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0 Introduction

We study in this paper some combinatorial invariants associated with ergodic
actions of infinite, countable (discrete) groups.

Let (X,µ) be a standard probability space and Γ an infinite, countable
group with a set of generators 1 /∈ S ⊆ Γ. Given a free, measure-preserving
action a of Γ on (X,µ), we consider the graph G(S, a) = (X,E(S, a)), whose
vertices are the points in X and where x 6= y ∈ X are adjacent if there is a
generator s ∈ S taking one to the other. It is clear that the connected com-
ponents of this graph are isomorphic to the Cayley graph Cay(Γ, S) and thus
parameters such as the chromatic number of G(S, a) are identical to those
of Cay(Γ, S). This however requires selecting an element from each con-
nected component and thus essentially depends upon a use of the Axiom of
Choice. However, the situation is vastly different when one considers instead
measurable colorings and the associated measurable chromatic numbers.

Let us introduce first the combinatorial invariants we will be interested
in.

Consider a locally countable, Borel graph G = (X,E) on a standard
probability space (X,µ). We denote by E∗ the associated Borel equivalence
relation whose classes are the connected components of G. Given a property
of equivalence relations P, we say that G has property P if E∗ has property
P. This explains what it means to say that G is (µ-)measure preserving,
ergodic, hyperfinite, smooth, etc. In particular, the graphs G(S, a) discussed
before are measure preserving, and they are ergodic iff the action a is ergodic.
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Given such a graph G = (X,E) its (µ-)measurable chromatic number,
χµ(G), is the smallest cardinality of a standard Borel space Y for which
there is a (µ-)measurable coloring c : X → Y (i.e., xEy ⇒ c(x) 6= c(y)).
Clearly χµ(G) ∈ {1, 2, 3, . . . ,ℵ0, 2

ℵ0}. It is well known (see, e.g., [26]) that
there are acyclic such graphs G, for which of course the usual chromatic
number χ(G) is equal to 2, with χµ(G) = 2ℵ0 .

In addition, we consider the approximate (µ-)measurable chromatic num-
ber, χap

µ (G), which is defined as the smallest cardinality of a standard Borel
space Y such that for each ε > 0, there is a Borel set A ⊆ X with µ(X\A) < ε
and a measurable coloring c : A→ Y of the induced subgraph G|A. Clearly
χap

µ (G) ≤ χµ(G).
Finally, the (µ-)independence number of G, iµ(G), is the supremum of

the measures of Borel independent sets (A ⊆ X is independent if no two
elements of A are adjacent in G). Clearly iµ(G) ∈ [0, 1]. It is easy to check
that χap

µ (G)iµ(G) ≥ 1, so graphs with small independence number have large
(approximate) measurable chromatic number.

We discuss in §2 various examples of measure-preserving, ergodic graphs
G with small chromatic number χ(G) (e.g., acyclic) but for which χap

µ (G) or
χµ(G) take various finite or infinite values, and others in which iµ(G) takes
any value in [0, 1) (the value 1 can be easily seen to be impossible to realize
in such a graph).

However for graphs of bounded degree, there are further restrictions (see
2.19, 2.20), which are analogs of the classical Brooks’ Theorem in finite graph
theory (see, e.g., Diestel [10]), which asserts that for finite graphs G the
chromatic number is bounded by the maximum degree d of the graph, unless
d = 2 and G contains an odd cycle or d ≥ 3 and G contains a complete graph
of size d+ 1.

Theorem 0.1. Let (X,µ) be a standard probability space and G = (X,E) a
Borel graph with degree bounded by d ≥ 2. Then

(i) [26] χµ(G) ≤ d+ 1 and thus iµ(G) ≥ 1/(d+ 1).

(ii) If d = 2 and G has no odd cycles (i.e., G is bipartite) or else d ≥ 3 and
G has no cliques (i.e., complete subgraphs) of size d+1, then χap

µ (G) ≤ d
and thus iµ(G) ≥ 1/d.

In §3, we consider the case of hyperfinite graphs. Denote below by χ∗(G)
the smallest chromatic number of an induced subgraph G|A, where A is an
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E∗-invariant Borel set of measure 1. In particular, χ∗(G) ≤ χ(G). Using
some techniques of Miller [39], we show (see 3.1, 3.8):

Theorem 0.2. Let (X,µ) be a standard probability space and G a locally
countable, acyclic, (µ-)hyperfinite graph. Then χap

µ (G) ≤ 2 and thus iµ(G) ≥
1/2. If moreover G is locally finite, (µ-)hyperfinite, but not necessarily
acyclic, then χap

µ (G) ≤ χ∗(G) and thus iµ(G) ≥ 1/χ∗(G), and if G is also
measure preserving, then χap

µ (G) = χ∗(G).

In §4 we consider the graphs associated with group actions, as discussed
in the beginning of this introduction. Let χµ(S, a), χap

µ (S, a), iµ(S, a) be the
parameters associated with G(S, a). It is easy to see that iµ(S, a) ≤ 1/2.

Let a ≺ b be the relation of weak containment among measure preserving
actions of Γ on (X,µ); see [24]. We have a ≺ b iff a is in the closure, in
the weak topology, of the conjugacy class of b. We now have the following
monotonicity properties (see 4.2, 4.3).

Theorem 0.3. Let Γ be a countable group and S a finite set of generators.
Then

a ≺ b⇒ iµ(S, a) ≤ iµ(S, b), χap
µ (S, a) ≥ χap

µ (S, b).

It follows that iµ(S, a), χap
µ (S, a) are invariants of weak equivalence, a ∼ b,

where a ∼ b⇔ a ≺ b and b ≺ a.
Note that Cay(Γ, S) is bipartite iff there is no odd length word in S∪S−1

equal to the identity in Γ. We show in 4.5 that (for any Γ, S) if Cay(Γ, S)
is not bipartite, then iµ(S, a) < 1/2 and χap

µ (S, a) ≥ 3. In fact in this case
iµ(S, a) ≤ 1/2 − 1/(2g), where g is the odd girth (= length of shortest odd
cycle) in Cay(Γ, S). From this and 0.1 it follows that for Γ = (Z/2Z) ∗
(Z/3Z) = 〈s, t|s2 = 1, t3 = 1〉 and S = {s, t}, we have iµ(S, a) = 1/3 for
every free, measure-preserving action a of Γ.

It is known, see, e.g., [24], 13.2, that any two free, measure-preserving,
ergodic actions of an amenable group Γ are weakly equivalent, thus for any
finite generating set S ⊆ Γ, we have that

iµ(Γ, S) = iµ(S, a), χap
µ (Γ, S) = χap

µ (S, a)

are independent of the action a. We can identify iµ(Γ, S), χap
µ (Γ, S) in terms

of Cay(Γ, S). For a finite graph G = (X,E), we define the independence
ratio i(G) to be iµ(G), where µ is the normalized counting measure on X

(so i(G) = α(G)
|X| , where α(G) is the maximum cardinality of an independent
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subset of X). For (Γ, S) as above and finite F ⊆ Γ, let i(F, S) be the
the independence ratio of the induced subgraph Cay(Γ, S)|F . Let (Fn) be
a Følner sequence for Γ, i.e., Fn ⊆ Γ are finite, non-empty, and ∀γ ∈ Γ,
|γFn△Fn|

|Fn| → 0. Using a result that can be proved easily using the quasi-tiling

machinery of Ornstein-Weiss [43] (see Gromov [14], 1.3 and Lindenstrauss-
Weiss [31], Appendix), one can show that for any Følner sequence (Fn),

lim
n→∞

i(Fn, S) = i(Γ, S)

exists (and is of course independent of (Fn)). We call this the independence number
of Cay(Γ, S). We now have (see 4.7, 4.10)

Theorem 0.4. Let Γ be a countable, amenable group and S a finite set of
generators. Then:

(i) χap
µ (Γ, S) = χ(Cay(Γ, S)),

(ii) iµ(Γ, S) = i(Γ, S).

For non-amenable Γ, iµ(S, a) and χap
µ (S, a) are not necessarily constant.

In fact for any Γ and finite set of generators S with Cay(Γ, S) bipartite, we
have the following characterization of amenability (see 4.13, 4.14).

Theorem 0.5. Let Γ be a countable group and S ⊆ Γ a finite set of genera-
tors with Cay(Γ, S) bipartite. Then the following are equivalent:

(i) Γ is amenable,

(ii) iµ(S, a) is constant for any free, measure-preserving action a of Γ,

(iii) iµ(S, a) = 1/2, for any free, measure-preserving action a of Γ,

(iv) χap
µ (S, a) is constant for any free, measure-preserving action a of Γ,

(v) χap
µ (S, a) = 2, for every free, measure-preserving action a of Γ.

Subsequently an alternative proof of this result was given in Abért-Elek
[1].

We also have an analogous characterization of groups that have property
(T) and the Haagerup Approximation Property HAP (see 4.15).

4



Theorem 0.6. Let Γ be an infinite, countable group and S ⊆ Γ a finite
set of generators such that Cay(Γ, S) is bipartite. Then the following are
equivalent:

(i) Γ has property (T),

(ii) iµ(S, a) < 1/2, for every free, measure-preserving, weakly mixing action
a of Γ,

(iii) χap
µ (S, a) ≥ 3, for every free, measure-preserving, weakly mixing action
a of Γ.

Also the following are equivalent:

(i*) Γ does not have the HAP,

(ii*) iµ(S, a) < 1/2, for every free, measure-preserving, mixing action a of
Γ,

(iii*) χap
µ (S, a) ≥ 3, for every free, measure-preserving, mixing action a of

Γ.

We next consider the shift action sΓ of the free group Γ = Fm, with m
free generators S = {a1, . . . , am}, on 2Γ with the product measure. Using
a result of Kesten [28] for the norm of averaging operators, we show the
following result (see 4.17).

Theorem 0.7. Let Γ = Fm be the free group with a free set of generators S
and let sΓ be its shift action on 2Γ. Then

1

2m
≤ iµ(S, sΓ) ≤

√
2m− 1

m +
√

2m− 1
,

and

2m ≥ χap
µ (S, sΓ) ≥ m +

√
2m− 1√

2m− 1
.

This has the following consequence (see 2.5), answering a question in [39].

Corollary 0.8. For each 2 ≤ n < ℵ0, there is an acyclic, bounded degree,
measure-preserving, ergodic Borel graph G with χµ(G) = n.
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Without the requirements of having bounded degree or preserving mea-
sure, such examples were first found by Laczkovich (see [26], Appendix).

The exact values of iµ(S, sΓ), χap
µ (S, sΓ) in 0.7 are unknown. It should

be noted that there is no known example of (Γ, S), with Γ amenable and S
finite, for which χµ(S, sΓ) > χ(Cay(Γ, S)) + 1. For instance, Gao-Jackson-
Miller (unpublished) and recently Adam Timar (private communication)
have shown that for Γ = Zm, with S the usual set of generators (for which
of course χ(Cay(Γ, S)) = 2), χµ(S, sΓ) = 3.

We also present in §4 other examples of free, measure-preserving, ergodic
actions of Fm that satisfy the bounds in 0.7.

Finally in §4 we discuss, for any (Γ, S), canonical finite graphs that “ap-
proximate” the infinite graph G(S, sΓ) associated with the shift of Γ on 2Γ.
Labeled and “weighted” versions of these graphs were also used in Bowen
[7]. Applying this to Γ = Fm and a free set of generators S produces a natu-
ral explicit family of finite graphs Gn,m,k (n,m, k ≥ 1) which simultaneously
have arbitrarily large odd girth godd(G) and arbitrarily small independence
ratio i(G), thus arbitrarily large chromatic numbers. Such explicit families
appear to be of interest in finite graph theory. More precisely, we have (see
4.22):

Theorem 0.9. There is an explicit family of finite graphs Gm,k,n (m, k, n ≥
1) such that for any m, k, if n is large enough (depending upon m, k), then

godd(Gm,k,n) > k,

i(Gm,k,n) ≤ 2
√

2m− 1

m+
√

2m− 1
,

and thus

χ(Gm,k,n) ≥ m+
√

2m− 1

2
√

2m− 1
.

In §5 we return to Brooks’ Theorem and study Borel analogs of it, espe-
cially in the context of graphs generated by group actions.

Let Γ be an infinite countable group and 1 /∈ S a finite set of generators
for Γ. Let d = |S±1|, where S±1 = S ∪ S−1, be the degree of the Cayley
graph of Γ, S. Let A be a free Borel action of Γ on a standard Borel space X
(we do not assume here that a measure is necessarily present on X). We can
define as before the graph G(S,A) associated with this action and the set
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of generators S. We denote be χB(S,A) the Borel chromatic number of this
graph, i.e., the smallest cardinality of a standard Borel space Y for which
there is a Borel coloring c : X → Y for G(S,A). It follows from results of
[26] that χB(S,A) ≤ d+ 1. We examine under what circumstances this can
be improved to χB(S,A) ≤ d as in Brooks’ Theorem. We show the following
(see 5.12)

Theorem 0.10. Suppose that Γ is a countable infinite group isomorphic
neither to Z nor to (Z/2Z) ∗ (Z/2Z). Suppose further that Γ has finitely
many ends. Let S be a finite set of generators for Γ and put d = |S±1|.
Then for any free Borel action A of Γ on a standard Borel space X, we have
χB(S,A) ≤ d.

The requirement that Γ is not isomorphic to Z or to (Z/2Z) ∗ (Z/2Z) is
necessary as the free part of the shift action of these groups Γ on 2Γ has Borel
chromatic number equal to 3 (with respect to the usual set of generators).
Groups that satisfy the hypotheses of the preceding theorem include: groups
with property (T), direct products of two infinite groups, amenable groups,
and, more generally, groups of cost 1, etc. In particular, if Γ is a 2-generated
such group, then for any free Borel action of Γ that admits an invariant
Borel probability measure with respect to which it is weakly mixing, the
corresponding Borel chromatic number is either 3 or 4. This extends a result
of Gao-Jackson [12] and Miller, who proved this for the free part of the shift
action of Z2 on 2Z2

(see §4).
In the last section §6 we discuss a matching problem in the Borel and mea-

surable contexts related to earlier work of Laczkovich [30] and K lopotowski-
Nadkarni-Sarbadhikari-Srivastava [29].

Addendum. After the first version of this paper has been completed, we
received a preliminary draft of a paper by Lyons and Nazarov [35], with
subject matter closely related to this paper. In particular, it contains a
version of Proposition 4.16 below. Also, its main result, which is that the
graph associated with the shift action of a non-amenable group Γ, and a finite
set of generators S ⊆ Γ, on [0, 1]Γ admits a measurable matching, provides
the solution to a problem that we discussed in §6 of the original version.
Moreover, Lyons (private communication) mentioned that they have also
considered the finite graphs approximating the graphs G(S, sΓ), discussed in
§4, although these do not appear in [35]. Finally in [35] the authors refer to a
process of “emulating” the graph G(S, sΓ) for Γ = Fm by random 2m-regular
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finite graphs, which in conjunction with earlier results of Frieze-Luczak on
random graphs implies that for large values of m, iµ(S, sΓ) ≤ log 2m

m
and thus

χap
µ (S, sΓ) ≥ m

log 2m
.
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1 Preliminaries

(A) A graph is a pair G = (X,E), where X is a set whose elements we call
vertices of G and E ⊆ X2 satisfies: (x, x) /∈ E (i.e., there are no loops)
and (x, y) ∈ E ⇔ (y, x) ∈ E (i.e., the graph is symmetric). We often write
xEy to denote (x, y) ∈ E, and we identify E with the set of unordered pairs
{{x, y} : xEy}, which we call the edges of G. If xEy we say that x, y are
adjacent.

Occasionally we will also consider graphs with (possible) loops, those in
which (x, x) ∈ E is allowed, for some x ∈ X, and directed graphs, those in
which E ⊆ X2 is not necessarily symmetric.

A path in G is a sequence x0, x1, . . . , xn, n ≥ 1, of distinct vertices such
that xiExi+1, 0 ≤ i < n. The length of such a path is the number of edges it
uses, so the length of x0, x1, . . . , xn is n. Such a path is a cycle if n ≥ 2 and,
moreover, xnEx0; its length is n+ 1.

We denote by E∗ the smallest equivalence relation containing E. Its
equivalence classes are the connected components of G, and thus two vertices
x, y are connected exactly when x = y or there is a path x = x0, x1, . . . , xn =
y. If x, y are connected, we set ρG(x, y) equal to the length of the shortest
path from x to y, and call it the (G)-distance from x to y. The graph is
connected if it has a unique connected component.

A graph is acyclic if it contains no cycles; we sometimes call such graphs
forests and their connected components trees. One easily sees that if x, y are
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distinct vertices of a tree, then there is a unique path from x to y.
The girth of G, in symbols g(G), is the length of the smallest cycle in G.

By convention, we set g(G) = ∞ when G is a forest. The odd girth of G,
godd(G), is the length of the smallest odd cycle in G. Again godd(G) = ∞ if
there are no odd cycles.

The degree of a vertex x, denoted dG(x) or just d(x), if there is no danger
of confusion, is the cardinality of the set Ex = {y ∈ X : xEy}. We also
let ∆(G) = sup{dG(x) : x ∈ X}. If ∆(G) ≤ ℵ0, we say that G is locally
countable, and if dG(x) < ℵ0 for all x, we say that G is locally finite. If
∆(G) < ℵ0, we say that G has bounded degree.

Given A ⊆ X, we define the induced subgraph on A, written G|A, to be
(A,E ∩ A2). We say that A ⊆ X is independent for G if G|A is trivial, i.e.,
no two vertices in A are adjacent.

A graph G = (X,E) is bipartite if there is a partition X = X1 ⊔X2, with
each Xi (i = 1, 2) independent. It is well known that a graph is bipartite if
it has no odd length cycles. Any acyclic graph is therefore bipartite.

The chromatic number of a graph G, in symbols χ(G), is the smallest
cardinality of a set Y for which there is a map c : X → Y (a vertex coloring)
such that xEy ⇒ c(x) 6= c(y). Thus the graph is bipartite iff χ(G) ≤ 2.

(B) Let now X be a standard Borel space. By a measure on X we mean a
finite Borel measure. If µ is a measure on X with 0 < µ(X) <∞ we call the
pair (X,µ) a standard measure space. If µ(X) = 1, we call (X,µ) a standard
probability space and µ a probability measure. Unless otherwise indicated or
clear from context (e.g., when X is finite), measures will be assumed to be
non-atomic.

(C) When G = (X,E) is a graph and X a standard Borel space, we
say that G is Borel if E ⊆ X2 is Borel. In this situation we have that
E∗ is an analytic equivalence relation, but if we assume in addition that
G is locally countable, then E∗ is a countable (i.e., having all its classes
countable) Borel equivalence relation. We will be primarily interested in
locally countable, Borel graphs, and will thus borrow from the theory of
countable Borel equivalence relations. For more details see, e.g., [25].

A countable Borel equivalence relation R on a standard measure space
(X,µ) is measure preserving, abbreviated m.p., if whenever f : X → X is a
Borel automorphism with graph contained in R, f∗µ = µ (where, as usual,
f∗µ(A) = µ(f−1(A))). For A ⊆ X, we define the R-saturation of A, written
[A]R, to be the set {x ∈ X : ∃y ∈ A(xRy)}. We say that R is ergodic (relative
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to µ) if for all Borel A ⊆ X, [A]R is either µ-null or µ-conull. When R can
be written as an increasing union of finite (i.e., having all its classes finite)
Borel equivalence relations on X we call it hyperfinite, and when R admits a
Borel transversal (i.e., a set meeting each R-class in exactly one point), we
say it is smooth. Similarly, we call R µ-hyperfinite (resp., µ-smooth) if its
restriction to a conull R-invariant Borel set is hyperfinite (resp., smooth). We
say G = (X,E) is m.p. if E∗ is; likewise we say that G is ergodic, hyperfinite,
or smooth, if E∗ is.

2 Chromatic and independence numbers

(A) A coloring of a locally countable, Borel graph G = (X,E) on a standard
Borel space X is a map c : X → Y , where Y is a standard Borel space, such
that

xEy ⇒ c(x) 6= c(y),

i.e., ∀y ∈ Y (c−1({y}) is independent). The chromatic number of G, in sym-
bols

χ(G),

is the smallest cardinality of a space Y as above for which there is a coloring
c : X → Y . Clearly χ(G) ∈ {1, 2, . . . , n, . . . ,ℵ0} (and χ(G) ≥ 2 unless
E = ∅).

(B) If the coloring c as in (A) is Borel as a map from X into Y , we call
c a Borel coloring. We define the Borel chromatic number of G, in symbols

χB(G),

to be the smallest cardinality of a standard Borel space Y for which there is
a Borel coloring c : X → Y . Clearly χB(G) ∈ {1, 2, 3, . . . , n, . . . ,ℵ0, 2

ℵ0} and

χ(G) ≤ χB(G).

Example 2.1. In [26] and Miller [39], various examples of non-smooth G =
(X,E) are discussed, all of which are acyclic (so χ(G) = 2), but χB(G)
ranges over all values in {2, 3, . . . ,ℵ0, 2

ℵ0}. It follows that for any m,n ∈
{2, 3, . . . ,ℵ0, 2

ℵ0} with m ≤ n and m < 2ℵ0, there is such a G with χ(G) = m
and χB(G) = n (just add a single connected component of chromatic number
m to a graph G that has χ(G) = 2 and χB(G) = n).
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(C) Suppose now that (X,µ) is a standard measure space (perhaps with
atoms) and G = (X,E) is a locally countable, Borel graph on X. We define
the (µ-)measurable chromatic number of G, in symbols

χµ(G),

as the smallest cardinality of a standard Borel space Y for which there is a
(µ-)measurable coloring c : X → Y . Again,

χ(G) ≤ χµ(G) ≤ χB(G).

Example 2.2. a) There is an acyclic, locally countable, Borel graph G on a
standard measure space (X,µ) with G m.p., ergodic and

2 = χ(G) < χµ(G) = χB(G) = 2ℵ0 .

To see this, take a compact, metrizable group X that contains a dense subset
{an}n∈N which generates a free subgroup (e.g., X = SO3(R)) and let µ be
the Haar measure on X. Consider the graph G = (X,E), where xEy ⇔
∃n(x = a±1

n y). Then G is acyclic and m.p., ergodic. So χ(G) = 2 but if
c : X → N is a measurable coloring, then for some n, Y = c−1({n}) has
positive measure, so Y Y −1 contains an open neighborhood of 1. Then there
are x, y ∈ Y , k ∈ N with xy−1 = ak, thus xEy, a contradiction.

b) Another family of examples that have the above properties are the
following: Take an infinite countable group Γ and an infinite set of generators
S. Let a be a free, mixing, measure preserving action of Γ on (X,µ) and let
G(S, a) be the associated graph. Then, by the mixing property, if A ⊆ X has
positive measure, then for some s ∈ S, s · A ∩ A has also positive measure,
thus A is not independent and therefore χµ(G(S, a)) = 2ℵ0. If we take Γ to
be the free subgroup on infinitely many (free) generators S, then G(S, a) is
also acyclic.

Example 2.3. There is an acyclic, locally countable, Borel graph G on a
standard measure space (X,µ) with G m.p., ergodic and

2 = χ(G) < 3 = χµ(G) < χB(G) = 2ℵ0 .

Take, for instance, the graph G0 on X = 2N defined in [26], where it is shown
that G0 is acyclic (thus χ(G0) = 2), but χB(G0) = 2ℵ0. Miller [39] showed
that χµ(G0) = 3, where µ is the usual product measure on 2N, for which G0

is m.p., ergodic.
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Example 2.4. It is easy to construct an example of a locally countable, Borel
graph G on a standard measure space (X,µ) with G m.p., ergodic, for which
χ(G) = χµ(G) = χB(G) = 2. Take a countable, measure-preserving, ergodic
equivalence relation R on (X,µ) and let X = A ⊔ B be a Borel partition of
X with A,B meeting each R-class. Let E be the bipartite graph with edges
between all pairs of R-related points, one in A and the other in B. Clearly
χ(G) = χµ(G) = χB(G) = 2 and G generates R.

Example 2.5. We will see in Section 4 examples of acyclic, bounded degree,
Borel graphs G = (X,E) on standard (X,µ) which are m.p., ergodic, and
χµ(G) is finite but arbitrarily large (although of course χ(G) = 2). From
this it follows that for each 2 ≤ n < ℵ0, there is an acyclic, bounded degree
G = (X,E) on a standard measure space (X,µ) with G m.p., ergodic such
that χµ(G) = n. To go from such a G that has χµ(G) = k + 1 > 3 to a G, µ
that has χµ(G) = k, take a partition A0⊔· · ·⊔Ak = X given by a measurable
coloring of G, and assume without loss of generality that µ(A0) < 1. Let
X ′ = A1 ⊔ · · · ⊔ Ak, G′ = G|X ′ = (X ′, E ′) be the induced subgraph on X ′

and let µ′ = µ|X ′. Clearly G′ is acyclic, χµ′(G′) = k, and G′ is m.p. (for
µ′). Consider then the ergodic decomposition associated with (E ′)∗ (on X ′).
If all the pieces of this decomposition have (for the induced subgraph G′)
measurable chromatic number ≤ k−1 then, by measurable selection, we can
find a µ′-conull set on which G′ admits a k−1 measurable coloring, and since
G′ has chromatic number ≤ 2, it follows that χµ(G′) ≤ k−1, a contradiction.
So there is a piece of the ergodic decomposition (X,µ), so that if G = G′|X is
the induced subgraph, then G is acyclic, χµ(G) = k, and G is m.p., ergodic.
Finally, µ is non-atomic, else X would have to be finite, and so G would
have chromatic (and so µ-measurable chromatic) number at most 2 < k, a
contradiction.

An analogous argument produces, for each 2 ≤ n < ℵ0, an acyclic,
bounded degree, Borel graph G with χB(G) = n, answering a question in
[39].

Example 2.6. There is an example of a locally countable, Borel graph G
on a standard measure space (X,µ) with G invariant, ergodic for which
χ(G) ≤ 3 and χµ(G) = ℵ0. To see this, take, for each n, as in Example
2.5, an acyclic, locally countable, Borel graph Gn = (Xn, En) on a standard
probability space (Xn, µn) with Gn invariant, ergodic, and χµn

(Gn) > n.
Fix a standard probability space (X,µ) and a Borel partition X =

⊔∞
n=1An

with µ(An) = 1/2n. Fix a Borel bijection ϕn : Xn → An sending µn to

12



µAn
= µ|An

µ(An)
and let G′

n = (An, E
′
n) be the image of Gn under this bijection.

Find, for each n, two disjoint, Borel sets Cn, Dn ⊆ An of positive measure
which are independent for G′

n, and such that there are measure-preserving
Borel isomorphisms ϕn : Cn → Cn+1, for n ≥ 1, n odd, and ψn : Dn → Dn+1

for n ≥ 2, n even. Let G = (X,E) be the graph on X whose edges are those
in
⋃

nE
′
n together with the graphs of ϕn, ψn, and their inverses. Then G

is m.p., ergodic and χµ(G) = ℵ0. Finally, χ(G) ≤ 3. Indeed, fix the same
colors a, b witnessing the 2-colorability of each G′

n. Then change the color of
each element of

⋃

n, oddCn ∪⋃n, even Dn to some third color c. This gives a
3-coloring of G.

We do not know an example of G, X, µ as above for which G is acyclic (or
even has χ(G) = 2) but χµ(G) = ℵ0. (Addendum. Recently Conley-Miller
[8] constructed an example of an acyclic such G with χB(G) = χµ(G) = ℵ0.)
More generally, we do not know what are the possible values of k, l,m ∈
{2, 3, . . . ,ℵ0, 2

ℵ0} with k ≤ l ≤ m such that there is a locally countable,
Borel graph G on a standard measure space (X,µ) which is m.p., ergodic,
and

χ(G) = k, χµ(G) = l, χB(G) = m.

Remark 2.7. One can also define the (µ-)almost everywhere measurable
chromatic number of G, in symbols χae

µ (G), as the smallest cardinality of a
standard Borel space Y for which there is a Borel set A ⊆ X with µ(A) = 1
and a Borel coloring c : A→ Y of the induced subgraph G|A = (A,E ∩A2).
Clearly, χae

µ (G) ≤ χµ(G). However, if χae
µ (G) ≥ χ(G), which will be the case

for most graphs that we will be interested in, then χae
µ (G) = χµ(G).

(D) Finally, when (X,µ) is a standard measure space and G is a locally
countable, Borel graph on X, we define the approximate (µ-)measurable chro-
matic number of G, in symbols

χap
µ (G),

to be the smallest cardinality of a standard Borel space Y such that for every
ε > 0 there is a Borel set A ⊆ X with µ(X\A) < ε and a measurable coloring
c : A→ Y of the induced subgraph G|A. Again,

χap
µ (G) ≤ χµ(G),

13



but clearly χ(G) ≤ χap
µ (G) may fail, since χ(G) can be altered arbitrarily on

a single connected component without affecting χap
µ (G). On the other hand,

let
χ∗(G)

be the minimum of all χ(G|A), where A is an E∗-invariant Borel set of
measure 1. Clearly χ∗(G) ≤ χ(G). Then it is easy to see that if G is m.p.,
then

χ∗(G) ≤ χap
µ (G).

This is clear if χap
µ (G) ≥ ℵ0, so assume that χap

µ (G) = k < ℵ0. Let Yn be
a Borel set of measure at least 1 − 2−n such that G|Yn is k-colorable. Let
Zn =

⋂

m≥n Ym, so that Zn ⊆ Zn+1 and µ(Zn) ≥ 1 −∑m≥n 2−m → 1, as
n → ∞. Then Z =

⋃

n Zn has measure 1, thus contains an E∗-invariant
Borel set W ⊆ Z of measure 1. To show that G|W is k-colorable, it suffices
to show that G|F is k-colorable for every finite F ⊆W , but this is clear since
there must exist some n such that F ⊆ Zn.

Example 2.8. There is an acyclic, bounded degree, Borel graph G = (X,E)
on a standard measure space (X,µ) which is m.p., ergodic, and χap

µ (G) <
χµ(G). For instance, consider the shift S on 2Z and let X ⊆ 2Z be its
aperiodic part. Let µ be the restriction of the usual product measure to X
(note that µ(X) = 1). Let for x, y ∈ X, xEy ⇔ x = S±1(y). Then by
Rokhlin’s Lemma (see, e.g., [25] 7, 7.5), χap

µ (G) = 2. On the other hand,
χµ(G) = 3. Otherwise, there is a measurable partition X = A ⊔ B into
independent sets. Then S(A) = B and S(B) = A, and so µ(A) = µ(B) = 1/2
and both A, B are S2-invariant, which is impossible as S2 is ergodic.

We have seen in Example 2.2 examples of acyclic, locally countable, Borel
G on standard (X,µ) which are m.p., ergodic and have no independent sets
of positive measure, thus χap

µ (G) = 2ℵ0. It is also easy to see that there is no
such G, X, µ with χap

µ (G) = 1 (i.e., there cannot exist Borel independent sets
whose measure is arbitrarily close to 1). Indeed, if G = (X,E) is such that
G is m.p., ergodic, then by the uniformization theorem for Borel sets with
countable sections, there is a measure-preserving Borel bijection ϕ : A → B
between Borel sets of positive measure such that (x, ϕ(x)) ∈ E, for all x ∈ A.
If µ(A) = µ(B) = δ and ε < δ/2, there can be no Borel independent set of
measure bigger than 1 − ε.

Example 2.9. There is an example of G,X,µ as in Example 2.6 with χ(G) ≤
3 and χap

µ (G) = ℵ0. The graphs G = (X,E) on (X,µ) from Section 4
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(mentioned previously in Example 2.5) which have arbitrarily large finite χµ

actually have arbitrary large finite χap
µ . Then, as in Example 2.6, this gives

examples of G with χ(G) ≤ 3 and χap
µ (G) = ℵ0.

Again, we do not know examples of such G with χ(G) = 2 and χap
µ (G) =

ℵ0. Also, we do not know if there are such examples for which χap
µ (G) takes

an arbitrary value 3 ≤ k < ℵ0.
The more general problem is again whether there is any other relationship

between χ(G), χ∗(G), χµ(G), χap
µ (G), beyond the obvious χ(G) ≤ χµ(G),

χ∗(G) ≤ χap
µ (G) ≤ χµ(G) for locally countable (or locally finite), Borel

graphs G on standard measure spaces (X,µ) which are m.p., ergodic.

(E) Let finally G be a locally countable, Borel graph on a standard prob-
ability space (X,µ). We define the independence number of G, in symbols

iµ(G),

by
iµ(G) = sup{µ(Y ) : Y ⊆ X is a Borel independent set}.

Clearly, we can replace “Borel” by “(µ-)measurable” in this definition. (If µ
is not a probability measure we replace µ(Y ) by µ(Y )/µ(X) in the definition
above.)

Obviously, 0 ≤ iµ(G) ≤ 1 and iµ(G) = 0 means that there is no positive
measure independent set. We have seen in 2.2 examples of such graphs (they
clearly have χµ(G) = 2ℵ0). If G = (X,E) is a locally countable, Borel graph
on a standard probability space (X,µ) with G m.p., ergodic, then we have
seen in (D) that iµ(G) < 1 (otherwise χap

µ (G) = 1).

Example 2.10. For each 0 < a < 1 there is an acyclic, locally countable
Borel graph G on a standard probability space (X,µ) which is m.p., ergodic
and iµ(G) = a with the supremum being attained.

To see this, first fix an acyclic G1 = (X1, E1) on (X1, µ1) with G1 invari-
ant, ergodic, µ1(X1) = 1 − a, and iµ1(G1) = 0. Also fix k > a

1−a
. Let X2 be

an uncountable standard Borel space disjoint from X1 and partition it into
k uncountable Borel sets: X2 = A1 ⊔ · · · ⊔ Ak. Fix a Borel subset Y1 of X1,
meeting each E∗

1 -class, such that µ1(Y1) = a
k
< 1− a. For each 1 ≤ i ≤ k, let

fi : Y1 → Ai be a Borel bijection. Use fi to copy the measure µ1|Y1 to Ai,
say νi, and let µ2 =

∑n
i=1 νi. Then µ2(X2) = k · a

k
= a. Let X = X1 ⊔ X2,

µ = µ1 + µ2. Define the graph G = (X,E) as follows: the edges of G are
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those in E1 together with the graph of each fi and its inverse. Clearly it is
acyclic and it is easy to see that G is m.p., ergodic. Finally, X2 is indepen-
dent for G and if A ⊆ X is Borel independent, then clearly µ(A ∩X1) = 0,
so µ(B) ≤ µ(X2) = a. So iµ(G) = a and the sup is attained.

Remark 2.11. When X is a finite set and µ is normalized counting mea-
sure, iµ(G) = i(G) is usually called the independence ratio and α(G) = (the
maximum cardinality of an independent subset of X) is called the indepen-

dence number (thus i(G) = α(G)
|X| ). We will not use α(G) in this paper, so

this should not cause any confusion.

We now have the following simple inequality:

Proposition 2.12. Let G be a locally countable Borel graph on a standard
probability space (X,µ) (perhaps with atoms). Then

χap
µ (G) ≥ 1

iµ(G)
.

Proof. This is clear if iµ(G) = 0. If χap
µ (G) = k ∈ N, fix ε > 0 and inde-

pendent, pairwise disjoint, Borel sets A1, . . . , Ak with µ
(

⋃k
i=1Ai

)

> 1 − ε.

Then

k · iµ(G) ≥ µ

(

k
⋃

i=1

Ai

)

> 1 − ε,

so k > 1−ε
iµ(G)

, and we are done.

(F) We will often be interested in locally finite graphs and, in particular,
those of bounded degree, where recall that G has bounded degree if

∆(G) = sup{dG(x) : x ∈ X} < ℵ0.

Proposition 2.13 ([26] 4.5, 4.6). If G is a locally finite, Borel graph, then
χB(G) ≤ ℵ0. If G is of bounded degree, then χB(G) ≤ ∆(G) + 1.

Corollary 2.14. Let (X,µ) be a standard probability space and G = (X,E)
a locally finite, Borel graph. Then iµ(G) > 0.
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Example 2.15. For each 0 < a < 1, there is a bounded degree G = (X,E)
on a standard probability space (X,µ) which is m.p., ergodic, such that
iµ(G) = a and the supremum is attained.

To see this, let S be the shift on 2Z and let X1 ⊂ 2Z be its aperiodic part.
Let µ1 be the restriction to X1 of the product measure on 2Z. Let E1 be
the union of the graph of S|X1 and its inverse. This is invariant, ergodic on
(X1, µ1). Let n > 3 be such that a ∈

[

1
n
, n−1

n

]

, so that a = 1
n
α+ n−1

n
β for some

α, β ≥ 0, α + β = 1. Let A ⊔ B = X1 be a Borel partition with µ1(A) = α,
µ1(B) = β. Let X = X1 × {1, . . . , n} and give X the product measure
µ = µ1 × ν, where ν is the normalized counting measure on {1, . . . , n}. Let
G = (X,E) be the following graph on X:

E = {((x, 1), (y, 1)) : xE1y} ∪
{((x, i), (x, j)) : x ∈ A, 1 ≤ i 6= j ≤ n} ∪
{((x, 1), (x, j)) : x ∈ B, 2 ≤ j ≤ n} ∪
{((x, j), (x, 1)) : x ∈ B, 2 ≤ j ≤ n}.

Clearly, d(G) ≤ n+ 1. It is easy to see that (x, i)E∗(y, j) ⇔ xE∗
1y, and thus

G is m.p., ergodic. We claim that iµ(G) = a and the supremum is attained.
First note that if Y ⊆ X is independent, then for each x ∈ A there is at most
one 1 ≤ i ≤ n with (x, i) ∈ Y and for each x ∈ B there are at most n − 1
many 1 ≤ j ≤ n with (x, j) ∈ Y . Thus µ(Y ) ≤ 1

n
µ(A) + n−1

n
µ(B) = a. On

the other hand, Y = {(x, 2) : x ∈ A} ∪ {(x, j) : x ∈ B and j ∈ {2, . . . , n}}
is independent and µ(Y ) = 1

n
µ(A) + n−1

n
µ(B) = a, so iµ(G) = a and the

supremum is attained.

We do not know however if examples as in 2.15 with arbitrary iµ(G) = a ∈
(0, 1) can be found which are acyclic, even if we replace “bounded degree” by
“locally finite.” We also do not know if for any given integer d > 2, there is
an upper bound f(d) < 1 for the independence number iµ(G) of every m.p.,
ergodic G with ∆(G) ≤ d (even in the case of acyclic G). We will see in
Section 3 that for d = 2, f(d) = 1/2 works. Note that in the examples of
2.15, to achieve iµ(G) = a < 1, we needed a graph G of degree n+ 1, where
n ≥ 1

1−a
.

We now prove a strengthening of 2.13 with applications in computing
bounds for approximate chromatic numbers (and thus independence num-
bers). Recall that we say a graph is aperiodic if all of its connected compo-
nents are infinite.

17



Proposition 2.16. Suppose that G is an aperiodic Borel graph on X with
degree bounded by d. Then there is a decreasing sequence A1 ⊇ A2 ⊇ · · ·
of subsets of X with

⋂

nAn = ∅ and Borel (d + 1)-colorings cn : X →
{0, 1, . . . , d} of G with c−1

n (0) ⊆ An.

Proof. Recall that a complete section or marker set for an equivalence rela-
tion is one meeting each equivalence class (see, e.g., [25] 6.7). We now say
that a subset A of X is a strong marker set for G if it meets every connected
component, is independent, and there is some natural number k such that
every point of X is connected to a point in A via a path in G of length less
than k. The next lemma is a variation of Lemma 3.14 in [20].

Lemma 2.17. Suppose that G is a locally finite, aperiodic Borel graph on
X. Then there is a decreasing sequence of Borel strong marker sets A1 ⊇
A2 ⊇ · · · with

⋂

nAn = ∅.

Proof. We let B1 be a maximal independent Borel set (see [26] 4.2, 4.5). We
then let B2 be a maximal Borel subset of B1 subject to the constraint that
no two points of B2 are within distance two in the graph metric of G (the
existence of such B2 follows from the fact that the distance two graph is
locally finite). We continue in this fashion, letting Bn+1 be a maximal Borel
subset of Bn with no two points within distance n + 1.

We claim that every point of X is within distance n2 of Bn. This is
a simple induction. If every point x is within distance n2 of Bn, then, by
maximality of Bn+1, every point of Bn is within distance n + 1 of Bn+1 and
thus x is within distance n2 + n+ 1 < (n+ 1)2 of Bn.

It may not be the case that
⋂

nBn = ∅, but this intersection meets each
connected component of G it at most one point. Since G is aperiodic, each
set An = Bn \ ⋂nBn is still a strong marker set. The sequence (An) is as
desired.

Lemma 2.18. Suppose that G is a Borel graph on X and that A ⊆ X is a
Borel set such that every point in X \ A has degree less than d. Then any
Borel d-coloring c : A → d of G|A may be extended to a Borel d-coloring
c′ : X → d of G.

Proof. Partition X \ A = B1 ⊔ B2 ⊔ · · · ⊔ Bd into Borel G-independent sets.
Extend c to c1 : A ∪ B1 → d by following a greedy algorithm, i.e., for each
x ∈ B1 set c1(x) to be the least color not used by a neighbor of x. Similarly
extend to B2, . . . , Bd.
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To finish the proof of the proposition, we take the vanishing sequence
of strong markers A1 ⊇ A2 ⊇ · · · granted by Lemma 2.17 as the sequence
in the statement of the lemma, and describe how to Borel (d + 1)-color G
with one color contained in An. Fix k such that every point of X is within
distance k of An, and partition X into X0 = An ⊔ X1 ⊔ · · · ⊔ Xk, where
Xi = {x ∈ X : ρG(x,An) = i}.

Now G|Xk has degree bounded by d − 1 (since everything is connected
to at least one point in Xk−1), and thus admits a Borel d-coloring. In the
graph G|(Xk ∪Xk−1), points in Xk−1 have degree bounded by d − 1 and so
Lemma 2.18 allows us to extend the d-coloring on Xk to one on Xk ∪Xk−1.
Continuing in this fashion, we obtain a Borel coloring of X \An with d colors.
Using the remaining color on An itself completes the proof.

And now, for the promised application, an analogue of Brooks’ theorem.
Recall that the clique number of a graph, clq(G), is the largest cardinality
of a complete (induced) subgraph of G.

Theorem 2.19. Let (X,µ) be a standard probability space, G = (X,E) a
Borel graph on X with degree bounded by d, where d ≥ 3. Suppose further
that clq(G) ≤ d. Then χap

µ (G) ≤ d and thus iµ(G) ≥ 1/d.

Proof. Brooks’ theorem allows us to d-color the finite components of G in
a Borel fashion: indeed, whenever G = (X,E) is a Borel graph with finite
connected components, then χ(G) = χB(G). To see this, simply choose
a Borel transversal T of E∗. Since each x ∈ T sees only finitely many
ways (but at least one) of coloring its connected component using the col-
ors {1, 2, . . . , χ(G)}, the required coloring is granted by the uniformization
theorem for Borel sets with countable sections.

So, it remains to handle the infinite connected components of G. Fix
ε > 0. Since the sequence A1 ⊇ A2 ⊇ · · · granted by Proposition 2.16
vanishes, we may fix n such that µ(An) < ε. But then 2.16 provides us with
the required d-coloring of X \ An.

The analogy extends also to the case d = 2:

Theorem 2.20. Let (X,µ) be a standard probability space, G = (X,E) a
bipartite Borel graph on X with degree bounded by 2. Then χap

µ (G) ≤ 2 and
thus iµ(G) ≥ 1/2.
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Proof. Fix ε > 0. Then by the marker lemma (see, e.g., [25] 6.7) there is a
Borel set A with µ(A) < ε meeting every infinite E∗-class. The connected
components of G|(X \ A) are either finite or infinite with a single endpoint
of degree one. This easily implies that there is a Borel 2-coloring of G|(X \
A).

In some cases, the conclusion of Theorem 2.19 can be slightly improved.

Proposition 2.21. Let (X,µ) be a standard probability space, G = (X,E)
a bipartite Borel graph on X with degree bounded by d, where d ≥ 3. Then
there is an independent Borel set of measure ≥ 1/d.

Proof. Let A be a maximal independent Borel set. If µ(A) ≥ 1/d we are
done. Else, 1 − µ(A) > 1 − 1/d and so we can choose ε > 0 small enough
so that (1 − µ(A))

(

1
d−1

− ε
)

≥ 1
d
. Since G|(X \ A) has degree bounded by

d − 1 ≥ 2, by 2.19 or 2.20 there is an independent subset of X \ A with
measure at least

µ(X \ A)

(

1

d− 1
− ε

)

,

so of measure at least 1/d.

Proposition 2.22. Let (X,µ) be a standard probability space, G = (X,E)
a Borel graph on X with degree bounded by d, where d ≥ 4. Suppose further
that clq(G) ≤ d − 1. Then there is an independent Borel set of measure
≥ 1/d.

Proof. Essentially the same argument as 2.21, noting that the assumption
of small clique number allows us to always apply 2.19 in finding the large
independent subset of X \ A.

3 Hyperfinite graphs

(A) Recall that a countable Borel equivalence relation R on a standard Borel
space X is called hyperfinite if it can be written as an increasing union
⋃∞

n=1 Fn, with each Fn a finite Borel equivalence relation. If instead R is on
a standard measure space (X,µ), we say that R is µ-hyperfinite if there is a
conull Borel set A ⊆ X such that R|A is hyperfinite. By Connes-Feldman-
Weiss (see, e.g., [25], 10.1), measure-preserving actions of amenable groups
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give rise to µ-hyperfinite orbit equivalence relations. We will examine such
actions in Section 4.

(B) We say that a locally countable, Borel graph G = (X,E) on a stan-
dard measure space (X,µ) is µ-hyperfinite if the equivalence relation E∗ is
µ-hyperfinite. In Miller [39] it is shown that if G is µ-hyperfinite and acyclic,
then χµ(G) ≤ 3. A slight modification of these techniques allows us to com-
pute χap

µ (G) for such graphs.
We say that a locally countable, Borel graph G = (X,E) is smooth if

E∗ admits a Borel selector. Such a graph G is directable if there exists a
Borel function f : X → X such that xEy ⇔ y = f(x) or x = f(y). Finally,
such a graph is essentially linear if there is a Borel set B ⊆ X such that
every connected component of G contains exactly one connected component
of G|B and, moreover, G|B is an acyclic graph which is regular of degree two
(i.e., it is a forest of lines).

Theorem 3.1. Let G be a locally countable, acyclic, µ-hyperfinite, Borel
graph on a standard probability space (X,µ). Then χap

µ (G) ≤ 2, and thus
iµ(G) ≥ 1/2.

Proof. Following [39] 3.1 and [20] 3.19, we may find pairwise disjoint, E∗-
invariant Borel sets X0, X1, X2 such that µ(X0 ∪ X1 ∪ X2) = 1, G|X0 is
smooth, G|X1 is directable, and G|X2 is essentially linear. We handle these
three parts separately.

Fix a Borel transversal A of E∗|X0, and color each point x ∈ X0 by the
parity of ρG(x, T ). Thus, χB(G|X0) ≤ 2, and consequently χap

µ (G|X0) ≤ 2.
We next handle X2. Fix ε > 0 and a Borel set B witnessing the essential

linearity of G|X2. By Theorem 2.19, we may find a Borel partition B =
B0 ⊔B1 ⊔B2, with µ(B2) < ε and B0,B1 forming a 2-coloring of G|(B \B2)
(if µ(B) = 0 we may take B2 = B). We may extend this to a 2-coloring of
G|(X2 \ B2) in the obvious way: for each x ∈ X2 set b(x) to be the closest
element of B to x, then color x by the parity of ρG(x, b(x)) if b(x) ∈ B0 and
by the parity of ρG(x, b(x)) + 1 if b(x) ∈ B1 ∪B2. Thus, χap

µ (G|X2) ≤ 2.
Finally, we handle X1. Fix ε > 0 and a Borel function f : X1 → X1

witnessing that G|X1 is directable. Define a partial order on X1 by x ≤ y ⇔
∃n(y = fn(x)). The following generalization of the marker lemma ensures
that we may find small sets cofinal in this partial order. For a relation R on
X, we say that A ⊆ X is an R-complete section if A meets every vertical
section of R, i.e., for all x in X, ∃y ∈ A (xRy).
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Lemma 3.2 (Miller). Suppose that X is a Polish space and R is a transitive,
reflexive Borel binary relation on X whose vertical sections are all countably
infinite. Then there are Borel R-complete sections A0 ⊇ A1 ⊇ · · · such that
⋂

n∈N
An = ∅.

Using the above lemma, we may find a Borel set C ⊆ X1 with µ(C) < ε
so that for all x ∈ X1 there exists y ∈ C with x ≤ y. We may then color
each x ∈ X1 \ C by the parity of the least n such that fn(x) ∈ C, so
χap

µ (G|X1) ≤ 2.

Proof of Lemma 3.2. Fix an enumeration B0, B1, . . . of a countable family
of Borel subsets of X which separates points, and for each s ∈ 2<N, define
Bs ⊆ X by

Bs =





⋂

s(i)=0

X \Bi



 ∩





⋂

s(i)=1

Bi



 .

For each n ∈ N, define Sn : X → P(2n) by

Sn(x) = {s ∈ 2n : ∀y ∈ Rx (|Bs ∩ Ry| = ℵ0)}.

Sublemma 3.3. Suppose that x, y ∈ X, n ∈ N, s ∈ 2n, and i ∈ {0, 1}.
Then:

(1) (x, y) ∈ R ⇒ Sn(x) ⊆ Sn(y);

(2) si ∈ Sn+1(x) ⇒ s ∈ Sn(x).

Proof. The first claim is a consequence of the transitivity of R, and the
second is a trivial consequence of the definition of Sn.

For each s ∈ 2n, define Cs ⊆ X by

Cs = {x ∈ X : ∀y ∈ Rx (s = min
lex

Sn(y))},

and for each n ∈ N, define Dn ⊆ X by

Dn =
⋃

s∈2n

Bs ∩ Cs.

We will show that the sets D0, D1, . . . are nearly as desired.

Sublemma 3.4. ∀n ∈ N (Dn+1 ⊆ Dn).
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Proof. Fix n ∈ N and suppose that x ∈ Dn+1. Then there exists s ∈ 2n

and i ∈ {0, 1} such that x ∈ Bsi ∩ Csi. In particular, it follows that x ∈
Bs, so to see that x ∈ Dn, it is enough to show that x ∈ Cs. Suppose,
towards a contradiction, that there exists y ∈ Rx such that s 6= t, where
t = minlex Sn(y). As x ∈ Csi, it follows that si ∈ Sn+1(x). As (1) ensures that
Sn(x) ⊆ Sn(y) and (2) ensures that s ∈ Sn(x), it follows that s ∈ Sn(y), thus
t <lex s. As t0 <lex si and si = minlex Sn+1(y), it follows that t0 /∈ Sn+1(y),
so there exists z ∈ Ry such that |Bt0 ∩ Rz| < ℵ0. Similarly, since t1 <lex si
and si = minlex Sn+1(z), it follows that t1 /∈ Sn+1(z), so there exists w ∈ Rz

such that |Bt1 ∩ Rw| < ℵ0. As the transitivity of R ensures that Rw ⊆ Rz,
this implies that |Bt ∩ Rw| < ℵ0. As the transitivity of R implies also that
(y, w) ∈ R, this contradicts our assumption that t ∈ Sn(y).

While each Dn is an R-complete section, we will show something stronger:

Sublemma 3.5. ∀x ∈ X ∀n ∈ N (|Dn ∩ Rx| = ℵ0).

Proof. Fix an enumeration 〈si〉i<2n of {0, 1}n. For each x ∈ X, set x0 = x,
and given xi, let xi+1 be any element of Rxi

such that minlex Sn(xi+1) 6=
minlex Sn(xi), if such an element exists. Otherwise, set xi+1 = xi. Let y = x2n

and s = minlex Sn(y), and observe that ∀z ∈ Ry (s = minlex Sn(z)), thus
y ∈ Cs. As s ∈ Sn(y), it follows that |Bs ∩ Ry| = ℵ0, and since y ∈ Cs,
it follows that Bs ∩ Ry = Bs ∩ Cs ∩ Ry, thus |Bs ∩ Cs ∩ Ry| = ℵ0. As
Bs ∩Cs ⊆ Dn and the transitivity of R ensures that Ry ⊆ Rx, it follows that
|Dn ∩Rx| = ℵ0.

Unfortunately, it need not be the case that the set D =
⋂

n∈N
Dn is empty.

However, this is not so far from the truth:

Sublemma 3.6. ∀x, y ∈ D (x 6= y ⇒ (x, y) /∈ R).

Proof. Suppose, towards a contradiction, that there are distinct points x, y ∈
D such that (x, y) ∈ R. Fix n ∈ N and s ∈ 2n such that x ∈ Bs and y /∈ Bs.
As x ∈ Dn, it follows that minlex Sn(x) = minlex Sn(y) = s, so y /∈ Dn, thus
y /∈ D, the desired contradiction.

Now define An = Dn \ D. Sublemma 3.4 implies that these sets are
decreasing, and they clearly have empty intersection, so it only remains to
check that each An is an R-complete section. Towards this end, fix x ∈ X,
and observe that two applications of Sublemma 3.5 ensure that there are
distinct points y ∈ Dn ∩ Rx and z ∈ Dn ∩ Ry. Sublemma 3.6 then ensures
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that y /∈ An ⇒ y ∈ D ⇒ z /∈ D ⇒ z ∈ An, and the transitivity of R then
implies that An ∩Rx 6= ∅.

It is natural to ask whether the assumption of acyclicity in Theorem 3.1
can be weakened to χ(G) ≤ 2. This is not the case:

Example 3.7. There is a Borel graph G on a standard probability space
(X,µ) which is locally countable, µ-hyperfinite, and satisfies both χ(G) = 2
and iµ(G) = 0. To see this, set X = 2N, µ the usual product measure,
and xEy ⇔ x and y differ on exactly one coordinate. Then E∗ = E0, the
equivalence relation of eventual agreement, which is hyperfinite. Certainly,
χ(G) = 2 as G contains no cycles of odd length. It remains only to see that
iµ(G) = 0.

Suppose that Y ⊆ X is a set of positive measure. Then, by Lebesgue
density, there is a finite binary string s such that µ(Y ∩Ns)

µ(Ns)
> 1/2, where Ns =

{x ∈ X : s ⊑ x}. This implies that the set {x ∈ X : s0x ∈ Y and s1x ∈ Y }
has positive measure, so Y cannot be independent for G.

(C) We now turn our attention to locally finite µ-hyperfinite graphs. In
this context, counterexamples such as 3.7 do not arise:

Theorem 3.8. Let G be a locally finite, µ-hyperfinite, Borel graph on a
standard probability space (X,µ). Then χap

µ (G) ≤ χ∗(G), and thus iµ(G) ≥
1/χ∗(G). If moreover G is m.p., then χap

µ (G) = χ∗(G).

Proof. For the first part, discarding a null set if necessary, we may assume
that G is hyperfinite and χ∗(G) = χ(G). Fix ε > 0 and finite Borel equiv-
alence relations F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · witnessing the hyperfiniteness of
G. For each n, define the set

Xn = {x ∈ X : ∀y ∈ X(xEy ⇒ xFny)}.

Then, since G is locally finite, X =
⋃

nXn. Choose n such that µ(Xn) > 1−ε,
and define G′ = G|Xn = (Xn, E

′). Since E ′ ⊆ Fn, we have (E ′)∗ ⊆ Fn, and
thus the connected components of G′ are finite. Consequently χB(G′) ≤
χ(G′) ≤ χ(G), and therefore χap

µ (G) ≤ χ(G).
In the m.p. case, we always have χ∗(G) ≤ χap

µ (G), thus we have equality.
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4 Graphs associated with group actions

(A) Consider a countable group Γ, which we will assume to be infinite, unless
otherwise indicated. Let A : Γ × X → X be a free Borel action of Γ on a
standard Borel space. (Free means that A(γ, x) 6= x, ∀γ 6= 1, ∀x ∈ X.) We
put γA(x) = A(γ, x) and often write γ · x for A(γ, x) if there is no danger of
confusion.

If S ⊆ Γ is a set of generators for Γ, where we always assume, unless
otherwise indicated, that 1 /∈ S, we define the associated graph

G(S,A) = (X,E(S,A)),

by
(x, y) ∈ E(S,A) ⇔ ∃s ∈ S(y = s±1 · x).

Clearly this is a locally countable, Borel graph on X whose connected com-
ponents are the Γ-orbits of the action A. Denote by χ(S,A), resp., χB(S,A)
the associated with G(S,A) chromatic, resp., Borel chromatic numbers. Let
also Cay(Γ, S) be the (left) Cayley graph of Γ with respect to S, where γ, δ
are connected by an edge iff there is s ∈ S with δ = s±1γ. If x ∈ X then
the map γ ∈ Γ 7→ γ · x gives an isomorphism between Cay(Γ, S) and the
connected component of x in G(S,A). Thus

χ(S,A) = χ(Cay(Γ, S)).

Let now (X,µ) be a standard probability space and let a be a free, measure-
preserving action of Γ on (X,µ). This is an equivalence class of Borel actions
of Γ on X that preserve the measure µ, where two actions A(γ, x), B(γ, x) are
identified if A(γ, x) = B(γ, x), a.e., ∀γ, and free means that ∀γ 6= 1(a(γ, x) 6=
x, a.e.). We again denote, for each set S of generators of Γ, by G(S, a) =
(X,E(S, a)) the associated graph on X and by χ∗(S, a), χµ(S, a), χap

µ (S, a),
iµ(S, a) the corresponding numbers. It should be noted that G(S, a) is only
defined almost everywhere in the sense that if A, B are representatives for
a, then there is a conull set Y which is invariant under both A and B on
which A and B agree, thus Y is a set of connected components of both
G(S,A), G(S,B) and G(S,A)|Y = G(S,B)|Y . It follows that the numbers
χ∗, χµ, χap

µ , iµ are well-defined, i.e., depend only upon a (and S). Moreover,
again, χ∗(S, a) = χ(Cay(Γ, S)) ≤ χap

µ (S, a). Finally, we usually write Ea for
E∗(S, a), the equivalence relation induced by the action a. Clearly, G(S, a)
is measure preserving and it is ergodic iff a is ergodic.
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We first note the following obvious inequality

iµ(S, a) ≤ 1/2.

This is because if A ⊆ X is independent and s ∈ S, then A ∩ sa(A) = ∅ and
µ(A) = µ(sa(A)).

Moreover, if for every Γ0 ≤ Γ of index at most 2, the action a|Γ0 ∈
A(Γ0, X, µ) is ergodic (e.g., if a is weakly mixing), then there can be no
Borel independent set A of measure exactly 1/2 (so if iµ(S, a) = 1/2, the
supremum is not attained). Otherwise s · A = X \ A for every s ∈ S±1

and so A is Γ0-invariant, where Γ0 = {t1t2 · · · t2n : n ≥ 0, ti ∈ S±1} and
S±1 = {s±1 : s ∈ S}. Since [Γ : Γ0] ≤ 2, this gives a contradiction to our
assumption. In particular, for such a, χµ(S, a) ≥ 3.

Finally we note that by 2.2, (b) if S is an infinite set of generators and
a ∈ FR(Γ, X, µ) is mixing, then iµ(S, a) = 0.

We denote by FR(Γ, X, µ) the space of free, measure-preserving actions
of Γ on (X,µ) and we equip it with the weak topology in which FR(Γ, X, µ)
is a Polish space (see [24], 10).

Theorem 4.1. Let Γ be a countable group and S ⊆ Γ a finite set of genera-
tors. Then the map

a 7→ iµ(S, a)

is lower semicontinuous in FR(Γ, X, µ).

Proof. Note that for r ∈ R,

r < iµ(S, a) ⇔ ∃ Borel A ∃ε > 0
(

µ(A) > r + ε and ∀t ∈ S±1
(

µ(A ∩ ta(A)) <
ε

n

))

,

where |S±1| = n. The direction from left to right is clear, because we can take
A to be a Borel independent set of measure r+ε for some ε > 0. Conversely,
let A, ε satisfy the right-hand side. Then

B = A \
⋃

t∈S±1

ta(A)

is independent and µ(B) ≥ µ(A) − n · ε
n
> r, so iµ(S, a) > r.

Since the map a 7→ µ(A ∩ γa(A)) from FR(Γ, X, µ) to R is continuous in
the weak topology, for each γ ∈ Γ, {a ∈ FR(Γ, X, µ) : r < iµ(S, a)} is open
and the proof is complete.
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Recall that a ∈ FR(Γ, X, µ) is weakly contained in b ∈ FR(Γ, X, µ), in
symbols a ≺ b, if a is in the closure of the conjugacy class of b (see [24], 10,
10.1). So we have

Corollary 4.2. Let Γ be a countable group and S ⊆ Γ a finite set of gener-
ators. Then

a ≺ b ⇒ iµ(S, a) ≤ iµ(S, b).

In particular, iµ(S, a) is an invariant of weak equivalence, defined by a ∼
b⇔ a ≺ b and b ≺ a.

Corollary 4.2 (and thus 4.1) may fail if S is infinite. Take for example
the free group Γ with a (free) infinite generating set S. Then every action
of Γ is weakly contained in a mixing action (this is a very special case of
the result in [16]), so by 2.2, (b) if 4.2 was true in this case, then we would
have iµ(S, a) = 0, for any free action a. But this contradicts, for example,
4.6 below. A similar remark applies to 4.3 and 4.13.

Concerning χap
µ we have the following result.

Theorem 4.3. Let Γ be a countable group and S ⊆ Γ a finite set of genera-
tors. Then for any a, b ∈ FR(Γ, X, µ),

a ≺ b⇒ χap
µ (S, a) ≥ χap

µ (S, b).

Proof. Assume a ≺ b and let k = χap
µ (S, a), n = |S±1|. Fix ε > 0. Let

then A1, . . . , Ak be Borel, pairwise disjoint, independent subsets of X with
µ(A1 ∪ · · · ∪ Ak) > 1 − ε

k+1
. Since a ≺ b, there are Borel, pairwise disjoint

subsets B1, . . . , Bk of X with µ(B1 ∪ · · · ∪Bk) > 1 − ε
k+1

and

|µ(sa(Ai) ∩Ai) − µ(sb(Bi) ∩ Bi)| <
ε

n(k + 1)

for all s ∈ S±1, thus µ(sb(Bi) ∩ Bi) <
ε

n(k+1)
for all s ∈ S±1. If Bi = Bi \

⋃

s∈S±1 sb(Bi), then Bi, 1 ≤ i ≤ k, are Borel, pairwise disjoint, independent

(for the action b) sets, and µ(Bi) ≥ µ(Bi)− ε
k+1

, so µ(B1 ∪ · · ·∪Bk) > 1− ε,
therefore k ≥ χap

µ (S, b).

It follows that a 7→ χap
µ (S, a) is also an invariant of weak equivalence.

Next recall the following simple fact.

Proposition 4.4. Let Γ be a countable group and S ⊆ Γ a set of generators.
Then the following are equivalent:
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(i) χ(Cay(Γ, S)) = 2 (i.e., Cay(Γ, S) is bipartite),

(ii) There is a homomorphism ϕ : Γ → Z/2Z that sends S to 1,

(iii) {s1 · · · s2n : n ≥ 0, si ∈ S±1} has index 2 in Γ,

(iv) For any s1, . . . , s2n+1 ∈ S±1, n ≥ 0, we have s1 · · · s2n+1 6= 1.

Moreover, a group Γ admits a set of generators S ⊆ Γ with Cay(Γ, S) bipartite
iff Z/2Z is a factor of Γ.

We now have:

Proposition 4.5. Let Γ be a countable group and S ⊆ Γ a set of generators.
Let g = godd(Cay(Γ, S)) be the odd girth of the Cayley graph Cay(Γ, S). Then
for any a ∈ FR(Γ, X, µ), we have

iµ(S, a) ≤ 1/2 − 1/(2g).

Also if Γ0 = {s1 · · · s2n : n ≥ 0, si ∈ S±1} and a|Γ0 ∈ FR(Γ0, X, µ) is strongly
ergodic, then iµ(S, a) < 1/2.

Proof. We can assume that g < ∞, i.e., that the Cayley graph is not bipar-
tite. Let A ⊆ X be a Borel independent set and let µ(A) = 1/2−ε. Then for
any s, t ∈ S±1, it is easy to see that µ(A△st · A) ≤ 4ε. So, by induction, if
γ = s1 · · · s2n, where si ∈ S±1, then µ(γ ·A△A) ≤ 4nε. If g = 2n+1, then for
some s, s1, . . . , s2n ∈ S±1, we have that s = s1 · · · s2n, so µ(s · A△A) ≤ 4nε,
thus ε ≥ 1/(4n+ 2) = 1/(2g), therefore µ(A) ≤ 1/2 − 1/(2g).

In the case a|Γ0 is strongly ergodic but iµ(S, a) = 1/2, there are Borel
independent sets An with µ(An) → 1/2. Then for any finite F ⊆ Γ0, ε > 0,
and all large enough n, we have µ(γ · An △ An) < ε, ∀γ ∈ F , i.e., a|Γ0 has
non-trivial almost invariant sets, contradicting strong ergodicity.

Thus in the context of 4.5, if Cay(Γ, S) is not bipartite (so that g < ∞)
or if a|Γ0 is strongly ergodic, we have that iµ(S, a) < 1/2 and χap

µ (S, a) ≥ 3.
Also recall that if a|Γ0 is ergodic, e.g., if a is weak mixing, then χµ(S, a) ≥ 3
(otherwise there would be an independent set of measure 1/2).

Applying 4.5 to Γ = (Z/2Z) ∗ (Z/3Z) = 〈s, t|s2 = 1, t3 = 1〉, with S =
{s, t}, we have g = 3, and thus iµ(S, a) ≤ 1/3, for any a ∈ FR(Γ, X, µ).
But by 2.19, since d = 3, iµ(S, a) ≥ 1/3. So iµ(S, a) = 1/3 for any a ∈
FR(Γ, X, µ). This also shows that the upper bound in 4.5 cannot, in general,
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be improved. We will see at the end of Section 5, using also a result of
Lyons-Nazarov [35], that for Γ = (Z/3Z) ∗ (Z/3Z) = 〈s, t|s3 = 1, t3 = 1〉 and
S = {s, t}, we also have iµ(S, a) = 1/3 for any a ∈ FR(Γ, X, µ).

Theorem 4.6. Let Γ be a countable group and S ⊆ Γ a set of generators.
Then the following are equivalent:

(i) Cay(Γ, S) is bipartite,

(ii) There is an action a ∈ FR(Γ, X, µ) with iµ(S, a) = 1/2,

(iii) There is an action a ∈ FR(Γ, X, µ) with χap
µ (S, a) = 2,

(iv) There is an action a ∈ FR(Γ, X, µ) with χµ(S, a) = 2,

(v) There is an ergodic action a ∈ FR(Γ, X, µ) with χµ(S, a) = 2.

Proof. (ii)⇒(i) follows from 4.5. Clearly (v) ⇒ (iv) ⇒ (iii) ⇒ (ii).
Conversely, assume (i) in order to prove (v). Let ϕ : Γ → Z/2Z be a

homomorphism that sends S to 1. Let a0 ∈ FR(Γ, X, µ) be weakly mixing,
and let a1 be the action of Γ on Z/2Z = {0, 1} given by γ · i = ϕ(γ) + i. If
ν({0}) = ν({1}) = 1/2, then the action of Γ on Z/2Z is measure preserving
and ergodic.

Let now a ∈ FR(Γ, X × {0, 1}, µ× ν) be the product action a0 × a1, i.e.,

γ · (x, i) = (γ · x, ϕ(γ) + i).

Clearly, X×{0}, X×{1} gives a measurable 2-coloring of the graph G(S, a),
so χµ(S, a) = 2. Finally, since a0 is free and weakly mixing, the action a is
free and ergodic.

(B) Consider now the case of (Γ, S), where S is a finite set of generators
of Γ and Γ is amenable. Then if a, b ∈ FR(Γ, X, µ) are ergodic, by [24],13.2,
a ∼ b and so iµ(S, a) = iµ(S, b). Thus iµ(S, a) is constant for all free, ergodic
a. Using the ergodic decomposition, this is true for all a ∈ FR(Γ, X, µ). We
denote by

iµ(Γ, S)

this constant value.
Similarly, χap

µ (S, a) is constant for all a ∈ FR(Γ, X, µ) and we denote this
constant value by

χap
µ (Γ, S).

We now have:

29



Theorem 4.7. Let Γ be a countable, amenable group and S ⊆ Γ a finite set
of generators. Then

χap
µ (Γ, S) = χ(Cay(Γ, S)).

Proof. This follows from Theorem 3.8.

Theorem 4.8. Let Γ be a countable, amenable group and S ⊆ Γ a finite set
of generators. Then:

(i) If Cay(Γ, S) is bipartite, then iµ(Γ, S) = 1/2,

(ii) If Cay(Γ, S) is not bipartite, then iµ(Γ, S) ≤ 1/2−1/(2g) < 1/2, where
g is the odd girth of Cay(Γ, S).

Proof. (i) follows from 3.8, and (ii) from 4.5.

We can now identify iµ(Γ, S) in terms of Cay(Γ, S). Recall that a Følner
sequence in Γ is a sequence (Fn) of finite, non-empty subsets of Γ such that

∀γ ∈ Γ, |γFn△Fn|
|Fn| → 0. We will use the following result that is a consequence

of the quasi-tiling machinery in Ornstein-Weiss [43] and is explicitly stated
in Gromov [14], 1.3 and Lindenstrauss-Weiss [31], Appendix (see also Abért,
Jaikin-Zapirain and Nikolov [2], Lemma 18).

Theorem 4.9 (Ornstein-Weiss [43], Gromov [14], Lindenstrauss-Weiss [31]).
Let Γ be an amenable group and (Fn) a Følner sequence in Γ. Let h be a
positive real-valued function defined on all finite subsets of Γ such that h is
subadditive (i.e., h(A ∪ B) ≤ h(A) + h(B)) and right-invariant (h(Aγ) =

h(A), ∀γ ∈ Γ). Then limn→∞
h(Fn)
|Fn| exists (and is of course independent of

(Fn)).

For each finite F ⊆ Γ denote by i(F, S) the independence ratio of the in-
duced subgraph Cay(Γ, S)|F . Then it is easy to check that h(F ) = i(F, S)|F |
(i.e., h(F ) is the maximal cardinality of an independent subset of Cay(Γ, S)|F )
is subadditive and right-invariant, thus for each Følner sequence (Fn) the
limit

lim
n→∞

i(Fn, S) = i(Γ, S)

exists and is independent of (Fn). We call it the independence number of
Cay(Γ, S). We now have:
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Theorem 4.10. Let Γ be a countable, amenable group and S ⊆ Γ a finite
set of generators. Then

iµ(Γ, S) = i(Γ, S).

Proof. We will use the following two results, the first of which is a conse-
quence of the quasi-tiling machinery of Ornstein-Weiss [43] (see specifically
II.§2, Theorem 5 and its subsequent remark, and also the proof of I.§2, The-
orem 6) and the second is a very weak consequence of the mean ergodic
theorem for Følner sequences (see, e.g., Nevo [41], 6.7).

Lemma 4.11. (i) Let Γ be a countable, amenable group and 1 ∈ F0 ⊆
F1 ⊆ · · · an increasing Følner sequence. Let a ∈ FR(Γ, X, µ) and ε > 0.
Then we can find n1 < · · · < nk, so that letting Ti = Fni

, 1 ≤ i ≤ k, we
have the following:

For each 1 ≤ i ≤ k, there is li ≥ 1, sets Tij ⊆ Ti, and Borel sets
Bij ⊆ X, 1 ≤ j ≤ li, such that

(a) The sets TijBij , 1 ≤ j ≤ li, are pairwise disjoint,

(b) The sets tBij, t ∈ Tij, are pairwise disjoint,

(c) The sets
⋃

j≤li
TijBij, 1 ≤ i ≤ i, are pairwise disjoint,

(d) µ
(

⋃

i≤k

⋃

j≤li
TijBij

)

> 1 − ε,

(e)
|Tij |
|Ti| > 1 − ε, 1 ≤ i ≤ k, 1 ≤ j ≤ li.

(ii) Let Γ be a countable, amenable group and a ∈ FR(Γ, X, µ) an ergodic
action. Let (Fn) be a Følner sequence for Γ, let ε > 0 and let A ⊆ X a
Borel set. Then for some n ∈ N and x ∈ X we have

∣

∣

∣

∣

|{f ∈ Fn : f · x ∈ A}|
|Fn|

− µ(A)

∣

∣

∣

∣

< ε.

It is clearly enough to show that for any ergodic a ∈ FR(Γ, X, µ), iµ(S, a) =
i(Γ, S). Fix a Følner sequence 1 ∈ F0 ⊆ F1 ⊆ · · · , in order to show that
limn→∞ i(Fn, S) = iµ(S, a). We proceed in two steps.

(A) limn→∞ i(Fn, S) ≤ iµ(S, a)
Put α = limn→∞ i(Fn, S). We may of course assume that α > 0. Fix α >

ε > 0. By (i) of the lemma, applied to the appropriate subsequence of (Fn)
and ε′ << ε, we can find n1 < · · · < nk such that letting Ti = Fni

, 1 ≤ i ≤ k
and letting Tij , Bij be as in the lemma we have
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(i) There are independent sets Aij ⊆ Tij with
∣

∣

∣

|Aij |
|Tij| − α

∣

∣

∣
< ε and Aij ⊆

{t ∈ Tij : ∀s ∈ S±1(st ∈ Tij)},

(ii) The family of sets {Tijb}, where b ∈ Bij , 1 ≤ i ≤ k, 1 ≤ j ≤ li, is

pairwise disjoint and µ
(

⋃

i≤k

⋃

j≤li
TijBij

)

> 1 − ε.

Let then A =
⋃

i≤k

⋃

j≤li
AijBij. Then A is independent and

µ(A) =
∑

i≤k

∑

j≤li

|Aij |µ(Bij)

≥
∑

i≤k

∑

j≤li

(α− ε)|Tij|µ(Bij)

= (α− ε)
∑

i≤k

∑

j≤li

|Tij|µ(Bij)

> (α− ε)(1 − ε),

so iµ(S, a) > (α− ε)(1 − ε) and thus, letting ε→ 0, iµ(S, a) ≥ α.

(B) limn→∞ i(Fn, S) ≥ iµ(S, a).
Let A ⊆ X be a Borel independent set. Fix ε > 0 and, by (ii) of the lemma

applied to tail ends of (Fn), we can find x1, x2, . . . ∈ X and n1 < n2 < · · ·
such that

∣

∣

∣

∣

|{f ∈ Fni
: f · xi ∈ A}|
|Fni

| − µ(A)

∣

∣

∣

∣

< ε.

Let Ai = {f ∈ Fni
: f ·xi ∈ A}. Then Ai is independent in Cay(Γ, S)|Fni

,

so |Ai|
|Fni

| ≤ i(Fni
, S), thus µ(A) < |Ai|

|Fni
| + ε ≤ i(Fni

, S) + ε. Letting i → ∞,

ε→ 0, we have µ(A) ≤ limi→∞ i(Fni
, S) = limn→∞ i(Fn, S).

Remark 4.12. By a similar argument, one can see that if Γ is a count-
able, amenable group and m is a finitely additive, shift-invariant probability
measure on Γ, then

sup{m(A) : A ⊆ Γ is independent in Cay(Γ, S)} = i(S, a).

In particular, this supremum is independent of the choice of m.

(C) When Γ is not amenable, iµ(S, a) and χap
µ (S, a) might not be constant.

For example, we have:
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Proposition 4.13. Let Γ be a countable group and S ⊆ Γ a finite set of
generators with Cay(Γ, S) bipartite. Then the following are equivalent:

(i) Γ is amenable,

(ii) iµ(S, a) is constant, for all a ∈ FR(Γ, X, µ),

(iii) χap
µ (S, a) is constant, for all a ∈ FR(Γ, X, µ).

Proof. We have seen that (i) ⇒ (ii), (iii). Assume now that Γ is not amenable.
Then for the shift action sΓ of Γ on 2Γ, with the usual product measure, and
Γ0 as in Proposition 4.5, a|Γ0 is strongly ergodic, so iµ(S, sΓ) < 1/2 and thus
also χap

µ (S, sΓ) ≥ 3. On the other hand, by 4.6 there is a ∈ FR(Γ, X, µ) with
iµ(S, a) = 1/2 and χap

µ (S, a) = 2, giving the failure of (ii) and (iii).

On the other hand, Abért and Weiss [3] showed that among all a ∈
FR(Γ, X, µ), there is a minimum one in the sense of weak containment,
namely the shift action sΓ of Γ on 2Γ (with the usual product measure),
and earlier Hjorth (unpublished) and (independently) Glasner-Thouvenot-
Weiss [13] showed that there is a maximum one, denoted by aΓ,∞ (see also
[24], 10.7). Similarly there is a free, ergodic action which is maximum in the
sense of weak containment among all the free, ergodic actions, denoted by
aerg

Γ,∞ (see [24], 13.1). Then for any free, ergodic action a,

sΓ ≺ a ≺ aerg
Γ,∞.

Therefore for any finite generating set S ⊆ Γ, we have for any ergodic a ∈
FR(Γ, X, µ),

iµ(S, sΓ) ≤ iµ(S, a) ≤ iµ(S, aerg
Γ,∞),

and
χap

µ (S, sΓ) ≥ χap
µ (S, a) ≥ χap

µ (S, aerg
Γ,∞).

Thus, by the ergodic decomposition, for any free action a,

iµ(S, sΓ) ≤ iµ(S, a) ≤ iµ(S, aerg
Γ,∞),

and, using also the proof of 4.3,

χap
µ (S, sΓ) ≥ χap

µ (S, a) ≥ χap
µ (S, aerg

Γ,∞).

Note also that if for 0 ≤ α, β ≤ 1 with α+ β = 1, we consider the convex
combination αa+βb, for any free actions a, b (see [24], 10 (F)), then trivially
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iµ(S, αa+βb) = αiµ(S, a)+βiµ(S, b), therefore {iµ(S, a) : a ∈ FR(Γ, X, µ)} =
[iµ(S, sΓ), iµ(S, aerg

Γ,∞)]. For example, if Cay(Γ, S) is bipartite and Γ is not
amenable, then this last interval is not trivial, so iµ(S, a) takes continuum
many values on FR(Γ, X, µ) and thus, in particular, there are continuum
many weak equivalence classes of free actions. Note also that for all these
actions c = αa + βb, α, β 6= 0, the corresponding Koopman representations
κc (see §4, (D) below) are all isomorphic (to κa ⊕κb). It is not clear however
what is the range of iµ(S, a) on the space of ergodic, free actions.

We next show that for (Γ, S) with Cay(Γ, S) bipartite, one can charac-
terize whether Γ is amenable, has property (T) or the HAP in terms of the
independence and approximate chromatic numbers of its actions. We start
with the following characterization of amenability.

Theorem 4.14. Let Γ be a countable group and S ⊆ Γ a finite set of gener-
ators such that Cay(Γ, S) is bipartite. Then the following are equivalent:

(i) Γ is amenable,

(ii) iµ(S, a) = 1/2, for any a ∈ FR(Γ, X, µ),

(iii) χap
µ (S, a) = 2, for any a ∈ FR(Γ, X, µ),

(iv) iµ(S, sΓ) = 1/2,

(v) χap
µ (S, sΓ) = 2.

In particular, if Γ is a finitely generated group having Z/2Z as a factor, then
the following are equivalent:

(a) Γ is amenable,

(b) There is a finite generating set S ⊆ Γ such that iµ(S, sΓ) = 1/2,

(c) As in (b) with χap
µ (S, sΓ) = 2.

Proof. This follows from 4.13 and its proof.

We next consider property (T) and the HAP.

Theorem 4.15. Let Γ be an infinite, countable group and S ⊆ Γ a finite
set of generators such that Cay(Γ, S) is bipartite. Then the following are
equivalent:
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(i) Γ has property (T),

(ii) iµ(S, a) < 1/2, for every weakly mixing a ∈ FR(Γ, X, µ),

(iii) χap
µ (S, a) ≥ 3, for every weakly mixing a ∈ FR(Γ, X, µ).

Also the following are equivalent:

(i*) Γ does not have the HAP,

(ii*) iµ(S, a) < 1/2, for every mixing a ∈ FR(Γ, X, µ),

(iii*) χap
µ (S, a) ≥ 3, for every mixing a ∈ FR(Γ, X, µ).

Proof. Suppose first that Γ has property (T). If Γ0 = {s1s2 · · · s2n : n ≥
0, si ∈ S±1}, then Γ0 has index 2 in Γ and thus Γ0 itself has property (T).
Moreover, if a ∈ FR(Γ, X, µ) is weakly mixing, then a|Γ0 ∈ FR(Γ0, X, µ)
is ergodic, so strongly ergodic (see, e.g., [24] 11.2), thus iµ(S, a) < 1/2 by
Proposition 4.5. So (i) ⇒ (ii) ⇒ (iii).

Assume now that Γ does not have property (T). By 4.6 there is b ∈
FR(Γ, X, µ) with iµ(S, b) = 1/2 and χap

µ (S, b) = 2. By a result of Kerr-Pichot
[27] (see also [24], 12.9), there is a weakly mixing a ∈ FR(Γ, X, µ) with b ≺ a,
so iµ(S, b) ≤ iµ(S, a), thus iµ(S, a) = 1/2, and χap

µ (S, b) ≥ χap
µ (S, a), therefore

χap
µ (S, a) = 2.

If now Γ does not have the HAP and a ∈ FR(Γ, X, µ) is mixing, then Γ0

as above does not have the HAP, and a|Γ0 ∈ FR(Γ0, X, µ) is mixing, so (see,
e.g., [24] 11.1) it is strongly ergodic, thus iµ(S, a) < 1/2 as before. So (i*) ⇒
(ii*) ⇒ (iii*).

Conversely, if Γ has the HAP, then we can repeat the argument above (for
the case that Γ does not have property (T)) using the result of Hjorth [16] (see
also [24], 12.11) to replace in this argument weakly mixing by mixing.

(D) For any unitary representation π : Γ → U(H) of a countable group
Γ on a Hilbert space H , and a finite set of generators S ⊆ Γ, one defines the
averaging operator TS,π by

TS,π(f) =
1

|S±1|
∑

s∈S±1

π(s)(f).

Clearly TS,π is a self-adjoint operator and ‖Ts,π‖ ≤ 1. It is easy to check
that if π, ρ are unitary representations and π is weakly contained in ρ (see,
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e.g, Bekka-de la Harpe-Valette [5], Appendix F), which is denoted by π ≺ ρ,
then ‖Ts,π‖ ≤ ‖Ts,ρ‖, i.e.,

π ≺ ρ⇒ ‖Ts,π‖ ≤ ‖Ts,ρ‖ .

When Γ is amenable, Kesten [28] showed that ‖TS,λΓ
‖ = 1, where λΓ is the

(left) regular representation of Γ.
For each a ∈ FR(Γ, X, µ), consider the corresponding Koopman unitary

representation κa on L2(X,µ) and its restriction κa
0 on L2

0(X,µ) = {f ∈
L2(X,µ) :

∫

f dµ = 0} = C⊥ (where C is identified with the subspace of
constant functions in L2(X,µ)). Then for a finite generating set S ⊆ Γ, let

TS,a = TS,κa
0
.

There is a well-known connection between norms of averaging operators
and independence ratios in the case of finite graphs, due to Hoffman [18] (see,
e.g., Davidoff-Sarnak-Valette [9], 1.5.3), and a version of this carries over to
our context.

Proposition 4.16. Let Γ be a countable group and S ⊆ Γ a finite set of
generators. Let a ∈ FR(Γ, X, µ) and let TS,a the corresponding averaging
operator. If ν = ‖TS,a‖, then

iµ(S, a) ≤ ν

1 + ν
,

and thus

χap
µ (S, a) ≥ 1 + ν

ν
.

Proof. Let A ⊆ X be independent and let T = TS,a, f = χA − µ(A). Then
f ∈ L2

0(X,µ) and
‖f‖2 = µ(A)(1 − µ(A)).

36



Also,

〈T (f), f〉 =

∫

T (f)(x)f(x) dµ(x)

=
1

|S±1|
∑

s∈S±1

∫

f(s · x)f(x) dµ(x)

=
1

|S±1|
∑

s∈S±1

∫

(χs−1·A(x) − µ(A))(χA(x) − µ(A)) dµ(x)

=
1

|S±1|
∑

s∈S±1

∫

(−µ(A)(χA(x) + χs−1·A(x)) + µ(A)2) dµ(x)

=
1

|S±1|
∑

s∈S±1

(−2µ(A)2 + µ(A)2)

= −µ(A)2.

Since | 〈T (f), f〉 | ≤ ‖T‖ · ‖f‖2, letting α = µ(A), we have

α2 ≤ ν · α(1 − α),

so
α ≤ ν

1 + ν
.

Since for a, b ∈ FR(Γ, X, µ),

a ≺ b ⇒ κa
0 ≺ κb

0

(see [24], 10.5), it follows that

a ≺ b⇒ ‖Ts,a‖ ≤ ‖Ts,b‖

(in fact it is not hard to see that a 7→ ‖Ts,a‖ is lower semicontinuous), thus,
since sΓ ≺ a, ∀a ∈ FR(Γ, X, µ), ‖TS,sΓ

‖ is minimum among all such ‖Ts,a‖.
Now it is well known (see, e.g., [5], E.4.5) that κsΓ

0 ∼ λΓ, thus ‖TS,sΓ
‖ =

‖TS,λΓ
‖.

Suppose now that S = {γ1, . . . , γm}. Kesten [28] has shown that

‖TS,λΓ
‖ ≥

√
2m− 1

m
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and if S is a free set of generators, so that Γ = Fm, then

‖TS,λΓ
‖ =

√
2m− 1

m
.

Also, if S = {γ1, . . . , γm, δ1, . . . , δn}, where γ1, . . . , γm are free and δ1, . . . , δn
are free satisfying δ2

i = 1, i = 1, . . . , n, so that Cay(Γ, S) is still acyclic and
Γ = Fm ∗ Z/2Z ∗ · · · ∗ Z/2Z (n times), then again

‖TS,λΓ
‖ =

2
√

(2m+ n) − 1

2m+ n
.

We then have:

Theorem 4.17. Let Γ = Fm be the free group with a free set S of m gener-
ators, and sΓ its shift action on 2Γ, with the product measure µ. Then

1

2m
≤ iµ(S, sΓ) ≤

√
2m− 1

m+
√

2m− 1

and

2m ≥ χap
µ (S, sΓ) ≥ m +

√
2m− 1√

2m− 1
.

Moreover,
2m+ 1 ≥ χB(S, sΓ)

(where we view in the last inequality sΓ as the shift action restricted to its
free part).

Proof. The first part follows from Theorem 2.19, Propositions 2.13, 4.16, and
the preceding paragraphs. The last part follows from [22], 4.6.

This, in particular, gives examples of m.p., ergodic, Borel graphs of
bounded degree which are acyclic but the approximate chromatic numbers
and thus the measurable and Borel chromatic numbers are finite but tend
towards ∞.

An analogous result to Theorem 4.17 holds when Γ = Fm∗Z/2Z∗· · ·∗Z/2Z

(n times).
It is mentioned in Lyons-Nazarov [35] that from results of Bollobás and

Frieze-Luczak concerning random regular graphs, it follows that, for large
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enough m, one has for Γ = Fm, and S a free set of generators, iµ(S, sΓ) ≤
log 2m

m
and so χap

µ (S, sΓ) ≥ m
log 2m

. For references, see Section 5 of [35].

We do not know what are the exact values of iµ(S, sΓ), χap
µ (S, sΓ) for

Γ = Fm and S a free set of generators (similarly for χB(S, sΓ), χµ(S, sΓ)).
Concerning Borel chromatic numbers of shifts, denote below by sΓ the

restriction of the shift action of Γ on 2Γ to its free part, and recall that
for a generating set S ⊆ Γ, χB(S, sΓ) denotes the Borel chromatic num-
ber associated with sΓ. If Γ = Z

m, with S the usual set of m genera-
tors, then Gao-Jackson [12] showed that χB(S, sΓ) ∈ {3, 4}, while of course
χ(G(S, sΓ)) = χ(Cay(Γ, S)) = 2. For a generalization of the m = 2 case,
see 5.15 below. Gao-Jackson-Miller (unpublished) and recently Adam Timar
(private communication) have shown that in this setting χµ(S, sΓ) = 3.

Is it true that there is a function f : N → N such that if Γ is amenable and
S is any finite generating set, then χB(S, sΓ) ≤ f(χ(Cay(Γ, S)))? (Note that,
by 4.7, this is true for χap

µ with f = id.) We do not know a counterexample
even for f(n) = n+ 1.

On the other hand, if Γ is finitely generated with F2 ≤ Γ and Z/2Z is
a factor of Γ, then for each ε > 0, there is a finite generating set S ⊆ Γ
with χ(Cay(Γ, S)) = 2, but iµ(S, sΓ) < ε and so χB(S, sΓ) ≥ χµ(S, sΓ) ≥
χap

µ (S, sΓ) > 1/ε. Indeed, choose m large enough so that
√

2m−1
m+

√
2m−1

< ε

and let ϕ : Γ → Z/2Z be a surjective homomorphism. Then Γ0 = ker(ϕ)
contains a free subgroup ∆ = 〈a1, . . . , am〉 with m free generators. Let S0 ⊃
{a1, · · · , am} be a finite set of generators for Γ0 and let a /∈ Γ0. Put S =
{a} ∪ aS0. Clearly S generates Γ and there are no odd cycles in Cay(Γ, S),
so χ(Cay(Γ, S)) = 2. However, if A is an independent set in the graph
associated with sΓ, then it is independent for the graph associated with the
action sΓ|∆ and the set of generators S∆ = {a1, . . . , am}. One can again see

that κ
sΓ|∆
0 ∼ λ∆, so

iµ(S, sΓ) ≤ iµ(S∆, sΓ|∆) ≤
√

2m− 1

m+
√

2m− 1
< ε.

We should finally mention that although we have examples where

χap
µ (S, a) < χµ(S, a)

(see 2.8 or take any weakly mixing action a, for which therefore χµ(S, a) ≥ 3,
with χap

µ (S, a) = 2), we do not know any examples for which χap
µ (S, a) + 1 <
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χµ(S, a). R. Lyons (private communication) also asked if there are examples
of strongly ergodic (also known as E0-ergodic) actions a with χap

µ (S, a) <
χµ(S, a).

Remark 4.18. Let Sm = {γ1, . . . , γm} be a free set of generators for Fm, m ≥
1. Denote by im = iµ(Sm, sFm

) the independence number of the shift action
of Fm, i.e., the minimum independence number of a free, measure-preserving
action of Fm. Here and below we abuse notation by using the same sub-
script µ for the associated measure of any action discussed below. From the
preceding theorem we have that im → 0 as m → ∞. Let us also note the
following:

(i) ∀m(im+1 ≤ im).
To see this, consider the shift action sFm+1 and its restriction a = sFm+1|Fm,

where we view Fm as the subgroup generated by γ1, . . . , γm. Clearly if
A ⊆ 2Fm+1 is independent for sFm+1 , it is also independent for a, thus

im+1 ≤ iµ(Sm, a).

Moreover a ∼= (sFm
)N, where (sFm

)N is the product of countably many copies
of sFm

, i.e., it is the action of Fm on (2Fm)N, given by

γ · (pn) = (γ · pn), ∀γ ∈ Fm.

Now (sFm
)N ∼= s∗

Fm
, where s∗

Fm
is the shift action of Fm on (2N)Fm. The

isomorphism is given by the map

(p0, p1, . . .) ∈ (2Fm)N 7→ p ∈ (2N)Fm,

where p(γ) = (p0(γ), p1(γ), . . .), ∀γ ∈ Fm. (Here all these product spaces have
the product measures arising from the (1/2, 1/2)-measure on 2 = {0, 1}.)
Now Bowen [6] has shown that sFm

∼ s∗
Fm

, thus

im+1 ≤ iµ(Sm, a)

= iµ(Sm, s
∗
Fm

)

= iµ(Sm, sFm
)

= im.

It follows that for infinitely many m, im+1 < im. For such m ≥ 2, one
can see that there are at least three distinct values of iµ(Sm+1, a), as a varies
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over ergodic actions in FR(Fm+1, X, µ). This is a small initial step towards
trying to understand the possible values of the independence number of free,
ergodic actions of a free group (see the penultimate paragraph preceding
4.14). Recalling that the maximum value of iµ(Sm+1, a), for ergodic a ∈
FR(Fm+1, X, µ), is equal to 1/2, this will follow from the following fact:

(ii) Let m ≥ 2. Then there is a free, ergodic action b of Fm+1 such that

im ≤ iµ(Sm+1, b) < 1/2.

To see this, let ϕ : Fm+1 → Fm be the homomorphism defined by ϕ(γi) =
γi, if i ≤ m, ϕ(γm+1) = γm. Let d = sFm

and let c be the lift of d to Fm+1

via ϕ:
γc(x) = ϕ(γ)d(x).

Clearly c|Fm = d and iµ(Sm+1, c) = iµ(Sm, d). Put

b = c× sFm+1 .

Then b ∈ FR(Fm+1, X, µ) and b is ergodic. We will show that b is strongly
ergodic thus, by 4.5, iµ(Sm+1, b) < 1/2. But also

iµ(Sm+1, b) ≥ iµ(Sm+1, c) = iµ(Sm, d) = im.

If b is not strongly ergodic, towards a contradiction, there exist almost
invariant sets for b|Γ0, where Γ0 ≤ Fm+1 is the group of words of even length
in {γ1, . . . , γm+1}, and thus there exist almost invariant sets for b|Γ′

0, where
Γ′

0 ≤ Fm is the analogous group of words of even length in {γ1, . . . , γm}. But

b|Fm = (c× sFm+1)|Fm

= (c|Fm) × (sFm+1 |Fm)
∼= d× (sFm

)N

∼ sFm
× sFm

∼ sFm
,

so b|Γ′
0 ∼ sFm

|Γ′
0, which is strongly ergodic (see, e.g., [17] A4.1), a contradic-

tion.

(E) We will next see some connections with finite graphs.
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Let Γ be a countable group and fix a sequence F1 ⊆ F2 ⊆ · · · ⊆ Γ of
finite, non-empty subsets of Γ with

⋃

n Fn = Γ. Consider the space 2Γ with
the product topology. If p ∈ 2Fn, let

Np = {f ∈ 2Γ : f |Fn = p}.

Then {Np}n≥1,p∈2Fn is a clopen basis for the topology of 2Γ. Let now S ⊆ Γ
be a set of generators for Γ. Consider the finite graph with loops GS,n =
(2Fn, ES,n), where

pES,nq ⇔ ∃s ∈ S(s±1 · Np ∩Nq 6= ∅).

Here γ · f (γ ∈ Γ, f ∈ 2Γ) refers to the shift action of Γ on 2Γ. Thus, there is
a loop from p to p iff ∃s ∈ S(s · Np ∩ Np 6= ∅). We may view each GS,n as a
finite approximation of the graph associated with the shift action of Γ. Below
recall that for a finite graph with loops G = (X,E) its independence ratio
i(G) is defined as the ratio of the largest size of an independent set divided
by |X|. When we have a graph with loops we define an independent set to
be one for which there are no edges between two (not necessarily distinct)
elements of A (thus, A cannot contain any vertex incident with a loop).

Theorem 4.19. For the graphs GS,n as above, i(GS,n) ≤ i(GS,n+1), ∀n ≥ 1,
and

lim
n→∞

i(GS,n) = iµ(S, sΓ),

where µ is the usual product measure on 2Γ.

Proof. Let A ⊆ 2Fn be an independent set for GS,n, i.e., for p, q ∈ A (not
necessarily distinct), s · Np ∩ Nq = ∅, ∀s ∈ S±1. This is the same thing as
saying that

s ·
(

⋃

p∈A

Np

)

∩
⋃

p∈A

Np = ∅, ∀s ∈ S±1.

Let A′ ⊆ 2Fn+1 be defined by

q ∈ A′ ⇔ q|Fn ∈ A.

Then |A|
|2Fn | = |A′|

|2Fn+1 | and for p ∈ A, Np =
⋃

q∈A′,q|Fn=p Nq, so
⋃

p∈A Np =
⋃

p∈A

⋃

q∈A′,q|Fn=p Nq =
⋃

q∈A′ Nq, so s·
(

⋃

q∈A′ Nq

)

∩⋃q∈A′ Nq = ∅, ∀s ∈ S±1,

i.e., A′ is independent for GS,n+1. Thus i(GS,n) ≤ i(GS,n+1).
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Also if A is independent for GS,n and Â =
⋃

p∈A Np, then Â is independent

for G(S, sΓ) and |A|
|2Fn | = µ(Â), thus i(GS,n) ≤ iµ(S, sΓ).

Assume now that α < iµ(S, sΓ) and let B ⊆ 2Γ be an independent Borel
set for G(S, sΓ) with µ(B) > α. Let ε > 0 and let K ⊆ 2Γ be compact with
K ⊆ B, µ(B \ K) < ε. Then K is also independent, so s · K ∩ K = ∅,
∀s ∈ S±1. Since the shift action is continuous, there is an open set U ⊇ K
with µ(U \ K) < ε such that s · U ∩ U = ∅, ∀s ∈ S±1, i.e., U is also
independent. By compactness, let now n be large enough and A ⊆ 2Fn

be such that K ⊆ Â ⊆ U (where, as before, Â =
⋃

p∈A Np). Thus A is

independent in GS,n and so α − ε ≤ µ(Â) = |A|
|2Fn | ≤ i(GS,n). Letting ε → 0

we have that
α ≤ lim

n→∞
i(GS,n),

so
lim

n→∞
i(GS,n) = iµ(S, sΓ).

For the next result, if G = (X,E) is a graph with loops, by a cycle
we understand a sequence of distinct elements x1, . . . , xn of X and distinct
edges e1, . . . , em such that each ei is either an edge connecting some xj , xj+1,
1 ≤ k < n, or xn, x0, or else a loop incident with some xj , and moreover
there is an edge ei from each xj to xj+1, 1 ≤ j < n, and from xn to x0. The
length of this cycle is the number m of edges. For example

b

b

b

b

x1

x2

x3

x4

e1 e2

e3

e4

e5

e6

is a cycle of length 6.
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Theorem 4.20. If Cay(Γ, S) is bipartite, then if

XS,k,n = {p ∈ 2Fn : p belongs to an odd cycle of length ≤ k in GS,n},

we have
|XS,k,n|
|2Fn | → 0.

Proof. If X̂S,k,n =
⋃{Np : p ∈ XS,k,n}, we will show that

µ(X̂S,k,n) =
|XS,k,n|
|2Fn| → 0.

Let X ⊆ 2Γ be the free part of the shift action of Γ on 2Γ, so that µ(X) = 1.
It is enough to show that

⋂

n≥1

⋃

m≥n

X̂S,k,m ⊆ 2Γ \X.

(Then limn→∞ µ
(

⋃

m≥n X̂S,k,m

)

= 0, so limn→∞ µ(X̂S,k,n) = 0.)

Fix x ∈ ⋂n

⋃

m≥n X̂S,k,m. Then x ∈ X̂S,k,ni
, where 1 < n1 < n2 < · · · , so

x ∈ Npi
, where pi ∈ XS,k,ni

. Then pi belongs to some odd cycle of length ≤ k,
so, by going to a subsequence of (ni), we may assume that every pi belongs to
a (2l+ 1) cycle for some l with 2l+ 1 ≤ k. Then there are p0

i = pi, p
1
i , . . . , p

2l
i

in XS,k,ni
and s0

i , s
1
i , . . . , s

2l
i in S±1 with

s0
i · Np0

i
∩Np1

i
6= ∅,

s1
i · Np1

i
∩Np2

i
6= ∅,
...

s2l−1
i · Np2l−1

i
∩Np2l

i
6= ∅,

s2l
i · Np2l

i
∩Np0

i
6= ∅.

By again passing to a subsequence of (ni), we may assume that s0
i = s0, s1

i =
s1, . . . , s2l

i = s2l do not depend upon i. Thus

s0 · Np0
i
∩ Np1

i
6= ∅,
...

s2l · Np2l
i
∩ Np0

i
6= ∅.
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By once again going to a subsequence of (ni), we may assume that there are
x0 = x, x1, . . . , x2l ∈ 2Γ such that xk|i = pk

i |i for all k ≤ 2l and all i. Thus
for each i,

s0 · Nx0|i ∩ Nx1|i 6= ∅,
...

s2l · Nx2l|i ∩ Nx0|i 6= ∅,
therefore by the continuity of the shift action again,

s0 · x0 = x1, s1 · x1 = x2, . . . , s2l · x2l = x0,

i.e., s2ls2l−1 · · · s1s0 ·x = x. Since s2ls2l−1 · · · s1s0 6= 1, we have x ∈ 2Γ\X.

Remark 4.21. One can actually calculate quantitative upper bound esti-

mates for
|XS,k,n|
|2Fn | in the preceding theorem.

Let
GS,k,n = GS,n|(2Fn \XS,k,n)

be the induced graph on 2Fn \ XS,k,n. Then for n large enough (depending
upon S, k), 2Fn \XS,k,n 6= ∅ and GS,k,n is an ordinary graph, i.e., has no loops.
Moreover, the odd girth of GS,k,n is bigger than k, i.e.,

godd(GS,k,n) > k.

Furthermore, if δS,k,n =
|XS,k,n|
|2Fn | ,

i(GS,k,n) ≤ 1

1 − δS,k,n

i(GS,n)

≤ 1

1 − δS,k,n

iµ(S, sΓ).

Let now Γ = Fm with free generating set Sm = {a1, . . . , am}, and let

Gm,k,n = GSm,k,n, δm,k,n = δSm,k,n.

Then

i(Gm,k,n) ≤ 1

1 − δm,k,n

·
√

2m− 1

m+
√

2m− 1
,

and δm,k,n → 0 as n → ∞. Thus we have a new family of explicitly given
(finite) graphs with large odd girth and small independence ratio, thus large
chromatic number. For example,
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Theorem 4.22. Given m, k, for all large enough n (depending upon m, k),

godd(Gm,k,n) > k,

i(Gm,k,n) ≤ 2
√

2m− 1

m+
√

2m− 1
,

and thus

χ(Gm,k,n) ≥ m+
√

2m− 1

2
√

2m− 1
.

(F) There are many other actions of Fm that exhibit phenomena similar
to those discussed in §4, (D), (E) before.

(a) An action a ∈ A(Γ, X, µ) is called tempered if κa
0 ≺ λΓ (see Kechris

[23]). It is clear that for such a free action a, we have that ‖TS,λΓ
‖ = ‖TS,a‖,

for any finite set of generators S ⊆ Γ and thus for Γ = Fm we have estimates
for iµ(S, a), χap

µ (S, a) as in Theorem 4.17. Several examples of tempered
actions of Fm are discussed in Kechris [23].

(b) It is shown in Lubotzky-Phillips-Sarnak, [32] that there are free ac-
tions a of Fm, where m = p+1

2
with p prime, by rotations on the sphere S2,

for which the norm ‖TS,a‖ is given by the Kesten formula, i.e., is equal to
2
√

p

p+1
.

(c) Finally consider a countable, residually finite group Γ and a sequence
Γ0 = Γ ≥ Γ1 ≥ · · · of decreasing normal subgroups which have finite index
and

⋂

n Γn = {1}. Then the action of Γ on the coset tree T (Γ, (Γn)) gives
rise to an action of Γ on the boundary ∂T (Γ, (Γn)) of this tree. We can
view ∂T (Γ, (Γn)) as a compact, metrizable, 0-dimensional group in which
Γ is naturally embedded as a dense subgroup (for details, see Kechris [22],
Section 2) and this action is simply the translation action of Γ on ∂T (Γ, (Γn)),
so it is free and ergodic. Denote this action by aΓ,(Γn). Let S be a finite set
of generators for Γ and let TS,aΓ,(Γn)

= TS,(Γn) be the corresponding averaging
operator. Let also HS,n be the Cayley graph of Γ/Γn, with respect to the
generators which are the images of those in S under the canonical map of
Γ onto Γ/Γn. When the graphs HS,n are not bipartite, it is known (see
Lubotzky-Zuk [34], 2.6, where however the assumption that HS,n are not
bipartite is inadvertently left out) that the chain (Γn) has property (τ) iff
∥

∥TS,(Γn)

∥

∥ < 1. Thus in this case the independence number of aΓ,(Γn) is less
than 1/2. When some HS,n is bipartite, then the independence number
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of aΓ,(Γn) is 1/2. It is not clear, e.g., in the case Γ = Fm, what are the
independence numbers of aΓ,(Γn), when (Γn) does not have property (τ).
Could they all be equal to 1/2?

For certain free groups Fm, one can actually construct (Γn) as above
for which the norm of the corresponding averaging operator is given by the
Kesten formula (see Margulis [36], Lubotzky-Phillips-Sarnak [33], Morgen-
stern [40]). Note that for the actions aΓ,(Γn) the graphs HS,n are analogs of the
finite graphs GS,n discussed in §4 (E) above. In the case of the constructions
of the three papers mentioned above, these are Ramanujan graphs.

(G) Suppose S is a finite set of generators for a group Γ, m is a probability
measure on Γ supported by S±1 with m(γ) = m(γ−1), and π : Γ → U(H)
is a unitary representation. Then we can define again an averaging operator
by

TS,m,π(f) =
∑

s∈S±1

m(s)π(s)(f)

and for a ∈ FR(Γ, X, µ) let

TS,m,a = TS,m,κa
0
.

If ν = ‖TS,m,a‖, then the argument in 4.16 goes through and shows that
iµ(S, a) ≤ ν

1+ν
.

Now it is easy to check that (TS,m,a)n = TSn,m∗n,a, where m∗n is the n-fold
convolution of m, defined by

m∗n(γ) =
∑

{m(γ1) · · ·m(γn) : γ1 · · · γn = γ}.

It follows that if ‖TS,m,a‖ < 1, then

‖TSn,m∗n,a‖ ≤ ‖TS,m,a‖n → 0

as n→ ∞. It then follows that (exponentially) iµ(Sn, a) → 0 as n→ ∞.
Take for example Γ = F2 with S = {a, b} a free set of generators. Con-

sider the graphs associated with (the free part of) the shift action sΓ on 2Γ

with respect to the set of generators S2n+1 (n ≥ 1). Then (using as m the
normalized counting measure on S±1, for which TS,m,sΓ

= TS,sΓ
) we see that

iµ(S2n+1, sΓ) → 0 as n → ∞. Moreover, there are no odd cycles in these
graphs. We can then repeat the arguments in 4.19 and 4.20 to find another
infinite family of finite graphs G′

n,p,k (n, p, k ≥ 1) such that for each n, k and
p sufficiently large (depending upon n and k), we have godd(G′

n,p,k) > k and

i(G′
n,p,k) < δn, for some fixed constant δ < 1 (here δ = ‖TS,sΓ

‖2).

47



5 On Brooks’ Theorem

Recall that for a graph G = (X,E), we let ∆(G) denote sup{dG(x) : x ∈ X},
where dG(x) = |{y ∈ X : xEy}|. A point x ∈ X is monovalent in G if
dG(x) = 1. In [26] it is shown that if ∆(G) is finite then χB(G) ≤ ∆(G) + 1.
For finite graphs G, Brooks’ Theorem states that actually χ(G) ≤ ∆(G),
unless G is an odd cycle or a complete graph. In this section we study Borel
analogs of this bound.

Recall that E∗ is the equivalence relation generated by E, whose classes
are called the connected components of G, and that G is connected if E∗ has
only one class. We abbreviate [x]E∗ by [x]G. For a cardinal κ, we say G is
κ-connected if G|(X \ A) is connected for all A ⊆ X with |A| < κ.

Also recall that we may view a graph G as inducing a metric ρG (infor-
mally called the G-distance) on each connected component of G by setting
ρG(x0, x1) equal to one less than the length of the shortest path from x0 to
x1, where a path is a sequence of vertices, each G-related to the next.

A graph G on X is vertex transitive if its automorphism group acts tran-
sitively on X. We say G is weakly 3-connected if there exist x0, x1 ∈ X
such that ρG(x0, x1) = 2 and G|(X \ {x0, x1}) is connected. In the case
that G is vertex transitive and not a complete graph, this is stronger than
2-connectivity and weaker than 3-connectivity.

Theorem 5.1. Suppose that G = (X,E) is a vertex-transitive Borel graph
on a standard Borel space X whose connected components are each weakly
3-connected. Suppose further that ∆(G) is finite. Then χB(G) ≤ ∆(G).

Proof. The argument is an amalgamation of the classical proof of Brooks’
Theorem and the techniques involved in its analogue for approximate chro-
matic number (see Theorem 2.19). In addition to Lemma 2.18, we also
require a technical lemma allowing us to find a nice subtree of G.

Lemma 5.2. There is a Borel set R ⊆ X and an acyclic Borel graph T ⊆ G
such that

1. no two distinct points of R are within G-distance 3,

2. each connected component of T is finite,

3. each connected component of T contains exactly one point of R,
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4. each point in R has two nonadjacent neighbors which are monovalent
in T .

Granting this, we may prove the theorem. Fix R and T as in Lemma 5.2.
We think of R as a set of roots for the treed components of T . Let X0 be
the (Borel) set of neighbors of points in R granted by item 4 of the lemma.
Let then X1 ⊆ X \ (X0 ∪ R) be those points monovalent in T |(X \X0) and
generally let Xi ⊆ X \ (X0 ∪ · · · ∪Xi−1 ∪ R) be those points monovalent in
T |(X \(X0∪· · ·∪Xi−1)). Item 2 of the lemma ensures that X = R⊔⊔i∈N

Xi.
As X0 is a G-independent set (by item 1), we may initially color every

point in X0 with color 0. Since every element of X1 is adjacent to something
closer (with respect to ρT ) to R, each point in X1 has degree less than ∆(G)
in the restriction G|(X0 ∪ X1). Lemma 2.18 then allows us to extend our
coloring to a Borel ∆(G)-coloring of X0 ∪X1. Proceeding in this fashion, we
extend our coloring in turn to each Xi until we have a Borel ∆(G)-coloring
of X \R.

To complete the coloring, we simply need to choose colors for points in
R. But each such point sees at most ∆(G) neighbors, and at least two of the
neighbors receive color 0, so we may assign it the least color unused by its
neighbors.

Proof of Lemma 5.2. For convenience, fix some x ∈ X. Since G is weakly 3-
connected, we may find nonadjacent neighbors y0, y1 of x such that G|([x]G \
{y0, y1}) is connected. Fix r ≥ 2 sufficiently large so that G|(Br(x)\{y0, y1})
is connected, where Br(x) denotes the ρG-ball of radius r about x. We may
then fix a spanning tree H of G|(Br(x)\{y0, y1}) and subsequently extend it
to a spanning tree H ′ of G|Br(x) by connecting y0 and y1 to x (leaving them
monovalent).

Now, let R be a Borel maximal G2r-independent subset of X, where G2r

is the graph relating two distinct points x0, x1 if ρG(x0, x1) ≤ 2r. That is,
no two distinct points of R are within G-distance 2r, but every element of
R is within G-distance 2r of something in R. Since for every x0, x1 ∈ R,
Br(x0)∩Br(x1) = ∅, we may “copy” in a Borel way H ′ onto each element of
R to obtain an acyclic graph T ′ ⊆ G connecting every element of Br(R) =
{x : ρG(x,R) ≤ r} to its nearest element of R.

We may extend this to an acyclic graph connecting every element of
Br+1(R) = {x : ρG(x,R) ≤ r+ 1} to exactly one element of R by connecting
each element of Br+1(R)\Br(R) to one of its neighbors in Br(R). Continuing,
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we may extend step by step until we have an acyclic graph T connecting
every element of B2r(R) to exactly one element of R. Since B2r(R) = X,
we are done once we know each connected component of T is finite. But
since [x]T ⊆ B2r(x) for all x ∈ R, each connected component of T must have
cardinality at most ∆(G)2r.

We spend the remainder of the section discussing graphs for which the
hypotheses of Theorem 5.1 are met. Towards this end, we must recall some
notions arising naturally in the study of connectivity of infinite graphs [21].
Given a graph G = (X,E) and a subset F ⊆ X, we let ∂F denote the
(external) boundary of F , defined as {x ∈ X \ F : ∃y ∈ F (xEy)}. In
the notation of the proof of Theorem 5.1 we then have ∂F = B1(F ) \ F .
We denote by F e the exterior of F , defined as X \ (F ∪ ∂F ). Equivalently,
F e = X \B1(F ).

Our first goal is a self-contained proof of the following:

Proposition 5.3 ([21]). Suppose that G = (X,E) is an infinite, connected,
vertex-transitive graph with finite ∆(G) ≥ 3 and that F is a nonempty, finite
subset of X. Then |∂F | ≥ 3.

Proof. We let κf denote the smallest possible cardinality of a boundary of a
finite nonemtpy set of vertices of G. That is,

κf = min{|∂F | : F ⊆ X finite and nonempty}.

A fragment is a finite set F with |∂F | = κf . Since F ⊆ (F e)e ⊆ F ∪ ∂F and
also ∂((F e)e) ⊆ ∂F , we have that (F e)e = F whenever F is a fragment.

Suppose now that F1 and F2 are two fragments. We have

|∂(F1 ∩ F2)| + |∂(F1 ∪ F2)|
= |∂(F1 ∩ F2) ∩ ∂(F1 ∪ F2)| + |∂(F1 ∩ F2) ∪ ∂(F1 ∪ F2)|
≤ |∂F1 ∩ ∂F2| + |∂F1 ∪ ∂F2|
= |∂F1| + |∂F2|
= 2κf .

In particular, if F1∩F2 is nonempty, it must be a fragment. We may therefore
unambiguously define an atom as a minimal under inclusion fragment, noting
that distinct atoms are disjoint. By transitivity, it follows that the atoms of
G partition X.
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It is therefore enough to show that |∂F | ≥ 3 for some atom F . Suppose
that F1 and F2 are distinct atoms with adjacent vertices x1Ex2 such that
x1 ∈ F1 and x2 ∈ F2. By reasoning as above, we see

|∂(F1 ∩ F e
2 )| + |∂(F e

1 ∩ F2)|
= |∂(F1 ∩ F e

2 ) ∩ ∂(F e
1 ∩ F2)| + |∂(F1 ∩ F e

2 ) ∪ ∂(F e
1 ∩ F2)|

≤ |∂F1 ∩ ∂F2| + |∂F1 ∪ ∂F2|
= |∂F1| + |∂F2|
= 2κf .

That is, if both F1 ∩ F e
2 and F e

1 ∩ F2 were nonempty, then they would both
be fragments. In particular, F1 ∩ F e

2 = F1, i.e., F1 ⊆ F e
2 , contradicting the

fact that F1 ∩∂F2 6= ∅. Without loss of generality, we may assume F e
1 ∩F2 is

empty, and thus F2 ⊆ ∂F1. Certainly ∂F1 cannot equal F2 or (by transitivity)
every atom would have a single atom as its boundary, forcing the graph to
be finite (the union of at most two atoms). Thus |∂F1| ≥ |F2| + 1, which
gives the desired bound as long as |F2| > 1. But, of course, if |F2| = 1, then
|∂F2| = ∆(G) ≥ 3 as required.

Remark 5.4. A more detailed investigation into the nature of fragments
gives much more information about the connectivity of infinite graphs; see
[21] for more details.

We will also need to borrow from the study of ends of a graph (see, e.g.,
[37], 11.4). Recall that we say a connected, locally finite graph G(X,E) has
at most n ends (n ≥ 0) if for all finite F ⊆ X the induced subgraph G|(X\F )
has at most n infinite connected components. Then G has n ends if n is least
such that G has at most n ends. If no such n exists, we say G has infinitely
many ends. We may view the number of ends of G as the limit of the number
of infinite components of G|(X \ Fi), where F0 ⊆ F1 ⊆ · · · is an exhaustive
sequence of finite subsets of X.

Recall that an connected, infinite, vertex-transitive graph has either one,
two, or infinitely many ends (see [15], F64, p. 497). In this situation, knowing
the number of ends of a graph can give information about its connectivity.

Proposition 5.5. Suppose that G = (X,E) is an infinite, connected, vertex-
transitive graph with finite ∆(G) and assume that G has one end. Then G
is 3-connected.
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Proof. Note that since G has one end, ∆(G) ≥ 3. Fix F ⊆ X with |F | ≤ 2.
By Proposition 5.3, G|(X \ F ) has no finite connected components. Since G
has one end, it follows that G|(X \ F ) is connected.

On the other hand, knowledge of a graph’s connectivity can translate into
knowledge of its ends.

Proposition 5.6. Suppose that G = (X,E) is an infinite, connected, vertex-
transitive graph with ∆(G) ≥ 3 which is not 2-connected. Then G has in-
finitely many ends.

Proof. By transitivity, we have that G|(X \ {x}) is disconnected for every
x ∈ X. Fix x0, x1 with ρG(x0, x1) ≥ 2. Deleting x0 results in at least two
connected components, and further deleting x1 splits its component into at
least two subcomponents. Since Proposition 5.3 ensures that none of the
components of G|(X \ {x0, x1}) is finite, G|(X \ {x0, x1}) has at least three
infinite components. Thus, G has infinitely many ends.

Recall that if Γ is a group with finite generating set S, the number of
ends of Cay(Γ, S) is independent of the choice of S (see, e.g., [37], 11.4). We
may thus say Γ has n ends exactly when Cay(Γ, S) has n ends (and similarly
with infinitely many ends).

Proposition 5.7. Suppose that Γ is a group with finite generating set S.
Suppose further that Γ has two ends and is isomorphic neither to Z nor to
(Z/2Z) ∗ (Z/2Z). Then Cay(Γ, S) is weakly 3-connected.

Proof. It is well known that Γ has a finite index subgroup isomorphic to Z

(see, e.g., [37], 11.4), a fact that we will use repeatedly below. In particular,
this implies that every subgroup of Γ isomorphic to Z is of finite index.
Moreover, there is an element z ∈ Γ of infinite order such that either z ∈ S
or z is the product of two elements of S (see [45], p. 25 or [19]). Fix such a
z such that z2 /∈ S.

Lemma 5.8. There is some fixed Nz such that any vertex of Cay(Γ, S) is
connected to an element of 〈z〉 by a path of length at most Nz.

Proof. There must be a finite index subgroup Γ0 ≤ 〈z〉 such that Γ0 is normal
in Γ. Let Nz = [Γ : Γ0].

Now fix x ∈ Γ. Working in the quotient group Γ/Γ0, there is a way of
writing xΓ0 as a word of the form (s1Γ0)(s2Γ0) · · · (skΓ0) with each si ∈ S
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and k ≤ Nz. Now working in the Cayley graph Cay(Γ, S), we see that the
path (x, s−1

1 x, s−1
2 s−1

1 x, . . . , s−1
k · · · s−1

1 x) connects x to some element of Γ0,
which is necessarily in 〈z〉.

Suppose first that z ∈ S. The right cosets {〈z〉 a : a ∈ Γ} partition the
vertices of Cay(Γ, S) into finitely many sets, the graph’s restriction to each
resembling the Cayley graph of the integers.

Claim 5.9. If F ⊆ Γ is finite such that Cay(Γ, S)|(Γ \ F ) has two infinite
connected components, then F meets every right coset of 〈z〉.

Proof. By homogeneity, it is enough to prove that F meets 〈z〉. Assume
not, towards a contradiction. If x has distance > Nz from F , then 5.8
gives a path from x to 〈z〉 disjoint from F , so x is in the same component
of Cay(Γ, S)|(Γ \ F ) as 〈z〉, thus Cay(Γ, S)|(Γ \ F ) has a unique infinite
component, a contradiction.

Recall that by Proposition 5.3, the deletion of two vertices of Cay(Γ, S)
cannot result in a finite connected component. If we set F0 = {z, z−1}, then
F0 meets only one right coset of 〈z〉. Since Γ is not isomorphic to Z, we
may conclude from the claim that Cay(Γ, S)|(Γ \ F0) is connected, and thus
Cay(Γ, S) is weakly 3-connected.

It remains to handle the case that no element of S has infinite order.
Recall then that z is the product of two distinct elements of S, say z = st.
We have a slightly weaker analog of the previous claim.

Claim 5.10. If F ⊆ Γ is finite such that Cay(Γ, S)|(Γ \ F ) has two infinite
connected components, then F ∪ sF meets every right coset of 〈st〉.

Proof. As before, each infinite connected component of Cay(Γ, S)|(Γ \ F )
meets each right coset of 〈st〉. Then for each right coset 〈st〉 a, we have
b ∈ 〈st〉 a and a path of the form (b, tb, stb, tstb, . . . , (st)kb) in Cay(Γ, S) such
that b and (st)kb are in distinct components of Cay(Γ, S)|(Γ\F ). This means
that some vertex x in the path must be an element of F .

If x is of the form (st)ib, then x ∈ 〈st〉 a. On the other hand, if x is of
the form t(st)ib, then sx ∈ 〈st〉 a. Thus, F ∪ sF meets 〈st〉 a.

We now set F0 = {t−1, s}, and will show that Cay(Γ, S)|(Γ \ F0) is con-
nected. Suppose towards a contradiction that it is not connected; then by
Proposition 5.3 it must have two infinite components. We see that F0 meets a
single right coset of 〈st〉, namely 〈st〉 s. On the other hand, sF meets at most
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two other right cosets, 〈st〉 s2 and 〈st〉 st−1 = 〈st〉 t−2. By the last claim, the
union of these cosets must be the entire group (in particular Γ = 〈s, t〉), and
so the identity must fall into one. The three equations

(st)n = s−1

(st)n = s−2

(st)n = t2

have solutions only when n = 0, otherwise the left-hand side has infinite
order while the right-hand side has finite order. We conclude that at least
one of s and t has order 2. Replacing st by t−1s−1 if necessary, we may
assume without loss of generality that t2 = 1.

Then Γ = 〈st〉 ∪ 〈st〉 s ∪ 〈st〉 s2, ensuring that s has order at most 3. If s
has order 2, then Γ = (Z/2Z)∗(Z/2Z), which is precluded by our hypothesis.
Thus we may assume s has order 3.

Arguing as above, the right cosets 〈st〉 t, 〈st〉 st and 〈st〉 s2t are disjoint
and cover Γ. It is clear that 〈st〉 = 〈st〉 st and 〈st〉 t = 〈st〉 s, so 〈st〉 s2 =
〈st〉 s2t. The equation

(st)ns2 = s2t.

has a solution only when n = 0, since s2ts−2 has finite order. Thus s2 = s2t
and consequently t is the identity, a contradiction.

We finally apply these results to build a class of graphs satisfying Brooks’
Theorem in the Borel context.

Theorem 5.11. Suppose that G is a vertex-transitive Borel graph on a stan-
dard Borel space X with ∆(G) finite and whose connected components each
have one end. Then χB(G) ≤ ∆(G).

Proof. By Proposition 5.5, each connected component of G is 3-connected,
and thus weakly 3-connected. Therefore, the hypotheses of Theorem 5.1 are
met.

Theorem 5.12. Suppose that Γ is a countable infinite group isomorphic
neither to Z nor to (Z/2Z) ∗ (Z/2Z). Suppose further that Γ has finitely
many ends. Let S be a finite set of generators for Γ and put d = |S±1|.
Then for any free Borel action A of Γ on a standard Borel space X, we have
χB(S,A) ≤ d.
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Proof. If Γ has one end, this is a consequence of Theorem 5.11. If Γ has two
ends, Proposition 5.7 ensures that G(S,A) meets the hypotheses of Theorem
5.1.

Remark 5.13. The assumption that Γ is neither Z nor (Z/2Z) ∗ (Z/2Z) is
necessary. If Γ is either of those groups equipped with its natural generating
set S (with |S±1| = 2), then the free part of the shift action sΓ of Γ on 2Γ

has Borel chromatic number 3.

Example 5.14. Finitely generated groups that have only finitely many ends,
and thus Theorem 5.12 applies, include: Property (T) groups (see, e.g., [42]);
groups of cost 1 (see Gaboriau [11]), and thus, in particular, amenable groups,
direct products of two infinite groups, etc.; and groups not containing F2 (by
Stallings’ Theorem, see [44]). For a finitely generated torsion-free group Γ,
Stallings’ Theorem implies that Γ has infinitely many ends iff Γ is a non-
trivial free product. So in this case 5.12 holds for any group that is not a
non-trivial free product.

Example 5.15. Suppose now that Γ has a generating set S of cardinality 2
and finitely many ends but is not isomorphic to Z or (Z/2Z) ∗ (Z/2Z). Then
for any free Borel action A of Γ which admits an invariant Borel probability
measure with respect to which it is weakly mixing, we have χB(S,A) ∈ {3, 4}.
In particular, this holds for the free part of the shift action of Γ on 2Γ. This
generalizes a theorem of Gao-Jackson [12] and Miller, who proved this for
Γ = Z2 (see §4, (D)).

Example 5.16. In Aldous-Lyons [4], 10.5, it is pointed out that for any sofic
group Γ and finite generating set S, there is a free, measure preserving action
a of Γ with χµ(S, a) ≤ d = |S±1|.

It is still unknown whether the Brooks bound holds for groups with in-
finitely many ends, even in the torsion-free context. In fact, the following
question remains unanswered.

Question 5.17. Does every graph corresponding to a Borel action of Fn

(n ≥ 2), with a free set of generators, admit a Borel coloring with 2n colors?

6 A matching problem

Consider a Borel bipartite graph G = (X,E), i.e., X = X1 ⊔ X2 is a Borel
partition and if (x, y) ∈ E then one of x, y is in X1 and the other is in X2. If
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d(x) = k < ℵ0 for every x ∈ X, then by a theorem of König (a special case
of Hall’s Theorem), G admits a matching, i.e., a bijection ϕ : X1 → X2 such
that (x, ϕ(x)) ∈ E, ∀x ∈ X. The question was raised (see, e.g., Miller [38])
whether there is a Borel version of that theorem, more precisely, whether
there is a Borel matching.

Laczkovich [30] provided the following counterexample for k = 2. Fix
an irrational 0 < α < 1 and consider the set R consisting of the following
rectangle inscribed in the unit square, together with the indicated two corner
points.

α

α

1 − α

1 − α

x

y2

y1

b

b

We take X1, X2 to be two disjoint copies of [0, 1] and for x ∈ X1 its two
neighbors y1, y2 ∈ X2 are such that (x, yi) ∈ R. The two neighbors of any
y ∈ X2 are defined analogously. Clearly this is a Borel graph in which every
vertex has degree 2, but Laczkovich showed that it does not have a Borel
matching. In the paper K lopotowski-Nadkarni-Sarbadhikari-Srivastava [29],
the authors argue that the following graph
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b

b

b

b

b

b

b

b

which consists of 4 “copies” of the preceding graph (actually, the authors
discard finitely many connected components rather than adding dots at the
corners, but it is clear that one graph has admits Borel matching if and
only if the other does), and in which every vertex has degree 4 provides a
counterexample for k = 4 (and similarly for all even k). They also raised the
question of whether there is a counterexample for k = 3.

Lyons (private communication) showed that the above example actually
does not work, as it has a Borel matching. A simpler argument is as follows:
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b

b

b
b

b

b

The boldface segments and dots provide the matching, where as usual an
endpoint of a segment is colored black if it is included, and is colored white
if it is not included.

However, it turns out that there is a way to modify this construction to
find counterexamples for every even k. For example, for k = 4, the idea is to
construct a “Sudoku” version which is illustrated in the following picture:
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b

b

b

b

b

b

b

b

b

b

b

b

Let us give a detailed argument. Fix a Borel bipartite graph (X1⊔X2, E)
with degree k = 2 possessing no Borel matching. Define from this a new
graph (X1 ⊔X2, E) as follows: X1 = X1 ×{1, 2, 3}, X2 = X2 ×{1, 2, 3}, and
(x, i)E(y, j) ⇔ (i 6= j and xEy). This has degree k = 4 and it is enough to
show that if there is a Borel injection f : X1 → X2 such that (x, i)E f(x, i),
then there is a Borel injection f : X1 → X2 with xEf(x) (and similarly if we
switch the roles of X1, X2). Granting this, if there is a Borel matching for
(X1 ⊔X2, E), there are two Borel injections, from X1 to X2 and vice versa,
whose graphs are contained in E, so, by a Schröder-Bernstein argument,
there is a Borel matching for (X1 ⊔X2, E), a contradiction.

So fix f as above, which we will use to define f . Given x ∈ X, consider
f(x, 1) = (u, a), f(x, 2) = (v, b), and f(x, 3) = (w, c). Then xEu, xEv, and
xEw. Since (X1 ⊔X2, E) has degree 2, at least two of u, v, w are equal. So
there is a unique y ∈ X2 such that for at least two distinct i, j ≤ 3, we
have f(x, i) = (y, k), f(x, j) = (y, l) (for some necessarily distinct k,l). Put
f(x) = y; we claim that this works. To see this, take x 6= x′. If f(x) =
f(x′) = y, then let i 6= j be such that f(x, i) = (y, k), f(x, j) = (y, l) and let
i′ 6= j′ be such that f(x′, i′) = (y, k′), f(x′, j′) = (y, l′). As before, k 6= l and
k′ 6= l′. It follows that one of k, l is equal to one of k′, l′, contradicting the
injectivity of f .

The same proof works for degree k = 6 by dropping from the definition of

59



E the condition i 6= j (i.e., in the preceding picture inscribing the rectangle
into all nine of the small squares). In general, for degrees k = 4n and
k = 4n+ 2 (n ≥ 1) one uses the same argument with the (2n+ 1)× (2n+ 1)
square.

As far as we know, the case k = 3 is open. We sketch below an alternative
approach to the k = 2 case which adapts naturally to the k = 3 case, relating
the question of whether a bipartite graph has no Borel matching to the
calculation of the independence number associated with the shift action of
an appropriate group. This was actually for us a motivation for looking at
the independence number of such graphs.

Let m ≥ 2 and A = {1, a, a2, . . . , am−1} and B = {1, b, b2, . . . , bm−1} be
two copies of the cyclic group of order m. Let Γm = A ∗B and consider the
shift action of Γm on 2Γm, and let Y ⊆ 2Γm be its free part. Let X1 = Y/A,
the set of A-orbits under the shift action, and X2 = Y/B. Then X1 and X2

are standard Borel spaces and let X = X1 ⊔X2. Define the bipartite graph
Gm = (X,E) by

pEq ⇔ p ∩ q 6= ∅.
If p ∈ X1, q ∈ X2 and p ∩ q 6= ∅, then for some y ∈ p ∩ q, p = A · y and
q = B · y. Since the action of Γ on Y is free, clearly p∩ q = {y}. Thus there
is a canonical bijective correspondence between Y and E, namely

y 7→ {A · y, B · y}

(we view E here as a set of unordered pairs). Clearly each vertex in Gm has
degree exactly m.

Suppose now that f : X1 → X2 is a Borel matching for G. By the above
identification, f can be viewed as a Borel subset M ⊆ Y and the condition
of being a matching corresponds exactly to the assertion that M meets every
A-orbit in exactly one point, and likewise meets every B-orbit. That is, M
is a common transversal for the A- and B-orbits.

The set S = (A ∪ B) \ {1} ⊆ Γm is a set of generators for Γm and
the above condition for M implies that M is a Borel independent set for
the graph G(S, sΓm

). Moreover it is clear that for the product measure µ
on 2Γm, µ(M) = 1/m. Thus, in particular, if there is a Borel matching in
Gm = (X,E), then iµ(S, sΓm

) ≥ 1/m.
On the other hand, if iµ(S, sΓm

) ≥ 1/m and the supremum is attained,
say by a Borel independent set C, then C must meet almost every A-orbit
and almost ever B-orbit in exactly one point. It follows that the existence of
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an almost everywhere Borel matching in Gm is equivalent to the statement
that iµ(S, sΓm

) = 1/m and the supremum is attained.
If m = 2 this is impossible: since the action sΓ2 is weakly mixing, there

can be no independent set of measure 1/2. Thus there is no Borel matching
in the graph G2, providing an alternate proof of Laczkovich’s theorem. In
fact, there is no almost everywhere Borel matching in G2.

We do not know whether there is a Borel matching for G3. In an earlier
version of this paper, we have asked whether there is even an almost every-
where Borel matching in G3. However, Lyons and Nazarov [35] have now
shown that this is indeed the case, or equivalently that iµ(S, sΓ3) = 1/3 and
the supremum is attained. From this it follows that in fact iµ(S, a) = 1/3
for any a ∈ FR(Γ3, X, µ). That iµ(S, a) ≤ 1/3 is clear since any independent
set contains at most one element in each A-orbit. Since sΓ3 ≺ a we also have
the reverse inequality.
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[11] D. Gaboriau. Coût des relations d’équivalence et des groupes. Invent.
Math., 139(1):41–98, 2000.

[12] S. Gao and S. Jackson. Countable abelian group actions and
hyperfinite equivalence relations. Preprint, see web page at
http://www.math.unt.edu/∼sgao/pub/pub.html, 2007.

[13] E. Glasner, J.-P. Thouvenot, and B. Weiss. Every countable group has
the weak Rohlin property. Bull. London Math. Soc., 38(6):932–936,
2006.

[14] M. Gromov. Topological invariants of dynamical systems and spaces of
holomorphic maps, I. Math. Phys. Anal. Geom., 2(4):323–415, 1999.

[15] J.L. Gross and J. Yellen, editors. Handbook of Graph Theory. CRC
Press, 2004.

[16] G. Hjorth. Mixing actions of groups with the Haagerup approximation
property. Fund. Math., 203(1):47–56, 2009.

[17] G. Hjorth and A.S. Kechris. Rigidity theorems for actions of product
groups and countable Borel equivalence relations. Mem. Amer. Math.
Soc., 177(833):viii+109, 2005.

[18] A.J. Hoffman. On eigenvalues and colorings of graphs. In B. Harris,
editor, Graph Theory and its Applications, pages 79–91. Academic Press,
New York, 1970.

[19] W. Imrich and N. Seifter. A bound for groups of linear growth. Arch.
Math., 48(2):100–104, 1987.

62



[20] S. Jackson, A.S. Kechris, and A. Louveau. Countable Borel equivalence
relations. J. Math. Logic, 2(1):1–80, 2002.

[21] H.A. Jung and M.E. Watkins. On the connectivities of finite and infinite
graphs. Mh. Math., 83:121–131, 1977.

[22] A.S. Kechris. Weak containment in the space of ac-
tions of a free group. Preprint, see webpage at
http://www.math.caltech.edu/people/kechris.html.

[23] A.S. Kechris. Unitary representations and modular actions. J. Math.
Sc., 140(3):398–425, 2007.

[24] A.S. Kechris. Global aspects of ergodic group actions, volume 160 of
Mathematical Surveys and Monographs. American Mathematical Soci-
ety, 2010.

[25] A.S. Kechris and B.D. Miller. Topics in orbit equivalence, volume 1852
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.

[26] A.S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers.
Adv. Math., 141(1):1–44, 1999.

[27] D. Kerr and M. Pichot. Asymptotic abelianness, weak mixing, and
property T. J. Reine Angew. Math., 623:213–235, 2008.

[28] H. Kesten. Symmetric random walks on groups. Trans. Amer. Math.
Soc., 92:336–354, 1959.

[29] A. K lopotowski, M.G. Nadkarni, H. Sarbadhikari, and S.M. Srivastava.
Sets with doubleton sections, good sets and ergodic theory. Fund. Math.,
173(2):133–158, 2002.

[30] M. Laczkovich. Closed sets without measurable matching. Proc. Amer.
Math. Soc., 103(3):894–896, 1988.

[31] E. Lindenstrauss and B. Weiss. Mean topological dimension. Israel J.
Math., 115:1–24, 2004.

[32] A. Lubotzky, R. Phillips, and P. Sarnak. Hecke operators and distribut-
ing points on the sphere, I. Comm. Pure Appl. Math., XXXIX:S149–
S186, 1986.

63



[33] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-
torica, 8:261–277, 1988.

[34] A. Lubotzky and A. Zuk. On property (τ). Preprint, see webpage at
http://www.ma.huji.ac.il/∼alexlub/.

[35] R. Lyons and F. Nazarov. Perfect matchings as IID factors on non-
amenable groups. arXiv:0911.0092v1.

[36] G.A. Margulis. Explicit group theoretic constructions of combinatorial
schemes and their applications for the construction of expanders and
concentrators. J. Prob. of Inform. Transf., 24:39–46, 1988.

[37] J. Meier. Groups, Graphs and Trees. Cambridge Univ. Press, 2008.

[38] A. Miller. Some interesting problems. Preprint, see webpage at
http:/www.math.wisc.edu/∼miller/res/problem.pdf.

[39] B.D. Miller. Measurable chromatic numbers. J. Symbolic Logic,
73(4):1139–1157, 2008.

[40] M. Morgenstern. Existence and explicit construction of q + 1 regular
Ramanujan graphs for every prime power q. J. Comb. Th. B, 62(1):44–
62, 1994.

[41] A. Nevo. Pointwise ergodic theorems for actions of groups. In Handbook
of dynamical systems, Vol. 1B, pages 871–892. Elsevier B.V., Amster-
dam, 2006.

[42] G.A. Niblo and M.A. Roller. Groups acting on cubes and Kazhdan’s
property (T). Proc. Amer. Math. Soc., 126(3):693–699, 1998.

[43] D.S. Ornstein and B. Weiss. Entropy and isomorphism theorems for
actions of amenable groups. J. Anal. Math., 48:1–141, 1987.

[44] J. Stallings. Group theory and three-dimensional manifolds. Yale Univ.
Press, 1971.

[45] C.T.C. Wall. The geometry of abstract groups and their splittings.
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