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ABSTRACT

We establish the generic inexistence of stationary Borel probability mea-

sures for aperiodic Borel actions of countable groups on Polish spaces.

Using this, we show that every aperiodic continuous action of a countable

group on a compact Polish space has an invariant Borel set on which it

has no σ-compact realization.

1. Introduction

It is well known that every standard Borel space is Borel isomorphic to a σ-

compact Polish space (see [Kec95, Theorem 15.6]), and that every Borel action

of a countable discrete group on a standard Borel space is Borel isomorphic to

a continuous action on a Polish space (see [Kec95, Theorem 13.1]). Here we

consider obstacles to simultaneously achieving both results.

In §2, we give elementary examples of continuous actions of countable groups

on Polish spaces which are not Borel isomorphic to continuous actions on σ-

compact Hausdorff spaces. The remainder of the paper is devoted to the imple-

mentation of a measure-theoretic strategy for generalizing one of the examples

to a much broader context. In §3, we provide some preliminaries concerning

invariant and stationary Borel probability measures. In §4, we prove our main

technical result, a strengthening of Kechris’s theorem concerning the generic

compressibility of aperiodic countable Borel equivalence relations (see [KM04,

Theorem 13.1]). In §5, we establish the generic inexistence of stationary Borel

probability measures. In §6, we show that every aperiodic continuous action

of a countable group on a compact Polish space admits an invariant Borel set

on which it is not Borel isomorphic to any continuous action on a σ-compact

Hausdorff space.

2. Examples

Suppose that X is a standard Borel space. We say that a topology τ on X is

compatible with the Borel structure of X if the σ-algebra generated by τ is the
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family of Borel subsets of X. Such a τ is a topological realization of an action

Γ y X of a topological group if it is Hausdorff and Γ y X is τ -continuous.

An equivalence relation is countable if each of its classes is countable. A

transversal of an equivalence relation is a set which intersects every equivalence

class in exactly one point. We say that a countable Borel equivalence relation

on a standard Borel space is smooth if it admits a Borel transversal. While

such equivalence relations are typically considered to be simple, even they can

be induced by group actions which have no σ-compact realizations.

Example 1: Consider the action Z<N y Z<N × NN given by γ · (x, y) = (x′, y),

where x′(n) = χUn
(y) ·γ(n)+x(n) and (Un)n∈N enumerates a basis for NN. If τ

is a topological realization of Z<N y Z<N×NN, n ∈ N, and γn ∈ Z<N is chosen

so that supp(γn) = {n}, then

proj−1
NN (Un) = {(x, y) ∈ Z<N × NN | γn · (x, y) 6= (x, y)},

so projNN is τ -continuous, thus τ cannot satisfy any property preserved under

continuous images beyond those satisfied by the topology of NN. In particular,

it is neither σ-compact nor connected.

Remark 2: The same idea can be used to obtain actions without σ-compact

representations for direct sums of countably many countable abelian groups,

and free products of countably many countable groups.

One would really like a free action without a σ-compact realization, and this

particular example is very far from being free. The next observation shows that

in the presence of smoothness, this is impossible.

Proposition 3: Suppose that Γ is a countable group, X is a standard Bor-

el space, and Γ y X is a Borel action, with only countably many stabilizers,

whose orbit equivalence relation is smooth. Then Γ y X has a σ-compact

Polish realization.

Proof. Fix a Borel transversal B ⊆ X of E. Then there is a partition of B

into countably many Borel sets Bn ⊆ B such that any two points of Bn have

the same stabilizer Γn. The Borel isomorphism theorem (see [Kec95, Theorem

15.6]) yields compact Polish topologies τn on Bn compatible with the Borel

structure of Bn. Let τ ′n denote the natural extension of τn to the Γ-saturation
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of Bn for which the action is continuous, and note that the topologies τ ′n can

be amalgamated into a single σ-compact Polish realization of Γ y X.

Remark 4: It follows that if Γ is a group with only countably many subgroups,

then every Borel action Γ y X whose induced orbit equivalence relation is

smooth has a σ-compact Polish realization.

A Borel measure µ on X is invariant with respect to a Borel automorphism

T : X → X if µ(B) = µ(T (B)) for all Borel sets B ⊆ X. A classical theorem of

Krylov-Bogolyubov asserts the existence of invariant Borel probability measures

for all homeomorphisms of compact Hausdorff spaces (see Corollary 9 for a more

general result).

Example 5: Define Z<N y ZN by γ · x(n) = γ(n) + x(n). Suppose, towards

a contradiction, that τ is a σ-compact realization of Z<N y ZN. Then there

is a τ -compact set K ⊆ ZN which is non-meager (with respect to the usual

topology on ZN). Fix n ∈ N and s ∈ Zn such that K is comeager in the

clopen set Ns = {x ∈ ZN | s v x}. Fix γ ∈ Z<N with supp(γ) = {n}.
As γ is continuous, it sends meager sets to meager sets, so the τ -compact set

L = {x ∈ ZN | ∀k ∈ Z (kγ) ·x ∈ K} is non-empty. Then the function T : L→ L

given by T (x) = γ · x is a τ -homeomorphism, so there is a T -invariant Borel

probability measure µ on L. Setting Li = {x ∈ L | x(n) = i}, it follows that

µ(L) =
∑
i∈Z

µ(Li) =
∑
i∈Z

µ(T i(L0)) =
∑
i∈Z

µ(L0),

thus µ(L) 6= 1, a contradiction.

Remark 4 ensures that every Borel action Z y X whose orbit equivalence

relation is smooth has a σ-compact Polish realization. Nevertheless, there are

also actions of Z without such realizations.

Example 6: Consider the action Z y 2N induced by the odometer σ, i.e., the

isometry of 2N sending (1)na(0)ax to (0)na(1)ax. It is not difficult to see that

the usual product measure on 2N is the unique σ-invariant Borel probability

measure on 2N. In particular, it follows that if C ⊆ 2N is a σ-invariant comeager

µ-null Borel set, then there is no (σ � C)-invariant Borel probability measure.

Suppose, towards a contradiction, that τ is a σ-compact realization of Z y C.

Then there is a τ -compact set K ⊆ C which is non-meager (with respect to

the usual topology on 2N). As K has the Baire property, there exist n ∈ N
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and s ∈ 2n with the property that K is comeager in the basic clopen set

Ns = {x ∈ 2N | s v x}. Note that the sets of the form σj(Ns), for j < 2n, cover

2N. As σ is a homeomorphism and therefore sends meager sets to meager sets,

the τ -compact set L = {x ∈ 2N | ∀i ∈ Z∃j < 2n σi(x) ∈ σj(K)} is non-empty.

As σ is a τ -homeomorphism and L is σ-invariant, there is a σ-invariant Borel

probability measure on L, contradicting our choice of C.

Although there are aperiodic Borel automorphisms with multiple invariant

Borel probability measures, [KM04, Theorem 13.1] ensures that one can always

find a comeager invariant Borel set on which there are no such measures (see

also Corollary 14 of §5). As a consequence, one can generalize the last example

to aperiodic homeomorphisms of compact Polish spaces which are topologically

minimal, in the sense that all of their orbits are dense. As every homeomor-

phism of a compact Polish space admits an invariant closed set on which it is

topologically minimal, every aperiodic such homeomorphism admits an invari-

ant Borel set on which it does not have a σ-compact realization.

While this approach generalizes to amenable countable groups, the fact that

the natural generalization of the Krylov-Bogolyubov theorem fails beyond amen-

able groups provides a significant barrier to more general results. In what

follows, we obtain a generalization by replacing invariance with stationarity.

3. Existence of measures

Suppose that X is a Hausdorff space. A Borel probability measure µ on X is

regular if for all Borel sets B ⊆ X and all ε > 0, there is an open set U ⊆ X

such that B ⊆ U and µ(U \ B) < ε. A Borel probability measure µ on X is

invariant with respect to a Borel action Γ y X if it is γ-invariant for all γ ∈ Γ.

Proposition 7: Suppose that Γ is a countable group, X is a compact Haus-

dorff space, and Γ y X is a continuous action with the property that for every

finitely generated group ∆ ≤ Γ, there is a ∆-invariant regular Borel probability

measure. Then there is a Γ-invariant regular Borel probability measure.

Proof. Let C(X,R) be the vector space of continuous functions f : X → R, and

let C∗(X,R) be the vector space of linear functionals Λ: C(X,R) → R. The

weak*-topology on C∗(X,R) is the coarsest topology rendering the evaluation
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functions Λ 7→ Λ(f) continuous, for all f ∈ C(X,R). With this topology,

C∗(X,R) becomes a locally convex (in fact normed) topological vector space.

Let P (X) denote the family of regular Borel probability measures on X. We

view P (X) as a subset of C∗(X,R) by identifying µ ∈ P (X) with the functional

f 7→
∫
f dµ. The Riesz representation theorem ensures that P (X) coincides with

the convex subset of C∗(X,R) comprising all positive linear functionals sending

the characteristic function of X to 1. It then follows from the Banach-Alaoglu

theorem that P (X) is weak*-compact.

Fix an increasing sequence of finitely generated groups ∆n with Γ =
⋃
n∈N ∆n.

For each n ∈ N, let Kn denote the non-empty compact set of ∆n-invariant

regular Borel probability measures. As Kn+1 ⊆ Kn for all n ∈ N, it follows

that the set K =
⋂
n∈NKn is non-empty, and every µ ∈ K is a Γ-invariant

regular Borel probability measure.

The push-forward of a measure µ on X via a function f : X → Y is the mea-

sure f∗µ on Y given by f∗µ(B) = µ(f−1(B)). The convolution of a probability

measure ς on Γ with a Borel probability measure µ on X is the Borel probability

measure ς ∗ µ on X given by ς ∗ µ =
∫
γ∗µ dς(γ). We say that µ is ς-stationary

if µ = ς ∗ µ. Note that a measure is Γ-invariant if and only if it is ς-stationary

with respect to all probability measures ς on Γ.

We close this section by recalling both the Markov-Kakutani fixed point the-

orem and its corollary asserting the existence of stationary measures for contin-

uous actions on compact Hausdorff spaces.

Theorem 8 (Markov-Kakutani): Suppose that K is a compact convex subset of

a locally convex topological vector space, and T : K → K is an affine continuous

function. Then there exists x ∈ K with T (x) = x.

Corollary 9: Suppose that Γ is a countable group, X is a compact Hausdorff

space, Γ y X is continuous, and ς is a probability measure on Γ. Then there

is a regular ς-stationary Borel probability measure.

Proof. As
∫
f d(ς ∗ µ) =

∑
γ∈Γ ς({γ})

∫
f ◦ γ dµ, the map µ 7→ ς ∗ µ is weak*-

continuous, so Theorem 8 yields a fixed point µ, and any such µ is a ς-stationary

regular Borel probability measure.
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4. Paradoxicality

We use Pow(X) to denote the family of all subsets of X. We say that a function

φ : X → Pow(Y ) is strongly injective if it sends distinct points to disjoint sets.

A graph on X is an irreflexive symmetric set G ⊆ X ×X. We say that G is

locally finite if for all x ∈ X, there are only finitely many y ∈ X for which x G y.

We say that G is aperiodic if all of its connected components are infinite. A G-

barrier for a set Y ⊆ X is a set Z ⊆ X \ Y such that the connected component

of each point of Y under G � (X \ Z) is finite. Note that X \ Y is a G-barrier

for Y if and only if every connected component of G � Y is finite.

When X is a standard Borel space and B ⊆ X is a Borel set, we use [B]<ℵ0

to denote the family of all finite subsets of B, equipped with the standard Borel

structure it inherits from X. When E is a Borel equivalence relation on X,

we use [B]<ℵ0E to denote the subspace of [B]<ℵ0 consisting of those finite sets

F ⊆ B for which F × F ⊆ E.

Suppose thatG ⊆ E and D ⊆ [X]<ℵ0E . We say that a function φ : D → [X]<ℵ0E

is a G-barrier selector if for all D ∈ D , the set φ(D) is a G-barrier for D

contained in [D]E . We say that E is G-barrier N-paradoxical on B if there is

a strongly injective Borel function φ : N × [B]<ℵ0E → [B]<ℵ0E such that for all

n ∈ N, the function φn(D) = φ(n,D) is a G-barrier selector.

Theorem 10: Suppose that X is a Polish space, E is a countable Borel equiv-

alence relation on X, and G ⊆ E is an aperiodic locally finite Borel graph on

X. Then there is an E-invariant comeager Borel set C ⊆ X on which E is

G-barrier N-paradoxical.

Proof. We will recursively find Borel sets Dt ⊆ [X]<ℵ0E and strongly injective

Borel G-barrier selectors φt : Dt → [X \ X@t]<ℵ0E , for t ∈ N<N, Rt = φt(Dt),

Xt =
⋃

Rt, X@t =
⋃
s@tXs, and Xvt =

⋃
svtXs, while ensuring that X \Xvt

is a G-barrier for Xvt and [X]<ℵ0E =
⋃
n∈N Dta(n). We begin by setting D∅ = ∅

and φ∅ = ∅.
Suppose now that t ∈ N<N and we have already found Dt and φt. Let Xt

denote the set of all (D,R, S) ∈ [X]<ℵ0E × [X \ Xvt]<ℵ0E × [X \ Xvt]<ℵ0E with

the property that R is a G-barrier for D and S is a G-barrier for D ∪ R. Let

Gt denote the graph on Xt consisting of all distinct (D,R, S), (D′, R′, S′) ∈Xt

for which (D ∪R ∪ S) ∩ (D′ ∪R′ ∪ S′) 6= ∅.
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Lemma 11: There is a Borel coloring ct : Xt → N of Gt.

Proof. Let G denote the graph on [X]<ℵ0E consisting of all pairs of distinct finite

sets with non-empty intersection. By [Mil08, Proposition 4.1], there is a Borel

coloring c : [X]<ℵ0E → N of G . Fix a Borel linear ordering ≤ of [X]<ℵ0 , and let

i(D,R, S), j(D,R, S), and k(D,R, S) be the unique natural numbers i, j, and

k such that D, R, and S are the ith, jth, and kth smallest subsets of D ∪R ∪ S
with respect to the ordering ≤. Then the function ct : Xt → N × N × N × N
given by ct(D,R, S) = (c(D ∪ R ∪ S), i(D,R, S), j(D,R, S), k(D,R, S)) yields

the desired Borel coloring of Gt.

For each n ∈ N, let Dta(n) denote the family of sets D ∈ [X]<ℵ0E for which

there exist sets R,S ∈ [X \Xvt]<ℵ0E with the property that (D,R, S) ∈Xt and

ct(D,R, S) = n. Define φta(n) : Dta(n) → [X]<ℵ0E by setting φta(n)(D) = R

whenever there is S ∈ [X \Xvt]<ℵ0E with (D,R, S) ∈ Xt and ct(D,R, S) = n.

The definition of Gt ensures that φta(n) is well-defined and strongly injec-

tive, while the definition of Xt ensures that φta(n) is a G-barrier selector and

Rta(n) ⊆ [X \Xvt]<ℵ0E .

To see that [X]<ℵ0E =
⋃
n∈N Dta(n), note that if D ∈ [X]<ℵ0E and R is the set

of points outside of D ∪Xvt with G-neighbors in the connected component of

some point of D with respect to G � (D ∪ Xvt), then R is a G-barrier for D.

Moreover, the fact that G is locally finite and X \Xvt is a G-barrier for Xvt

ensures that R is finite. Repeating this argument with D∪R in place of D then

yields a finite G-barrier S for D ∪ R, in which case (D,R, S) ∈ Xt. Setting

n = ct(D,R, S), it follows that D ∈ Dta(n).

It remains to check that X \ Xvta(n) is a G-barrier for Xvta(n). Suppose,

towards a contradiction, that (xi)i∈N is an injective path through G � Xvta(n).

As X \Xvt is a G-barrier for Xvt, there exists i ∈ N such that xi /∈ Xvt. Fix

(D,R, S) ∈ Xt such that c(D,R, S) = n and xi ∈ R. Then there exists j > i

such that xj ∈ S, which contradicts the fact that S ∩Xvta(n) = ∅.
This completes the recursive construction. Define C ⊆ NN ×X by

C = {(p, x) ∈ NN ×X | ∀D ∈ [x]<ℵ0E ∃∞n ∈ N D ∈ Dp�n}.

Lemma 12: The set C has a comeager vertical section.

Proof. We will show that, in fact, there are comeagerly many p ∈ NN for which

the vertical section Cp is comeager. By the Kuratowski-Ulam theorem (see, for
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example, [Kec95, Theorem 8.41]), it is enough to show that for all x ∈ X, the

horizontal section Cx is comeager. For this, it is sufficient to check that for all

D ∈ [x]<ℵ0E , there are comeagerly many p ∈ NN for which there are infinitely

many n ∈ N such that D ∈ Dp�n. And for this, it is sufficient to show that for

all k ∈ N, the open set Uk = {p ∈ NN | ∃≥kn ∈ N D ∈ Dp�n} is dense.

We proceed by induction on k. The base case k = 0 is trivial, so suppose

that k ∈ N and we have already established that Uk is dense. Given r ∈ N<N,

fix s ∈ N<N such that r v s and Ns ⊆ Uk. Fix n ∈ N such that D ∈ Dsa(n), set

t = sa(n), and observe that Nt ⊆ Uk+1, thus Uk+1 is dense.

Fix p ∈ NN for which Cp is comeager, noting that it is also E-invariant by

the definition of C. Define φ : N × [Cp]
<ℵ0
E → [Cp]

<ℵ0
E by φ(k,D) = φp�n(D),

where n is the kth natural number with D ∈ Dp�n. Then φ is strongly injective

and each of the functions φk(D) = φ(k,D) is a G-barrier selector, thus E is

G-barrier N-paradoxical on Cp.

We say that E is N-paradoxical on B if there is an injective Borel function

φ : N×B → B such that ∀n ∈ N∀x ∈ B x E φ(n, x).

Corollary 13 (Kechris): Suppose that X is a Polish space and E is an ape-

riodic countable Borel equivalence relation on X. Then there is an E-invariant

comeager Borel set C ⊆ X on which E is N-paradoxical.

Proof. By Theorem 10, it is sufficient to show that there is an aperiodic locally

finite Borel graph G ⊆ E. By the remark at the end of [JKL02, §3.4], there is

in fact such a graph which generates E.

5. Inexistence of measures

We say that a Borel measure µ on X is E-invariant if for every Borel automor-

phism T : X → X whose graph is contained in E, the measure µ is T -invariant.

Corollary 14 (Kechris): Suppose that X is a Polish space and E is an ape-

riodic countable Borel equivalence relation on X. Then there is an E-invariant

comeager Borel set C ⊆ X which is null with respect to every E-invariant Borel

probability measure.

Proof. By appealing to Corollary 13, we obtain an E-invariant comeager Borel

set C ⊆ X on which E is N-paradoxical. Let φn denote the corresponding Borel
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injections, and observe that if µ is an E-invariant Borel probability measure,

then µ(C) ≥
∑
n∈N µ(φn(C)) =

∑
n∈N µ(C), so µ(C) = 0.

Identifying X with [X]1E , we use our earlier terminology concerning functions

on subsets of [X]<ℵ0E for functions on subsets of X. We say that f : B → X is

a choice function for φ : B → [X]<ℵ0E if f(x) ∈ φ(x) for all x ∈ B.

Proposition 15: Suppose that Γ is a finitely generated infinite group, S is a

finite symmetric set which generates Γ, ς is a probability measure on Γ whose

support is S, X is a Polish space, Γ y X is an aperiodic Borel action, E is

the orbit equivalence relation induced by Γ y X, G is the graph induced by

S y X, B ⊆ X is Borel, φ : B → [X]<ℵ0E is a strongly injective Borel G-barrier

selector, and µ is a ς-stationary Borel measure. Then there is a Borel choice

function f for φ with the property that µ(B) ≤ µ(f(B)).

Proof. We first isolate the feature of ς-stationarity relevant to the desired result.

Lemma 16: Suppose that B ⊆ X is a Borel set. If there exists γ ∈ S for which

µ(B) 6= γ∗µ(B), then there exists δ ∈ S for which µ(B) < δ∗µ(B).

Proof. As the ς-stationarity of µ ensures that µ(B) is a weighted average of

{δ∗µ(B) | δ ∈ S}, it follows that if some element of this set is distinct from

µ(B), then some element of this set is strictly greater than µ(B).

By the uniformization theorem for Borel subsets of the plane with countable

vertical sections (see, for example, [Kec95, Theorem 18.10]), it is sufficient to

produce the desired function off of a µ-null Borel set. In fact, by a measure

exhaustion argument, we need only produce the desired function on a µ-positive

Borel subset of B. As G is locally finite, we can therefore assume that there is

a natural number n such that every injective G-path of length n+ 1 originating

at a point x ∈ B intersects φ(x). Setting γs =
∏
i<|s| s(i) for s ∈ S<N, we can

moreover assume that for all i, j ≤ n and s ∈ Sn, the questions of whether

γ−1
s�i · x ∈ φ(x) or γ−1

s�i · x = γ−1
s�j · x do not depend upon the choice of x ∈ B.

Fix x ∈ B. Then the aperiodicity of Γ y X ensures that there is an injective

G-path (xi)i≤n for which x = x0. Fix m ≤ n with xm ∈ φ(x), as well as s ∈ Sm

such that xi+1 = s(i)−1 ·xi for all i < m, noting that xi = γ−1
s�i ·x for all i ≤ m.

If µ(B) = (γs)∗µ(B), then the function f(x) = γ−1
s · x is as desired. Other-

wise, there is a least natural number k < m for which µ(B) 6= (γs�(k+1))∗µ(B),

in which case our assumption that S is symmetric allows us to recursively appeal
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to Lemma 16 so as to obtain an extension t ∈ Sn of s � k with the property

that (γt�i)∗µ(B) < (γt�(i+1))∗µ(B) for all k ≤ i < n. Then the G-path (yi)i≤n

given by yi = γ−1
t�i ·x is injective, so there exists ` ≤ n for which y` ∈ φ(x), thus

the function f(x) = γ−1
t�` · x is as desired.

Remark 17: Although it requires a somewhat more detailed argument, the gen-

eralization of Proposition 15 holds in which the symmetry of S is dropped and

it generates Γ as a semigroup.

Corollary 18: Suppose that Γ is a finitely generated infinite group, X is a

Polish space, Γ y X is an aperiodic Borel action, and E is the orbit equivalence

relation induced by Γ y X. Then there is a comeager E-invariant Borel set

C ⊆ X such that for every finite symmetric set S generating Γ, every probability

measure ς on Γ whose support is S, and every ς-stationary Borel probability

measure µ, the set C is µ-null.

Proof. Theorem 10 yields a comeager E-invariant Borel set C ⊆ X on which E

is G-barrier N-paradoxical, for all graphs G induced by finite symmetric sets S

generating Γ. Given a probability measure ς supported by S and a ς-stationary

Borel probability measure µ, Proposition 15 yields Borel functions fn : C → C

with µ(C) ≥
∑
n∈N µ(fn(C)) ≥

∑
n∈N µ(C), so µ(C) = 0.

Remark 19: The same proof actually yields the stronger statement in which S is

merely required to be a finite set generating a subgroup ∆ ≤ Γ (as a semigroup)

for which ∆ y X is aperiodic.

6. Topological realizations

An action Γ y X is topologically minimal if its orbits are dense.

Theorem 20: Suppose that Γ is a countable group, X is a compact Polish

space, and Γ y X is an aperiodic topologically minimal continuous action.

Then there is a comeager Γ-invariant Borel set C ⊆ X such that Γ y C has no

σ-compact realization.

Proof. Appeal first to Corollary 14 to obtain a comeager Γ-invariant Borel set

C ⊆ X which is null with respect to every Γ-invariant Borel probability measure.

If there is no finitely generated group ∆ ≤ Γ for which the union of the finite
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orbits of ∆ y X is meager, then the set C is already as desired. To see this,

suppose, towards a contradiction, that τ is a σ-compact realization of Γ y C.

Lemma 21: Suppose that K ⊆ C is a non-meager τ -compact set. Then there

is a comeager Γ-invariant τ -compact set L ⊆ Γ ·K.

Proof. Fix a non-empty open set U ⊆ X in which K is comeager. Then U \K
is meager, so the continuity of Γ y X ensures that γ · (U \ K) is meager for

all γ ∈ Γ, thus so too is the intersection of these sets. It follows that the

set D = C \
⋃
γ∈Γ γ · (U \ K) is a comeager Γ-invariant Borel set for which

D∩U ⊆ D∩K. The topological minimality of Γ y X yields a finite set Λ ⊆ Γ

with X = Λ ·U , in which case the set L = {x ∈ X | Γ ·x ⊆ Λ ·K} is Γ-invariant

and τ -compact, and the fact that D ⊆ L ensures that it is comeager.

It follows that there is a comeager Γ-invariant τ -compact set K ⊆ C. Fix

an increasing sequence of finitely generated groups ∆n whose union is Γ. As

K contains a finite orbit of each ∆n, Proposition 7 ensures that there is a

Γ-invariant Borel probability measure supported on K, which contradicts our

choice of C.

It remains to handle the case that there is finitely generated group ∆ ≤ Γ

for which the union of the finite orbits of ∆ y X is meager. Fix a finite

symmetric set S generating ∆ and a probability measure ς on Γ whose support

is S. By appealing to Corollary 18, we obtain a comeager Γ-invariant Borel

set D ⊆ C which is null with respect to every ς-stationary Borel probability

measure. Suppose, towards a contradiction, that τ is a σ-compact realization of

Γ y D. As Lemma 21 goes through with D in place of C, there is a comeager

Γ-invariant τ -compact set K ⊆ D. Corollary 9 then ensures that there is a

ς-stationary Borel probability measure supported on K, which contradicts our

choice of C.

Corollary 22: Suppose that Γ is a countable group, X is a compact Polish

space, and Γ y X is a continuous action whose induced equivalence relation is

aperiodic. Then there is a Γ-invariant Borel set C ⊆ X such that Γ y C has

no σ-compact realization.

Proof. As compactness yields a Γ-invariant closed set K ⊆ X on which Γ y X

is topologically minimal, Theorem 20 yields the desired result.

Let Γ y 2Γ denote the shift action given by γ · x(δ) = x(γ−1δ).
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Corollary 23: Suppose that Γ is a countably infinite group. Then there is a

Γ-invariant Borel set B ⊆ 2Γ with the property that Γ y B is free and has no

σ-compact realization.

Proof. By [GJS09, Theorem 1.5], there is a non-empty Γ-invariant closed set

C ⊆ X on which Γ y C is free, and an application of Corollary 22 then yields

the desired result.
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Addendum: The idea behind the proof of [KM04, Theorem 13.1] was originally

used by Kechris to give a simpler proof of [HK96, Theorem 6.2], asserting that

every countable Borel equivalence relation is hyperfinite on a comeager Borel

set. The latter result was inspired by the earlier [SWW86, Theorem 1.8], a

topological special case whose proof is somewhat simpler than even Kechris’s

later argument. Shortly after submitting this paper, Benjamin Weiss pointed

out that there is a simpler proof of a topological special case of Corollary 18

which is sufficient for the proof of the results in §6.
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