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Abstract

We summarize recent developments regarding Newton-Okounkov bodies which can be viewed
as a generalization of the polytope of projective toric variety or the Newton polytope a polyno-
mial. We start with a discussion of formal properties of integral semigroups and valuations of
graded algebras, the general setting in which Newton-Okounkov bodies can be defined. We then
consider some applications to intersection theory in algebraic geometry. Lastly, we consider its
relation to SAGBI bases and toric degenerations.

Newton-Okounkov (NO) bodies were introduced in passing in the works of Okounkov ([Ok96],
[Ok03]), and were subsequently studied more systematically in [LM08] and [KKh08]. Several sub-
sequence works ([KKh12], [And13], [Kav15]) have emerged since, and NO bodies continue to be an
active area of research.

In Section §1, we give some general properties of integral semigroups and valuations of graded
algebras, as this is the general setting in which Newton-Okounkov bodies can be defined. In Section
§2, we show how Newton-Okounkov bodies naturally arise in the setting of algebraic varieties,
and apply the tools developed in §1 to intersection theory following [LM08] and [KKh12]; these
applications include generalizations of Fujita approximation, Brunn-Minkowski inequality, and the
Bernstein-Kushnirenko theorem. In Section §3 we discuss the recent connection of NO bodies to
SAGBI bases and toric degenerations.
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1 Generalities on semigroups and valuations of graded rings

1.1 Integral semigroups

A motivational example to keep in mind throughout this article the Hilbert function of a projective
variety, particularly that of a normal projective toric variety.
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Example 1.1.1. Let X ⊂ Pnk be a d-dimensional projective scheme over a field k given by a
graded ideal I of the standard graded polynomial ring R = k[x0, . . . , xn]. The Hilbert function
HX(t) := dimk(R/I)t coincides with the Hilbert polynomial PX(t) := χ(OX(t)) of degree d for
t >> 0, so that limt→∞HX(t)/td is well-defined. The value of this limit time d! is the degree of
the embedded scheme X ⊂ Pn.

We now consider this for projectively normal toric varieties. Let Q be a full-dimensional lattice
polytope in Zn whose lattice points are A = {a1, . . . , am} ⊂ Zn, and let ĈQ := Cone((ai, 1) ∈ Rn×
R)∩ (Zn×Z) be the rational polyhedral cone over Q. Assume that Q is normal (or IDP)—i.e. all
points of ĈQ are Z-linear combinations of {(ai, 1)}. Consider the projective toric variety XA defined
by closure of the image of the map (C∗)n × (C∗) → Pm−1, (t, s) 7→ [ta1s : · · · : tams]. The graded
coordinate ring of XA is the graded semigroup algebra C[ĈQ], where the degree of χ(a′,l) ∈ C[ĈQ]

for (a′, l) ∈ ĈQ ⊂ Zn×Z is l. In other words, the Hilbert function is HXA
(t) = #|ĈQ ∩ (Zn×{t})|.

Standard Ehrhart theory then tells us that limt→∞HXA
(t)/tn = vol(Q); in other words, the degree

of the projectively normal toric variety is given by the volume of its defining polytope.

Remark 1.1.2. The statements for toric varieties above hold without change when Q is very ample
(in fact, normal implies very ample). For discussion of normality and very ampleness of a lattice
polytope, see [CLS11, Ch. 2].

We now generalize the above picture to a general setting. By a (integral) semigroup we
mean commutative semigroup S ⊂ Zn. Let the linear space L(S), group G(S), and cone C(S)
of S to be L(S) = RS ⊂ Rn, G(S) = ZS ⊂ Zn, and C(S) = {

∑
i cisi ∈ Rn | ci ≥ 0, si ∈ S}.

For a lattice N ' Zn, denote by its dual N∨ := HomZ(N,Z) and let 〈·, ·〉 : N∨×N → Z be the
usual pairing. A primitive element m ∈ N∨ defines a half-space M := {u ∈ N : 〈m,u〉 ≥ 0} and a
map πM := 〈m, ·〉 such that πM (N) = Z and kerπM = ∂M is the boundary of M .

Definition 1.1.3. Let S be a semigroup and M a rational half-space in L(S) given by a primitive
element of (L(S) ∩ Zn)∨. We say that (S,M) is admissible if S ⊂M , and strongly admissible
if C(S) is strongly convex.

Definition 1.1.4. For an admissible pair (S,M), define its Newton-Okounkov body (NO body)
∆(S,M) to be

∆(S,M) := C(S) ∩ π−1
M (m) where m = [Z : πM (G(S))].

Note by construction that ∆(S,M) is compact iff (S,M) is strongly admissible. When S is the
semigroup of the cone ĈQ over a normal (or very ample) lattice polytope Q ⊂ Zn, and M is the
half-space Zn × Z≥0, the NO body of (M,S) is Q.

For an admissible pair (S,M) and k ∈ Z≥0, denote by Sk := C(S) ∩ π−1
M (k) and call H(k) :=

#|Sk| the Hilbert function of (S,M). The following is the generalization of observations made in
Example 1.1.1.

Theorem 1.1.5. [KKh12, Theorem 1.19] Let (S,M) be a strongly admissible pair, and assume
that Sk is finite for all k ∈ Z≥0. Let q := dim ∂M = dimL(S) − 1, m := [Z : πM (G(S))], and
c := [∂M : G(S) ∩ ∂M ]. Then

lim
k→∞

H(mk)

kq
=

1

c
vol(∆(S,M))

where the volume measure on L(S) ∩ π−1
M (m) is normalized so that a standard integral q-simplex

has volume 1/q!.
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Sketch of proof. First define the regularization of a semigroup S as Reg(S) := G(S) ∩ C(S),
which approximates S well in the following sense ([KKh12, Theorem 1.6]): there exists a constant
N > 0 such that Reg(S) ∩ {s ∈ Zn : |s| > N} ⊂ S. Then a series of reductions, outlined in the
proof of [KKh12, Theorem 1.14], gives a generalization of the desired result above that goes back
to Minkowski.

Note that when G(S) = Zn, we have m = 1 and c = 1.

Example 1.1.6 (Sanity check). Suppose S = Zn+1
≥0 and πM : Rn → R via πM (~a) =

∑n
i=0 ai (i.e. M

is half-space defined by the all-1-vector as the normal vector). Then the Newton-Okounkov body
(S,M) is the n-simplex Conv(e0, . . . , en) which has volume 1/n!. On the other hand, H(k) =

(
n+k
n

)
so that limk→∞H(k)/kn = 1/n!.

By a strongly non-negative semigroup S, we mean a strongly admissible pair (S,M) where
S ⊂ Zn×Z≥0 and M = Zn×Z≥0. In almost all cases, we’ll be working with strongly non-negative
semigroups. For S strongly non-negative, define Ŝp to be the subsemigrouop of S generated by
S ∩ π−1

M (p). Note that for large enough multiple p of m := [Z : πM (G(S)]), the subsemigroup Ŝp is
nonempty.

The following theorem states that the volume of ∆(S) can be approximated through by volume
of ∆(Ŝmk) for large enough k.

Theorem 1.1.7. [KKh12, Theorem 1.27] Let S be a strongly non-negative semigroup. Then for
any sufficiently large multiple p of m := [Z : πM (G(S))], we have q := dim ∆(S) = dim ∆(Ŝp) and
c := [∂M,G(S) ∩ ∂M ] = [∂M,G(Ŝp) ∩ ∂M ]. Moreover,

1

c
vol(∆(S)) = lim

k→∞

 1

kq
lim
t→∞

HŜmk

(
(mk)t

)
tq

 =
1

c
lim
k→∞

vol(∆(Ŝmk))

kq
.

1.2 Valuations on graded rings

Let Γ be a totally ordered Abelian group and k a (algebraically closed) field. By prevaluation
on a k-vector space V , we mean a map ν : V → Γ ∪ {∞} such that ν(u) = ∞ ⇔ u = 0,
ν(f + g) ≥ min(ν(f), ν(g)), and ν(cf) = ν(f) for all f, g ∈ V, c ∈ k. A valuation on k-algebra
A further satisfies ν(fg) = ν(f) + ν(g). A valuation is faithful if ν(A \ {0}) = Γ. Denote by
V≥α := {f ∈ V : ν(f) ≥ α} for α ∈ Γ (and likewise V>α). For most cases, we will concern the
following type of valuation.

Definition 1.2.1. Let R• =
⊕

i≥0Ri be a (Z≥0-)graded k-algebra. A graded valuation on
R is a valuation ν : R → Zn × Z where ν(Ri) ∈ Zn × {i} and Zn × Z is totally ordered by
(α,m) < (β, n) ⇐⇒ m > n or m = n and α <lex β.

In many cases of (pre)valuations, we will have that V≥α/V>α has at most dimension 1, in which
case we say (V, ν) has one-dimensional laves. The number of values a vector space takes is its
dimension in this case:

Proposition 1.2.2. Let V be a k-vector space with prevaluation ν with one-dimensional leaves.
Then for any nonzero subspace W ⊂ V we have dimW = #|ν(W \ {0})|.

Proof. By the well-known property of valuation that ν(f + g) > min(ν(f), ν(g)) =⇒ ν(f) = ν(g),
one notes that {f1, . . . , fn} ⊂ V \ {0} are linearly independent if ν(fi)’s are distinct. Now, that the
leaves are 1-dimensional implies that there exists a basis V consisting of distinct ν-values. Lastly,
restricting to subspace behaves well with prevaluations.
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For a graded valuation (ν,R•), define its associated semigroup S(R) := ν(R \ {0}) ⊂ Zn×Z≥0.
If the valuation has one-dimensional leaves, then the classical Hilbert function HR(t) = dimk Rt
and the Hilbert function of the associated semigroup HS(R)(t) := #|S(R) ∩ (Zn × {t})| are the
same.

2 Applications to Intersection theory

Throughout this section, let k be an algebraically closed field of characteristic 0. Let X be a n-
dimensional normal projective k-variety (irreducible and reduced). Many of the results here can be
generalized to arbitrary complete k-varieties, using normalization and the Chow lemma, but we’ll
assume normal and projective for ease of exposition. For details on generalizations, see [LM08] and
[KKh12].

2.1 Newton-Okounkov body of a variety

Let K(X) be the field of rational functions of X. We first describe a faithful valuation on K(X)
as a k-algebra.

Example 2.1.1 (Gröbner valuation). Let p ∈ X be a regular point, so that OX,p is a regular local
ring, with a regular system of parameters (u1, . . . , un). By Cohen structure theorem the completion
of OX,p is the power series ring A := k[[u1, . . . , un]], so that K(X) injects into FracA. Consider the
Gröbner valuation ν on A where ν(f ∈ A) is the exponent of the minimal nonzero monomial term
in f (under some monomial ordering, say <lex). Restricting ν to K(X) gives a valuation on K(X).
This valuation ν depends on the choice of the point p and the system of parameters (u1, . . . , un).

A more geometric and way to state the above construction is as follows:

Example 2.1.2 (Parshin valuation). An admissible flag Y• on X is a flag of subvarieties

X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd

such that codimX(Yi) = i and the point Yd is a regular point of X. In other words, take a regular
point p = Yd and consider a maximal chain of prime ideals (0) = p0 ⊂ p1 ⊂ · · · ⊂ pd = p in
R := OX,p. For example, if (u1, . . . , un) is a system of parameters of OX,p then take pi to be a
minimal prime over (u1, . . . , ui). Note that by assumption Rpi/pi−1 is a regular of dimension 1 so
that it is a DVR with a uniformizer πi.

We now define a valuation νY• on K(X) associated to an admissible flag. Let f ∈ K(X). Set

f1 = f . As Rp1/p0 = Rp1 ⊂ K(X) is a DVR, we have that f1 = f̂2 · πν1(f)
1 for some integer ν1(f)

and f̂2 ∈ K(X)\p1Rp1 . Writing f̂2 = φ/ψ where φ, ψ ∈ Rp2 \p1, we can consider a rational function

f2 as the image of f̂2 in the fraction field of Rp2/p1. Then we can write f2 = f̂3π
ν2(f)
2 , and so forth.

Continuing this process gives us a valuation ν = (ν1, . . . , νn). The valuation is only dependent on
the choice of the admissible flag ([LM08, §1]).

For the rest of the section, fix an admissible flag and hence fix a faithful valuation ν on K(X)
given by the construction above. The Grobner valuation perspective of Example 2.1.1 makes it
clear that the valuation has one-dimensional leaves; for the geometric perspective of Example 2.1.2,
a geometric proof of one-dimensional leaves can be found in [LM08, Lemma 1.3].

By restriction one can define a graded valuation ν̃ on any graded k-subalgebra W• of K(X) by
ν̃(w ∈ Wt) = (ν(w), t) ∈ Zn × Z≥0. Divisor theory provides some natural graded k-subalgebras of
K(X) as follows.
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For a line bundle L on X, denote by its section ring

R(L ) =
⊕
i≥0

H0(X,L ⊗i),

and given a subspace L ⊂ H0(X,L ), define the graded ring

RL :=
⊕
i≥0

Li

where Li is the image of the map
⊗i

j=1H
0(X,L ) → H0(X,L ⊗i) restricted to

⊗
j L. (Viewing

elements of L as rational functions (since H0(X,L ) ⊂ K(X)), one can just take products in K(X)).

More generally, we consider the following class of graded k-subalgebras of K(X):

Definition 2.1.3. Let L ⊂ K(X) be a finite dimensional k-vector subspace of K(X), and let
RL :=

⊕
i≥0 L

i. A graded k-subalgebra of K(X) is of almost integral type if it is contained in
a k-subalgebra of K(X) that is finite over RL for some L ⊂ K(X).

When L is very ample, and L is a subsystem of the complete linear system |L | giving a
projective embedding X ⊂ P(L), then RL is the graded coordinated ring of X ⊂ P(L) and R(L )
is the normalization of RL ([Har77, II.5]). Hence, in this case, any graded k-subalgebra of R(L )
is of almost integral type. In fact, noting that D+ kE is very ample for any Cartier divisor D and
very ample divisor E for sufficiently large k, one can conclude that R(O(D)) is of almost integral
type for any Cartier divisor D on X ([KKh12, Theorem 3.7]). In other words, any k-subalgebra of
ring of sections of a line bundle is of almost integral type.

Theorem 2.1.4. [KKh12, Thoerem 2.30] (or [LM08, Lemmas 2.2,4,6,12]). Let A ⊂ K(X) be a
graded k-subalgebra of almost integral type, and let ν̃ be a valuation obtained by the construction
in 2.1.2. Then the semigroup S(A) = ν(A \ {0}) is a strongly non-negative semigroup, and hence
its Newton-Okounkov body ∆(S(A)) is compact.

For a line bundle L , we define its Newton-Okounkov body ∆(L ) to be D(S(R(L ))).
More generally, we define ∆(A) to be the Newton-Okounkov body of S(A) for any A, a graded
k-subalgebra of almost integral type. We’ll use the notation ∆Y• when we wish to be explicit about
which admissible flag is used to construct the valuation.

2.2 Toric examples

We work out explicitly examples of Newton-Okounkov bodies for projective toric varieties. First,
we follow [LM08] in a geometrically nice case of smooth toric varieties.

Let XΣ be a complete smooth toric variety (over C, or any algebraically closed field of char-
acteristic 0), given by a complete smooth fan Σ ⊂ N ' Zn. Take a maximal cone σ ∈ Σ; its
primitive rays (u1, . . . , un) form a basis of N . Let M = HomZ(N,Z) be the character lattice, and
let {u1, . . . , un, un+1, . . . , ur} be the (primitive) rays of Σ and Di their corresponding divisors. Fix
the admissible flag Y• to be Yi = D1 ∩ · · · ∩ Di or 1 ≤ i ≤ n. Then as Di’s have simple-normal
crossings, for f ∈ C(XΣ) we have div(f) =

∑r
j=1 ajDj then ν(f) = (a1, . . . , an).

Recall that for a torus invariant (Weil) divisor D =
∑

i aiDi on a toric variety, one can identify
H0(XΣ,O(D)) with

⊕
m∈PD

χm ⊂ C[M ] where PD ⊂M is defined by

PD = {m ∈M | 〈ui,m〉+ ai ≥ 0 ∀i}.
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since for a rational function χm we have divχm =
∑

i〈m,ui〉Di.
To make this construction invariant under rational equivalence of divisors, consider a map

ϕD = M → Zr by m 7→
∑

i(〈m,ui〉 + ai)~ei. The image ϕD(M) is a sublattice of Zr of index 1
since Σ is smooth and complete. Moreover, ϕD(M) ∩ Zr≥0 = ϕ(PD) ' PD. We show that PD is
the Newton-Okounkov body ∆(D) for any Cartier divisor D. (This generalizes [LM08, Proposition
6.1]).

Proposition 2.2.1. Let L be a line bundle on XΣ, and let D be a torus invariant Cartier divisor
such that O(D) = L . Then the Newton-Okounkov body ∆(D) is equal to the polytope ϕD(PD).

Proof. Let χm ∈ H0(X,L ). Then ν(χm) = (〈m,u1〉, . . . , 〈m,un〉). But as u1, . . . , un is a basis of

N , the map ν : M
div→ Zn × Zr−n π→ Zn is in fact an isomorphism. For normal toric varieties, as

PkD = kPD for any effective divisor D, we need only look at k = 1 level for the Newton-Okounkov
body.

More generally, consider a projective toric variety obtained by a finite subset A = [a0, . . . , am]
(considered as a n× (m+1) matrix) of a lattice M ' Zn whose affine Z-span is Zn (when it doesn’t
just restrict to a sublattice). Add a row of 1’s to A to get a a (n+ 1)× (m+ 1) matrix A′ defining

a n-dimensional projective toric variety XA := {[t(1,a0) : . . . : t(1,am)]} ⊂ Pm. The rational function
field K(XA) is the quotient field of C[(t1/t0)±, . . . , (tn/t0)±], so that with Gröbner valuation on
K(XA) we get S(RX) to be the semigroup NA′ where RX is the graded coordinate ring of XA ⊂ Pm.
It is then easy to see that the Newton-Okounkov body is the convex hull of A.

Example 2.2.2 (Sanity check). Let’s consider three semigroups in Z≥0: A1 = [0, 1, 3, 4] (giving
the rational twisted quartic), A2 = [0, 2, 3] (cuspdial cubic), and A3 = [0, 1, 2, 3] (the twisted cubic).
A1, while not projectively normal, has degree 4, as does the volume of its Okounkov body. A2 gives
a graded linear seires of OP1(3) where A3 is R(OP1(3)) itself. In each case, they have degree 3.

2.3 Applications

Recall that a k-subalgebra of a section ring line bundle L is called a graded linear series of
L . For a (Cartier) divisor D on X, or more generally for W a graded linear series of D, the
Kodaira-Iitaka dimension is q if dimkWt grows like tq.

A (Cartier) divisor D on X is a big divisor if its Kodaira-Iitaka dimension is n = dimX. The
volume (or degree) of a big divisor is its self-intersection number vol(D) =

∫
X(c1(D))n. It is a

consequence of Grothendieck-Hirzebruch-Riemann-Roch theorem that vol(D) = n! limt→∞
h0(tD)
tn .

Combining Theorem 1.1.5 with Theorem 2.1.4, we obatin

Corollary 2.3.1. [KKh12, Corollary 3.11(1)] (or [LM08, Theorem 2.3, 2.13]). Let L be a line
bundle on X and W ⊂ R(L ) a graded linear series of Kodaira-Iitaka dimension q. Let S = S(W )
be its non-negative semigroup, m = [Z : πM (G(S))], and c = [∂M,G(S) ∩ ∂M ]. Lastly, let ∆(W )
be the Newton-Okounkov body of S(W ). Then

lim
t→∞

dimWmt

tq
=

1

c
vol(∆(W )).

[LM08, Lemma 2.3] implies that G(S) = Zn+1 for S a semigroup associated to (the section
ring of) a big divisor. Hence, this such cases the subgroup indices m = [Z, πM (G(S))] and c =
[∂M, ∂M∩G(S)] are both 1. Moreover, [LM08, Proposition 4.1] implies that the Newton-Okounkov
body ∆(D) of a big divisor D only depends on the numerical equivalence class of D (once the
admissible flag is fixed). Lastly, ∆(D)’s over various D patch together nicely to give a universal
Newton-Okounkov body in the following sense.
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Theorem 2.3.2. [LM08, Theorem 4.5] Let N1(X) be numerical equivalence classes of divisors,
and p : Rn × N1(X)R → N1(R) the projection map. Then there exists a convex body ∆(X) ⊂
Rn ×N1(X)R such that for each class ξ of big divisor in N1(X)Q one has p−1(ξ) ∩∆(X) = ∆(ξ).

This in particular implies that the map vol : Big(X)→ R is continuous ([LM08, Corollary 4.12]).

By analogy to the volume of a big divisor, we thus define the volume of a graded linear series
to be vol(W ) := q!

c vol(∆(W )). Using the classical Brunn-Minkowski inequality on the Newton-
Okounkov bodies, we have the following.

Corollary 2.3.3. For graded linear series W1,W2 with the same q, c, and m = 1, we have

vol(W1)1/n + vol(W2)1/n ≤ vol(W1W2)1/n.

In particular, for Cartier divisors D1, D2, we have

vol(D1)1/n + vol(D2)1/n ≤ vol(D1 +D2)1/n.

Fujita approximation essentially states that volume of any big divisor on a projective can be
approximated that of a ample divisor.

Theorem 2.3.4 (Fujita approximation). [Laz04, Theorem 11.4.4] Suppose that D is a big integral
divisor on projective X, and fix ε > 0. Then there exists a birational map φ : X ′?X and a
decomposition φ∗(D) = A+ E with A amples and E effective, such that volX′(A) > volX(D)− ε.

Combining the machinery build in this section with Theorem 2.1.4, we have the following version
of the Fujita approximation theorem:

Corollary 2.3.5. Let conditions be as in Corollary 2.3.1 with D a big divisor. Then

1

c
vol(D) =

1

c
lim
k→∞

vol(mkD)

kq

A classical theorem of Kushnirenko states the following. Consider for A = {a1, . . . , as} ⊂ Zn,
the space of Laurent polynomials CA := {

∑
i cix

ai} ⊂ C[x±1 , . . . , x
±
n ]. Suppose the affine Z-span of

A is Zn. Then for a general choice of n polynomials {f1, . . . , fn} ⊂ CA, we have that the number
of solutions in (C∗)n of f1 = 0, . . . , fn = 0 is the volume of Conv(A). The main idea behind the
proof is the interpret elements of CA as H0(XA,L ) where XA is the toric variety of A and L is
the very ample line bundle giving the embedding XA ⊂ Ps−1. One can similarly define suitably
an intersection index [L1, . . . , Ln] for any Li ⊂ K(X) finite dimensional. For details see [KKh12,
4.5-4.7]. Under this generalization, we have the generlized version of the Kushnirenko theorem:

Corollary 2.3.6. Let L be a graded linear series of a line bundle L , and suppose that the Kodaira
map ΦL : X 99K YL ⊂ P(L) satisfies dimX = dimYL. Then we have

[L, . . . , L] = n! deg ΦL
1

c
vol(∆(RL))

(where c is again the index [∂M, ∂M ∩G(S(RL))]).
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3 SAGBI bases and toric degenerations

Let A be a subalgebra of C[x1, . . . , xn], and let ν be the restriction of Gröbner valuation on
C[x1, . . . , xn] to A. When the semigroup S(A, ν) is finitely generated, a collection {f1, . . . , fs}
such that {ν(f1), . . . , ν(fs)} generates S(A, ν) is called SAGBI basis (Subalgebra analogue of
Gröbner basis for Ideals) of A with respect to a valuation ν. Given a SAGBI basis {f1, . . . , fs},
any h ∈ A can be expressed as a polynomial in the fi’s by the subduction algorithm:

1. Write ν(h) = d1ν(f1) + · · ·+ dsν(fs) for some di’s in N.

2. Comparing the coefficient of the leading terms of fd11 · · · fdrr and h, we obtains c ∈ C such
that g = h− cfd11 · · · fdrr cancels out the leading term and hence ν(g) < ν(h).

3. Repeat the process with g until 0.

We can now generalize this notion to a large class of graded algebras.

Definition 3.0.7. Let A be a graded algebra with a graded valuation ν : A → Zn × Z≥0 with
one-dimensional leaves. Then {f1, . . . , fs} ⊂ A is a SAGBI basis for (A, ν) if {ν(f1), . . . , ν(fs)}
generate the semigroup S(A, ν).

Note that A admits SAGBI basis iff S(A, ν) is finitely generated. It is not hard to check that
the subduction algorithm still terminates in this more general case ([Kav15, Proposition 7.2]).

In the case when R is a subalgebra of the section ring R(L ) of a very ample line bundle L
on a projective k-variety X, existence of a SAGBI basis gives a toric degeneration of X as follows.
(Take ν̃ to be a valuation coming from a construction in Example 2.1.2).

Theorem 3.0.8. [And13, Proposition 5.1] Consider the filtration F• on R given by F≥α, and let
grR be the graded ring of R associated to the filtration F•. Suppose S(R, ν̃) is finitely generated.
Then grR ' k[S(R, ν̃)], and moreover, there is a finitely generated, graded flat k[t]-subalgebra R
of R[t], such that R/tR ' grR and R[t−1] ' R[t±].

Moreover, [And13, Proposition 5.16] shows that the construction of R is functorial. As an
immediately corollary, taking R to be the section ring R(L ) itself of a very ample line bundle L ,
we have the following toric degeneration statement.

Corollary 3.0.9. If X is a projective variety with a line bundle L such that S = S(R(L ), ν̃) is
finitely generated, then there exists toric degeneration (a flat family of varieties) π : X → A1 such
that π−1(0) ' Proj k[S] and π−1(λ) ' X for λ 6= 0.
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