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We fix an abelian semigroup 〈S, +〉. We say that S is positive if it contains no
additive identity. For m, n ∈ N, an m× n S-matrix is an m× n matrix A = (ai,j)
whose entries are elements of S. If A = (ai,j) is an m× n S-matrix, let

rA =

 X
j<n

a0,j ,
X
j<n

a1,j , . . . ,
X
j<n

am−1,j

!
denote its sequence of row sums, and let

cA =

 X
i<m

ai,0,
X
i<m

ai,1, . . . ,
X
i<m

ai,n−1

!
denote its sequence of column sums.

We say that S splits four ways if for every r0, r1, c0, c1 ∈ S with r0+r1 = c0+c1,
there is a 2× 2 S-matrix A with rA = (r0, r1) and cA = (c0, c1).

Example 1. Suppose that 〈G, +, <〉 is an abelian group with identity 0G and a
translation-invariant partial order. We use G+ to denote the positive semigroup
{g : 0G < g}. Denoting by ∃+, ∀+ quantification over G+, we say G+ splits under
sums if

∀+g0, g1 ∀+k < g0 + g1 ∃+h0 < g0 ∃+h1 < g1 (h0 + h1 = k).

It is not hard to see that G+ splits four ways if and only if it splits under sums.

Example 2. As a special case of Example 1, suppose that 〈G, +, <〉 is an abelian
group with a translation-invariant linear order. In this case, G+ splits four ways if
and only if G+ has no <-minimal element.

Example 3. If 〈L,∧,∨〉 is a lattice, we may view it as an abelian semigroup under
the operation ∨. A semigroup arising in this fashion always splits four ways: suppose
r0, r1, c0, c1 ∈ L with r0 ∨ r1 = c0 ∨ c1. Then the matrix�

r0 ∧ c0 r0 ∧ c1

r1 ∧ c0 r1 ∧ c1

�
has the required row and column sums. Additionally, such a lattice is a positive
semigroup if and only if it contains no bottommost element (e.g, the cofinite subsets
of N).
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Lemma 4. Suppose that S is an abelian semigroup that splits four ways. Suppose
further that m, n ∈ N and r = (r0, . . . , rm−1), c = (c0, . . . , cn−1) are sequences of
elements of S with

P
i<m ri =

P
j<n cj . Then there exists an m × n S-matrix A

such that rA = r and cA = c.

Proof. We proceed by induction on m+n. The lemma is trivial when either of m,n
is less than 2, and the case m = n = 2 is granted by the assumption that S splits
four ways. By interchanging rows and columns if necessary, we may assume m > 2.

Suppose that r = (r0, . . . , rm−1) and c = (c0, . . . , cn−1) are as in the statement
of the lemma. By the inductive hypothesis, we know there exists a 2× n S-matrix

A =
�

a0,0 · · · a0,n−1

a1,0 · · · a1,n−1

�
with rA = (

P
i<m−1 ri, rm−1) and cA = (c0, . . . , c1). Again using the inductive

hypothesis, there exists a (m− 1)× n S-matrix

B =

�
b0,0 · · · b0,n−1

...
. . .

...
bm−2,0 · · · bm−2,n−1

�
with rB = (r0, . . . , rm−2) and cB = (a0,0, . . . , a0,1). We then simply observe that
the matrix �

b0,0 · · · b0,n−1

...
. . .

...
bm−2,0 · · · bm−2,n−1

a1,0 · · · a1,n−1

�
has the required row and column sumes. 2

Remark 5. Lemma 4 remains true for nonabelian semigroups, with the same proof,
provided that row and column sums are reinterpreted in the obvious way.

We say that a monoid 〈G, +〉 with identity 0G is nonnegative if G+ = G \ {0G}
is a (positive) semigroup. Equivalently, if g0 + g1 = 0G, then g0 = g1 = 0G. We fix
such a monoid.

We now turn our attention to the main focus of the paper, the class of naturally
ordered finite measure algebras equipped with a measure taking values in G. Given
a Boolean algebra 〈B,∧,∨, 0, 1〉, a positive G-valued measure on B is a function
µ : B → G such that for all b0, b1 ∈ B:

1. µ(b0) = 0G ⇔ b0 = 0G;

2. if b0 ∧ b1 = 0, then µ(b0 ∨ b1) = µ(b0) + µ(b1).

Fix a positive element g1 ∈ G. The class OMBAG,g1 consists of structures of
the form B = 〈B,∧,∨, 0, 1, µB, <B〉, where 〈B,∧,∨, 0, 1〉 is a finite Boolean algebra,
µB : B → G is a positive G-valued measure with µB(1) = g1, and <B is an order
induced antilexicographically by an ordering of the atoms of B.
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Theorem 6. Suppose that G is a countable, nonnegative abelian monoid such
that G+ splits four ways, and that g1 is a positive element of G. Then the class
OMBAG,g1 is a Fräıssé order class.

Proof. We prove only that OMBAG,g1 satisfies the AP, since the other properties
are routinely verified (in particular, JEP follows from AP upon considering the
{0, 1} Boolean algebra). Towards this end, fix B,C,D ∈ OMBAG,g1 as well as
embeddings f : B → C and g : B → D. Our goal is to find some E ∈ OMBAG,g1

and embeddings r : C → E and s : D → E satisfying r ◦ f = s ◦ g.
Let b0 >B · · · >B bl−1 list the atoms of B. For each k < l, let c0,k >C · · · >C

cmk−1,k list the atoms below f(bk) in C. Similarly, let d0,k >D · · · >D dnk−1,k list
the atoms below g(bk) in D. In particular,X

i<mk

µC(ci,k) =
X

j<nk

µD(dj,k) = µB(bk).

For each k < l, we define two sequences of positive elements of G by

rk = (µC(c0,k), . . . , µC(cmk−1,k)) and
ck = (µD(d0,k), . . . , µD(dnk−1,k)).

These sequences satisfy the hypotheses of Lemma 4, so we may find a G+-matrix
Ak = (ai,j,k) with rAk

= rk and cAk
= ck.

Intuitively, we identify the atoms of B with the collection of these matrices, the
atoms of C with the rows of these matrices, and the atoms of D with their columns.
Towards that end, let E be the Boolean algebra generated by some set of distinct
atoms indexed as {eijk : k < l, i < nk, and j < mk}. Let µE be the unique positive
G-valued measure on E such that for all i, j, k, µE(eijk) = ai,j,k; such a measure
exists by the nonnegativity of G.

We define embeddings r : C → E and s : D → E as the unique maps satisfying

r(ci,k) =
_
j

eijk and s(dj,k) =
_
i

eijk.

Certainly

µE(r(ci,k)) =
X

j

µE(eijk) =
X

j

ai,j,k = µC(ci,k) and

µE(s(dj,k)) =
X

i

µE(eijk) =
X

i

ai,j,k = µD(dj,k),

by the conditions on the row and column sums of the G+-matrices Ak. Furthermore,
for all k < l,

r ◦ f(bk) = s ◦ g(bk) =
_
i,j

ei,j,k

so r ◦ f = s ◦ g. To complete the proof of AP, it remains only to define an ordering
of the atoms of E so that r and s preserve the orders of the atoms of C and D.

We desire to order the union of the sets of leading atoms X = {ei0k : k <
l and i < mk} and Y = {e0jk : k < l and j < nk} in a way that induces an order
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compatible with the orders <C and <D. Once we have ordered the leading atoms,
we may order the remaining atoms however we like, so long as they are smaller than
the leading atoms.

Let X be ordered by ei0k <X ei′0k′ ⇔ ci,k <C ci′,k′ . Similarly, let Y be ordered
by e0jk <Y e0j′k′ ⇔ dj,k <D dj′,k′ . Notice that these two orderings coincide on
X ∩ Y = {e00k : k < l} since

e00k <X e00k′ ⇔ c0,k <C c0,k′ ⇔ bk <B b′k ⇔ d0,k <D d0,k′ ⇔ e00k <Y e00k′ .

Thus, by the amalgamation property for finite linear orderings, there is an order on
X ∪ Y extending both <X and <Y , so we have completed the proof. 2

Remark 7. Continuing the analysis of Example 2, the assumption that G+ has
no minimal element is necessary. Indeed, suppose that g is the minimal element
of G+. Let B = 〈B,∧,∨, 0, 1, µB, <B〉, where B is the 4-element Boolean alge-
bra with atoms {b0, b1}, µB(bi) = 2g for all i < 2, and b0 <B b1. Let C =
〈C,∧,∨, 0, 1, µC, <C〉 and D = 〈D,∧,∨, 0, 1, µD, <D〉, where C and D both equal
the 16-element Boolean algebra with atoms {a0, a1, a2, a3}, µC(ai) = µD(ai) = g
for all i < 4. Finally, the orders are given by

a0 <C a1 <C a2 <C a3,

a0 <D a2 <D a1 <D a3.

Let f : B → C and g : B → D be the embeddings extending f(b0) = g(b0) = a0∨a1,
f(b1) = g(b1) = a2∨a3. A moment’s reflection reveals that the minimality of g and
the particular orders on C and D prevent the amalgamation of these structures.


