1) x). Then C is a Borel
map from X to Col(k, T, S) that preserves the actions, so C,p is an invariant,
random k-coloring.

(i) = (ii). Let p be an invariant, random k-coloring. Consider the action
of ConY = Col(k,I', S) (by shift). Fix also a free action b € FR(T', Z, v) (for
some (Z,v)). Let X =Y x Z,u= pxv. Then I' acts freely, preserving x on
X by v-(y,2) = (v-y,7-2). Call this action a. We claim that x,(5,a) < k.
For this let ¢: X — {1,...,k} be defined by ¢((y,2)) = y(1) (recall that
y € Col(k,I',S),soy: I' = {1,...,k} is a coloring of Cay(I',5)). It is easy
to check that this a measurable k-coloring of G(S, a). -

Remark 6.3 From the proof of (ii) = (i) in 6.2, it is clear that if a €
FR(T', X, i) has x,(S,a) < k, then there is an invariant, random k-coloring
which is a factor of a.

We now have

Corollary 6.4 Let I' be an infinite group and S a finite set of generators.
Let d = |S*!|. Then there is an invariant, random d-coloring. Moreover, for
each a € FR(T', X, ) there is such a coloring which is weakly contained in a.

Proof. This is immediate from 6.1 and 6.3. =

Lyons and Schramm (unpublished, 1997) raised the question (see Lyons-
Nazarov [LN,§5]) of whether there is, for any I', S, an invariant, random
x-coloring, where xy = x(Cay(I",S)) is the chromatic number of the Cayley
graph. It is pointed out in this paper that the answer is affirmative for
amenable groups (as there is an invariant measure for the action of I' on
Col(x, I, S) by amenability) but the general question is open.
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Remark 6.5 One cannot in general strengthen the last statement in 6.4 to:
For each a € FR(I", X, i), there is an invariant, random d-coloring which is
a factor of a. Indeed, this fails for I' = Z or I' = (Z/2Z) % (Z/2Z) (with the
usual set of generators S for which d = 2) and a the shift action of I" on
28 since then the shift action of I' on Col(2, T, S) with this random coloring
would be mixing and then as in (i) = (ii) of 6.2, by taking b to be also
mixing, one could have a mixing action a € FR(I', X, ) for which there is a
measurable 2-coloring, which easily gives a contradiction. On the other hand,
it follows from the result in [CK, 5.12] that was mentioned earlier, that for
any I" with finitely many ends, except for I' = Z or I' = (Z/2Z) % (Z/27Z), one
indeed has for any a € FR(I', X, ) an invariant, random d-coloring which
is a factor of the action a. We do not know if this holds for groups with
infinitely many ends.

(B) Let I', S be as before and let Autr g = Aut(Cay(I", S)) be the auto-
morphism group of the Cayley graph with the pointwise convergence topol-
ogy. Thus Autr g is Polish and locally compact. The group Autr g acts con-
tinuously on Col(k,T',S) by: ¢ -c(7) = c(¢~(7)). Clearly T' can be viewed
as a closed subgroup of Autr g identifying v € I' with the (left-)translation
automorphism ¢ — ~4d. It will be notationally convenient below to denote
this translation automorphism by (). One can now consider a stronger no-
tion of an invariant, random k-coloring by asking that the measure is now
invariant under Autr g instead of I" (i.e. (I')). To distinguish the two notions
let us call the stronger one a Autr g-invariant, random k-coloring. We now
note that the existence of an invariant, random k-coloring is equivalent to the
existence of an Autp g-invariant, random k-coloring. In fact it follows from
the following more general fact (applied to the special case of the action of

Autp g on Col(k, T, 9)).

Proposition 6.6 Let Autr s be as before and assume Autr g acts contin-
uwously on a compact, metrizable space X. Then there exists a I'-invariant
Borel probability measure on X iff there is a Autp g-invariant Borel proba-
bility measure on X.

Proof. Denote by R = Rr s = Auty(Cay(I',S)) the subgroup of G =
Autr g consisting of all ¢ € G with ¢(1) = 1 (we view this as the rotation
group of Cay(I', S) around 1).

Note that R is compact and RN T = {1}. Moreover, G = 'R = RT,
since if ¢ € G, then ¢ = (y)r, where v = (1) and r = (y)"'p. So
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R is a transversal for the (left-) cosets of I', thus G/I' is compact (in the
quotient topology), i.e., I' is a co-compact lattice in G. It follows that G/T is
amenable in the sense of Greenleaf [Gr] and Eymard [Ey] and so by Eymard
[Ey, p.12], 6.6 follows. (We would like to thank the referee for bringing to
our attention the connection of 6.6 with the Greenleaf-Eymard concept of
amenable quotient.) For the convenience of the reader, we will give this
proof in detail below. Some of the notation we establish will be also used
later on.

First note that (since I' is a lattice) G is unimodular, i.e., there is a
left and right invariant Haar measure on G (see, e.g., Einsiedler-Ward [EW,
9.20]), so fix such a Haar measure 7. Since R is compact (and G = I'R),
oo > n(R) > 0 and we normalize 1 so that n(R) = 1. Then p = n|R is the
Haar measure of R.

Every ¢ € GG can be written as

for unique ~v,7 € T,r,r’ € R. Here v = o(1),r = {(y)7'p and v =
(e 1)L = ()7t = {p71(1)). This gives a map a: I' x R — R
defined by «a(v,r) =1, where (v)r = r'(y'). Thus

a(y,r) = Nrr (7 h).

One can now easily verify that this is a continuous action of I' on R and we
will write

yer=aly,r)=r{r ().
(If we identify R with the quotient G//T", then this action is just the canonical
action of I" on G/I'.)

Moreover this action preserves the Haar measure p. Indeed, fix vy € T’
and put p,(r) = v -r. We will show that p,: R — R preserves p. For § € I,
let Ry ={r e R:r~'(y™') = 6}. Then R = | |;or Rs and p,(r) = (y)r(d) for
r € Rs, thus p,|Rs preserves n and so p., preserves p.

Assume now that ur is a Borel probability measure on X which is I'-
invariant. We will show that there is a Borel probability measure pg on X
which is G-invariant. Define

MGZ/(T’MF)W}
R
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where the integral is over the Haar measure p on R, i.e., for each continuous
fecX),

ne(§) = [ ()
R
with 7 - up(f) = pr(r=t- f),r=t- f(z) = f(r-x). (As usual we put o(f) =
[ fdo.) We will verify that pu is G-invariant.
Let F': X — X be a homeomorphism. For o a Borel probability measure
on X, let F'- o0 = F,o be the measure defined by
F-o(f)=0(foF),
for f € C(X). Then we have
Foig= [ Fe(remdr
R
because for f € C(X),
Fpa(f) = pe(f o F)
— [ )0 Pyr
= /F-(T-,up)dr.

We first check that ug is R-invariant. Indeed if s € R,

s-,uG:/s-(r-,up)dr

— [(sr) - rdr
~ [ ryir

by the invariance of Haar measure.
Finally we verify that pg is T-invariant (which completes the proof that
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lg is G-invariant as G = I'R). Indeed, in the preceding notation
() ma= [0)- (e r)ar
— [ ()
= [0 () wryar
:/(”Y'T) + prdr

(as () - pr = pr for any v € T').
But we have seen before that r +— ~ - r preserves the Haar measure of R,
SO

<7>'HG:/(7'7‘)‘MFdT

= /(7" - pr)dr

= Mg
_{

(C) As was discussed in 6.5, for any I', S with finitely many ends, except
I' =7 or I' = (Z/27) * (Z/2Z), and any a € FR(L', X, ), there is an
invariant, random d-coloring, where d = |S*!|, which is a factor of a. This is
of particular interest in the case where a is the shift action sp of T on [0, 1]"
(with the usual product measure). In that case Autr g = Aut(Cay(I',5))
also acts via shift on [0, 1] via ¢ -p(vy) = p(¢~ (7)) and one can ask whether
there is actually a Autp g-invariant, random d-coloring, which is a factor of
the shift action of Autr g on [0, 1]". We indeed have:

Theorem 6.7 Let I' be an infinite countable group, S a finite set of gener-
ators, and let d = |SE|. If T has finitely many ends but is not isomorphic
to Z or (Z)2Z) * (Z/2Z), and Autr s = Aut(Cay(I',5)), there is a Autr g-
invariant, random d-coloring which is a factor of the shift action of Autr g
on [0,1]".

Proof. Put again G = Autr g. Let X be the free part of the action of G
on [0,1]", i.e.,

X={zel0,1]": Vo e G\ {1} (¢ -z # )},
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(where ¢ - x is the action of G on [0,1]!).

If p is the product measure on [0, 1]", then pu(X) = 1, since X D {z €
0,1]": 2 is 1 — 1} = X and u(X,) = 1. Moreover X is a G-invariant Borel
subset of [0, 1]".

Since R = Aut;(Cay(T,S)) is compact, En, the equivalence relation
induced by R on X, admits a Borel selector and

Xr=X/R={R-z:z€ X}
is a standard Borel space. Define the following Borel graph E on Xg
(R-2)B(R-y) & 3s€ ST ((s)R-zNR-y # ).
Lemma 6.8 If (R-x)E(R-y), then
(x1,22) € Mpopry 1 €ER- v & 20 R-y & 3s € Sﬂ((s) ST = ),

(is the graph of) a bijection between R - x, R -y consisting of edges of the
graph G(S, sr), i.e., it is a matching.

Proof. Fix 2y € R- 11,29 € R - x5 and sy € ST with (sq) - 29 = 9.

First we check that Mp., g., is a matching. Let (21, x2), (21, 25) € MR.a,ry
and let (s) - 1, = o, (s') - 1, = ), for some s,s' € ST and r - x5 = 25, for
some r € R. Then r(s) - z1 = (s') - x1, so r(s) = (s'), thusr e I', so r = 1
and xo = xf. Similarly (21, x2), (2], 22) € MRy g implies that x, = .

Next we verify that for every xy € R - x, there is an x5 € R -y with
(21,72) € MRy Ry Let 71 € R be such that ry - 21 = 29, so (so)r1 - 21 = 23.
Now

(so)r1 = ({so)r(ri (s ) (ri (o) ™
= T2_1<8/>,
where r, € R and s € S*!. Thus r; '(s') -2y = 23, s0 (s') -2y = 19-29 = 29 €
R -y and (z1,22) € Mgy gy Similarly for every zo € R-y thereis 21 € R-x
with (z1,22) € Mgy gy, and the proof is complete. -
Lemma 6.9 Let x € X. Then the map
v R (7))

is an isomorphism of Cay(I',S) with the connected component of R-x in E.
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Proof. Let v € " and let sq,...,5;, € S*! be such that v~ ! = s, ...5;.
Then (R-x)E(R-({s1)-2))E...E(R-({(y)™'-z)),s0 R-({y)~!- ) is in the
connected component of R-x. Conversely assume that R-y is in the connected
component of R-z and say (R-z)E(R-x1)E(R-22)E ... E(R-x,-1)E(R-y).
By Lemma 6.8, there are sy,...s, € S and 2],...,2/, such that (s;) -z =
) € R-xy,(s9) -2y = a2 € R-x9,...,($p) -2l =), € R-y. Let
v l=s,...8. Thenz), = ()" 'z €R-y,so R-({(y)"'-2) = R-y. Thus
v+ R-({(y)7'-z) maps I onto the connected component of R - .

We next check that v — R- ((y)™!-z) is 1-1. Indeed if R- ({(y)~!-z) =
R- ({671 - 2), then r(7y)~t -2 = (§)~! - z for some r € R, so as before r = 1
and v = 4.

Finally let (v,7s) be an edge in the Cayley graph of I, S. Then clearly
R-((y)7'-2)ER- {(ys)™'-2) = R- ({s)"(y)~! - x). Conversely assume that
R-({(y)"t-2)ER-((6)~'- ), so that, by 6.8 again, there are s € S*!,r € R
with (s)(y)"!' -z = r(0)™' -z, ie, (s)(y)"' = r(6)"'. Then r = 1 and
vs~1 =4, so (v,0) is an edge in the Cayley graph. -

The following will be needed in the next section, so we record it here.
Let m: X — Xg be the projection function: m(x) = R-z. Let v = mu
be the image of p.

Lemma 6.10 E preserves the measure v.

Proof. Let ¢: A — B be a Borel bijection with A, B Borel subsets of
Xr and graph(yp) C E. We will show that v(A) = v(B).

We have v(A) = u(Ug.pea B - x) and similarly for B. If o(R-z) = R -y,
then Mg, g, gives a Borel bijection of R -z, R -y whose graph consists of
edges of G(S,sr) and (Jp.,c 4 MR.2,ry gives the graph of a Borel bijection of
Urpea B2 with Ug.,cp R - 2, therefore v(A) = v(B). =

We now complete the proof of the proposition. Consider the graph
(Xg, F). By 6.9, it is a Borel graph whose connected components are isomor-
phic to Cayley graphs of degree d = |S*!| that have finitely many ends. So
by Conley-Kechris [CK, 5.1, 5.7, 5.11] and Lemma 6.9, (Xg, F) has a Borel
d-coloring. Cr: Xp — {1,...,d}. Define now C: X — {1,...,d} by

C(z) = Cr(R-x)

Then clearly C'is a Borel d-coloring of G(S,a). We use this as usual to define
a random d-coloring of the Cayley graph. Define

P: X — Col(d, T, S)
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by
Y(@)(y) =C((1) " - 2).
and consider the measure 1, on Col(d,T",S). This will be G-invariant pro-
vided that v preserves the G-action, which we now verify.
First it is clear that 1 preserves the I'-action. It is therefore enough
to check that it preserves the R-action, i.e., ¢¥(r - z) = r - 9(z) for each
x € X,r € R. Let v € I in order to check that ¥ (r - z)(y) = (r-¥(z))(7y) or

C{(y) tr-x) =) (r~ (7)) = C({r (7))~ - x). But recall that

(0= ()T N )

so ()7t = r'{r71(y))7!, for some ' € R, therefore R - ({(y)7'r-z) =
R-({r~'(v))~'- ) and since C(y) depends only on R -y, this completes the
proof. =

(D) Fix an infinite group I' and a finite set of generators S, let G =
Autp g = Aut(Cay(I',5)) and let R = Rrs = Aut;(Cay(I',S)) as in the
proof of 6.6. Then the action v -7 of I' on R defined there is an action by
measure preserving homeomorphisms on the compact, metrizable group R.
Provided that I', S have the property that R is uncountable, this may provide
an interesting example of an action of T.

For instance let I' = Ty, the free group with two generators, and let
S = {a,b} be a set of free generators. Then it is not hard to see that the
action of I" on R is free (with respect to the Haar measure p on R). Indeed,
let I', = {w € I": |w| = n} (where |w| denotes word length in the generators
a,b) and for w,v € I, let N, = {r € R: r(w) = v}. lf v # ' €T, then
Nuyw N Ny = 0 and since R acts transitively on I',,, there is 7 € R with
rv" =", 80 Ny, = Ny and thus p(Ny ) = Ny So

for w,v € T',,.

Let now v € T'\ {1} and assume that r € R is such that !
(N7 ir=(y)) =1 or (V)r =r{r~1(y)), so for all § € T, yr(d) = r(r !
or r7 ()6 = r~t(yr(5)) and letting r(§) = €, we have r‘l(y)r_l(
r~!(ve). Since € was arbitrary in T, this shows that r~1(7") = (r~1())", V
1. Tt is thus enough to show that for each v € T\{1},{r € R: Vn > 1(r(7"
(r(y))™} is null. Let |y*| = a, — oo. Then if vy € T, {r € R: r(y"
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(r(M))"t € Ueer, {r € R:r(7") = €'}, s0 p({r € R: r(v") = (r(v))"})
Zﬁerk P(Noyn en) — 0 as n — oo. Thus {r € R: Vn > 1(r(v") = (r(v))")}

& IA

7 Matchings

(A) Let I' be an infinite group and S a finite set of generators for I'. For
a € FR(T', X, p), recall that m(S, a) is the matching number of a, defined in
§5. If m(S,a) = 1 and the supremum in the definition of m(S, a) is attained,
we say that G(S,a) admits an a.e. perfect matching.

Abért, Csoka, Lippner and Terpa [ACLT] have shown that the Cayley
graph Cay(T", S) admits a perfect matching.

Let Er g be the set of edges of the Cayley graph Cay(I', S) and consider
the space 25 which we can view as the space of all A C Frg. Denote by

M(T,S)

the closed subspace consisting of all M C Er g that are perfect matchings
of the Cayley graph. The group Autr g = Aut(Cay(T,S)) acts on 25 by
shift: ¢ - z(7,0) = z(p~ (), 1(d)) and so does the subgroup I' < Autr g.
Clearly M (I, S) is invariant under this action.

A Autp g-invariant, random perfect matching of the Cayley graph is a
shift invariant probability Borel measure on M (I, S). If such a measure is
only invariant under the shift action by I', we call it an nvariant, random
perfect matching.

Lyons and Nazarov [LN] considered the question of the existence of in-
variant, random perfect matchings which are factors of the shift of ' on [0, 1]©
and showed the following result.

Theorem 7.1 (Lyons-Nazarov [LN, 2.4]) Let I" be a non-amenable group,
S a finite set of generators for I' and assume that Cay(I',S) is bipartite
(i.e., has no odd cycles). Then there is a Autr g-invariant, random perfect
matching, which is a factor of the shift action of Autr g on [0,1]".

Let us next note some facts that follow from earlier considerations in this
paper.

Proposition 7.2 Let I' be an infinite group and S a finite set of generators
for I'. Then the following are equivalent:
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(i) There is an invariant, random perfect matching.

(i) Thereisa € FR(T, X, ) such that G(S, a) admits an a.e. perfect match-

ing.
(iti) There is a sequence a, € FR(I, X, 1) with m(S,a,) — 3.
Proof. Asin 6.2 and 5.2. =

Proposition 7.3 For I',S as in 7.2., if a € FR(I', X, u) is such that the
matching number m(S,a) = 3, then there is b € FR(T', X, i) with b ~, a
and G(S,b) admitting an a.e. perfect matching, and there is an invariant,
random perfect matching weakly contained in a.

Proof. As in 5.2 and the proof of 6.2. o

Proposition 7.4 Let I', S, Autr s be as before. Then there is an invariant,
random perfect matching iff there is an Autp g-invariant, random perfect
matching.

Proof. By 6.6. o

We now have
Proposition 7.5 Let ' be an infinite group and S o finite set of generators.

(i) If T is amenable or if S has an element of infinite order, then for any
a € FR(T, X, 1), m(S,a) = 1.

(i1) If S has an element of even order, then for any a € FR(T', X, u), G(S, a)
admits an a.e. perfect matching.

Proof. i) When I' is amenable, this follows from the result of Abért,
Csoka, Lippner and Terpa [ACLT] that Cay(T", S) admits a perfect matching,
using also the quasi-tiling machinery of Ornstein-Weiss [OW], as in Conley-
Kechris [CK, 4.10, 4.11]. The second case follows immediately from Rokhlin’s
Lemma.

ii) This is obvious. —|

We do not know if m(S,a) = % holds for every I, S,a € FR(I", X, u). By
7.5 the only problematic case is when .S consists of elements of odd order and
' is not amenable. We will see however that the answer is affirmative for the
group I' = (Z/37Z) % (Z/37) and the usual set of generators S = {s,t} with
53 =3 = 1. In fact we have the following stronger result:
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Theorem 7.6 Let I' = (Z/3Z) x (Z/3Z) with the usual set of generators
S = {s,t}, with s> = t> = 1. Then for any a € FR(T, X, n), G(S,a) admits
an a.e. perfect matching.

Proof. Suppose that M is a matching for some graph G = (X, F). Recall
that an (M)-augmenting path in G is a path xg, 21, ,zox1 (K € N) such
that zo, xopr1 € X, the edges of the form (9,41, %212) are in M, and the
edges of the form (zy;, z2;41) are not in M.

We will in fact show more generally that any p-preserving graph G =
(X, E) on (X, ) whose connected components are isomorphic to the Cayley
graph Cay(T', S) admits a p-a.e. matching.

Elek-Lippner [EL2] establishes that for any Borel matching M of G and
any k, there is a Borel matching M’ of G such that X;; C X and M’ has
no augmenting paths of length < k.

Lemma 7.7 Suppose that M, is a Borel matching contained in G with no
augmenting paths of length less than 4n. Then p(Xy,) > 1—27".

Proof. Fix x # y in X \ Xy, so that dg(x,y) = k is least possible. We
first show that £ > 2n. Let x = xoFEx F - - - Fxp_1Fx, = y be the unique G-
path from z to y of length k. Since x4, ..., z5_; are in X, by the minimality
assumption, we may fix edges my, ..., mg_1 in M,, with each z; incident with
m; (note that m; may equal m;y;). For each x;, let z; denote the vertex
incident with m; not equal to z;. Also let e; = (x;, z;11), for i < k.

There is a unique augmenting path form = to y with vertex set {z, y }U{z; :
1 <i<k}U{z :1<i<k} defined as follows: Say that z; (1 <i < k) is of
type 0 if m; is either e; or e;_1. Say that z; is of type R(ight) if (z;, z;, xi11)
is a triangle in the Cayley graph and z; is of type L(eft) if (z;, z;, ;1) is
a triangle in the Cayley graph. Note that every z; is in exactly one of
these types and that it is not possible to have x; which is of type R but
x;11 is of type L. Our augmenting path is obtained by keeping all m; that
happen to be in the original path from x to y and replacing e; for x; of type
R by (x;, 2), (zi, z;41) and e;_y for z; of type L by (z;_1, 2), (2, ;). This
augmenting path has length at most 2k — 1. But by assumption M,, has no
augmenting paths of length less than 4n, which implies k > 2n.

In other words, if z,y are distinct elements of X \ X, , then B,(z) and
By, (y) are disjoint, where B, (x) denotes the distance n ball centered at x.
Since |B,(x)| > 2", we have pu(X \ Xj,) < 27" as required. .
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The lemma on its own shows that the matching number for G is 1/2.
To show that the supremum is attained, we use the result of Elek-Lippner
[EL2] mentioned earlier to find a sequence of Borel matchings (M,,) with
Xum, € X, and with M, having no augmenting paths of length less than
4n. Then we use the argument in Lyons-Nazarov [L.N] to show that M defined
by

(x,y) € M < Im¥n >m (z,y) € M,

is a Borel matching with pu(X,/) = 1. —|

We also do not know if for every I', S, there is an invariant, random perfect
matching (a question brought to our attention by Abért and also Lyons).

(B) We recall also the following result of Lyons-Nazarov [LN]:

Theorem 7.8 (Lyons-Nazarov [LN, 2.6]) Let (X, u) be a non-atomic, stan-
dard measure space and G = (X, E) a Borel locally countable graph which is
bipartite and measure preserving (i.e., the equivalence relation it generates is
measure preserving). If G is expansive, i.e., there is ¢ > 1 such that for each
Borel independent set A C X, u(A’) > cu(A), where A’ = {x: JyEx(y € A)},
then G admits an a.e. perfect matching.

We note that, using the argument in 6.7, one can show that Theorem 7.8
implies Theorem 7.1.

Proof that 7.8 = 7.1. Using the notation of the proof of 6.7, we first
show that the graph E defined there satisfies the hypotheses of 7.8.
Lemma 7.9 (Xg, E) is bipartite.

Proof. By 6.9. o
Lemma 7.10 (Xg, E) is strictly expanding.

Proof. Let A C X be an independent Borel set and A’ = {z € Xg: Jy €
A(xEy)}. Since the group I' is not amenable, the graph G(S, sr), where
sp is the shift action of ' on [0, 1]' is strictly expanding, so let ¢ > 1 be
the constant witnessing that. We will show that v(A’) > cv(A). This is
immediate since | Jp.,c 4 1- 2 is independent in G(S, sp) and (Up.,cq B-7)" =
Urpen B- 2. .
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Thus by 7.8, there is an a.e. perfect matching for (Xg, E') which we denote
by Mpg. Using 6.8 this gives an a.e. perfect matching M for G(S, sr) defined
by

(x,y) e M & (R-z,R-y) € Mg & (x,y) € Mpy py.
Define now
¢:[0,1]" — M(T,S)
by
(v, 75) € p(a) & (1)@, (s) ()" 2) € M,
for s € S*. Tt is enough to show that ¢ preserves the Autr s-action.

First we check that ¢((0) - x) = 0 - p(z) for 6 € . Indeed (v,vs) €

e((0) - ) & (()7H3) -2, (s) ") THE) - 2) € M = (671,07 ys) € p(z) &

(7,75) € 0 ().
Finally we verify that o(r-z) = r-p(z), for r € R, i.e., (v,7s) € o(r-z) &

(v,7v8) € r-p(x). Now
(7,78) € p(r-az) & (N 7r-a,(s) ) lr-x) e M

and

(v, 78) €7 p(@) & (71 (1), 77 (79)) € p(2)
S () e ()T () T e) €M

where r71(ys) = r=1(y)s, for some s’ € ST Now (v)~r = p(v'), for some
p € Rand ¥ = (r~(y))~!. We have therefore to show that

(p(y) 2, (s)"'p(y') - 2) € M & ((V) -2, () H(Y) @) € M.

Clearly p(y’ -z, (7'} -  belong to the same R-orbit, so it is enough to show
that p' = ( >*1p<s'> € R. Because then (s >*1p(y’> r = p{HY)
and thus R - (p(Y)-2) = R-((y) - 2) = AR-((s)7'ply) - 2) = R~
()7 Hy) -2) = “Ip(y) ) € M & (p{y) -2, ()" p(v) -
l‘) € MAB =4 ( B

and p/(1) = s71

S
sy (r T (7)s) = 57y (e (s)) = 571y
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8 Independence numbers
Let I' be an infinite group and S a finite set of generators. Consider the set
I(T,8) = {i,(S.a): a € FR(T, X, 1)}

of independence numbers of actions of I'. It was shown in Conley-Kechris
[CK, §4, (C)] that I(T,S) is a closed interval [i,, (S, sr),4,(S, ar%,)], where

I' oo
sr is the shift action of T on [0, 1]" and a8 is the maximum, in the sense

of weak containment, free ergodic action. Let
I¢(T, S) = {i,(S,a): a € FR(I', X, 1), a ergodic}.

The question of understanding the nature of /°'#(I", S) was raised in Conley-
Kechris [CK, §4, (C)]. We prove here the following result:

Theorem 8.1 Let I' be an infinite group and S a finite set of generators. If
I' has property (T), then I°8(L",S) is a closed set.

Proof. Since I" has property (T), fix finite @ C T" and € > 0 with the
following property: If a € A(T", X, u) and there is a Borel set A C X with

Vy € Q(u(v" - AAA) < eu(A)(1 — u(A))),

then a is not ergodic (see, e.g., Kechris [Ke2, 12.6]).

Let now ¢, € I*8(T", S), 1, — ¢, in order to show that ¢ € I*8(T", S). Let
a, € FR(I', X, i) be ergodic with ¢,(S,a,) = t,. Let U be a non-principal
ultrafilter on N and consider the action a =[], a,/U on (Xy, ). Then it is
clear that there is no non-trivial I'-invariant element in the measure algebra
MALG,,,. Because if A = [(A,)]y were I'-invariant, with 1y (A) = 6,0 <
d < 1, then gy (v* - AAA) = 0,Vy € A, so lim,, gy (™ - A,AA,) = 0 and
w(A,) — 94, so for some n, and all v € Q, u(y* - A, AA) < eu(A,)p(l —
1(Ay)), thus a, is not ergodic, a contradiction.

Fix also independent sets A, C X for a, with |u(A,) — 1| < . Let A=
[(A;)]u- Then A is independent for a modulo null sets (i.e., s*- AN A is py-
null, Vs € S*1) and j(A) = . Consider now the factor b of a corresponding
to the o-algebra B = o(By), where By is a countable Boolean subalgebra of
MALG,,, closed under a, the functions Sy, Ty, of §2, (B), §3, (B), resp., and
containing A. We can view b as an element of FR(I', X, u). First note that
b is ergodic, since MALG,,, and thus B has no I'-invariant non-trivial sets.
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We now claim that ¢,(S5,b) = ¢, which completes the proof. Since A € B,
it is clear that ¢,(S,b) > u(A) = ¢. So assume that ¢,(S,b) > ¢ towards a
contradiction, and let B € MALG,,, be such that s*- BN B = (), Vs € S*!,
and iy(B) = k > 1. We can assume of course that B = [(B,)]y € By, so
lim,, ¢ (B,) = & and lim, .y pu(s* - B, N B,) = 0,Vs € St Let C, =
B, \ s*" - By, so that s -C,NC, =0 and u(C,) = u(B,) — pu(s* - B,N B,),
thus lim,, g p(Cy) = lim, .y u(B,) = £ > . Since ¢, — ¢, for all large
enough n, v, < 3 and thus for some U € U, and any n € U, u(C,,) > 5=
but ¢,(S,a,) = tn, < LJFT" Since (), is an independent set for a,,, this gives a
contradiction. o

Similar arguments show that the set of matching numbers m(S,a),a €
FR(T, X, p), is the interval [m(S, sr), m(S,ar%,)], and the set of matching
numbers of the ergodic, free actions is a closed set, if I' has property (T).

Finally, we have the following result, which shows that for certain groups
(and sets of generators) the set I°"8(I", S) is infinite.

Theorem 8.2 Suppose that I' is a group with finite generating set S, and
that a,b are elements of FR(T', X, ) with i,(S,a) < 1/2 and x;P(S,b) =
2. Then the set of independence numbers of free, ergodic actions of Z * I’
(with respect to the natural generating set {z} U S) intersects the interval
(i,(S,a),1/2) in an infinite set.

Proof. Fix € > 0 and n € N. We may find disjoint G(S, b)-independent
sets By, By C X witnessing approximate 2-colorability of b (i.e., u(B;) >
1/2—¢). Let U be the set of automorphisms in Aut(X, ) which come within
e of flipping By and By, i.e.,

U={T e Aut(X,p) : u(T(By)ABy) < € and pu(T'(B1)ABy) < €}.

Clearly U is open, non-empty in the weak topology of Aut(X,u). The col-
lection of aperiodic, weakly mixing automorphisms is comeager with respect
to this topology, see, e.g., [Ke2]. Also comeager is the collection of au-
tomorphisms orthogonal to E, V Ej, (where T is orthogonal to an equiv-
alence relation F' if there is no nontrivial injective sequence of the form
xo, T (xg), 21, T* (x1), ..., Tp, T?(x,) = x¢ with each T%(z;)Fx;41); see
e.g., [CM]. So we may then fix an aperiodic, weakly mixing automorphism
T € U which is orthogonal to E, V E}. Define now an action a, . of Z *I'
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(with generating set {z} U S) on (n + 1) x X (with the product measure
v = ¢ X j1, with ¢ the normalized counting measure on n + 1) by
z-(i,r)=(i+1mod n+1,T(x)),
7-(0,2) = (0,7%(2)),
v (i,2) = (1,7 (x)), if 1 <i<n+1.

This action is ergodic as the map (i,z) — (i + 1 mod n+ 1,T(x)) is ergodic
by weak mixing of T'. It is also free by the orthogonality of T to E,V E,. We
compute bounds for the independence number of the graph resulting from
this action.

First consider the independent set

Ane=1{1,2,...,n} x (Bo \ T(Bo))-

We have v(A, ) > (n/(n+1))((1/2 —¢€) —¢) = (n/2(n+ 1))(1 — 4e).

Next suppose that A C (n + 1) x X is an arbitrary independent set.
By considering the graph’s restriction to each {i} x X, we certainly have
v(A) <i,(S,a)/(n+1) +ni,(S,b)/(n+1) <1/2, so

(n/2(n+1))(1 — 4e) < iy(ane) =i, ({2} U S, ane) < 1/2.

We may then recursively build sequences (n,,), (€,) so that the values
iy(an,, e, ) are strictly increasing with m and in the interval (i,(S,a),1/2),
completing the proof. -

Examples of (I', S) for which such a,b exist include all non-amenable '
and S for which Cay(I', S) is bipartite; see [CK, 4.6, 4.14].

9 Sofic actions

(A) Recall that a group G is sofic if for every finite F' C G and € > 0, there
isn>1and 7: F — S, (= the symmetric group on n = {0,...,n—1}) such
that (denoting by idy the identity map on a set X):

(i) 1€ F = n(1) = id,,
(i) 70,90 € F = a({m: w(3)7(8)(m) # 7(70)(m)}) <
(it}) v € F\ {1} = pa({m: w(3)(m) = m}) < e,
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where p,, is the normalized counting measure on n.

Elek-Lippner [EL1] have introduced a notion of soficity for equivalence
relations. We give an alternative definition due to Ozawa [O].

Let (X, u) be a standard measure space and FE a measure preserving,
countable Borel equivalence relation on X. We let

[[E]] = {¢: ¢ is a Borel bijection ¢p: A — B,
where A, B are Borel subsets of X and
rEp(x), p-a.e. (x € A)}.

We identify ¢, as above if their domains are equal modulo null sets and
they agree a.e. on their domains. We define the uniform metric on [[E]] by

ox(p, ) = p({z: p(z) # P(r)}),

where
p(z) # ¥(z)

means that

x € dom(p)Adom(1))

z € dom(p) Ndom(y) & p(x) # ¢(x).

If p: A — B we put dom(p) = A, mg(p)=B. lf p: A— B,¢yp: C - D
are in [[E]], we denote by ¢t their composition with dom(py)) = CNYp~ (AN
D) and ¢y(x) = p((z)) for x € dom(pt). If (¢;)ier, I countable, is a
pairwise disjoint family of elements of [[E]], i.e., dom(y;),7 € I, are pairwise
disjoint and rng(y;),? € I, are pairwise disjoint, then | |,., ¢; € [[£]], is the
union of the ;7 € I. If ¢: A — B is in [[F]], we denote by ¢~ ': B — A
the inverse function, which is also in [[E]]. We also denote by () the empty
function. Finally, if X = n and p = u, is the normalized counting measure,
we let [[n]] be the set of all injections between subsets of n (thus [[n]] = [[E]],
where E = n x n) and we let §,, be the corresponding uniform (or Hamming)

metric on [[n]], so that 8,(p,v) = 2[{m: ¢(m) # (m)}|.

Definition 9.1 A measure preserving countable Borel equivalence relation
E on a non-atomic standard measure space (X, p) is sofic if for each finite
F C [[E]] and each € > 0, there isn > 1 and w: F — [[n]] such that

Z) idx GF:>7T(1dx):1dn,@EF?W(@):Q,
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i) @, 1, 00 € F = dn(n(py), m(@)m(¥)) <,

iii) ¢ € F = |u({e: o(x) = 2}) — pa({m: () (m) = m})| < e .

We do not know if this definition is equivalent to the one in which [[E]]
is replaced by the full group [E] = {¢ € [[E]]: p(dom(p)) = 1} and [[n]] by
S, or even if it is equivalent to the soficity of the full group.

The following two facts, brought to our attention in a seminar talk by
Adrian Ioana, can be proved by routine but somewhat cumbersome calcula-
tions.

Proposition 9.2 There is an absolute constant K > 1 (e.g., K = 10,000 is
good enough) such that the following holds:

Let Fe,n, satisfy 9.1 1)-iit) and moreover (0 € F = 07, idgom(s) € F).
Let o, € F be such that F also contains o, o ' and idy4, for any A
in the Boolean algebra generated by the domains of v, v, 1, o~ % and their
inverses. Then 6x(p, 1) < € = 6,(n(p), 7(¥)) < Ke.

Proposition 9.3 Let E be a measure preserving countable Borel equivalence
relation on a non-atomic standard measure space (X, ). Suppose Fy C Fy C
- C [[E]] are increasing finite subsets of [[E]] with 0,idx € Fy and, letting

& ]*:m = (LI, it i € B}, U, (B Fy) is dense in [[E]]. Suppose that G,
are finite subsets of [[E]] with F,, C G,, and

1. p,p € By = b, o) € G,

2. ifp,p € Fy,, thenidy € Gy, for any A in the Boolean algebra generated
by the domains of ©,v, e, 0 Y and their inverses,

3. o, € By = o AN € Gy, where o N is the restriction of ¢ (equiva-
lently ) to dom(p) Ndom(y) N{x: p(z) = Y(x)}.

Finally, suppose that for every m and every e > 0 there is an n and 7 :
G — [[n]] that satisfies the properties in the definition of soficity. Then E
18 sofic.

We next define sofic actions. For (X, u) a non-atomic, standard measure
space and I' a countable group, for each a € A(T", X, i), denote by E, the
induced equivalence relation (defined modulo null sets)

rEy < Iy el(y* -z =y).
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Definition 9.4 An action a € A(T', X, ) is sofic if E, is sofic.

Let now Ay be any countable Boolean subalgebra of MALG,, closed under
an action a € FR(I', X, ) and generating MALG,,. Let I' = {v,: n € N},
and let (A,,)men enumerate the elements of Ag. Let (pf);eny enumerate the
family of elements of [[E,]] of the form 72| A,,,n,m € N. Then by 9.3 we
have the following criterion. (Notice that if F,,, = {¢g,..., 9%} U{0,idx},
then there is G, C {@g, ¢f, ...}, with F,,, G, E, satisfying the conditions
in 9.3.)

Proposition 9.5 The action a € FR(I', X, ) is sofic provided that for each
m and € >0, 9.1 holds for F'={¢8,...,¢%} and €.

We now have the following fact.

Proposition 9.6 Let (X, ) be a non-atomic standard measure space. Let
a, € AT, X, 1) be sofic actions and a, — a, where a € FR(I', X, ). Then
a is sofic. In particular, if a € FR(I', X, u),b € A, X, u), b is sofic and
a < b, then a is sofic.

Proof. Fix a countable Boolean algebra A, which generates MALG,
and is closed under a. Let (v,), (Am), (¢%) be as before for the action a,
so that (¢¢) enumerates all 72| A,,. For m,e > 0 we want to verify 9.1 for
F={¢g,...,¢%} , e>0. Say, for i <m, ¢ =6 B;, where §; € I', B, € Ay.
Note that ¢; is uniquely determined, by the freeness of the action a, if B; # ().

Fix i« < m with §; # 1. Since the action a is free, as in the proof of 3.3,
we can write B; = | |~ Bix, where 6 - B; N B; = 0, for all k. Choose n;
so large that p(B; \ U;L, Bix) < €/4. Since a,, — a, we can find an N; so
large that for all N > N; and all £ < n; we have

a a €
|1(6;™ - Biw N Bik) — (67 - Biw N Bik)| < .

Since (68 - By N B;x) = 0, this says that

N B; . N B; < .
(6 &N Biy) .

If now x € By, and 6;V - = z, we have x € §;" - B;, N B; . Thus
p({z € Bi: 67 -x =a}) < w(Bi \ | Bix) + D> p(6 - Bix N Big) < €/2.
k=1 k=1
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Choose N larger than all N; (i < m,J; ;é 1) and large enough so that
u((B; 0 (651)y - B)A(B; N (6;1) - Bz)) 57, for i,j < m, and let ¥; =
0iN|B;, i < m. Let then F C [[E,,]] be such that (6 € F = 07!, idgom(s) € F)
and moreover F' contains the maps ;, ¥;1;, 9, Hbj, i,7 < m, and id 4, for any
A in the Boolean algebra generated by the domains of these functions and
their inverses. Let then m : F' — [[n]] satisfy 9.1 with ;%. Put 7(¢f) =
7w (). We will show that this satisfies i)-iii) of 9.1. It is clear that i) holds.

For iii): Given ¢;,1 < i < m, note that pu({z: ¢¥(z) = z}) = uw(B;) =
p{z: ¥i(x) = x}), if 6; = 1, and p({x: pf(z) = x}) = 0, if §; # 1, while
in this case p({z: ¥;(z) = 2}) = p({z € B;: & -x = x}) < €/2. Thus
lp({z: ¥ (x) =x}) — p({z: Yi(z) = 2})| < €/2 and so iii) holds.

For ii): Assume 7, j < m and for some k < m, pjip] = ¢f. Assume also
first that By, # (). Then

it = 0p03|(B; N (671)" - By)
= (6:6;)"[(B; N (6; )" - By)
= 513’Bk,
s0 0 = 6;0; and By, = B;N(6; 1) B;. Then o; = 6, | By, o0y = 65V | B, i1 =
SN OV | BN(6; )N - By, o = (8:0;)*N | B;N(6; 1) B;. Therefore dx (i), ¢)
5% Then, by 9.2, 6, (mn(¢s0);), m(¥y)) < 5. Therefore
(T (07 07), m(o7)m(5))
= 0,(m (), m(i)m ()
on (TN (Yr), Tn (Vi) T (¥5))
On (T (Vr), T (Vithy)) + On (TN (Yinhs), mn (i) T (1))

<sts=c¢

A

and the proof is complete.
In the case B;, = (), we consider two subcases:

(1) One of ©f,p} is (. Then one of 9;,1; is § and ;0h; = 1 = () and
thus 5X(wiwj7 W) < 3
(2) Both ¢f, % are not (). Then as before v; = 0™ | B, 5 = 03V | By, by =
57N 65V | B m( e BZ- but u(B; N (6;1)* - B;) = 0 and 1, = 0. Since
1(B; N (0,1 - B;) < 5%, we still have dx (i, ¢r) <
So in elther subcase we are done as before. o

(B) Consider now a sofic group I' and fix an increasing sequence 1 €
Fy € Fy C ... of finite subsets of I with | J,, F;, =I'. For each n, let X,, be
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a finite set of cardinality > n with the normalized counting measure p,, such
that there is a map m,: F,, — Sx, (= the permutation group of X,,) such
that

i) m(1) = idx,,
i) 7,0,70 € Fy = pn({z: w(7)m(d)(x) # m(10)(x)}) < 7,
i) € Fu \ {1} = po({z: 7(7)(2) = 2}) < 7.
Define then a,: ' x X — X by

an(7, %) = T (7) (@)
Then abbreviating a, (v, x) by 7 -, * we have

i) 1, 2=nrx,

i) 9,0,90 € Fy = ({90 # (0w 0)}) < 1,

i) v e F \ {1} = m({z: vy nz =2}) < 2.

So we can view a,, as an “approximate free action” of I' on X,,.

Fix now a non-principal ultrafilter / on N and let Xy, = ([[,, X,,)/U and
1y the corresponding measure on the o-algebra By of Xy. By 2.5 this is
non-atomic. As in §3, we can also define an action aq; of I' on Xy, by

7 1)l = 17 0 2n)lu

(note that v -, x, is well-defined for U-almost all n). This action is measure
preserving and, by iii) above, it is free, i.e., for v € T\ {1}, puy({x € Xpy: v -
x # x}) = 0 (see 3.2). Solet By be a countable subalgebra of MALG,,,, closed
under the action ay, the function Sy of §2, (B) and Ty, of §3, (C). Let B =
o(By) and let b be the factor corresponding to B. Then b € FR(T', X, u),
for a non-atomic standard measure space (X, ).

We use this construction to give another proof of the following result:

Theorem 9.7 (Elek-Lippner [EL1]). Let I' be an infinite sofic group and let
sp be the shift action of T on [0,1]'. Then sr is sofic.
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Proof. Consider the factor b as in the preceding discussion. By Abért-
Weiss [AW], sp < b, thus using 9.6, it is enough to show that b is sofic.
Using 9.5, it is clearly enough to show the following: For any ~i,...,7 €
L, [(AD]w, -5 [(AR)]y € Bo and € > 0, letting o; = 77|[(A%)]y, there is n
and a map 7: {p;: i < k} — [[X,]] (the set of injections between subsets of
X,,) such that

i) ¢, =idx = 7(y;) =idx,, pi = 0= (i) = 0,

i) If 4, j,0 < k and @ip; = o, then pp ({2 w(0i)m(p;)(2) # 7(0e)(2)}) <
i) [pu({z: wi(z) = 2}) — pa({z: w(pi)(x) = 2})| <e.

Since ay is free, note that ¢; = v;¥|[(A%)];; uniquely determines v;, if [( A}y, #
(). Choose now n € N so that:

a) pn({x: Yen @ #Yin (v n2)}) <5, if e =37 (4,5, < k),
b) pn({z: vinw =1a}) <e if v #1,
c) pn(ALA(AL Nt AL)) < 5, i ips = e (4,5, < k),
d) [pu([AJ) = pn(A3)] < €/2 (0 < F).
Note that c) is possible since [(A?)]y is the domain of ¢, while [(AZ)];, N

(7 1) - [(AZ)]M is the domain of gip;, thus 0 = tiae ([(AS) e A([(A2)]w N
(1) - 1A ) = Ty o (ALA(A) 0777 - A)). Now define

1) m(pi) = idx,, if p; = idx; 7(ps) = 0, if ; = 0,
2) ww(p;) = i AL, otherwise,

where as usual 7" () = a,(7;,x). We claim that this works. Clearly i) is
satisfied. Also iii) is satisfied. Indeed if 7; # 1, py({z: vi(x) = z}) =0
and p,({z: 7(wi)(x) = z}) < p({z: v nae = 2}) < e If v =1, then
p{x: gi(x) = 2}) = p([AL ) and pa({z: w(pg)(x) = x}) = pa(A}), so
lr({x: pi(z) = x}) — w({z: 7(p;)(z) = z}| < e. Finally for ii), assume
wip; = e (1,7, < k). Consider first the case when ¢, # (0 (and thus ¢;, ¢,
are not (). Then v;v; = v, and so

fn({Z: Ve n @ # Yin (Vi n2)}) <

I

DO ™
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thus

({22 m(e) (@) # (i) m(ps)(7)}) <
Mn(AﬁA(Af{ n 7;1 ‘n A;)) +pn({z: Yo n® # vin (v 0 )}) <€

The case when ¢, = ) can be handled as in the proof of ii) in 9.6 (case
By =0). —

(C) It is a well-known problem whether every countable group is sofic.
Elek-Lippner [EL1]| also raised the question of whether every measure pre-
serving, countable Borel equivalence relation on a standard measure space is
sofic. They also ask the question of whether every free action a € FR(I', X, u)
of a sofic group I' is sofic. They show that all treeable equivalence relations
are sofic and thus every strongly treeable group (i.e., one for which all free
actions are treeable) has the property that all its free actions are sofic. These
groups include the amenable and the free groups. Another class of groups
with all free actions sofic is the class MD discussed in Kechris [Ke3]. A group
[ is in MD if it is residually finite and its finite actions (i.e., actions that
factor through an action of a finite group) are dense in A(I", X, ). These
include residually finite amenable groups, free groups, and (Bowen) surface
groups, and lattices in SO(3,1). Moreover MD is closed under subgroups and
finite index extensions.

To see that every free action of a group in MD is sofic, note that by
Kechris [Ke3, 4.8] if a € FR(T", X, u), then a < tp X pr, where ¢r is the trivial
action of T" on (X, u) and pr the translation action of T' on its profinite
completion on L. Tt is easy to check that (r X pr is sofic and thus a is sofic
by 9.6. (Alternatively we can use 9.6 and the fact that every finite action is
sofic.)

We note that the fact that every free group I' has MD and thus every
free action of I' is sofic can be used to give an alternative proof of the result
of Elek-Lippner [EL1] that every measure preserving, treeable equivalence
relation is sofic. Indeed it is a known fact that if F is such an equivalence
relation on (X, u), then there is a € FR(F., X, pt) such that £ C E,. This
follows for example by the method of proof of Conley-Miller [CM, Prop. 8] or
by using [CM, Prop 9], that shows that F C F where F' is treeable of infinite
cost, and then using Hjorth’s result (see [KM, 28.5]) that F is induced by a
free action of Fu,. Since F, is sofic and [[E]] C [[F,]], it immediately follows
that F is sofic.
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We do not know if every measure preserving treeable equivalence relation
E is contained in some E,, where a € FR(Fy, X, u).

Remark. For arbitrary amenable groups I', one can use an appropriate
Folner sequence to construct a free action ay on an ultrapower of finite sets
as in §9, (B). Then using an argument as in Kamae [Ka], one can see that
every measure preserving action of I' is a factor of this ultrapower (and thus
as in 9.7 again every such action is sofic).

10 Concluding remarks

There are sometimes alternative approaches to proving some of the results
in this paper using weak limits in appropriate spaces of measures instead of
ultrapowers.

One approach is to replace the space of actions A(T", X, u) by a space
of invariant measures for the shift action of I on [0,1]" as in Glasner-King
[GK].

Let (X, u) be a non-atomic, standard measure space. Without loss of
generality, we can assume that X = [0,1],4 = A = Lebesgue measure on
[0,1]. Denote by SIM,,(I') the compact (in the weak*-topology) convex set
of probability Borel measures v on [0, 1]" which are invariant under the shift
action sr, such that the marginal (m).v = pu (where 7;: [0,1]F — [0,1] is
defined by m(z) = x(1)). For a € AT, X, ) let ¢*: [0,1] — [0,1]" be the
map ¢*(z)(y) = (v 1) 2, and let (p*).pt = pg € SIM,(T'). Then ®(a) = pq
is a homeomorphism of A(T', X, 1) with a dense, G subset of SIM,,(I") (see
[GK]).

One can use this representation of actions to give another proof of Corol-
lary 4.5.

If a, € A(I', X,p),n € N, is given, consider p,, = p,, € SIM,(I') as
above. Then there is a subsequence ny < ny < ng < ... such that p,, —
foo € SIM,(I") (convergence is in the weak*-topology of measures). Then
loo 1S mon-atomic, so we can find ay € A(I', X, p) such that a, on (X, p)
is isomorphic to s on ([0, 1]", fiss). One can then show (as in the proof
of (1) = (3) in 4.3) that there are b,, = a,,,b,, € A(I', X, ) such that
by, — Gso. (Similarly if we let & be a non-principal ultrafilter on N and
M = lim, g p, and o in A(T, X, p) is isomorphic to sy on ([0, 1], u*),
then there are b, € A(T', X, ), b, = a,, with lim,, /b, = a¥.)
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For other results, related to graph combinatorics, one needs to work with
shift-invariant measures on other spaces. Let I' be an infinite group with a
finite set of generators S. We have already introduced in §6 the compact
space Col(k,T",S) of k-colorings of Cay(I', S) and in §7 the compact space
M(T, S) of perfect matchings of Cay(I',.S). On each one of these we have a
canonical shift action of I' and we denote by INVq (I, S), INV,/(T, S) the
corresponding compact spaces of invariant, Borel probability measures (i.e.,
the spaces of invariant, random k-colorings and invariant, random perfect
matchings, resp.). Similarly, identifying elements of 2'' with subsets of T, we
can form the space Ind(T", S) of all independent in Cay(I",S) subsets of I'.
This is again a closed subspace of 2" which is shift invariant and we denote
by INV,4(T, S) the compact space of invariant, Borel measures on Ind(T', S),
which we can call invariant, random independent sets.

If a € FR(I', X, ) and A C X is a Borel independent set for G(S,a),
then we define the map

Iy: X — Ind(T, S),

given by
yelu(z) & (v )"z e A

This preserves the [-actions, so ([4).u = v € INV4(T,S). Moreover
v({B € Ind(I', 5): 1 € B}) = pu(A). If i,(S,a) = ¢ and A, C X are Borel
independent sets with u(A,) — ¢, let v, = (14, )« Then the shift action a,
on (Ind(T', S), i,,) may not be free but one can still define independent sets
for this action as being those C' such that s* - C'NC = () (modulo null sets)
and also the independence number ¢, (s, a,) as before. We can also assume,
by going to a subsequence, that v, — . Denote by a., the shift action for
(Ind(T", S), Vo). Then {B € Ind(T",S): 1 € B} is independent for a,, and a,
S0 4, (S, an) > ¢. But also v, (S, a,) < ¢,(S,a) and from this, it follows by a
simple approximation argument that ¢, (S, o) < ¢, 80 1, (S, as) = ¢ and
the sup is attained. This gives a weaker version of 5.2 (iii). Although one
can check that a., < a, it is not clear that a., is free and moreover we do not
necessarily have that a C a... This would be remedied if we could replace aq,
by as X @, but it is not clear what the independence number of this product
is. This leads to the following question: Let a,b € FR(I", X, ) and consider
axbe FR(I', X2, p?). Tt is clear that ¢,2(a x b) > max{¢,(a),,(b)}. Do we
have equality here?

Similar arguments can be given to prove weaker versions of 5.2 (iii), (iv).
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However a weak limit argument as above (but for the space of color-
ings) can give an alternative proof of 6.4 using the “approximate” version
of Brooks” Theorem in Conley-Kechris [CK] (this was pointed out to us by
Lyons). Indeed let a € FR(T, S, i), d = |S*!|. By Conley-Kechris [CK, 2.9]
and Kechris-Solecki-Todorcevic [KST, 4.8], there is k > d and for each n,
a Borel coloring ¢,,: X — {1,...,k} such that p(c,'({d +1,...,k})) < L.
Let as usual C,,: X — Col(k, T, S) be defined by C,,(z)(7) = c,((v71)* - z).
Let (Cp)upt = Vp. Then v,({c € Col(k,T,S): c(1) > d}) = pu(C 1 ({d +
1,...,k})) < % By going to a subsequence we can assume that v, — v, an
invariant, random k-coloring. Now v({c € Col(k,I',S): ¢(1) > d}) = 0, thus
v concentrates on Col(d,I",S) and thus is an invariant, random d-coloring.
Moreover it is not hard to check that it is weakly contained in a.

A similar argument can be used to show that for every I', S except pos-
sibly non-amenable I with S consisting of elements of odd order, there is an
invariant, random perfect matching (see 7.5).

Finally one can obtain by using weak limits in INVy,4(I, ) and the re-
sult in Glasner-Weiss [GW], that if I has property (T) and ¢, € I°¢(T, S),
ty, (I, S) — ¢, then there is a measure v € INVy,q(I', S) such that the shift
action is ergodic relative to v and has independence number equal to ¢, but
it is not clear that this action is free.

References

[ACLT] M. Abért, E. Csoka, G. Lippner and T. Terpai, On perfect matchings
in infinite Cayley graphs, in preparation.

[AE] M. Abért and G. Elek, The space of actions, partition metric and
combinatorial rigidity, arXivw:1108.2147v1.

[AW] M. Abért and B. Weiss, Bernoulli actions are weakly contained in any
free action, arXiw:1103.1063v2.

[AL] D. Aldous and R. Lyons, Processes on unimodular random networks,
FElect. J. Prob., 12 (2007), 1454-1508.

[CK] C.T. Conley and A.S. Kechris, Measurable chromatic and in-
dependence numbers for ergodic graphs and group actions,
Group, Geometry and Dynamics, to appear (available at
www.math.caltech.edu/people/kechris.html).

51



[CM]

[EW]

[EL1]

[EL2]

[Kel]
[Ke2]

[Ke3]

C.T. Conley and B.D. Miller, An antibasis result for graphs
of infinite Borel chromatic number, preprint, 2010 (available at:
www.logic.univie.ac.at/~conleyc8).

M. Einsiedler and T. Ward, Ergodic theory with a view towards number
theory, Graduate Texts in Math., 259. Springer, 2011.

G. Elek and G. Lippner, Sofic equivalence relations, J. Funct. Anal.,
258 (2010), 1692-1708.

G. Elek and G. Lippner, Borel oracles. An analytical approach to
constant-time algorithms, Proc. Amer. Math. Soc., 138 (8) (2010),
2939-2947.

G. Elek and B. Szegedy, Limits of hypergaphs, removal and regularity
lemmas. A non-standard approach, arXiw:0705.2179v1.

P. Eymard, Moyennes invariantes et represéntations unitaires, Lec-
ture Notes in Math., 300, Springer-Verlag, 1972.

E. Glasner and J. King, A zero-one law for dynamical properties,
Contemp. Math., 215 (1998), 231-242.

E. Glasner and B. Weiss, Kazhdan’s property T and the geometry of
the collection of invariant measures, Geom. Funct. Anal., 7 (1997),

917-935.

F.P. Greenleaf, Amenable actions of locally compact groups, J. Funct.
Anal., 4 (1969), 295-315.

T. Kamae, A simple proof of the ergodic theorem using nonstandard
analysis, Israel J. Math., 42(4) (1982), 284-290.

A.S. Kechris, Classical Descriptive Set Theory, Springer, 1995.

A.S. Kechris, Global Aspects of Ergodic Group Actions, Amer. Math.
Soc., 2010.

A.S. Kechris, Weak containment in the space of actions
of a free group, Israel J. Math., to appear (available at
http://www.math.caltech.edu/people/kechris.html).

52



[KM] A.S. Kechris and B.D. Miller, Topics in Orbit Equivalence, Springer,
2004.

[KST] A.S. Kechris, S. Solecki, and S. Todorcevic, Borel chromatic numbers,
Adv. Math., 141(1) (1999), 1-44.

[LN] R. Lyons and F. Nazarov, Perfect matchings as IID factors on non-
amenable groups, Furop. J. Comb., 32 (2011), 1115-1125.

[OW] D. Ornstein and B. Weiss, Entropy and isomorphism theorems for
actions of amenable groups, J. Anal. Math., 48 (1987), 1-14.

(O] N. Ogzawa, Hyperlinearity, sofic groups and applications to
group theory, handwritten note, 2009 (available at www.ms.u-
tokyo.ac.jp/~narutaka/publications.html).

[P] V. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symb.
Logic., 14 (2008), 449-480.

(CTC) Kurt Godel Research Center for Mathematical Logic
University of Vienna
Wiéhringer Strasse 25
1090 Wien, Austria

584 Malott Hall
Department of Mathematics
Cornell University

Ithaca, NY 14853-4201
USA

(ASK, RDT-D) Department of Mathematics
California Institute of Technology
Pasadena, CA 91125
USA

53



