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We fix an abelian semigroup (S, +). We say that S is positive if it contains no
additive identity. For m,n € N, an m x n S-matriz is an m x n matrix A = (a; ;)
whose entries are elements of S. If A = (a; ;) is an m x n S-matrix, let

rap = (E ag,j, E Al,5y- > E aml,j>

Jj<n j<n ji<n

denote its sequence of row sums, and let

[ (E a;,0, E Aj1ye-ey E ai,n—l)

i<m i<m i<m

denote its sequence of column sums.
We say that S splits four ways if for every rg,r1,co,c1 € S with ro+71 = co+c1,
there is a 2 x 2 S-matrix A with rq = (rg,71) and c4 = (co,¢1).

Example 1. Suppose that (G,+, <) is an abelian group with identity Og and a
translation-invariant partial order. We use GT to denote the positive semigroup
{9 : 0¢ < g}. Denoting by 3T, V* quantification over G, we say G splits under
sums if

V"'go,gl vk < go + g1 E|+h0 < go E|+h1 <0 (ho + hy = k)
It is not hard to see that G splits four ways if and only if it splits under sums.

Example 2. As a special case of Example 1, suppose that (G, +, <) is an abelian
group with a translation-invariant linear order. In this case, GT splits four ways if
and only if G has no <-minimal element.

Example 3. If (L, A, V) is a lattice, we may view it as an abelian semigroup under
the operation V. A semigroup arising in this fashion always splits four ways: suppose
T0,71,Co,C1 € L with ro Vr1 = ¢g V ¢1. Then the matrix

(T() Ncyg To /\01)
rMANcg TiNcCy

has the required row and column sums. Additionally, such a lattice is a positive

semigroup if and only if it contains no bottommost element (e.g, the cofinite subsets
of N).



Lemma 4. Suppose that S is an abelian semigroup that splits four ways. Suppose
further that m,n € N and r = (rg,...,"m-1), ¢ = (co,...,Cn—1) are sequences of
elements of S with 32, . ri = >2;_, ¢;. Then there exists an m x n S-matrix A
such that r4 =r and c4 = c.

Proof. We proceed by induction on m+n. The lemma is trivial when either of m,n
is less than 2, and the case m = n = 2 is granted by the assumption that S splits
four ways. By interchanging rows and columns if necessary, we may assume m > 2.

Suppose that r = (rg,...,rm-1) and ¢ = (cg,...,cn—1) are as in the statement
of the lemma. By the inductive hypothesis, we know there exists a 2 x n S-matrix

A— (ao,o aO,n71>
aio 0 G1np-—-1
with ra = (32, ,,_17"m-1) and ca = (co,...,c1). Again using the inductive
hypothesis, there exists a (m — 1) x n S-matrix

boo - bo,n—1
B = :
bm—2,0 e bm—Q,n—l
with rg = (r9,...,"m—2) and cg = (a0,0,---,a0,1). We then simply observe that
the matrix
boo - bo,n—1
bm72,0 e bm72,n71
aio - a1,n—1
has the required row and column sumes. a

Remark 5. Lemma 4 remains true for nonabelian semigroups, with the same proof,
provided that row and column sums are reinterpreted in the obvious way.

We say that a monoid (G, +) with identity O¢ is nonnegative if Gt = G\ {0}
is a (positive) semigroup. Equivalently, if go + g1 = O¢, then go = g1 = 0g. We fix
such a monoid.

We now turn our attention to the main focus of the paper, the class of naturally
ordered finite measure algebras equipped with a measure taking values in G. Given
a Boolean algebra (B, A,V,0,1), a positive G-valued measure on B is a function
u: B — G such that for all by, b; € B:

1. u(bo) = 0g € by = 0g;
2. if by A by = 0, then /L(bo V bl) = /L(bo) + M(bl)

Fix a positive element g € G. The class OMBAg 4, consists of structures of
the form B = (B, A, V, 0,1, ug, <B), where (B, A, V, 0, 1) is a finite Boolean algebra,
up : B — G is a positive G-valued measure with pug(1) = g1, and <g is an order
induced antilexicographically by an ordering of the atoms of B.



Theorem 6. Suppose that G is a countable, nonnegative abelian monoid such
that G splits four ways, and that g, is a positive element of G. Then the class
OMBAg,g4, is a Fraissé order class.

Proof. We prove only that OMBAg 4, satisfies the AP, since the other properties
are routinely verified (in particular, JEP follows from AP upon considering the
{0,1} Boolean algebra). Towards this end, fix B,C,D € OMBAg, as well as
embeddings f: B — C and g : B — D. Our goal is to find some E € OMBAg 4,
and embeddings r : C — E and s : D — E satisfying ro f = sog.

Let bg >B --- >B b;—1 list the atoms of B. For each k < [, let cor >c -+ >c
Cmy—1,k list the atoms below f(b) in C. Similarly, let do >p -+ >p dp,—1,k list
the atoms below g(by) in D. In particular,

Z pe(cir) = Z o (dj k) = us(br)-

i<mpg j<ng

For each k < [, we define two sequences of positive elements of G by

r, = (pc(cor),---pc(em,—1,k)) and
cr. = (pp(dok),- -, pD(dn,-1k))-

These sequences satisfy the hypotheses of Lemma 4, so we may find a GT-matrix
A = (a ;) with ra, =1 and ca, = ci.

Intuitively, we identify the atoms of B with the collection of these matrices, the
atoms of C' with the rows of these matrices, and the atoms of D with their columns.
Towards that end, let E be the Boolean algebra generated by some set of distinct
atoms indexed as {e;;x : k < [,i < ny, and j < my}. Let ug be the unique positive
G-valued measure on E such that for all 4,5, k, ug(eijx) = @i jx; such a measure
exists by the nonnegativity of G.

We define embeddings r : C' — E and s : D — E as the unique maps satisfying

r(cik) \/ewk and s(d; x) \/e”k
j

Certainly

pe(r(ciy) = Z,UE eijk) Za” k= pc(cix) and
pe(s(djk)) = ZME €ijk) = Zai,j,k = pip(dj k),

by the conditions on the row and column sums of the GT-matrices A;. Furthermore,
for all k£ <,

ro f(bk) = sog(b) \/ez,]k

soro f =sog. To complete the proof of AP, it remains only to define an ordering

of the atoms of E so that r and s preserve the orders of the atoms of C' and D.
We desire to order the union of the sets of leading atoms X = {ejor : k <

land i < mi} and Y = {egjr : k < land j < ni} in a way that induces an order



compatible with the orders <¢ and <p. Once we have ordered the leading atoms,
we may order the remaining atoms however we like, so long as they are smaller than
the leading atoms.

Let X be ordered by e;or <x eior < cik <c Ci k. Similarly, let Y be ordered
by egjx <y eojrr € djr <p dj r. Notice that these two orderings coincide on
X NY ={egor : k <1} since

/
eook <X ook’ & Cok <C Cokr & by <B b}, & do i <p doir € eoor <y €ook’-

Thus, by the amalgamation property for finite linear orderings, there is an order on
X UY extending both <x and <y, so we have completed the proof. |

Remark 7. Continuing the analysis of Example 2, the assumption that GT has
no minimal element is necessary. Indeed, suppose that ¢ is the minimal element
of GT. Let B = (B,A,V,0,1,ug, <), where B is the 4-element Boolean alge-
bra with atoms {bg, b1}, pus(b;) = 2¢ for all i < 2, and by <p b;. Let C =
(CyAV,0,1, pe, <c) and D = (D, A,V,0,1, up, <p), where C' and D both equal
the 16-element Boolean algebra with atoms {ag, a1,a2,a3}, pc(a;) = up(a;) =g
for all ¢ < 4. Finally, the orders are given by

ap <c a1 <c a2 <c a3,
ag <p a2 <p a1 <p as.
Let f : B — Cand g : B — D be the embeddings extending f(by) = g(by) = apVas,

f(b1) = g(b1) = a2 Vas. A moment’s reflection reveals that the minimality of g and
the particular orders on C and D prevent the amalgamation of these structures.



