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Abstract

We study the relationship between hyperfiniteness and problems in Borel graph
combinatorics by adapting game-theoretic techniques introduced by Marks to the hy-
perfinite setting. We compute the possible Borel chromatic numbers and edge chro-
matic numbers of bounded degree acyclic hyperfinite Borel graphs and use this to
answer a question of Kechris and Marks about the relationship between Borel chro-
matic number and measure chromatic number. We also show that for every d > 1
there is a d-regular acyclic hyperfinite Borel bipartite graph with no Borel perfect
matching. These techniques also give examples of hyperfinite bounded degree Borel
graphs for which the Borel local lemma fails, in contrast to the recent results of
Csóka, Grabowski, Máthé, Pikhurko, and Tyros.

Related to the Borel Ruziewicz problem, we show there is a continuous para-
doxical action of (Z/2Z)∗3 on a Polish space that admits a finitely additive invariant
Borel probability measure, but admits no countably additive invariant Borel proba-
bility measure. In the context of studying ultrafilters on the quotient space of equiv-
alence relations under AD, we also construct an ultrafilter U on the quotient of E0

which has surprising complexity. In particular, Martin’s measure is Rudin-Kiesler
reducible to U .

We end with a problem about whether every hyperfinite bounded degree Borel
graph has a witness to its hyperfiniteness which is uniformly bounded below in size.

1 Introduction

In this paper, we investigate the relationship between hyperfiniteness and problems in
Borel graph combinatorics. Recall that a (simple) Borel graph G on a standard Borel
space X is a graph whose vertex set is X and whose (symmetric irreflexive) edge rela-
tion is Borel. G is said to be hyperfinite if it can be written as an increasing union of
Borel graphs with finite connected components. Hyperfinite graphs can be thought of as
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the simplest graphs that can display nonclassical behavior in the setting of Borel graph
combinatorics. This is made precise by the Glimm-Effros dichotomy.

A fundamental theorem of Kechris, Solecki, and Todorcevic [10, Proposition 4.6]
states that every Borel graphG of degree at most d has Borel chromatic number χB(G) ≤
d+ 1, where the Borel chromatic number χB(G) of G is the least cardinality of a Polish
space Y so that there is a Borel Y -coloring of G. This bound is optimal even for acyclic
graphs since for every d ≥ 1 and k ∈ {2, . . . , d + 1}, there is an acyclic d-regular Borel
graph with χB(G) = k by [12]. However, the graphs used to obtain this result are not
hyperfinite, and Conley and Miller have asked whether every acyclic bounded degree hy-
perfinite Borel graph G has χB(G) ≤ 3 [8, Problem 5.17]. We answer this question in the
negative. Essentially, we reprove all of the combinatorial results from [12] about Borel
colorings, edge colorings, matchings, etc. for Borel graphs with the additional property of
hyperfiniteness. Hence, among bounded degree Borel graphs, even hyperfinite graphs can
achieve the maximum possible combinatorial complexity as measured by how hard they
are to color and match in a Borel way. This is in contrast to the measure-theoretic context,
where hyperfinite bounded degree Borel graphs are known to be much simpler to measur-
ably color than arbitrary bounded degree Borel graphs. For instance, every acyclic hyper-
finite bounded degree graph on a standard probability space (X,µ) has a µ-measurable
3-coloring [3, Theorem A].

To prove these results, we associate to each countable discrete group Γ a certain hy-
perfinite Borel action of Γ. We then show that an analogue of the central lemma of [12] is
true for these actions. Recall that if a group Γ acts on a set X , the free part of this action
is Free(X) = {x ∈ X : ∀γ ∈ Γ(γ 6= 1 =⇒ γ · x 6= x)}.

Definition 1.1. Suppose Γ is a countable discrete group. Then Γ acts on ΓΓ by

(γ · x)(δ) = γx(γ−1δ)

for every x ∈ ΓΓ and γ, δ ∈ Γ. Let H(ΓΓ) be the set of x ∈ Free(ΓΓ) such that x
is a bijection and the permutation x induces on Γ has one orbit. Let EΓ be the orbit
equivalence relation of this action of Γ on H(ΓΓ). Let w : H(ΓΓ)→ H(ΓΓ) be the Borel
function defined by w(x) = (x(1))−1 · x.

Note that this action, which we use throughout the paper, is not the standard shift
action. It is a combination of the shift action, and pointwise multiplication.

An easy calculation shows that wn(x) = (xn(1))−1 · x for every n ∈ Z. Thus, since
the permutation x induces on Γ has a single orbit, w generates EΓ, which is therefore
hyperfinite [9, Theorem 6.6]:

Proposition 1.2. EΓ is hyperfinite.

We prove the following version of [12, Lemma 2.1] for these hyperfinite actions:
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Lemma 1.3. Suppose Γ and ∆ are countable groups and A ⊆ H((Γ ∗ ∆)Γ∗∆). Then
either

1. There is an injective Borel Γ-equivariant f : H(ΓΓ)→ H((Γ∗∆)Γ∗∆) with ran(f) ⊆
A, or

2. There is an injective Borel ∆-equivariant f : H(∆∆) → H((Γ ∗ ∆)Γ∗∆) with
ran(f) ∩ A = ∅.

By applying this lemma the same way as [12] we obtain hyperfinite versions of all
the theorems in that paper, as illustrated in Theorem 1.4. Recall that a graph is said to be
d-regular if all of its vertices have degree d.

Given a Borel graph G, we denote by χ′B(G) its Borel edge chromatic number
(sometimes called its chromatic index).

Theorem 1.4.

1. For every d ≥ 1 and every k ∈ {2, . . . , d+1} there is a d-regular acyclic hyperfinite
Borel graph G with χB(G) = k.

2. For every d ≥ 1 and every k ∈ {d, . . . , 2d − 1} there is a d-regular acyclic Borel
bipartite hyperfinite graph G such that χ′B(G) = k.

3. For every d > 1 there exists a d-regular acyclic hyperfinite Borel bipartite graph
with no Borel perfect matching.

Part (1) of this theorem negatively answers a question of Conley and Miller [8, Ques-
tion 5.17].

By combining part (1) of Theorem 1.4 with the result from [3] that every bounded
degree acyclic hyperfinite Borel graph G has χM(G) ≤ 3 we also obtain the following,
answering a question of Kechris and Marks [8, Question 6.4] (see [8] for a definition of
the measure chromatic number χM ).

Corollary 1.5. For every d ≥ 1 and every k ∈ {2, . . . , d+1}, there is a d-regular acyclic
Borel graph G with χB(G) = k and χM(G) = 3.

Csóka, Grabowski, Máthé, Pikhurko, and Tyros have recently proved a Borel version
of the local lemma for bounded degree Borel graphs of uniformly subexponential growth
[1]. We give the precise statement of their theorem in Section 3.2. One might hope that the
Borel version of the local lemma is true for all hyperfinite bounded degree Borel graphs.
(Note that every Borel graph of uniformly polynomial growth is hyperfinite by [7], and it
is open whether every bounded degree Borel graph of uniformly subexponential growth
is hyperfinite). We show that the Borel local lemma may fail for hyperfinite Borel graphs:
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Theorem 1.6. There is a hyperfinite bounded degree Borel graph G such that the Borel
local lemma in the sense of [1] is false for G.

The examples we give are graphs generated by free hyperfinite actions of F2n for
n ≥ 6. The proof uses an idea of Kechris and Marks for constructing Borel graphs for
which the local lemma fails using the results of [12].

Recall that if X is a Polish space and B(X) are the Borel subsets of X , then a finitely
additive Borel probability measure on X is a finitely additive function µ : B(X) →
[0, 1] such that µ(X) = 1. Lemma 1.3 can also be used to show the existence of certain
exotic finitely additive invariant Borel probability measures. This is interesting in light
of the Borel Ruziewicz problem: whether Lebesgue measure is the only finitely additive
isometry-invariant probability measure defined on the Borel subsets of the n-sphere for
n ≥ 2 [17, Question 11.13]. By results of Margulis and Sullivan (n ≥ 4) and Drinfeld
(n = 2, 3) [5][11][15] it is known that any such measure not equal to Lebesgue measure
must fail to be absolutely continuous with respect to Lebesgue measure. Furthermore,
by a result of Dougherty and Foreman, it is also known that any such measure must be
supported on a meager subset of X [6]. Generalizing this last result, Marks and Unger
have shown that if any group Γ acts by Borel automorphisms paradoxically on a Polish
space X , then any finitely additive Γ-invariant Borel measure on X must be supported on
a meager subset of X [14].

It has been an open problem to find any paradoxical Borel action of a group on a
standard Borel space that admits an “exotic” finitely additive invariant Borel probability
measure (in particular, one that is not countably additive). We show the following, where
the group (Z/2Z)∗3 is a free product of three copies of Z/2Z:

Theorem 1.7 (AC). There is a continuous free action of (Z/2Z)∗3 (which is hence para-
doxical) on a Polish space so that this action admits a finitely additive invariant Borel
probability measure, but does not admit any countably additive invariant Borel probabil-
ity measure.

Our techniques also allow us to construct interesting measures in a different con-
text. Zapletal has suggested the problem of investigating the structure of ultrafilters on
2N/E0 under AD. Some examples of such ultrafilters are the ultrafilter UL containing the
Lebesgue conull E0-invariant sets, and the ultrafilter UC containing the comeager E0-
invariant sets. One can organize such ultrafilters by Rudin-Kiesler reducibility. Here, for
example, it is open whether every ultrafilter on 2N/E0 is Rudin-Kiesler above UL or UC .
(See [13, Section 4] for further discussion and a definition of Rudin-Kiesler reducibility).
We show the existence of an ultrafilter on 2N/E0 which has surprising complexity:
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Theorem 1.8 (AD). There is an ultrafilter U on 2N/E0 so that Martin measure on 2N/ ≡T
is Rudin-Kiesler reducible to U . In fact, the Rudin-Kiesler reduction can be chosen to be
Borel.

It is an open question whether there is a nontrivial ultrafilter on 2N/E0 that is Rudin-
Kiesler reducible to Martin’s ultrafilter. The existence of such an ultrafilter is equivalent
to a negative answer to Thomas’s question of whether Martin measure is strongly ergodic
[16].

In the measure-theoretic and Baire category contexts, combinatorially simple color-
ings, matchings, etc. are often constructed by first finding suitably nice witnesses to hy-
perfiniteness (with for example points staying far from the boundaries of regions, etc.);
see for example [3] for such constructions. From this perspective, one way of interpreting
Theorem 1.4 is that such nice witnesses to hyperfiniteness do not generally exist in the
Borel setting.

We pose an open question that is a very simple attempt to understand what global
control we can exert over the witnesses to the hyperfiniteness of a bounded degree Borel
graph:

Question 1.9. Suppose G is a bounded degree hyperfinite Borel graph. Does there exist
an increasing sequence G1 ⊆ G2 ⊆ . . . ⊆ G of Borel subgraphs of G such that

1. G1, G2, . . . witnesses that G is hyperfinite; i.e., for every n, each connected compo-
nent of Gn is finite, and

⋃
nGn = G.

2. Every connected component of Gn has cardinality at least n.

Let us call such a sequence of subgraphs an everywhere-large witness to hyperfinite-
ness. We find such witnesses to hyperfiniteness in some contexts:

Proposition 1.10. Suppose G is a bounded degree hyperfinite Borel graph on a standard
Borel space X . Then G admits an everywhere-large witness to hyperfiniteness modulo a
nullset with respect to any Borel probability measure on X and a meager set with respect
to any compatible Polish topology on X . Moreover, if G is generated by a single function,
then it has an everywhere-large witness to hyperfiniteness.

However, we conjecture that Question 1.9 has a negative answer in general.

1.1 Notation and conventions

Our notation is mostly standard, and largely follows [8]. Ideally, the reader will also have
some familiarity with [12], since much of what follows builds on ideas from that paper.
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2 The main lemma for H((Γ ∗∆)Γ∗∆)

Suppose Γ is a countable discrete group. Throughout this section we will often deal with
partial functions from Γ to Γ. We may define the same action as in Definition 1.1 more
generally for partial functions, and we begin by defining an associated partial order:

Definition 2.1. Suppose x is a partial function from Γ to Γ. If 1 ∈ dom(x), then define
w(x) = (x(1))−1 · x, otherwise w(x) is undefined. Define a strict partial order <Γ on the
space of partial functions from Γ to Γ by x <Γ y iff ∃n > 0 (wn(x) = y).

Since w generates EΓ, if x ∈ H(ΓΓ) the restriction of <Γ to [x]EΓ
is isomorphic to

Z. More generally, if x is a partial injection from Γ to Γ, then <Γ is isomorphic to a
subordering of Z on the orbit of x under the (partial) w-action defined above.

Next, we make some additional definitions related to H(ΓΓ):

Definition 2.2. Suppose x is a finite partial injection from Γ to Γ. Say x has one orbit if
for all γ, δ ∈ dom(x) there is an n ∈ Z such that xn(γ) = δ. If x is nonempty, say x
begins at γ if γ ∈ dom(x) but γ /∈ ran(x) and x ends at δ if δ ∈ ran(x) but δ /∈ dom(x).
If x is the empty function, then say that x begins and ends at 1.

Note that the action of Γ on ΓΓ in Definition 1.1 is chosen to interact well with the
permutation that each bijection x ∈ ΓΓ induces on Γ. In particular, suppose y is a partial
function from Γ to Γ and R ⊆ Γ is an orbit of y. Then it is easy to check that for every
γ ∈ Γ, γR is an orbit of the permutation induced by γ · y.

We are now ready to prove our main lemma.

Proof of Lemma 1.3. We may assume that Γ and ∆ are nontrivial. As in the proof of [12,
Lemma 2.1], let Y ⊆ (Γ ∗ ∆)Γ∗∆ be the set of all x ∈ (Γ ∗ ∆)Γ∗∆ such that for all
α ∈ Γ ∗ ∆ and all nonidentity γ ∈ Γ and δ ∈ ∆ we have γ · (α−1 · x) 6= (α−1 · x) and
δ · (α−1 · x) 6= (α−1 · x). Note that Free((Γ ∗∆)Γ∗∆) ⊆ Y .

Every nonidentity word α ∈ Γ can be written as a reduced word of the form γ0δ0γ1δ1 . . .

or δ0γ0δ1γ1 . . . where γi ∈ Γ and δi ∈ ∆ are nonidentity elements. We let the length of
γ ∈ Γ ∗ ∆ be its length as a reduced word. We say α ∈ Γ ∗ ∆ is a Γ-word if it begins
with an element of Γ as a reduced word, and a ∆-word if it begins with an element of ∆

as a reduced word. So Γ ∗∆ is the disjoint union of the set of Γ-words, ∆-words, and the
identity.

For each B ⊆ Y , define a game GB for producing a (perhaps partial) injection y from
Γ ∗∆ to Γ ∗∆ with one orbit. The players will alternate defining y(α) for finitely many
α ∈ Γ ∗∆ subject to the following rules:

• After each move of player I, y must be injective, have one orbit, and end at some
Γ-word. After each move of player II, y must be injective, have one orbit, and end
at some ∆-word.
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• On each move of the game, if the current partial function y that has been defined
before this move ends at ξ ∈ Γ ∗ ∆, then as part of the current move, the current
player must define y(ξ).

• In addition to the requirement of the previous rule, on each of their moves player
I may also define y(α) for arbitrarily many α that are Γ-words. On each of their
moves player II may also define y(α) for arbitrarily many nonidentity α that are
∆-words.

• At the end of the game, if y is not a total function, then II loses if and only if among
the α /∈ dom(y) that are of minimal length, there is some α which is a ∆-word
or the identity. If y is total but y /∈ Y , then II loses if and only if among the α
witnessing y /∈ Y of minimal length, there is some α which is a ∆-word, or α = 1

witnesses α /∈ Y via the fact that δ · y = y for some nonidentity δ ∈ ∆. Finally, if
y is total and y ∈ Y , then I wins if y is not in B.

For example, on the first turn of the game (where our current version of y is the empty
function which by definition ends at 1), player I must define y(1), and then may also
define y on finitely many other Γ-words. The resulting finite partial function y must be
injective, have one orbit, and end at some Γ-word.

Note that since y has a single orbit after each turn of the game, it will also have a single
orbit at the end of the game.

Let EΓ?∆
Γ denote the subequivalence relation of EΓ∗∆ given by the orbits of the sub-

group Γ ≤ Γ∗∆, and likewise defineEΓ∗∆
∆ . As these equivalence relations are everywhere

independent, by [12, Lemma 2.3] we may find a Borel subset C of Y \ Free((Γ ∗∆)Γ∗∆)

such that C meets every EΓ∗∆
∆ -class on Y \ Free((Γ ∗∆)Γ∗∆) and the complement of C

meets every EΓ∗∆
Γ -class on Y \ Free((Γ ∗∆)Γ∗∆).

By Borel determinacy, one of the two players must have a winning strategy in the
game associated to the set B = A ∪ C. Suppose player I has a winning strategy, and fix
such a strategy. We will construct an injective Borel ∆-equivariant function f : H(∆∆)→
H((Γ ∗∆)Γ∗∆) with ran(f)∩A = ∅. We will define f so that for all x ∈ H(∆∆), f(x) is
a winning outcome of player I’s winning strategy in the game and so f(x) /∈ A. We will
ensure that f is injective by enforcing that x <∆ y if and only if f(x) <Γ∗∆ f(y).

Let E0 ⊆ E1 ⊆ E2 ⊆ . . . be finite Borel equivalence relations that witness the
hyperfiniteness of E∆. We may assume that E0 is the equality relation and also that every
En-class is an interval in the ordering <∆ by passing instead to the relations E ′n where
x E ′n y if the <∆-interval from x to y lies inside [x]En . For each x ∈ H(∆∆), let Ex

n be
the equivalence relation on Γ ∗∆ where α0 E

x
n α1 if and only if δ−1

0 · x En δ−1
1 · x where

δ0, δ1 are the unique elements of ∆ such that α0 and α1 can be expressed as α0 = δ0β0 and
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α1 = δ1β1 where β0 and β1 are Γ-words or the identity. Note that in general the classes of
Ex
n will not be finite. However, for each Ex

n-class [α]Ex
n
, [α]Ex

n
∩∆ will be finite.

Fix x ∈ H(∆∆). We will define f(x) via a construction that takes countably many
steps. In this construction, for each δ ∈ ∆ we will play an instance of the game whose
outcome will be equal to δ−1 · f(x). At step 0 of our construction, let player I move in the
game associated to each δ ∈ ∆ using their winning strategy.

The only choices we will be making in our construction (other than keeping the play of
the games consistent with each other) will be connecting up the orbits of the finite partial
functions constructed in each of the games so that everything is eventually connected. We
will do this using the witness to the hyperfiniteness of E∆ and in our role as player II in
all the games.

Inductively assume that after step n of our construction, for every δ ∈ ∆,

1. f(x) � [δ]Ex
n

is a finite partial injection which has one orbit.

2. If δ0, . . . , δk enumerates the elements of [δ]Ex
n
∩ ∆ in the order so that δ−1

0 · x <∆

. . . <∆ δ−1
k · x, then f(x) � [δ]Ex

n
ends at a group element of the form δkβ, where β

is a Γ-word.

3. For every δi, δj ∈ [δ]Ex
n
∩∆ such that δ−1

i ·x En δ−1
j ·x, we have that δ−1

i ·x <∆ δ−1
j ·x

if and only if δ−1
i · f(x) <Γ∗∆ δ−1

j · f(x).

4. In the game associated to δ, the last move was made by player I (using their strat-
egy). The current finite partial function defined in the game associated to δ includes
every value of (δ−1 · f(x))(α) we defined during the previous step of the construc-
tion, where α is a Γ-word or the identity.

5. If n > 0 and [δ−1 ·x]En contains more than one element, then in the game associated
to δ, during step n we played a move for both player II and player I (in that order),
and we defined (δ−1 ·f(x))(α) for every ∆-word α contained in δ−1[δ]Ex

n−1
that had

been already defined in step n− 1.

We now describe step n+ 1 of our construction. For each δ ∈ ∆, let δ0, . . . , δk enumerate
the elements of [δ]Ex

n+1
∩∆ in the order so that δ−1

0 ·x <∆ . . . <∆ δ−1
k ·x. Each Ex

n+1-class
[δ]Ex

n+1
contains finitely many Ex

n-classes [β0]Ex
n
, . . . , [βm]Ex

n
. For every i < k so that δi

and δi+1 are in different Ex
n-classes, f(x) � [δi]Ex

n
ends at some group element ξi and

f(x) � [δi+1]Ex
n

begins at some group element αi+1. In this case, define f(x)(ξi) = αi+1

so that
w(ξ−1

i · f(x)) = α−1
i+1 · f(x).

After doing this, note that parts (1), (2), and (3) of our induction hypothesis are true for
n+ 1. However, we are not yet finished with our definition of f(x) at step n+ 1 so these
properties still need to be checked after we are finished.
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Assume now that k ≥ 1 so there are at least two elements of [δ]Ex
n+1
∩∆ (else we are

finished with our definition of f(x) � [δ]Ex
n+1

and part (5) of our induction hypothesis is
also true). For each δi, one at a time and in order, we will first move for player II in the
game associated to δi, and then let the strategy for player I move. Before we begin this
process, note that by the previous paragraph, f(x) � [δ]Ex

n+1
has one orbit and ends at a

word of the form δkβ where β is a Γ-word. Indeed, inductively, before we consider the
game associated to δi, it will be the case that f(x) � [δ]Ex

n+1
has one orbit and ends at a

word of the form δi′β where i′ = i− 1 mod k + 1 and β is a Γ-word.

So for the game associated to each δi, we make a move for player II by playing every
value of δ−1

i · (f(x) � [δ]Ex
n+1

) that has already been defined but not yet played in the
game. Playing these values will be consistent with the rules of the game by our induction
hypothesis. Now we let player I’s strategy move in the game to define additional values
of δ−1

i · f(x). Note that after these two moves, f(x) � [δ]Ex
n+1

will have one orbit and end
at a group element of the form δiβ where β is a Γ-word by the rules of the game. After
doing this for each of δ0, . . . , δk ∈ [δ]Ex

n+1
∩ ∆ in order, we are finished with step n + 1

of the construction. Verifying that our inductive hypotheses are satisfied is easy, and we
are now done with the construction of f(x). Verifying that f is Borel and ∆-equivariant
is straightforward.

Suppose x ∈ H(∆∆). By part (5) of our induction hypothesis, since [x]En has at least
two elements for sufficiently large n, we will play infinitely many moves in the game
associated to δ = 1 (so the game finishes), and the outcome of the game will be equal to
the value of f(x) defined by our construction by (4) and (5). The only thing that remains
is to verify that f(x) is total and f(x) ∈ H((Γ ∗∆)Γ∗∆) for every x ∈ H(∆∆).

To begin, we prove that f(x) is total for every x ∈ H(∆∆). Note that by the definition
of step 0 of our construction f(x)(1) is defined for all x ∈ H(∆∆) (since on the first
move player I must define y(1)). Then inductively, supposing f(x)(α) is defined on all
words α of length n, if α = δβ is any ∆-word of length n + 1 where δ ∈ ∆ and β is a
Γ-word or the identity, then f(x)(α) = δ((δ−1 · f(x))(β)) = δ(f(δ−1 · x)(β)) must be
defined by our induction hypothesis. Thus, f(x)(α) must be defined for all ∆-words of
length n+ 1, and thus also defined for all Γ-words of length n+ 1 (else player I loses).

Similarly, the same inductive idea shows that f(x) ∈ Y for every x ∈ H(∆∆). (Alter-
natively, copy the penultimate paragraph of the proof of [12, Lemma 2.1]).

Now since we have proved that f(x) ∈ Y for every x ∈ H(∆∆), we must have that
f(x) ∈ Free((Γ ∗ ∆)Γ∗∆) since C meets every ∆-invariant set in Y \ Free((Γ ∗ ∆)Γ∗∆)

by the definition of C. Thus, f(x) ∈ H((Γ ∗ ∆)Γ∗∆) for every x ∈ H(∆∆). Finally,
f(x) /∈ A since f(x) is a winning outcome of player I’s strategy in GA∪C .

This completes the proof in the case that player I has a winning strategy in GA∪C . The
proof in the case that player II has a winning strategy is very similar.
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Various bells and whistles can be added onto the above lemma. For example, the gen-
eralization of this lemma to countable free products is also true:

Lemma 2.3. Suppose I ∈ {2, 3, . . . ,N}, {Γi}i∈I is a collection of countably many count-
able discrete groups, and {Ai}i∈I is a Borel partition of H((∗i Γi)∗i Γi). Then there exists
some j ∈ I and an injective Borel Γj-equivariant function f : H(Γj

Γj)→ H((∗i Γi)∗i Γi)

so that ran(f) ⊆ Aj .

Proof Sketch. This lemma can be proved in a roughly identical way to the way [13, The-
orem 1.2] generalizes [12, Lemma 2.1]. Similarly to that proof, either player I has a win-
ning strategy in the game above associated to the complement of A0, viewing ∗i Γi as a
free product of the two groups Γ = ∗i 6=0 Γi and ∆ = Γ0, or else there is some j > 0

so that player II has a winning strategy in the game associated to Aj , viewing ∗i Γi as a
free product of the two groups Γ = Γj and ∆ = ∗i 6=j Γi. (This is because if not, playing
winning strategies for the other players in all these games simultaneously would yield
some y ∈ H((∗i Γi)∗i Γi) not in any Ai, contradicting the fact that {Ai}i∈I partitions this
set). One then copies the construction from the proof of Lemma 1.3 above.

In a different direction, we could work instead with a universal free hyperfinite action
of Γ (in the sense of [7, Section 2.5] and [2]) instead of the action we have used onH(ΓΓ).
Using this universal action, Lemma 1.3 would remain true using a very similar proof.

There is a different way of viewing the action of Γ on H(ΓΓ):

Remark 2.4. Suppose Γ and ∆ are countable discrete groups. Then Γ acts on ∆Γ via

γ · x(γ′) = x(γ−1)−1x(γ−1γ′).

LetH ′(∆Γ) be the set of x ∈ ∆Γ such that x(1Γ) = 1∆, x is a bijection, and x ∈ Free(∆Γ)

and x−1 ∈ Free(Γ∆). Let EΓ,∆ be the orbit equivalence relation of the action of Γ on
H ′(∆Γ). Then it is easy to see that EΓ,∆ and E∆,Γ are Borel isomorphic via the map
sending x ∈ H ′(∆Γ) to x−1 ∈ H ′(Γ∆). Hence, EΓ,∆ is generated by free actions of both
Γ and ∆. If Γ is a countably infinite group, the action of Γ onH(ΓΓ) is Borel isomorphic to
the action of Γ on H ′(ZΓ) via the equivariant map sending x ∈ H(ΓΓ) to f(x) ∈ H ′(ZΓ)

where f(x)(γ) is the unique n ∈ Z such that (xn(1))−1 = γ−1.

3 Corollaries

3.1 Colorings and matchings

The proof of Theorem 1.4 is identical to the proofs in [12], simply replacing Free(NΓ)

with H(ΓΓ) in the definition of G(Γ,N) in that paper, and the proofs of Theorems 1.3,
1.4, and 1.5 of [12].
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For instance, let us see how to use Lemma 1.3 to construct acyclic d-regular hyperfinite
graphs with Borel chromatic number d+1 in analogy with [12, Theorem 1.2]. For a group
Γ with fixed finite generating set, let GΓ be the graph on H(ΓΓ) rendering two points
adjacent if a generator sends one to the other.

Theorem 3.1. Suppose that Γ and ∆ are groups with fixed finite generating sets, and
equip Γ ∗∆ with the union of these generating sets. Then

χB(GΓ∗∆) ≥ χB(GΓ) + χB(G∆)− 1.

Proof. It suffices to show that if GΓ has no Borel m-coloring and if G∆ has no Borel n-
coloring, thenGΓ∗∆ has no Borel (m+n)-coloring. Towards a contradiction, suppose such
a Borel coloring c : H((Γ∗∆)Γ∗∆)→ {0, . . . ,m+n−1} exists, and putA = {x ∈ H((Γ∗
∆)Γ∗∆) : c(x) < m}. Applying Lemma 1.3 to the set A, we obtain either a Γ-equivariant
Borel f : H(ΓΓ)→ A or a ∆-equivariant Borel f : H(∆∆)→ H((Γ ∗∆)Γ∗∆) \A. In the
former case, c ◦ f is a Borel m-coloring of GΓ, while in the latter case c ◦ f is a Borel
n-coloring of G∆. Both are contradictions.

An easy induction now shows that GFd
has Borel chromatic number 2d+ 1.

3.2 The local lemma

Let us begin by recalling the Borel version of the Lovász local lemma in [1]. SupposeG is
a Borel graph on X , but where we allow loops so that we do not assume G is irreflexive.
We use the notation G(x) = {y ∈ X : x G y} to denote the neighborhood of x. We also
let G≤2 be the Borel graph on X where x G≤2 y if dG(x, y) ≤ 2. (This graph is called
Rel(G) in [1]).

Suppose b ≥ 1. Then a Borel b-local rule R for G is a Borel function whose domain
is X and where for each x ∈ X , R(x) is a set of functions from G(x) to b. Say that
f : X → b satisfies R if f � G(x) ∈ R(x) for every x ∈ X . Define pR(x) to be the
probability that a random function from G(x)→ b is not in R(x). So pR(x) = 1− |R(x)|

b|G(x)| .

Theorem 3.2 ([1, Theorem 1.3]). Suppose G is a Borel graph on X so that G≤2 has
uniformly subexponential growth and degree bounded by ∆. If R is a Borel b-local rule
for G such that pR(x) < 1

e∆
for all x ∈ X , then there exists a Borel function f : X → b

which satisfies R.

Theorem 1.6 clearly follows from the following:

Lemma 3.3. Suppose n ≥ 6, and let S be a free symmetric generating set for F2n, which
acts on the spaceH(FF2n

2n ) via Definition 1.1. LetG be the graph onH(FF2n
2n ) where x G y

if there exists γ ∈ S ∪{1} such that γ ·x = y. Then there exists a Borel 2-local rule R for
G such that pR(x) < 1

e∆
for all x, however there is no Borel function f which satisfies R.
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Proof. Partition the generating set S into two symmetric sets S0 and S1 so that S0 and S1

generate two isomorphic copies Γ0 and Γ1 of Fn, where Γ0 ∗ Γ1 = F2n.
Now let R be the local rule where f ∈ R(x) if f(x) = 0 implies there is a γ ∈ S0

such that f(γ · x) = 1 and f(x) = 1 implies there is a γ ∈ S1 such that f(γ · x) = 0. By
Lemma 1.3, for every Borel function f : H(FF2n

2n )→ 2, by viewing f as the characteristic
function of some set, there is either an entire Γ0-orbit whose image is {0} or a Γ1-orbit
whose image is {1}. Hence, there can be no Borel function f satisfying R.

However, for every x, we have pR(x) = 1/22n and the graphG≤2 has degree 1+(4n)2.
To finish, note that

1

22n
<

1

e(1 + (4n)2)

for n ≥ 6.

3.3 An exotic finitely additive invariant Borel measure

Proof of Theorem 1.7. Consider the action of Γ = (Z/2Z)∗3 = 〈a, b, c : a2 = b2 =

c2 = 1〉 on X = H(ΓΓ). X is a Borel subset of the Polish space ΓΓ, and so by changing
topology, we may give a Polish topology to X that has the same Borel sets but so that
the action of Γ on X is continuous. Since Γ is nonamenable and a free probability mea-
sure preserving action of a nonamenable group on a standard probability space (X,µ)

cannot be µ-hyperfinite, this action does not admit any countably additive invariant Borel
probability measure.

Let B(X) be the σ-algebra of Borel subsets of X . Now B(X) is invariant under the
action of Γ and hence by [17, Theorem 9.1] there is a finitely additive Γ-invariant proba-
bility measure ν : B(X)→ [0, 1] with µ(X) = 1 if and only if for all n ∈ N, n+ 1 copies
of X are not Borel equidecomposable with a subset of n copies of X . So it suffices to
show that for all n ∈ N and finite sets S ⊆ Γ there do not exist n + 1 Borel functions
f0, . . . , fn such that for all x ∈ X and i ≤ n, fi(x) = γ · x for some γ ∈ S and for every
y ∈ X , {(z, i) : fi(z) = y} has at most n elements. For notational convenience we will
assume that 1 /∈ S.

Suppose for a contradiction that there did exist such a finite set S ⊆ Γ and Borel
functions f0, . . . , fn as above. Let G be the Borel graph on X where x G y if there is a
generator γ ∈ {a, b, c} such that γ · x = y. Note that G is acyclic (since the action of Γ

is free, and the Cayley graph of Γ with respect to its generators is acyclic), so there is a
unique path between any two points in G in the same connected component.

We say that a function h : X → X is an antimatching of G if for all x ∈ X , x G h(x)

and h2(x) 6= x. We will construct a Borel antimatching assuming the existence of these
functions f0, . . . , fn. Then we obtain the desired contradiction by showing Lemma 1.3
precludes the existence of such an antimatching.
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More precisely, let g be the Borel function which associates to each directed edge
(x, y) of G the number of pairs of the form (z, i) where z ∈ X and i ≤ n and the unique
G-path from z to fi(z) includes the directed edge (x, y). Note that since S is finite and G
has bounded degree, g is bounded above. Now we claim that for every x ∈ X , there is
some neighbor y of x such that g((x, y)) > g((y, x)). To see this, consider the quantity∑

{y:yGx}

g((x, y))− g((y, x)).

Take a pair (z, i) that contributes to this sum because the path from z to fi(z) includes
x. If x 6= z and x 6= fi(z), then this path has one edge directed towards x and one away
from x, so the net contribution to the sum is zero. If z = x, then there are exactly n + 1

pairs of the form (x, i), and so n+ 1 edges directed away from x. However, if fi(z) = x,
then by assumption there are at most n pairs of the form (z, i) such that fi(z) = x. Hence
the total sum is positive, and so there must be some y such that g((x, y)) − g((y, x)) is
positive.

Let < be a Borel linear ordering of X . We now define a Borel function h : X → X by
setting h(x) = y where y is the <-least neighbor of x such that g((x, y))− g((y, x)) > 0.
Note that h2(x) 6= x for every x. Now let Aγ = {x : h(x) = γ · x} for γ ∈ {a, b, c} so
these sets partition H(ΓΓ). Finally, by applying Lemma 1.3 twice (or Lemma 2.3 once),
there must be some γ ∈ {a, b, c} so that if 〈γ〉 is the subgroup generated by γ, there
is a Borel injective 〈γ〉-equivariant function f : H(〈γ〉〈γ〉) → Aγ ⊆ H(ΓΓ). But any
y ∈ ran(f) has h(y) = γ · y and h(γ · y) = y, since both y and γ · y are in Aγ . This
contradicts the fact that h2(x) 6= x for all x ∈ X .

3.4 An ultrafilter on R/E0

Proof of Theorem 1.8. Instead ofE0, we will construct the ultrafilterU on the equivalence
relation EF2 on H(FF2

2 ). Since EF2 is hyperfinite, by [4] it is Borel bireducible with E0

restricted to some Borel subset of 2N. Hence our construction will also yields an ultrafilter
on the quotient of E0.

Fix C as in the definition of the proof of Lemma 1.3 where Γ = ∆ = Z so Γ∗∆ = F2.
Given an EF2-invariant subset A ⊆ H(FF2

2 ), we define A ∈ U if and only if player II
wins the game GA∪C defined in the proof of Lemma 1.3. The proof that this defines an
ultrafilter is identical to the proof of [13, Lemma 4.9].

It is trivial to see that given a winning strategy for player II in the game G, then there
are plays of the game using this winning strategy of every Turing degree above the Turing
degree of this strategy. Hence, given any subset of A ⊆ H(FF2

2 ) which is Turing invariant,
A is in the ultrafilter U if and only if A contains a Turing cone. Thus, U is Rudin-Kiesler
above Martin’s measure, as witnessed by the identity function (which is a homomorphism
from EF2 � H(F2

F2) to ≡T on F2
F2 , which we can identify with NN).
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4 Lower bounds on component size in witnesses to hy-
perfiniteness

In this section, we address Question 1.9: Given a bounded-degree hyperfinite Borel graph
G, does there exist an increasing sequence G1 ⊆ G2 ⊆ . . . ⊆ G of Borel subgraphs of G
witnessing its hyperfiniteness such that every connected component of Gn has cardinality
at least n. Such a sequence is called an everywhere-large witness to hyperfiniteness. We
provide a positive answer in a handful of contexts.

We begin with a lemma about forward recurrent sets for bounded-to-one Borel func-
tions. Given a function f : X → X , recall that the graph Gf on X renders distinct points
x and y adjacent if y = f(x) or vice-versa.

Lemma 4.1. Suppose f : X → X is a bounded-to-one Borel function. Then there is an
Gf -independent Borel set A ⊆ X such that for all x ∈ X , one of x, f(x), f 2(x), f 3(x) is
in A.

Proof. By [10, Corollary 5.3], there is a Borel 3-coloring c : X → 3 of Gf . Let A be the
set of x ∈ X such that either c(x) = 0 ∧ c(f(x)) = 2 or c(x) = 1 ∧ c(f(x)) = 2 or
c(x) = 0∧ c(f(x)) = 1∧ c(f 2(x)) = 0. It is easy to see that A is Gf -independent. Given
x ∈ X , the sequence c(x), c(f(x)), c(f 2(x)), . . . begins with either

• 01, which continues 010 so x ∈ A or 012 so f(x) ∈ A.

• 02, so x ∈ A.

• 10, which continues 102 so f(x) ∈ A or 1012 so f 2(x) ∈ A or 1010 so f(x) ∈ A.

• 12, so x ∈ A.

• 20, which continues 202 so f(x) ∈ A or 2010 so f(x) ∈ A or 2012 f 2(x) ∈ A.

• 21, which continues 212 so f(x) ∈ A or 2102 so f 2(x) ∈ A or 21010 so f 2(x) ∈ A
or 21012 so f 3(x) ∈ A.

Thus A is as desired.

Lemma 4.2. Suppose G is a bounded degree Borel graph on X , and A ⊆ X is a Borel
set such that every connected component of G contains exactly one connected component
of G � A. If G � A admits an everywhere-large witness to hyperfiniteness, so does G.

Proof. Fix a Borel linear ordering of X . We will begin by defining a graph H with the
same connectedness relation as G. Let H ′ ⊆ G be the graph on X where x H ′ y if x G y

and the edge {x, y} is contained in the lex-least path from either x to A or y to A. Using
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properties of the lex-least ordering, it is easy to see that H ′ is acyclic, and each connected
component ofH ′ contains exactly one element ofA. LetH be the union ofH ′ andG � A.

Let H ′′ ⊆ H ′ be the graph where x H ′′ y if x H ′ y and there are only finitely many z
so that the lex-least path from z to A includes the edge {x, y}. By König’s lemma, all the
connected components of H ′′ are finite. Let m({x, y}) = max(d(x,A), d(y, A)).

Now let G′0 ⊆ G′1 ⊆ . . . be the hypothesized witness to the hyperfiniteness of G � A.
We can define a witness H0 ⊆ H1 ⊆ . . . to the hyperfiniteness of H by setting x Hi y if
(i) x G′i y, or (ii) x H ′ y and 2i - m({x, y}), or (iii) x H ′′ y. Clearly H0 ⊆ H1 ⊆ . . ..
We will check that each connected component C of Hi is finite and contains at least i
elements.

First, suppose C contains no element of A. Then C contains a unique element x0

that is closest to A since H ′ is acyclic. Let x1 be the unique neighbor of x0 such that
d(x1, A) < d(x0, A). Then x0 is not Hi-adjacent to x1 by definition, and so x0 and x1 are
not H ′′-adjacent by (iii). By (ii), we therefore must have that d(x0, A) = k2i for some k.
By (iii) there must be infinitely many z such that the lex-least path from z to A includes
the edge {x0, x1}. So by König’s lemma, there is some H ′ path of length 2i − 1 from x0

to some point z where d(z, A) > d(x0, A) so that this path does not use any H ′′-edges.
Thus, this path lies inside Hi, which therefore has at least 2i many elements. This suffices
since 2i ≥ i. Now if x, y ∈ C and x Hi y but x and y are not H ′′-adjacent, then we see
that d(x, x0) < 2i and d(y, x0) < 2i by (ii). Thus, there are finitely many edges in Hi � C

coming from condition (ii), and so Hi � C is the union of these edges with the finitely
many H ′′-components that are incident to them by condition (iii). So C is finite.

Second, suppose C does contain an element of A. Then C ∩ A is a connected com-
ponent of G′i since each H ′-component contains only one element of A. Thus, since each
G′i component has at least i many elements, C also has at least i many elements. Now if
x, y ∈ C and x Hi y but x and y are not H ′′-adjacent, then m({x, y}) < 2i by (ii). Hence,
Hi � C contains finitely many edges coming from condition (ii) and also from (i) by
above, and so Hi � C is the union of these edges with the finitely many H ′′-components
that are incident to them by condition (iii). So C is finite.

Finally, we can define the desired witness G0 ⊆ G1 ⊆ . . . to the hyperfiniteness of G
by setting x Gi y if x G y and x and y are in the same connected component of Hi.

Now given a bounded degree Borel graph G on a standard Borel space X , if G′ ⊆ G

is a subgraph of G with finite connected components, then we can form the graph minor
G/G′ of G by the connectedness relation of G′. That is, the vertex set of this minor is the
standard Borel spaceX/G′ of connected components ofG′, and the edge relation ofG/G′

is defined by [x]G′ G/G
′ [y]G′ if [x]G′ 6= [y]G′ and there exists x′ ∈ [x] and y′ ∈ [y]G′ such

that x G y. Let H = G/G′ and suppose now that H ′ ⊆ H is a subgraph of H with finite
connected components. Then H ′ naturally lifts to a subgraph of G with finite connected
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components that contains G′. That is, there is an edge in this lifted graph between x and
y if x G′ y, or x G y and [x]′G H ′ [y]′G. In several of our proofs below, we will define
iterated sequences of graph minors in this way, which will naturally lift to witnesses of
the hyperfiniteness of the original graph.

Lemma 4.3. Suppose f : X → X is bounded-to-one Borel function that induces the
graph Gf . Then Gf admits an everywhere-large witness to hyperfiniteness.

Proof. Let f0 = f andX0 = X . Given the bounded-to-one function fi onXi, letAi ⊆ Xi

be as in Proposition 4.1, and let G′i ⊆ Gfi be the graph on Xi with finite connected
components where x G′i f(x) if x /∈ Ai. Note that every connected component of Gf has
size at least 2, and size at most 1 + d+ d2 + d3, if fi is ≤ d-to-one.

Let Xi+1 = Xi/G
′
i and for each x ∈ X , let [x]i+1 ∈ Xi+1 be the representative of x

in Xi+1, so [x]i+1 is a finite set of elements of Xi, one of which is [x]i. Let fi+1 be the
bounded-to-one Borel function on Xi+1 where fi+1([x]i+1) = [y]i+1 if [x]i+1 6= [y]i+1

and there are [x′]i ∈ [x]i+1 and [y′]i ∈ [y]i+1 such that fi([x′]i) = [y′]i. Note that Gfi+1

is equal to the graph minor Gfi/G
′
i. The sequence G′0, G

′
1, . . . lifts to an increasing union

G′′0 ⊆ G′′1 ⊆ . . . of Borel graphs on X . By induction, the connected components of each
G′′i are finite, and have size at least 2i.

Let H = Gf \
⋃
iG
′′
i , so that x H f(x) if and only if [x]i ∈ Ai for every i. Let Gi

be the graph on X where x Gi y if x G′′i y or x H y. Then clearly G0 ⊆ G1 . . ., every
connected component of Gi has at least 2i ≥ i elements (since this is true of G′′i ), and⋃
iGi = Gf . We just need to show that every connected component of Gi is finite.
Let Hi be the graph on Xi where [x]i Hi [y]i if [x]i ∈ Ai and fi([x]i) = [y]i

or [y]i ∈ Ai and fi([y]i) = [x]i. Since fi is finite-to-one, by the definition of Ai, it
is easy to see that every Hi class is finite. Now if x ∈ X , then the G′′i -class of x is
{y ∈ X : [y]i+1 = [x]i+1} by the definition of Xi+1. Thus, the Gi-class of x is a subset
of {y ∈ X : [y]i+1 is in the same Hi+1-class as [x]i+1}, which is clearly finite since Hi+1

has finite connected components.

Lemma 4.4. Suppose G is a Borel graph on X where every connected component of G
has two ends. Then G admits an everywhere-large witness to hyperfiniteness.

Proof. Let Y ⊆ [X]<∞ be the collection of finite connected sets C ⊆ X such that re-
moving C from G disconnects the connected component containing C into exactly two
infinite pieces. Using a countable Borel coloring of the intersection graph on Y (see [9,
Lemma 7.3] and [3, Proposition 2]), we may find a Borel set Z ⊆ Y of pairwise disjoint
subsets of X which meets every connected component of G. Let G′ be the graph on Z
where C0 G

′ C1 if C0 and C1 are in the same connected component of G and there is no
D ∈ Z such that removing D from G places C0 and C1 in different connected compo-
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nents. The graph G′ has degree at most 2, and it clearly suffices to build everywhere large
witnesses for G′ instead of G.

Thus, we may restrict our attention just to 2-regular acyclic Borel graphs. However,
this is trivial by using the existence of maximal Borel independent sets [10, Proposition
4.6] for such graphs, and the same idea as Lemma 4.3.

We are now ready to prove Proposition 1.10.

Proof of Proposition 1.10. Suppose G is a hyperfinite bounded degree Borel graph on
a standard Borel space X , and µ is a Borel probability measure on X . We may then
build an everywhere-large witness to hyperfiniteness off a µ-nullset, by using Adams’
end selection theorem [7, Lemma 3.21], and Lemmas 4.2, 4.3, and 4.4.

A straightforward Kuratowski-Ulam argument yields everywhere-large witnesses to
hyperfiniteness modulo a meager set.
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