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Abstract. We give a classical proof of the generalization of the
characterization of smoothness to quotients of Polish spaces by
Borel equivalence relations. As an application, we describe the
extent to which any given Borel equivalence relation on a Polish
space is encoded by the corresponding σ-ideal generated by the
family of Borel sets on which it is smooth.

Introduction

A measurable space is a set equipped with a σ-algebra of distin-
guished subsets. Given a pointclass Γ of subsets of such spaces, we say
that a function π : X → Y between measurable spaces is Γ-measurable
if the pre-image of every distinguished subset of Y is in Γ. Given equiv-
alence relations E and F on X and Y , we say that the Γ-measurable
cardinality of X/E is at most that of Y/F , or simply |X/E|Γ ≤ |Y/F |Γ,
if there is a Γ-measurable function π : X → Y which factors to an in-
jection of X/E into Y/F . When Γ contains every subset of every
measurable space, this yields the usual notion of cardinality.

A metric is Polish if it is complete and its induced topology is sepa-
rable. A topological space is Polish if it has a compatible Polish metric.
A subset of a Polish space is Borel if it is in the σ-algebra generated
by the underlying topology. A measurable space X is standard Borel
if its family of distinguished subsets consists precisely of the Borel sets
associated with a Polish topology on X, in which case we refer to these
distinguished sets as Borel sets. A subset Y of a standard Borel space
X is then Borel if and only if it is standard Borel when equipped with
the subspace measurable structure it inherits from X, consisting of all
sets of the form B∩Y , where B ranges over all Borel subsets of X (see,
for example, [Kec95, Corollary 13.4 and Theorem 15.1]).
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The desire to understand obstacles of definability inherent in math-
ematical classification problems recently led to the study of Borel car-
dinals associated with equivalence relations on standard Borel spaces.
From this point forward, we will restrict our attention to such relations.

As any two standard Borel spaces of the same cardinality are Borel
isomorphic (see, for example, [Kec95, Theorem 15.6]), the notion of
Borel cardinality coincides with the classical one when the equivalence
relations are trivial. The notions diverge drastically, however, upon
passing to quotients by non-trivial Borel equivalence relations. The
first notable theorem in this area demonstrates that a major difference
occurs just after the countable cardinals: if X is a standard Borel space
and E is a Borel equivalence relation on X, then |X/E|B ≤ |N|B or
|R|B ≤ |X/E|B (see [Sil80]). In other words, the Borel analog of the
continuum hypothesis holds. Perhaps more surprisingly, there is also
an analog of the continuum hypothesis at the next Borel cardinal: if
X is a standard Borel space and E is a Borel equivalence relation on
X, then |X/E|B ≤ |R|B or |R/Q|B ≤ |X/E|B (see [HKL90]).

The former theorem can be seen as a consequence of the latter, which
itself hinges on properties of the σ-ideal generated by the family of Borel
sets B ⊆ X for which |B/E|B ≤ |R|B. By generalizing the latter result
to equivalence relations on quotient spaces, we will establish rigidity
results characterizing the extent to which E is encoded by this σ-ideal.

Earlier results. Suppose that R ⊆ X ×X and S ⊆ Y × Y . A homo-
morphism from R to S is a map π : X → Y sending R-related points to
S-related points. A cohomomorphism from R to S is a homomorphism
from the complement of R to the complement of S. A reduction of R
to S is a function π : X → Y which is both a homomorphism and a
cohomomorphism from R to S. And an embedding of R into S is an
injective reduction of R to S.

We say that E is Γ-reducible to F , or simply E ≤Γ F , if there is
a Γ-measurable reduction of E to F . Although |X/E|Γ ≤ |Y/F |Γ if
and only if E ≤Γ F , we will use the language of reducibility so as to
simplify the statements of results and their proofs.

The former theorem follows from the stronger result, commonly re-
ferred to as Silver’s Theorem, that equality on 2N is continuously em-
beddable into every Borel (or even co-analytic) equivalence relation on
a Polish space with uncountably many classes (see [Sil80]). The latter
theorem follows from the stronger result, commonly referred to as the
Harrington-Kechris-Louveau Theorem, that the equivalence relation E0

on 2N, given by c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m), is con-
tinuously embeddable into every Borel equivalence relation on a Polish
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space which is not smooth (see [HKL90, Theorem 1.1]). Here, a Borel
equivalence relation is smooth if it is Borel reducible to equality on 2N.

Although Silver’s Theorem can be viewed as a generalization of
the classical theorem asserting the continuum hypothesis for Borel (or
even analytic) subsets of Polish spaces (see [Sou17]), its original proof
was quite sophisticated, utilizing many tools from mathematical logic.
While a simpler proof was later discovered (see [Har76]), it nevertheless
relied upon subtle recursion-theoretic features of the real numbers.

The Harrington-Kechris-Louveau Theorem can be viewed as a gen-
eralization of earlier results in operator algebras (see [Gli61, Eff65])
and ergodic theory (see [SW82, Wei84]). In addition to utilizing ideas
from the arguments underlying these precursors, its proof also builds
upon that of Silver’s Theorem, and consequently, it too depends heav-
ily upon recursion-theoretic techniques. As the special case of Silver’s
Theorem for Borel equivalence relations can be seen as a consequence
of the Harrington-Kechris-Louveau Theorem, we will focus upon the
latter from this point forward.

Generalizations. We say that a set Y ⊆ X is a partial transversal of
E if it intersects every E-class in at most one point. We say that a set
Y ⊆ X is E-smooth if the restriction of E to Y is smooth.

We say that E has bounded finite index over F if for some n ∈ N,
every class of E is the union of at most n classes of F . We say that E
has σ-bounded finite index over F if X is the union of countably many
Borel sets on which E has bounded finite index over F .

After reviewing the necessary descriptive set-theoretic preliminaries
in §1, we generalize the Harrington-Kechris-Louveau Theorem in §2.

Theorem 1. Suppose that X is a Polish space and E and F are Borel
equivalence relations on X. Then exactly one of the following holds:

(1) There is an E-smooth Borel set B ⊆ X off of which E has
σ-bounded-finite-index over E ∩ F .

(2) There is a continuous embedding of E0 into the restriction of E
to a partial transversal of F .

When F ⊆ E, any reduction of E0 to the restriction of E to a
partial transversal of F factors to an injection of 2N/E0 into E/F . The
Harrington-Kechris-Louveau Theorem is essentially the special case of
Theorem 1 in which F is equality on X. As our arguments are entirely
classical, this eliminates the need for recursion-theoretic techniques in
the proofs of the earlier theorems.

Rigidity. Suppose that I and J are families of subsets of X and Y .
A homomorphism from I to J is a function π : X → Y sending sets in
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I to sets in J . A cohomomorphism from I to J is a homomorphism
from the complement of I to the complement of J . And a reduction
of I to J is a function π : X → Y which is both a homomorphism and
a cohomomorphism from I to J .

We use IE to denote the σ-ideal on X generated by the family of
all E-smooth Borel sets. It is easy to see that if π : X → Y is a Bor-
el reduction of E to F , then it is also a Borel reduction of IE to IF .
While measure-theoretic rigidity arguments can be used to rule out the
converse (see, for example, [CM14, Proposition 6.8] and Theorem 5),
it is nevertheless not far from true, and leads to Borel rigidity results.

We say that a function π : X → Y is a quasi-homomorphism from
E to F if there exists n ∈ N for which the restriction of F to the
image of each E-class has at most n classes. We say that a function
π : X → Y is a quasi-cohomomorphism from E to F if there exists
n ∈ N for which the restriction of E to the pre-image of each F -class
has at most n classes. And we say that a function π : X → Y is a
quasi-reduction of E to F if it is both a quasi-homomorphism and a
quasi-cohomomorphism from E to F .

We say that a Borel function π : X → Y is a σ-quasi-homomorphism
from E to F if X is the union of countably many Borel sets on which π
is a quasi-homomorphism from E to F . We say that a Borel function
π : X → Y is a σ-quasi-reduction of E to F if X is the union of
countably many Borel sets on which π is a quasi-reduction of E to
F . And we say that a Borel function π : X → Y is smooth-to-one
(with respect to E and F ) if the restriction of E to the pre-image of
each F -class is smooth.

In §3, we characterize Borel morphisms between smooth ideals.

Theorem 2. Suppose that X and Y are Polish spaces, E and F are
Borel equivalence relations on X and Y , and φ : X → Y is Borel.
Then φ is a cohomomorphism from IE to IF if and only if there
is an E-smooth Borel set off of which φ is a smooth-to-one σ-quasi-
homomorphism from E to F .

Theorem 3. Suppose that X and Y are Polish spaces, E and F are
Borel equivalence relations on X and Y , and φ : X → Y is Borel. Then
φ is a reduction of IE to IF if and only if there is an E-smooth Borel
set, whose image under φ is F -smooth, off of which φ is a σ-quasi-
reduction of E to F .

Following the standard abuse of language, we say that an equiva-
lence relation is countable if its equivalence classes are all countable.
When at least one of the equivalence relations in question is countable,
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these results yield characterizations of the existence of Borel morphisms
between smooth ideals.

Theorem 4. Suppose that X and Y are Polish spaces, E and F are
Borel equivalence relations on X and Y , and E or F is countable.
Then there is a Borel cohomomorphism from IE to IF if and only if
there is a smooth-to-one Borel quasi-homomorphism from E to F .

Theorem 5. Suppose that X and Y are Polish spaces, E and F are
Borel equivalence relations on X and Y , E or F is countable, and F
has uncountably many classes. Then there is a Borel reduction of IE
to IF if and only if there is a Borel quasi-reduction of E to F ×∆(N).

Here, ∆(X) denotes the equality relation on X, and the product of
equivalence relations E and F onX and Y is the equivalence relation on
X × Y given by (x1, y1) (E × F ) (x2, y2) ⇐⇒ (x1 E x2 and y1 F y2).

Homogeneity. We say that I is cohomorphism homogeneous if for ev-
ery Borel set Y ⊆ X, either Y ∈ I or there is a Borel cohomomorphism
from I to I � Y . We say that I is reduction homogeneous if for every
Borel set Y ⊆ X, either Y ∈ I or there is a Borel reduction of I to
I � Y . In §4, we characterize the smooth ideals with these properties.

Theorem 6. Suppose that X is a Polish space and E is a Borel equiv-
alence relation on X. Then the following are equivalent:

(1) There is a Borel reduction of E to E0.
(2) The ideal IE is reduction homogeneous.
(3) The ideal IE is cohomomorphism homogeneous.

This yields natural examples of σ-ideals which are not cohomomor-
phism homogeneous, addressing a question from [Zap08, Chapter 2].

1. Preliminaries

Here we list the descriptive set-theoretic preliminaries used through-
out the paper. In §1.1, we consider functions. In §1.2, we introduce
analytic sets. In §1.3, we discuss Baire category. In §1.4, we state the
first reflection theorem. In §1.5, we mention uniformization results.
And in §1.6, we review Borel equivalence relations.

1.1. Functions. The graph of a function φ : X → Y is the subset of
X × Y given by graph(φ) = {(x, φ(x)) | x ∈ X}. The following is one
half of a characterization of Borel functions.

Proposition 1.1.1. Suppose that X and Y are Polish spaces and
φ : X → Y is Borel. Then graph(φ) is Borel.
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Proof. See, for example, [Kec95, Proposition 12.4].

When X is a compact space and Y is a metric space, we use C(X, Y )
to denote the set of continuous functions φ : X → Y , equipped with
the uniform metric given by d(φ, ψ) = supx∈X dY (φ(x), ψ(x)).

Proposition 1.1.2. Suppose that X is a compact metric space and Y
is a Polish metric space. Then C(X, Y ) is also a Polish metric space.

Proof. See, for example, [Kec95, Theorem 4.19].

1.2. Analytic sets. A topological space is analytic if it is a continuous
image of a Polish space.

Proposition 1.2.1. Suppose that X is a topological space and A ⊆ X
is non-empty. Then A is analytic if and only if it is a continuous image
of NN.

Proof. See, for example, [Kec95, Theorem 7.9].

A tree on Nk ×N is a subset of
⋃
n∈N(Nn)k ×Nn such that whenever

m < n are natural numbers and (s, t) ∈ (Nn)k × Nn is in T , then so
too is ((s(i) � m)i<k, t � m). A branch through such a tree is a pair
(a, b) ∈ (NN)k × NN with the property that ((a(i) � n)i<k, b � n) ∈ T ,
for all n ∈ N. We use [T ] to denote the set of all such branches, and
we use p[T ] to denote the projection of [T ] onto (NN)k.

Proposition 1.2.2. Suppose that k ∈ N and A ⊆ (NN)k. Then A is
analytic if and only if there is a tree T on Nk ×N such that A = p[T ].

Proof. See, for example, [Kec95, Proposition 2.4 and Exercise 14.3].

1.3. Baire category. A subset of a topological space is nowhere dense
if its closure does not contain a non-empty open set, meager if it is
the union of countably many nowhere dense sets, and comeager if its
complement is meager.

Theorem 1.3.1 (Baire). Suppose that X is a complete metric space.
Then every comeager subset of X is dense.

Proof. See, for example, [Kec95, Theorem 8.4].

A Baire space is a topological space in which every comeager set is
dense. In particular, it follows that every non-empty open subset of a
Baire space is non-meager.

A subset of a topological space has the Baire property if its symmet-
ric difference with some open set is meager, and a function between
topological spaces is Baire measurable if pre-images of open sets have
the Baire property.
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We say that a set B ⊆ X is comeager in a non-empty open set
U ⊆ X if B ∩ U is comeager in U , where the latter is equipped with
the subspace topology, or equivalently, if U \B is meager.

Proposition 1.3.2. Suppose that X is a Baire space and B ⊆ X has
the Baire property. Then exactly one of the following holds:

(1) The set B is meager.
(2) There is a non-empty open set U ⊆ X in which B is comeager.

Proof. See, for example, [Kec95, Proposition 8.26].

Suppose that R ⊆ X×Y . For each x ∈ X, the xth vertical section of
R is given by Rx = {y ∈ Y | x R y}. For each y ∈ Y , the yth horizontal
section of R is given by Ry = {x ∈ X | x R y}.

Theorem 1.3.3 (Kuratowski-Ulam). Suppose that X and Y are second
countable topological spaces and R ⊆ X × Y has the Baire property.

(1) The set {x ∈ X | Rx has the Baire property} is comeager.
(2) The set R is comeager if and only if {x ∈ X | Rx is comeager}

is comeager.

Proof. See, for example, [Kec95, Theorem 8.41].

Concerning the connection between analytic sets and the Baire prop-
erty, we have the following.

Theorem 1.3.4 (Lusin-Sierpiński). Every analytic subset of a Polish
space has the Baire property.

Proof. See, for example, [Kec95, Theorem 21.6].

Theorem 1.3.5 (Novikov). Suppose that X and Y are Polish spaces
and R ⊆ X×Y is analytic. Then {x ∈ X | Rx is comeager} is analytic.

Proof. See, for example, [Kec95, Theorem 29.22].

An equivalence relation on a Baire space is generically ergodic if
every invariant set with the Baire property is meager or comeager.

Proposition 1.3.6. Suppose that X is a Baire space and E is the orbit
equivalence relation associated with a group Γ of homeomorphisms of
X with a dense orbit. Then E is generically ergodic.

Proof. It is sufficient to show that if B ⊆ X is an E-invariant non-
meager set with the Baire property, then B is non-meager in every
non-empty open set U ⊆ X. Towards this end, fix a non-empty open
set V ⊆ X in which B is comeager. As Γ has a dense orbit, there exist
γ ∈ Γ, x ∈ U , and y ∈ V with γ · x = y. As γ−1 is continuous, there
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is an open neighborhood W ⊆ V of y such that γ−1 ·W ⊆ U . As γ
is continuous, the set γ−1 ·W is open. As γ is a homeomorphism, it
follows that γ−1 · B is comeager in γ−1 ·W (see, for example, [Kec95,
Exercise 8.45]), thus B is non-meager in U .

As a first application, we have the following.

Proposition 1.3.7. The equivalence relation E0 is generically ergodic.

Proof. As E0 is generated by the homeomorphisms Tτ : 2N → 2N, where
n ∈ N and τ is a permutation of 2n, given by Tτ (s a c) = τ(s) a c for
c ∈ 2N and s ∈ 2n, the desired result follows from Proposition 1.3.6.

Generic ergodicity ensures that Borel homomorphisms to equality on
2N are generically constant, providing a means to rule out smoothness.

Proposition 1.3.8. Suppose that X and Y are Polish spaces, E is
a generically ergodic equivalence relation on X, and φ : X → Y is a
Baire measurable homomorphism from E to ∆(Y ). Then there is a
comeager set C ⊆ X on which φ is constant.

Proof. Fix a countable basis V for the topology of Y . Then for each
V ∈ V , the set φ−1(V ) is E-invariant, and is therefore either meager
or comeager. Define CV = X \ φ−1(V ) in the former case, and define
CV = φ−1(V ) in the latter. Then the set C =

⋂
V ∈V CV is comeager,

and φ(C) is a singleton.

1.4. Reflection. A property Φ of subsets of Y is Π1
1-on-Σ1

1 if when-
ever X is a Polish space and R ⊆ X ×Y is analytic, the corresponding
set {x ∈ X | Φ(Rx)} is co-analytic.

Theorem 1.4.1. Suppose that X is a Polish space, Φ is a Π1
1-on-Σ1

1

property of subsets of X, and A ⊆ X is an analytic set on which Φ
holds. Then there is a Borel set B ⊇ A on which Φ holds.

Proof. See, for example, [Kec95, Theorem 35.10].

A set B separates a set A from a set A′ if A ⊆ B and A′∩B = ∅. The
E-saturation of W ⊆ X is given by [W ]E = {x ∈ X | ∃w ∈ W w E x}.

Proposition 1.4.2 (Harrington-Kechris-Louveau). Suppose that X is
a Polish space, E is an analytic equivalence relation on X, A,A′ ⊆ X
are disjoint analytic sets, and A′ is E-invariant. Then there is an
E-invariant Borel set B ⊆ X separating A from A′.

Proof. As A and A′ are analytic, the property (of A) that the E-
saturation of A is disjoint from A′ is Π1

1-on-Σ1
1, so by applying Theorem
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1.4.1 infinitely many times, we obtain a sequence (Bn)n∈N of Borel su-
persets of A such that [Bn]E ⊆ Bn+1 and the E-saturation of Bn is
disjoint from A′, for all n ∈ N. Define B =

⋃
n∈NBn.

1.5. Uniformization. The projection from X × Y to X is given by
projX(x, y) = x. A uniformization of a set R ⊆ X × Y is a function
φ : projX(R)→ Y whose graph is contained in R.

Theorem 1.5.1 (Lusin-Novikov). Suppose that X and Y are Polish
spaces and R ⊆ X × Y is a Borel set whose vertical sections are all
countable. Then projX(R) is Borel, and R is a countable union of
Borel uniformizations.

Proof. See, for example, [Kec95, Theorem 18.10].

We use σ(Σ1
1) to denote the σ-algebra generated by the analytic sets.

Theorem 1.5.2 (Jankov, von Neumann). Suppose that X and Y are
Polish spaces and R ⊆ X × Y is analytic. Then there is a σ(Σ1

1)-
measurable uniformization of R.

Proof. See, for example, [Kec95, Theorem 18.1].

1.6. Equivalence relations. In the countable case, smoothness has
a useful alternate characterization.

Proposition 1.6.1. Suppose that X is a Polish space and E is a count-
able Borel equivalence relation on X. Then E is smooth if and only if
X is the union of countably many Borel partial transversals of E.

Proof. This is a straightforward consequence of Theorem 1.5.1.

It follows that the family of smooth countable Borel equivalence re-
lations is closed downward under Borel subequivalence relations.

Proposition 1.6.2. Suppose that X is a Polish space, E is a smooth
countable Borel equivalence relation on X, and F is a Borel subequiv-
alence relation of E. Then F is also smooth.

Proof. As partial transversals of E are also partial transversals of F ,
Proposition 1.6.1 yields the desired result.

Following the standard abuse of language, we say that an equivalence
relation is finite if its equivalence classes are all finite.

Proposition 1.6.3. Suppose that X is a Polish space and E is a finite
Borel equivalence relation on X. Then E is smooth.

Proof. This is also a straightforward consequence of Theorem 1.5.1.
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We say that a subequivalence relation F of E has finite index if every
E-class is the union of finitely many F -classes.

Proposition 1.6.4. Suppose that X is a Polish space, E is a count-
able Borel equivalence relation on X, and F is a finite index Borel
subequivalence relation of E. Then E is smooth if and only if F is
smooth.

Proof. In light of Proposition 1.6.2, we need only show that if F is
smooth, then E is smooth. Towards this end, note that the restriction
of E to any partial transversal of F is finite, thus Propositions 1.6.1
and 1.6.3 yield the desired result.

A Borel equivalence relation is hyperfinite if it is of the form
⋃
n∈NEn,

where E0 ⊆ E1 ⊆ · · · are finite Borel subequivalence relations.

Proposition 1.6.5 (Jackson-Kechris-Louveau). Suppose that X is a
Polish space, E is a countable Borel equivalence relation on X, and F is
a finite index Borel subequivalence relation of E. Then E is hyperfinite
if and only if F is hyperfinite.

Proof. See [JKL02, Proposition 1.3].

The following is one half of a characterization of hyperfiniteness.

Theorem 1.6.6 (Dougherty-Jackson-Kechris). Suppose that X is a
Polish space and E is a hyperfinite Borel equivalence relation on X.
Then there is a Borel embedding of E into E0.

Proof. See [DJK94, Theorem 1].

2. Dichotomies

Here we establish our generalization of the Harrington-Kechris-Lou-
veau Theorem. In §2.1, we present a number of Baire category argu-
ments. In §2.2, we give several applications of reflection. In §2.3, we
consider cores for families of finite sets. And in §2.4, we establish our
primary results.

2.1. Baire category. A graph on a set X is an irreflexive, symmetric
subset G of X × X. The restriction of G to a set Y ⊆ X is given
by G � Y = G ∩ (Y × Y ). We say that Y is G-independent if this
restriction is empty. A coloring of G is a function c : X → I with the
property that c−1(i) is G-independent, for all i ∈ I. In the special case
that I is countable, we also refer to c as an ℵ0-coloring.

Fix sequences sn ∈ 2n with the property that {sn | n ∈ 2N} is dense
in 2<N, in the sense that ∀s ∈ 2<N∃n ∈ 2N s v sn. Recursively define
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graphs G0(2n) on 2n by asking that G0(22n+1) is the union of the graph
{(s a (i), t a (i)) | i < 2 and s G0(22n) t} with the singleton edge
{(s2n a (i), s2n a (1− i)) | i < 2}, and by asking that G0(22n+2) is the
graph {(s a (i), t a (i)) | i < 2 and s G0(22n+1) t}. Define G0 on 2N

by G0 =
⋃
n∈N{(s a c, t a c) | c ∈ 2N and s G0(2n) t}.

Proposition 2.1.1 (Kechris-Solecki-Todorcevic). Suppose that B ⊆
2N is a G0-independent set with the Baire property. Then B is meager.

Proof. Suppose, towards a contradiction, that B is not meager. Then
there exists s ∈ 2<N such that B is comeager in Ns. Fix n ∈ 2N such
that s v sn. Then B is comeager in Nsn . As the involution I : 2N → 2N

which flips coordinate n is a homeomorphism, it sends meager sets to
meager sets, so B ∩ I(B) is comeager in Nsn . Fix c ∈ B ∩ I(B) ∩Nsn ,
and observe that c G0 I(c), the desired contradiction.

Corollary 2.1.2 (Kechris-Solecki-Todorcevic). Suppose that B ⊆ 2N

is a non-meager set with the Baire property. Then no Baire measurable
function c : 2N → N is a coloring of G0 on B.

We use t(0) and t(1) to denote the coordinates of t ∈ 2<N×2<N. Fix
tn ∈ 2n × 2n such that {tn | n ∈ 2N + 1} is dense in 2<N × 2<N, i.e.,
∀t ∈ 2<N×2<N∃n ∈ 2N+1 (t(0) v tn(0) and t(1) v tn(1)). Recursively
define graphs H0(2n) on 2n, this time by asking that H0(22n+1) is the
graph {(s a (i), t a (i)) | i < 2 and s H0(22n) t}, and that H0(22n+2)
is the union of the graph {(s a (i), t a (i)) | i < 2 and s H0(22n+1) t}
with the singleton edge {(t2n+1(i) a (i), t2n+1(1− i) a (1− i)) | i < 2}.
Define H0 on 2N by H0 =

⋃
n∈N{(s a c, t a c) | c ∈ 2N and s H0(2n) t},

and let E′0(2n) and E′0 denote the corresponding equivalence relations.
Again, all H0-independent sets with the Baire property are meager.

Proposition 2.1.3. The equivalence relation E′0 is generically ergodic.

Proof. This follows directly from Propositions 1.3.6 and 1.3.8.

The following observation ties all of these objects together.

Proposition 2.1.4. Suppose that E and F are equivalence relations on
2N with the Baire property, E ∩G0 = ∅, and E′0 \∆(2N) ⊆ E \F . Then
there is a continuous embedding π : 2N → 2N of E0 into the restriction
of E to a partial transversal of F .

Proof. As E is an equivalence relation with the Baire property, The-
orem 1.3.3 ensures that all of its classes have the Baire property. As
E is disjoint from G0, Proposition 2.1.1 therefore implies that every
equivalence class of E is meager, so one more application of Theorem
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1.3.3 ensures that E is meager. As F is disjoint from H0, an analogous
argument shows that F is also meager.

Fix a decreasing sequence of dense open sets Un ⊆ (2N× 2N) \∆(2N)
whose intersection is disjoint from E ∪ F . We will now recursively
construct natural numbers kn ∈ N and functions πn : 2n → 2kn . We
begin by setting k0 = 0. Given kn and πn, set kn+1 = kn + `n + 1
and πn+1(s a (i)) = πn(s) a un(i) a (i), where both `n ∈ N and
un ∈ 2`n × 2`n are chosen via a recursion of finite length, so as to
ensure that Nπn(s)aun(i)×Nπn(t)aun(1−i) ⊆ Un for all i < 2 and s, t ∈ 2n,
and πn((i)n) a un(i) = tkn+`n(i) for all i < 2. Define π : 2N → 2N

by π(c) =
⋃
n∈N πn(c � n). The first condition ensures that π is an

injective cohomomorphism from E0 to E ∪ F . As E0 is generated by⋃
n∈N{((0)n a c, (1)n a c) | c ∈ 2N}, and the latter condition implies

that π is a homomorphism from this graph to H0, it follows that it is
a homomorphism from E0 \ ∆(2N) to E′0 \ ∆(2N), and therefore from
E0 \∆(2N) to E \ F .

2.2. Reflection. Suppose that k is a positive integer and R ⊆ Xk.
We say that a sequence (Xi)i<k of subsets of X is R-independent if∏

i<kXi is disjoint from R.

Proposition 2.2.1. Suppose that k is a positive integer, X is a Polish
space, R ⊆ Xk is analytic, and (Ai)i<k is an R-independent sequence
of analytic subsets of X. Then there is an R-independent sequence
(Bi)i<k of Borel subsets of X such that Ai ⊆ Bi for all i < k.

Proof. As all of the Ai and R are analytic, it follows that for each i < k,
the property (of Ai) that

∏
i<k Ai is R-independent is Π1

1-on-Σ1
1, thus

the desired result can be obtained as a consequence of k successive
applications of Theorem 1.4.1.

We say that a set A ⊆ X is R-independent if the constant sequence
of length k with value A is R-independent.

Proposition 2.2.2. Suppose that k is a positive integer, X is a Polish
space, R ⊆ Xk is analytic, and A ⊆ X is an R-independent analytic
set. Then there is an R-independent Borel set B ⊇ A.

Proof. Proposition 2.2.1 yields an R-independent sequence (Bi)i<k of
Borel subsets of X with A ⊆ Bi for all i < k. Set B =

⋂
i<k Bi.

As a corollary, we obtain the following.

Proposition 2.2.3. Suppose that k is a positive integer, X is a Po-
lish space, E is an analytic equivalence relation on X, F is a Borel
subequivalence relation of E, and A ⊆ X is an analytic set on which
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E has index at most k over F . Then there is an F -invariant Borel set
B ⊇ A on which E has index at most k over F .

Proof. As E is analytic and F is co-analytic, it follows that the set
R = {(x0, . . . , xk) | ∀i, j ≤ k (i 6= j =⇒ xi (E \ F ) xj)} is analytic.
As F is analytic, F -saturations of analytic sets are analytic. Mim-
icking the proof of Proposition 1.4.2, by applying Proposition 2.2.2
infinitely many times, we obtain an increasing sequence (Bn)n∈N of
Borel supersets of A, on which E has index at most k over F , such
that [Bn]F ⊆ Bn+1 for all n ∈ N. Define B =

⋃
n∈NBn.

2.3. Cores. Let [X]n denote the family of subsets of X of cardinal-
ity n, equipped with the standard Borel structure it inherits from
Xn. Let [X]nE denote the subspace consisting of those sets which are
contained in a single E-class, and let [X]nE,F denote the further sub-
space consisting of such sets which are partial transversals of F . Set
[X]<ℵ0 =

⋃
n∈N[X]n and [X]<ℵ0E,F =

⋃
n∈N[X]nE,F , equipping both with

the corresponding standard Borel structures.
We say that two subsets of X are F -disjoint if their F -saturations

are disjoint. We say that a family A ⊆ [X]<ℵ0E,F is an F -antichain if
any two distinct elements of A are F -disjoint, and we say that such a
set is an E-local F -antichain if

⋃
A is contained in a single E-class.

We say that a set C ⊆ X is a core for A if the intersection of C with
every non-empty set in A is itself non-empty. For each non-empty set
a′ ∈ [X]<ℵ0E,F , define [a′,A ]F = {[a]F | a ∈ A and a′ ⊆ [a]F}.

Proposition 2.3.1. Suppose that X is a Polish space, E is an analytic
equivalence relation on X, F is a Borel subequivalence relation of E,
and A ⊆ [X]<ℵ0E,F is an analytic family of sets of bounded finite cardinal-
ity such that the E-local F -antichains of sets in A also have bounded
finite cardinality. Then there is an F -invariant Borel core C ⊆ X for
A on which E has bounded finite index over F .

Proof. Recursively define f(m,n) = m(mn)m +
∑

0<k<m f(k, n), for
positive integers m and n. We will establish the stronger fact that
if every set in A has cardinality at most m, and every E-local F -
antichain of sets in A has cardinality at most n, then there is an
F -invariant Borel core for A on which E has index at most f(m,n)
over F .

We proceed by induction on m. The base case m = 1 is just a
rephrasing of Proposition 2.2.3, so suppose that m ≥ 2 and we have
already established the proposition strictly below m. We will construct
analytic families Ak ⊆ A and A ′

k ⊆ [X]kE,F , as well as F -invariant Bor-
el sets Bk ⊆ X, which satisfy the following conditions:



14 J.D. CLEMENS, C.T. CONLEY, AND B.D. MILLER

(1) ∀k < m Ak = {a ∈ Ak+1 | a ∩Bk+1 = ∅}.
(2) ∀1 ≤ k ≤ m A ′

k = {a′ ∈ [X]kE,F | |[a′,Ak]F | > (mn)m−k}.
(3) ∀1 ≤ k ≤ m Bk is a core for A ′

k .
(4) ∀1 ≤ k ≤ m E has index at most f(k, n) over F on Bk.

We proceed by reverse recursion, beginning with Am = A , A ′
m = ∅,

and Bm = ∅. Suppose now that 0 < k < m and we have already found
Ak+1, A ′

k+1, and Bk+1. Conditions (1) and (2) then yield Ak and A ′
k .

Lemma 2.3.2. Suppose that a′ ∈ A ′
k and x ∈ [a′]E \ [a′]F . Then the

family [a′ ∪ {x},Ak]F has cardinality at most (mn)m−(k+1).

Proof. We can clearly assume that [a′ ∪ {x},Ak]F 6= ∅. Given any set
a ∈ [a′ ∪ {x},Ak]F , it follows from condition (1) that a ∩ Bk+1 = ∅,
thus (a′ ∪ {x}) ∩ Bk+1 = ∅. Condition (3) therefore ensures that that
a′ ∪{x} /∈ A ′

k+1, so |[a′ ∪{x},Ak+1]F | ≤ (mn)m−(k+1) by condition (2).
As condition (1) also implies that Ak ⊆ Ak+1, the lemma follows.

Lemma 2.3.3. Suppose that a′ ∈ A ′
k and b ⊆ [a′]E \ [a′]F has car-

dinality at most mn. Then there exists a ∈ Ak with a′ ⊆ [a]F and
[a]F ∩ [b]F = ∅.

Proof. Lemma 2.3.2 ensures that |[a′∪{x},Ak]F | ≤ (mn)m−(k+1) for all
x ∈ b, so [a′,Ak]F contains at most (mn)m−k sets which intersect [b]F ,
thus condition (2) ensures that [a′,Ak]F contains a set which does not
intersect [b]F .

Lemma 2.3.4. Every E-local F -antichain of sets in A ′
k has cardinality

at most n.

Proof. Suppose, towards a contradiction, that (a′i)i≤n is an injective
enumeration of an E-local F -antichain of sets in A ′

k . By repeatedly
applying Lemma 2.3.3, we can recursively find a sequence (ai)i≤n of sets
in Ak with a′i ⊆ [ai]F for all i ≤ n, and [ai]F∩[aj]F = ∅ for all i < j ≤ n.
In particular, it follows that (ai)i≤n is an injective enumeration of an
E-local F -antichain of sets in Ak, the desired contradiction.

As the induction hypothesis ensures that there is an F -invariant Bor-
el core Bk ⊆ X for A ′

k on which E has index at most f(k, n) over F ,
this completes the recursive construction. Define A0 =

⋃
A0.

Lemma 2.3.5. The relation E has index at most m(mn)m over F on
A0.

Proof. Given x ∈ X, fix a maximal F -antichain Ax ⊆ A0 ∩ [x]<ℵ0E .
Then |Ax| ≤ n, so the set Ax =

⋃
Ax has cardinality at most mn,

and its F -saturation is a core for A0 ∩ [x]<ℵ0E . If y ∈ Ax, then there
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exists a ∈ Ax such that y ∈ a. As a ∈ A0, condition (1) ensures that
a ∩ B1 = ∅, thus y /∈ B1. Condition (3) then implies that {y} /∈ A ′

1 ,
so |[{y},A1]F | ≤ (mn)m−1 by condition (2). As A0 ⊆ A1 by condition
(1), it follows that |[{y},A0]F | ≤ (mn)m−1 as well, and since there are
only (mn)-many possibilities for y, the desired result follows.

Proposition 2.2.3 now ensures that that there is an F -invariant Borel
set B0 ⊇ A0 on which E has index at most m(mn)m over F . It only
remains to note that for each a ∈ A , there is a least k ≤ m for which
a ∈ Ak, in which case a ∩Bk is non-empty, thus the set B =

⋃
k<mBk

is a core for A .

Remark 2.3.6. Similar results appear in [CCCM11].

Given any binary relation R on X, we will also use R to denote the
extension to [X]<ℵ0E,F given by a R b ⇐⇒ a× b ⊆ R.

Proposition 2.3.7. Suppose that X is a Polish space, E is an analytic
equivalence relation on X, F is a Borel subequivalence relation of E,
and (A ,A ′) is an (E \ F )-independent pair of analytic subfamilies
of [X]<ℵ0E,F of sets of bounded finite cardinality. Then there is an E-
invariant Borel set B ⊆ X \

⋃
A ′ for which there is an F -invariant

Borel core C ⊆ X for A ∩ [X \ B]<ℵ0 on which E has bounded finite
index over F .

Proof. Set A′ = [
⋃

A ′]E. If every set in A ′ has cardinality at most n,
then every E-local F -antichain of sets in A ∩ [A′]<ℵ0 has cardinality at
most n, so Proposition 2.3.1 ensures that there is an F -invariant Borel
core C ⊆ X for A ∩ [A′]<ℵ0 on which E has bounded finite index over
F . As the analytic set A =

⋃
(A ∩ [X \ C]<ℵ0) is disjoint from the

E-invariant analytic set A′, Proposition 1.4.2 ensures that there is an
E-invariant Borel set B ⊆ X separating A from A′, and our choice of
A ensures that C is a core for A ∩ [X \B]<ℵ0 .

2.4. Main results. Suppose that R1, R2 ⊆ X×X and S1, S2 ⊆ Y ×Y .
We say that a function π : X → Y is a homomorphism from (R1, R2)
to (S1, S2) if it is simultaneously a homomorphism from R1 to S1 and
a homomorphism from R2 to S2.

Theorem 2.4.1. Suppose that X is a Polish space, E is an analytic
equivalence relation on X, F is a Borel equivalence relation on X, and
G is an analytic graph on X. Then exactly one of the following holds:

(1) There is a Borel set B ⊆ X, off of which E has σ-bounded finite
index over E∩F , for which there is a smooth Borel equivalence
relation E ′ ⊇ E such that E ′∩G has a Borel ℵ0-coloring on B.
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(2) There is a continuous homomorphism φ : 2N → X from the pair
(E′0 \∆(2N),G0) to the pair (E \ F,G).

Proof. To see that conditions (1) and (2) are mutually exclusive, sup-
pose that both hold, and let B0, E0, E ′0, F0, and G0 denote the pull-
backs of B, E, E ′, F , and G through φ. Note that E′0 ⊆ E0 ⊆ E ′0, so the
fact that E ′0 is smooth, along with Propositions 1.3.8 and 2.1.3, ensures
that there is a comeager E ′0-class C0 ⊆ 2N, thus G0 � C0 ⊆ E ′0 ∩ G0.
As there is a Borel ℵ0-coloring of (E ′ ∩ G) � B, there is also a Borel
ℵ0-coloring of (E ′0 ∩ G0) � B0, and therefore of G0 � (B0 ∩ C0). As
G0 ⊆ G0, Corollary 2.1.2 ensures that B0 is meager. However, the
fact that E′0 ∩ F0 = ∆(2N) ensures that E′0 has σ-bounded finite index
over ∆(2N) on 2N \ B0, so there is a non-meager Borel set D0 ⊆ 2N on
which E′0 is finite, and therefore smooth, by Proposition 1.6.3. But this
contradicts Propositions 1.3.8 and Proposition 2.1.3.

It remains to show that at least one of conditions (1) and (2) holds.
For notational purposes, it will be convenient to assume that X = NN.
To see that this special case is sufficient to establish the theorem, note
that we can assume there is a continuous surjection ψ : NN → X, and
let E0, F0, and G0 denote the pullbacks of E, F , and G through ψ.
If B0 and E ′0 witness the analog of condition (1) for the pullbacks,
then their pushforwards witness the weakening of condition (1) for the
original structures in which all of the sets involved are merely analytic,
rather than Borel. However, this problem can be rectified by appealing
to reflection (Propositions 1.4.2, 2.2.2, and 2.2.3). On the other hand,
if the analog of condition (2) holds of the pullbacks as witnessed by
φ : 2N → NN, then the function π = ψ ◦ φ witnesses that condition (2)
holds of the original structures.

As the sets E \ F and G are analytic, and we can clearly assume
that they are non-empty, Proposition 1.2.2 yields trees TE\F and TG
on (N× N)× N for which E \ F = p[TE\F ] and G = p[TG].

We recursively define increasing sequences (Bα)α<ω1 and (Cα)α<ω1 of
Borel subsets of X, as well as a decreasing sequence (Eα)α<ω1 of smooth
Borel superequivalence relations of E, such that Eα ∩ G has a Borel
ℵ0-coloring on Bα, and E has σ-finite bounded index over E∩F on Cα,
for all α < ω1. We begin by setting B0 = C0 = ∅ and E0 = NN × NN.
At limit ordinals λ < ω1, we set Bλ =

⋃
α<λB

α, Cλ =
⋃
α<λC

α,
and Eλ =

⋂
α<λE

α. In order to describe the construction at successor
ordinals, we must first introduce some terminology and establish several
preliminary results.

An approximation is a triple of the form a = (na, φa, (ψak)k<na), where
na ∈ N, φa : 2n

a → Nna , ψak : 2n
a−(k+1) → Nna for all even k < na, and
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ψak : [tk(0)]E′
0(2k) × [tk(1)]E′

0(2k) × 2n
a−(k+1) → Nna for all odd k < na.

An approximation a is extended by an approximation b if na ≤ nb,
s v t =⇒ φa(s) v φb(t) for all s ∈ dom(φa) and t ∈ dom(φb),
and s v t =⇒ ψak(s) v ψbk(t) for all k < na, s ∈ dom(ψak), and
t ∈ dom(ψbk). When nb = na+ 1, we say that φb is a one-step extension
of φa.

A configuration is a triple of the form γ = (nγ, φγ, (ψγk)k<nγ ), where
nγ ∈ N, φγ : 2n

γ → NN, ψγk : 2n
γ−(k+1) → NN for all even k < nγ, and

ψγk : [tk(0)]E′
0(2k)× [tk(1)]E′

0(2k)×2n
γ−(k+1) → NN for all odd k < nγ, with

((φγ(sk a (0) a s), φγ(sk a (1) a s)), ψγk(s)) ∈ [TG]

for all even k < nγ and s ∈ 2n
γ−(k+1), and

((φγ(r0 a (0) a s), φγ(r1 a (1) a s)), ψγk(r0, r1, s)) ∈ [TE\F ]

for all odd k < nγ, r0 ∈ [tk(0)]E′
0(2k), r1 ∈ [tk(1)]E′

0(2k), and s ∈ 2n
γ−(k+1).

We say that a configuration γ is compatible with an approximation
a if na = nγ, φa(s) v φγ(s) for all s ∈ dom(φa), and ψak(s) v ψγk(s) for
all k < na and s ∈ dom(ψak). We say that γ is compatible with Bα if
φγ(s) /∈ Bα for all s ∈ dom(φγ), and similarly for Cα. And we say that
γ is compatible with Eα if φγ(s) Eα φγ(t) for all s, t ∈ dom(φγ).

We say that a is α-terminal if for no one-step extension b of a is there
a configuration compatible with b, Bα, Cα, and Eα. In particular, if a
is not α-terminal, then it has a compatible configuration.

An approximation a is even if na is even. For such approximations,
we use Aα(a) to denote the analytic set of points of the form φγ(sna),
where γ ranges over configurations compatible with a, Bα, Cα, and Eα.

Lemma 2.4.2. Suppose that a is an even approximation with the prop-
erty that Aα(a) is not (Eα∩G)-independent. Then a is not α-terminal.

Proof. Fix configurations γ0 and γ1, compatible with a, Bα, Cα, and
Eα, such that φγ0(sna) (Eα ∩G) φγ1(sna). Then there exists b ∈ NN

with the property that ((φγ0(sna), φ
γ1(sna)), b) ∈ [TG]. Let γ denote the

configuration given by

• nγ = na + 1.
• ∀i < 2∀s ∈ 2n

a
φγ(s a (i)) = φγi(s).

• ψγna(∅) = b.
• ∀i < 2∀k < na even∀s ∈ 2n

a−(k+1) ψγk(s a (i)) = ψγik (s).
• ∀i < 2∀k < na odd∀r0 ∈ [tk(0)]E′

0(2k)∀r1 ∈ [tk(1)]E′
0(2k)∀s ∈ 2n

a−(k+1)

ψγk(r0, r1, s a (i)) = ψγik (r0, r1, s).

Note that γ is compatible with Bα, Cα, and Eα. As the unique ap-
proximation b with which γ is compatible is a one-step extension of a,
it follows that a is not α-terminal.
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Lemma 2.4.3. Suppose that a is an α-terminal even approximation.
Then there is an (Eα ∩G)-independent Borel set Bα(a) ⊇ Aα(a).

Proof. As Lemma 2.4.2 ensures that Aα(a) is an analytic (Eα ∩ G)-
independent set, Proposition 2.2.2 yields the desired set.

An approximation a is odd if na is odd. For such a, we use Aα(a, i) to
denote the analytic family of sets of the form φγ([tna(i)]E′

0(2na )), where
γ ranges over configurations compatible with a, Bα, Cα, and Eα.

Lemma 2.4.4. Suppose that a is an odd approximation with the prop-
erty that (Aα(a, 0),Aα(a, 1)) is not (E \F )-independent. Then a is not
α-terminal.

Proof. Fix configurations γ0 and γ1, compatible with a, Bα, Cα, and
Eα, for which φγ0([tna(0)]E′

0(2n
a

)) × φγ1([tna(1)]E′
0(2n

a
)) ⊆ E \ F . Then

there exists f : [tna(0)]E′
0(2na ) × [tna(1)]E′

0(2na ) → NN with the property
that ((φγ0(r0), φγ1(r1)), f(r0, r1)) ∈ [TE\F ] for all r0 ∈ [tna(0)]E′

0(2na ) and
r1 ∈ [tna(1)]E′

0(2na ). Let γ denote the configuration given by

• nγ = na + 1.
• ∀i < 2∀s ∈ 2n

a
φγ(s a (i)) = φγi(s).

• ∀r0 ∈ [tna(0)]E′
0(2na )∀r1 ∈ [tna(1)]E′

0(2na ) ψ
γ
na(r0, r1, ∅) = f(r0, r1).

• ∀i < 2∀k < na even∀s ∈ 2n
a−(k+1) ψγk(s a (i)) = ψγik (s).

• ∀i < 2∀k < na odd∀r0 ∈ [tk(0)]E′
0(2k)∀r1 ∈ [tk(1)]E′

0(2k)∀s ∈ 2n
a−(k+1)

ψγk(r0, r1, s a (i)) = ψγik (r0, r1, s).

Note that γ is compatible with Bα, Cα, and Eα. As the unique ap-
proximation b with which γ is compatible is a one-step extension of a,
it follows that a is not α-terminal.

Lemma 2.4.5. Suppose that a is an α-terminal odd approximation.
Then there exists an E-invariant Borel set Dα(a) ⊆ NN \

⋃
Aα(a, 1)

for which there is an (E ∩ F )-invariant Borel core Cα(a) ⊆ NN for
Aα(a, 0) ∩ [NN \ Dα(a)]<ℵ0 on which E has bounded finite index over
E ∩ F .

Proof. As the pair (Aα(a, 0),Aα(a, 1)) of analytic sets is (E \F )-indep-
endent by Lemma 2.4.4, Proposition 2.3.7 yields the desired sets.

Let Tαeven and Tαodd be the sets of α-terminal even and odd approxima-
tions. Set Bα+1 = Bα∪

⋃
a∈Tαeven

Bα(a) and Cα+1 = Cα∪
⋃
a∈Tαodd

Cα(a),

and let Eα+1 denote the smooth Borel equivalence relation given by

x Eα+1 y ⇐⇒ (x Eα y and ∀a ∈ Tαodd (x ∈ Dα(a) ⇐⇒ y ∈ Dα(a))).

This completes the recursive construction.
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Lemma 2.4.6. Suppose that a is an approximation whose one-step
extensions are all α-terminal. Then a is (α + 1)-terminal.

Proof. Suppose, towards a contradiction, that there is a one-step ex-
tension b of a for which there is a configuration γ compatible with b,
Bα+1, Cα+1, and Eα+1. If nb is even, then the fact that b is α-terminal
ensures that φγ(snb) ∈ Bα(b), contradicting the fact that γ is compati-
ble with Bα+1. If nb is odd, then the fact that b is α-terminal ensures
that φγ(2n

b
) intersects Cα(b) ∪ Dα(b), contradicting the fact that γ is

compatible with Cα+1 and Eα+1.

As every α-terminal approximation is β-terminal whenever α < β,
and there are only countably many approximations, there exists α < ω1

such that every (α + 1)-terminal approximation is α-terminal.
If the unique approximation a with the property that na = 0 is α-

terminal, then X = Bα+1∪Cα+1. Our original requirements that Eα+1

is smooth, Eα+1 ∩ G has a Borel ℵ0-coloring on Bα+1, and E has σ-
finite bounded index over E ∩F on Cα+1 therefore ensure that the set
B = Bα+1 and the relation E ′ = Eα+1 satisfy condition (1).

Otherwise, repeated application of Lemma 2.4.6 gives rise to a se-
quence (an)n∈N of non-α-terminal approximations such that an+1 is a
one-step extension of an. Define a continuous function φ : 2N → NN by
setting φ(c) =

⋃
n∈N φ

an(c � n). For each even k ∈ N, define a continu-
ous function ψk : 2N → NN by ψk(c) =

⋃
n>k ψ

an
k (c � (n− k − 1)). And

for each odd k ∈ N, define ψk : [tk(0)]E′
0(2k)× [tk(1)]E′

0(2k)× 2N → NN by
ψk(r0, r1, c) =

⋃
n>k ψ

an
k (r0, r1, c � (n− k − 1)).

To see that φ is a homomorphism from G0 to G, we show that if
c ∈ 2N and k ∈ N is even, then φ(sk a (0) a c) G φ(sk a (1) a c). In
fact, we show that ((φ(sk a (0) a c), φ(sk a (1) a c)), ψk(c)) ∈ [TG], or
equivalently, that ((φan(sk a (0) a s), φan(sk a (1) a s)), ψank (s)) ∈ TG
for all n > k, where s = c � (n − k − 1). Towards this end, it is
sufficient to observe that if γn is a configuration compatible with an,
then ((φγn(sk a (0) a s), φγn(sk a (1) a s)), ψγnk (s)) ∈ [TG].

To see that φ is a homomorphism from E′0 \∆(2N) to E \F , we show
that if c ∈ 2N, k ∈ N is odd, r0 ∈ [tk(0)]E′

0(2k), and r1 ∈ [tk(1)]E′
0(2k),

then φ(r0 a (0) a c) (E \ F ) φ(r1 a (1) a c). In fact, we show that
((φ(r0 a (0) a c), φ(r1 a (1) a c)), ψk(r0, r1, c)) ∈ [TG]. Now, as
before, this latter statement is itself equivalent to the statement that
((φan(r0 a (0) a s), φan(r1 a (1) a s)), ψank (r0, r1, s)) ∈ TG for all
n > k, where s = c � (n − k − 1). Once more as before, for this it is
sufficient to note that if γn is a configuration compatible with an, then
((φγn(r0 a (0) a s), φγn(r1 a (1) a s)), ψγnk (r0, r1, s)) ∈ [TE\F ].
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Generalizing the Harrington-Kechris-Louveau Theorem, we now have
the following.

Theorem 2.4.7. Suppose that X is a Polish space and E and F are
Borel equivalence relations on X. Then exactly one of the following
holds:

(1) There is an E-smooth Borel set B ⊆ X off of which E has
σ-bounded-finite-index over E ∩ F .

(2) There is a continuous embedding π : 2N → X of E0 into the
restriction of E to a partial transversal of F .

Proof. To see that conditions (1) and (2) are mutually exclusive, sup-
pose that both hold, let B0 denote the pullback of B through π, and
observe that both B0 and its complement are E0-smooth, contradicting
Propositions 1.3.7 and 1.3.8.

To see that at least one of conditions (1) and (2) holds, let G denote
the complement of E. If condition (1) of Theorem 2.4.1 holds, then
there is a Borel set B ⊆ X, off of which E has σ-bounded finite index
over E ∩ F , for which there exists a smooth Borel equivalence relation
E ′ ⊇ E such that E ′ ∩ G has a Borel ℵ0-coloring on B. Proposition
2.2.3 then implies that B is contained in the union of countably many
E-invariant (E ′ ∩G)-independent Borel sets Bn ⊆ X. In particular, it
follows that if x, y ∈ B, then

x E y ⇐⇒ (x E ′ y and ∀n ∈ N (x ∈ Bn ⇐⇒ y ∈ Bn)),

so E � B is smooth, thus condition (1) holds.
Otherwise, condition (2) of Theorem 2.4.1 holds, yielding a continu-

ous homomorphism φ : 2N → X from (E′0\∆(2N),G0) to (E\F,G). Let-
ting E ′ and F ′ denote the pullbacks of E and F through φ, Proposition
2.1.4 then implies that there is a continuous embedding ψ : 2N → 2N of
E0 \∆(2N) into E ′ \F ′, thus φ ◦ψ is the desired continuous embedding
of E0 into the restriction of E to a partial transversal of F .

In the countable case, we obtain the following strengthening.

Theorem 2.4.8. Suppose that X is a Polish space, E and F are Borel
equivalence relations on X, and E is countable. Then exactly one of
the following holds:

(1) The relation E has σ-bounded-finite-index over E ∩ F .
(2) There is a continuous embedding of E0 into the restriction of E

to a partial transversal of F .

Proof. Although substantially easier to establish than Theorem 2.4.7,
this is a direct consequence of the latter and Proposition 1.6.1.
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The theorem also generalizes significantly beyond Polish spaces.

Theorem 2.4.9. Suppose that X is an analytic Hausdorff space and
E and F are Borel equivalence relations on X. Then exactly one of
the following holds:

(1) There is an E-smooth Borel set B ⊆ X off of which E has
σ-bounded-finite-index over E ∩ F .

(2) There is a continuous embedding of E0 into the restriction of E
to a partial transversal of F .

Proof. Our proof of Theorem 2.4.7 goes through in this generality.

We say that a set Y ⊆ X is σ(Σ1
1)-E-smooth if there is a σ(Σ1

1)-
measurable reduction of E � Y to equality on 2N. We say that E
has σ(Σ1

1)-σ-bounded finite index over F if the underlying space is the
union of countably many σ(Σ1

1) sets on which E has bounded finite
index over F .

Theorem 2.4.10. Suppose that X is an analytic Hausdorff space and
E and F are Borel equivalence relations on X. Then the following are
equivalent:

(1) There is an E-smooth Borel set B ⊆ X off of which E has
σ-bounded-finite-index over E ∩ F .

(2) There is a σ(Σ1
1)-E-smooth σ(Σ1

1) set B ⊆ X off of which E
has σ(Σ1

1)-σ-bounded finite index over E ∩ F .

Proof. It is sufficient to establish that the second condition implies the
first, and for this, it is enough to show that the former is incompatible
with the second condition of Theorem 2.4.9. But the argument given
there is sufficiently general so as to establish this as well.

We say that a subequivalence relation F of E has countable index if
every E-class is the union of countably many F -classes.

Theorem 2.4.11. Suppose that X is a Polish space, E is a smooth
Borel equivalence relation on X, and F is a countable index Borel
subequivalence relation of E. Then F is also smooth.

Proof. Note that if F is non-smooth, then Theorem 2.4.7 (or just the
Harrington-Kechris-Louveau Theorem) yields a Borel set on which F
is both countable and non-smooth, and therefore on which E is also
non-smooth, by Proposition 1.6.2.

Along similar lines, we have the following.

Theorem 2.4.12. Suppose that X is a Polish space, E is a Borel
equivalence relation on X, and F is a finite index Borel subequivalence
relation of E. Then E is smooth if and only if F is smooth.
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Proof. Note that if either E or F is non-smooth, then Theorem 2.4.7
(or just the Harrington-Kechris-Louveau Theorem) yields a Borel set
on which the corresponding equivalence relation is both countable and
non-smooth, and therefore on which both are non-smooth, by Propo-
sition 1.6.4.

3. Rigidity

Here we establish our rigidity results connecting each Borel equiv-
alence relation E with the corresponding σ-ideal IE generated by the
family of E-smooth Borel sets. In §3.1, we give several further corol-
laries of reflection. And in §3.2, we present our main results.

3.1. Reflection. We begin by checking that smoothness is closed un-
der saturation.

Proposition 3.1.1. Suppose that X is a Polish space, E is a Borel
equivalence relation, and A ⊆ X is an E-smooth analytic set. Then so
too is [A]E.

Proof. Suppose that π : A → 2N is a Borel reduction of E � A to
equality, and observe that the function π′ : [A]E → 2N given by

π′(x) = c ⇐⇒ ∃w ∈ A (w E x and π(w) = c)

is a σ(Σ1
1)-measurable reduction of E � [A]E to equality, thus Theorem

2.4.10 (or just the analogous consequence of the Harrington-Kechris-
Louveau Theorem) ensures that [A]E is E-smooth.

We next check that E-smoothness is closed under countable unions.
In particular, it follows that IE is the downwards closure of the family
of all E-smooth Borel sets.

Proposition 3.1.2. Suppose that X is a Polish space, E is a Bor-
el equivalence relation on X, and (An)n∈N is a sequence of E-smooth
analytic subsets of X. Then

⋃
n∈NAn is also E-smooth.

Proof. By Proposition 3.1.1, we can assume that each of the sets An
is E-invariant. Fix Borel reductions πn : An → 2N of E � An to
equality, and note that the map π :

⋃
n∈NAn → 2N × N, given by

π(x) = (πn(x), n) for x ∈ An \
⋃
m<nAm, is a σ(Σ1

1)-measurable re-
duction of E �

⋃
n∈NAn to equality, thus Theorem 2.4.10 (or just the

analogous consequence of the Harrington-Kechris-Louveau Theorem)
ensures that

⋃
n∈NAn is E-smooth.

The following result implies that E-smooth analytic sets are in IE.
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Proposition 3.1.3. Suppose that X is a Polish space, E is a Borel
equivalence relation on X, and A ⊆ X is an E-smooth analytic set.
Then there is an E-smooth Borel set B ⊇ A.

Proof. Theorem 2.4.9 (or just the analogous generalization of the Har-
rington-Kechris-Louveau Theorem) ensures that A is E-smooth if and
only if there is no continuous function π : 2N → X satisfying the fol-
lowing conditions:

(1) The pre-image of A under π is comeager.
(2) The set {c ∈ 2N | ∀d ∈ [c]E0 π(c) E π(d)} is comeager.
(3) The set {(c, d) ∈ 2N × 2N | ¬π(c) E π(d)} is comeager.

As Proposition 1.1.2 and Theorems 1.3.5 and 1.5.1 ensure that this
is a Π1

1-on-Σ1
1 property of A, the desired result is a consequence of

Theorem 1.4.1.

We say that a set R ⊆ X×Y induces a partial function from X/E to
[Y/F ]≤k if for all x ∈ X, the restriction of F to

⋃
w∈[x]E

Rw has at most
k classes. When R is analytic, we say that such a partial function is
smooth-to-one if the analytic set

⋃
z∈[y]F

Rz is E-smooth, for all y ∈ Y .

Proposition 3.1.4. Suppose that k is a positive integer, X and Y are
Polish spaces, E is a Borel equivalence relation on X, F is a Borel
equivalence relation on Y , and R ⊆ X × Y is an analytic set which
induces a smooth-to-one partial function from X/E to [Y/F ]≤k. Then
there is an (E × F )-invariant Borel set S ⊇ R which also induces a
smooth-to-one partial function from X/E to [Y/F ]≤k.

Proof. As E is analytic and F is co-analytic, the property (of R) of
inducing a partial function from X/E to [Y/F ]≤k is Π1

1-on-Σ1
1. As E

is Borel and F and R are analytic, Theorem 2.4.9 (or just the analo-
gous generalization of the Harrington-Kechris-Louveau Theorem) en-
sures that this partial function is smooth-to-one if and only if there do
not exist y ∈ Y and a continuous function π : 2N → X satisfying the
following conditions:

(1) The pre-image of
⋃
z∈[y]F

Rz under π is comeager.

(2) The set {c ∈ 2N | ∀d ∈ [c]E0 π(c) E π(d)} is comeager.
(3) The set {(c, d) ∈ 2N × 2N | ¬π(c) E π(d)} is comeager.

As Proposition 1.1.2 and Theorems 1.3.5 and 1.5.1 ensure that this is
a Π1

1-on-Σ1
1 property of R, it follows that so too is the property (of

R) of inducing a smooth-to-one partial function from X/E to [Y/F ]≤k.
Mimicking the proof of Proposition 1.4.2, by applying Theorem 1.4.1
infinitely many times, we obtain a sequence (Rn)n∈N of Borel supersets
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of R, inducing smooth-to-one partial functions from X/E to [Y/F ]≤k,
such that [Rn]E×F ⊆ Rn+1, for all n ∈ N. Define R =

⋃
n∈NRn.

3.2. Main results. We begin this section by showing that appropri-
ate morphisms between Borel equivalence relations are automatically
morphisms between the corresponding smooth ideals.

Proposition 3.2.1. Suppose that X and Y are Polish spaces, E and
F are Borel equivalence relations on X and Y , and φ : X → Y is a
smooth-to-one Borel homomorphism from E to F . Then φ is a coho-
momorphism from IE to IF .

Proof. Suppose, towards a contradiction, that there is a set W ⊆ X for
which W /∈ IE but φ(W ) ∈ IF . Fix an F -smooth Borel set B ⊇ φ(W ),
as well as a Borel reduction π : B → 2N of F � B to equality, and
observe that the set A = φ−1(B) is E-non-smooth, since W ⊆ A.
By Theorem 2.4.7 (or just the Harrington-Kechris-Louveau Theorem),
there is a continuous embedding ψ : 2N → A of E0 into E � A. As
Proposition 1.3.7 ensures that E0 is generically ergodic, Proposition
1.3.8 yields a comeager Borel set C ⊆ 2N on which π ◦φ◦ψ is constant.
Let c denote this constant value. As φ is smooth-to-one, it follows that
(π ◦ φ)−1(c) is E-smooth. But then ψ � C is a reduction of E0 � C to
a smooth Borel equivalence relation, contradicting Propositions 1.3.7
and 1.3.8.

Proposition 3.2.2. Suppose that X and Y are Polish spaces, E and
F are Borel equivalence relations on X and Y , and φ : X → Y is a
Borel reduction of E to F . Then φ is a reduction of IE to IF .

Proof. In light of Proposition 3.2.1, it is enough to show that if W ⊆ X
and W ∈ IE, then φ(W ) ∈ IF . Towards this end, fix an E-smooth
Borel set A ⊇ W , and appeal to Theorem 1.5.2 to obtain a σ(Σ1

1)-
measurable function ψ : φ(A) → A such that y = (φ ◦ ψ)(y) for all
y ∈ φ(A). As any such function is a reduction of F � φ(A) to E � A,
Theorem 2.4.10 (or just the analogous consequence of the Harrington-
Kechris-Louveau Theorem) ensures that φ(A) is F -smooth, in which
case Proposition 3.1.3 yields an F -smooth Borel set B ⊇ φ(A). As
φ(W ) ⊆ B, it follows that φ(W ) ∈ IF .

We next provide weakenings of the converses of these results.

Theorem 3.2.3. Suppose that X and Y are Polish spaces, E and F
are Borel equivalence relations on X and Y , and φ : X → Y is Bor-
el. Then φ is a cohomomorphism from IE to IF if and only if there
is an E-smooth Borel set off of which φ is a smooth-to-one σ-quasi-
homomorphism from E to F .
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Proof. Suppose first that φ is a cohomomorphism from IE to IF , and
let F ′ denote the pullback of F through φ. Proposition 3.2.2 then
implies that IF ′ ⊆ IE, so there is no continuous embedding of E0 into
the restriction of E to a partial transversal of F ′, thus Theorem 2.4.7
yields an E-smooth Borel set B ⊆ X off of which E has σ-bounded
finite index over E ∩ F ′. As the restriction of φ to any set on which E
has bounded finite index over E∩F ′ is a quasi-homomorphism from the
corresponding restriction of E to F , it follows that φ is a smooth-to-one
σ-quasi-homomorphism from E to F off of B.

To establish the converse, it is sufficient to consider the special case
in which φ is a smooth-to-one quasi-homomorphism from E to F . To-
wards this end, again let F ′ denote the pullback of F through φ, and
note that φ is a smooth-to-one homomorphism from E ∩ F ′ to F , by
Theorem 2.4.12. As the latter also ensures that IE∩F ′ ⊆ IE, and
Proposition 3.2.1 implies that φ is a cohomomorphism from IE∩F ′ to
IF , it follows that φ is also a cohomomorphism from IE to IF .

Theorem 3.2.4. Suppose that X and Y are Polish spaces, E and F
are Borel equivalence relations on X and Y , and φ : X → Y is Borel.
Then φ is a reduction of IE to IF if and only if there is an E-smooth
Borel set, whose image under φ is F -smooth, off of which φ is a σ-
quasi-reduction of E to F .

Proof. Suppose first that φ is a reduction of IE to IF , and once more
let F ′ denote the pullback of F through φ. Proposition 3.2.2 then
implies that IE = IF ′ , so there is no continuous embedding of E0 into
the restriction of either E or F ′ to a partial transversal of the other,
thus two applications of Theorem 2.4.7 yield an E-smooth Borel set
B ⊆ X (whose image under φ is necessarily F -smooth) off of which E
and F ′ have σ-bounded finite index over E ∩ F ′. As the restriction of
φ to any set on which E and F ′ have bounded finite index over E ∩F ′
is a quasi-reduction of E to F , it follows that φ is a σ-quasi-reduction
of E to F off of B.

Proposition 3.1.2 ensures that in order to establish the converse, it
is sufficient to consider the special case in which φ is a quasi-reduction
of E to F . In light of Theorem 3.2.3, it is enough to show that φ
is a homomorphism from IE to IF . Towards this end, again let F ′

denote the pullback of F through φ. As two applications of Theorem
2.4.12 ensure that IE ⊆ IE∩F ′ ⊆ IF ′ , and Proposition 3.2.2 implies
that φ is a homomorphism from IF ′ to IF , it follows that φ is also a
homomorphism from IE to IF .
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In appropriate special cases, we can now obtain characterizations of
the existence of morphisms between smooth ideals.

Theorem 3.2.5. Suppose that X and Y are Polish spaces, E and F
are Borel equivalence relations on X and Y , and E or F is countable.
Then there is a Borel cohomomorphism from IE to IF if and only if
there is a smooth-to-one Borel quasi-homomorphism from E to F .

Proof. In light of Theorem 3.2.3 (and the fact that a countable union of
smooth-to-one Borel quasi-homomorphisms, whose domains have pair-
wise disjoint E-saturations, is itself a smooth-to-one Borel σ-quasi-
homomorphism), it is sufficient to show that if B ⊆ X is a Borel set on
which there is a smooth-to-one Borel quasi-homomorphism φ : B → Y
from E to F , then there is an E-invariant Borel set C ⊇ B on which φ
extends to a smooth-to-one Borel quasi-homomorphism from E to F .

To handle the case that E is countable, set C = [B]E, appeal to
Theorem 1.5.1 to obtain a Borel retraction ψ : C → B whose graph is
contained in E, and observe that φ ◦ ψ is the desired extension.

To handle the case that F is countable, fix a positive integer k such
that graph(φ) induces a smooth-to-one partial function from X/E to
[Y/F ]≤k, and apply Proposition 3.1.4 to obtain an (E × F )-invariant
Borel set R ⊇ graph(φ) which induces a smooth-to-one partial function
from X/E to [Y/F ]≤k. By Theorem 1.5.1, the set C = projX(R) is Bor-
el, and there is a Borel function ψ : C → Y such that graph(ψ) ⊆ R. By
redefining ψ to agree with φ on B, we obtain the desired extension.

Theorem 3.2.6. Suppose that X and Y are Polish spaces, E and F
are Borel equivalence relations on X and Y , E or F is countable, and
F has uncountably many classes. Then there is a Borel reduction of IE
to IF if and only if there is a Borel quasi-reduction of E to F ×∆(N).

Proof. By Theorem 2.4.7 (or just Silver’s Theorem), every smooth
Borel equivalence relation is Borel reducible to F . So by Theorem
3.2.4 (and the fact that a countable union of Borel quasi-reductions,
whose domains have pairwise disjoint E-saturations and whose ranges
have pairwise disjoint (F ×∆(N))-saturations, is itself a Borel σ-quasi-
reduction), it is enough to show that if B ⊆ X is a Borel set for which
there is a Borel quasi-reduction φ : B → Y of E � B to F , then there
is an E-invariant Borel set C ⊇ B on which φ extends to a Borel
quasi-reduction of E to F .

To handle the case that E is countable, set C = [B]E, appeal to
Theorem 1.5.1 to obtain a Borel retraction ψ : C → B whose graph is
contained in E, and observe that φ ◦ ψ is the desired extension.



THE SMOOTH IDEAL 27

To handle the case that F is countable, fix a positive integer k with
the property that graph(φ) and graph(φ−1) induce partial functions
fromX/E to [Y/F ]≤k and from Y/F to [X/E]≤k, and apply Proposition
3.1.4 to obtain (E × F )-invariant and (F × E)-invariant Borel sets
R ⊇ graph(φ) and S ⊇ graph(φ−1) which induce partial functions
from X/E to [Y/F ]≤k and from Y/F to [X/E]≤k. By Theorem 1.5.1,
the set C = projX(R ∩ S−1) is Borel, and there is a Borel function
ψ : C → Y such that graph(ψ) ⊆ R ∩ S−1. By redefining ψ to agree
with φ on B, we obtain the desired extension.

4. Homogeneity

Here we characterize homogeneity of smooth σ-ideals. In §4.1, we
give several further corollaries of reflection. And in §4.2, we establish
our primary result.

4.1. Reflection. We begin this section with a result on finite equiva-
lence relations.

Proposition 4.1.1. Suppose that X and Y are Polish spaces, E is a
co-analytic equivalence relation on X, F is a finite analytic equivalence
relation on Y , and π : X → Y is a Borel cohomomorphism from E to
F . Then π is a cohomomorphism from E to a finite Borel superequiv-
alence relation F ′ of F .

Proof. Let Φ denote the property of sets R ⊆ Y × Y that the smallest
equivalence relation containing R is finite, and let Ψ denote the prop-
erty of sets R ⊆ Y × Y that π is a cohomomorphism from E to the
smallest equivalence relation containing R. As both Φ and Ψ are Π1

1-
on-Σ1

1, so too is their conjunction, thus Theorem 1.4.1 yields a Borel
set S ⊇ F satisfying both properties. As S is Borel and has finite
sections, Theorem 1.5.1 ensures that the smallest equivalence relation
containing S is as desired.

As a corollary, we obtain the following.

Corollary 4.1.2. Suppose that X and Y are Polish spaces, E is a co-
analytic equivalence relation on X, (Fn)n∈N is an increasing sequence
of finite analytic equivalence relations on Y , and π : X → Y is a Bor-
el cohomomorphism from E to the equivalence relation F =

⋃
n∈N Fn.

Then there is an increasing sequence of finite Borel superequivalence
relations F ′n of Fn for which π is a cohomomorphism from E to the
equivalence relation F ′ =

⋃
n∈N F

′
n.
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Proof. By Proposition 4.1.1, there are finite Borel superequivalence re-
lations F ∗n of Fn for which π is a cohomomorphism from E to F ∗n , for
all n ∈ N. Define F ′n =

⋂
m≥n F

∗
m.

We say that an analytic equivalence relation is hyperfinite if it is the
union of an increasing sequence (Fn)n∈N of finite analytic equivalence
relations. Corollary 4.1.2 ensures that in the Borel case, this notion is
compatible with that given earlier.

We say that an analytic equivalence relation is essentially hyperfinite
if it is Borel reducible to a hyperfinite analytic equivalence relation.
Corollary 4.1.2 again ensures that when the equivalence relation in
question is Borel, this is equivalent to the existence of a Borel reduction
to a hyperfinite Borel equivalence relation.

Proposition 4.1.3. Suppose that X is a Polish space, E is a Borel
equivalence relation on X, and there is a finite index Borel subequiv-
alence relation E ′ of E which is essentially hyperfinite. Then E is
essentially hyperfinite.

Proof. Fix a Polish space Y , a hyperfinite Borel equivalence relation F ′

on Y , and a Borel reduction π : X → Y of E ′ to F ′. Then every class
of the equivalence relation on Y generated by the set R = (π×π)(E) is
contained in a union of finitely many equivalence classes of F ′. As F ′ is
co-analytic, this is a Π1

1-on-Σ1
1 property of R, so Theorem 1.4.1 yields

a Borel set S ⊇ R with the same property. As Theorem 1.5.1 ensures
that the equivalence relation F generated by S is Borel, Proposition
1.6.5 implies that F is hyperfinite, thus so too is ∆(Y ) ∪ R, and it
follows that E is essentially hyperfinite.

4.2. Main results. Before getting to our final result, we will need the
following analog of Proposition 3.2.1 for essentially hyperfinite Borel
equivalence relations.

Proposition 4.2.1. Suppose that X and Y are Polish spaces, E and
F are Borel equivalence relations on X and Y , F is hyperfinite, and
φ : X → Y is a smooth-to-one Borel homomorphism from E to F .
Then E is essentially hyperfinite.

Proof. Fix an increasing sequence (Fn)n∈N of finite Borel equivalence
relations whose union is F , and define En = E ∩ (φ × φ)−1(Fn) for
each n ∈ N. Then E0 has countable index below E, thus IE ⊆ IE0

by Proposition 2.4.11. In particular, it follows that φ is a smooth-to-
one homomorphism from E0 to F0, so Proposition 3.2.1 ensures that
E0 is smooth. Fix a Borel reduction π : X → 2N from E0 to ∆(2N).
Then each of the equivalence relations E ′n = ∆(2N) ∪ (π × π)(En) is
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finite, so the equivalence relation E ′ =
⋃
n∈NE

′
n is hyperfinite, thus E

is essentially hyperfinite.

At long last, we are now ready to establish our homogeneity result.

Theorem 4.2.2. Suppose that X is a Polish space and E is a Borel
equivalence relation on X. Then the following are equivalent:

(1) The equivalence relation E is essentially hyperfinite.
(2) The ideal IE is reduction homogeneous.
(3) The ideal IE is cohomomorphism homogeneous.

Proof. To see (1) =⇒ (2), note that if B ⊆ X is an E-non-smooth
Borel set, then Theorem 2.4.7 (or just the Harrington-Kechris-Louveau
Theorem) yields a continuous embedding φ : 2N → B of E0 into E. As
Theorem 1.6.6 ensures the existence of a Borel reduction ψ : X → 2N

of E to E0, it follows that the function π = φ ◦ ψ is a Borel reduction
of E to E � B, so Proposition 3.2.2 implies that it is a reduction of IE
to IE � B.

As (2) =⇒ (3) is trivial, it only remains to show ¬(1) =⇒ ¬(3).
Towards this end, note that if E is not essentially hyperfinite, then The-
orem 2.4.7 (or just the Harrington-Kechris-Louveau Theorem) yields
an E-non-smooth Borel set B ⊆ X on which E is hyperfinite. Sup-
pose, towards a contradiction, that there is a Borel cohomomorphism
from IE to IE � B. Theorem 3.2.5 then yields a smooth-to-one Bor-
el quasi-homomorphism φ : X → B from E to E � B. Let F denote
the intersection of E with the pullback of E � B through φ. Theorem
2.4.12 then ensures that φ is a smooth-to-one Borel homomorphism
from F to E � B, so Proposition 4.2.1 implies that F is essentially hy-
perfinite, thus Proposition 4.1.3 yields that E is essentially hyperfinite,
the desired contradiction.

While beyond the scope of this paper, we close by noting that The-
orems 3.2.5 and 3.2.6 can also be used to obtain additional complex-
ity results for smooth ideals. For instance, the arguments of [AK00,
Gao02, LR05, HK05] can be adapted to show that every analytic quasi-
order on a Polish space can be Borel embedded into the quasi-orders of
smooth-to-one Borel quasi-homomorphism and Borel quasi-reducibility
of countable Borel equivalence relations, and therefore into the quasi-
orders of Borel cohomomorphism and Borel reducibility of smooth
ideals associated with such relations, and local versions of these re-
sults can be obtained using the techniques of [CM14].
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