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1 Introduction

Lovazs’ proof of the Kneser Conjecture presents a beautiful application of Borsuk-Ulam Theorem,
a purely topological result, to a combinatorial problem on finite graphs. Moreover, Kneser-Lovasz
Theorem is far from being the only case in which a combinatorial problem admits as a solution
that uses topological techniques. It is rather surprising that the study of continuous maps would
yield elegant solutions to entirely discrete combinatorial problems. This survey seeks to give a brief
glimpse of such beautiful topic of topological combinatorics.

We survey three kinds of combinatorial problems. The first problem concerns the game hex, and
we discuss how one can apply Brouwer’s Fixed Point Theorem to show that the game always has a
winner. The second problem is the necklace problem, in which the ham-sandwich theorem provides
a nice solution. Lastly, we give a short description of Lovasz’s work on neighborhood complexes,
which generalizes the Kneser conjecture and in fact gives a lower bound for the chromatic number
of any graph.

2 The Game Hex

In the game of Hex, two players (red and green) take turns coloring one hexagon of a grid of
hexagons. After all the hexagons are filled, red wins if there is a path of red hexagons connecting
the top and the bottom, and green wins if there is a path of green hexagons connecting the left and
the right. The figure below shows an empty board and a finished state in which green has won.

Figure 1: An empty board and a finished state with green victory
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The question is whether the game Hex always has exactly one winner. If there is a winner, say
red, then green cannot also have a path connecting the top to bottom since it must cross over the
red path connecting the left to the right. Thus, the task is to show that there is at least one winner.

Proposition 2.1. The game Hex always has a winner

We prove this in two ways. First, for the proof using topology, we need Brouwer’s Fixed Point
Theorem, which we state here without proof:

Theorem 2.2 (Brouwer’s Fixed Point Theorem). Let B2 be a unit disk in R2, and f : B2 → B2 a
continuous map. Then there exists x ∈ B2 such that f(x) = x.

Proof of 2.1. [Kol10, 1.4] First, by making hexagons as vertices and common sides of hexagons as
edges (i.e. by taking the dual of the graph) we can translate the hex game to coloring the vertices,
in which case, green winning means that there is a path from the left to the right with all green
vertices. For example, translation of the game we had in Figure 1 is now

In other words, our board is now a graph G = (V,E), and the game is to color the vertices red
or green. Now, suppose for a contradiction that there is a coloring such that there are no winners.
Define

R0 = {red vertices reached from the bottom by a red path}
R1 = {red vertices not in R0}
G0 = {green vertices reached from the left side by a green path}
G1 = {green vertices reached not in G0}

Moreover, define e1 to be rightward shift by one vertex (parallel to the top and bottom sides) and
e2 to be upward shift (parallel to the left and right sides). Then define f : V (G)→ V (G) as follows:

f(v) :=


v + e2 v ∈ R0

v − e2 v ∈ R1

v + e1 v ∈ G0

v − e1 v ∈ G1

Since we assumed that there are no winners, the map f is well-defined (nothing goes off the
board). Now considering any triangle in the board G with vertices v1, v2, v3 as the convex hull of
the vertices, each point x in the triangle can be written uniquely as x =

∑
xivi where xi ≥ 0 and∑

xi = 1. So, extend the map f linearly on each triangle by defining f(x) :=
∑
xif(vi); it is

not hard to see that this is continuous. Since the filled G (as union of triangles) is homeomorphic
to B2, f is a map B2 → B2, and thus there exists a fixed point x ∈ G. Let x =

∑
i xivi for a
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triangle v1, v2, v3, and define εi ∈ {±e1,±e2} so that f(vi) = vi + εi. Then, f(x) = x implies that∑
xi(vi + εi) =

∑
xivi and thus ∑

xiεi = 0

Now, WLOG say x1 > 0 and ε1 = e1. Then one of the other must be −e1, say ε2. This means that
for v1, v2, ones belongs to G0 and the the other to G1, but this is impossible since v1, v2 are on a
same triangle.

Unlike some of the other theorems we explore in the later sections of this article, the hex problem
also has a clever combinatorial proof of Proposition 2.1.

Combinatorial Proof of 2.1. Consider a path along the edges of the hexagon as follows: start at the
left bottom corner. When the path meets a green hexagon, turn right, if red then turn left. See the
following for an example (the bottom yellow path):

One can see that everywhere on this path, oriented so that it starts from the left bottom corner,
green tiles are always on the left and red tiles are always on the right. One can check that this path
must end in either the right bottom corner (in which case green wins) or the left top corner (in
which the red wins).

3 The Necklace theorem

Consider an open necklace that has n beads of d different types, with even number of each type.

We wish to divide the beads of each type evenly by cutting the necklace into pieces and distributing
the pieces between two people. The task is to use the minimum number of cuts. One bad scenario
is the necklace where each type of beads is clustered together, in which case one needs d cuts at
least. The claim is that d is really the worst case:
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Theorem 3.1 (Necklace theorem). Every open necklace with d kinds of beads can be divided between
two people using no more than d cuts.

For the proof of Theorem 3.1, we will use a discrete version of the ham-sandwich theorem.
The Ham-sandwich theorem is a common application of the Borsuk-Ulam theorem. The original
formulation is that given a slice of ham and a slice cheese on a board, there exists a straight line that
cuts both into equal portions. Among many generalizations, the most relevant one is as follows:

Theorem 3.2 (Finite Ham-sandwich). [Mat03, 3.1.3]. Let A1, A2, . . . , Ad ∈ Rd be disjoint finite
point sets in general position (such that no more than d points of A1 ∪ · · · ∪ Ad are contained in
any hyperplane). Then there exists a hyperplane h that bisects each Ai, such that there are exactly
b12 |Ai|c points from Ai in each of the open half-spaces defined by h.

Before using this theorem for the necklace problem, we need one small lemma concerning the
moment curve.

Lemma 3.3. A moment curve γ in Rd is defined as γ = {(t, t2, . . . , td) ∈ Rd | t ∈ R}. No
hyperplane h ⊂ Rd intersects the moment curve γ in Rd in more than d points.

Proof. The intersection of hyperplane h defined by a1x1 + a2x2 + · · · adxd = b and γ is given by the
solutions to the polynomial a1t+ a2t

2 + · · · adtd − b = 0, which as at most d distinct roots.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We consider beads to the put on the moment curve γ(t) = (t, t2, . . . , td) in
Rd where the kth bead is placed at γ(k) = (k, k2, . . . , kd). It is not hard to check that the points
{γ(k)}k=1,...,n are in general position. Now, define

Ai = {γ(k) | kth bead is of type i, k = 1, . . . , n}

By the Finite Ham-sandwich theorem, there exists a hyperplane h that divides bisects each Ai.
Moreover, by Lemma 3.3, this hyperplane h meets the curve γ at most d points.

Figure 2: Illustration of the proof (figure from [Mat03])
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4 Neighborhood complex

In this section, we present a generalization of Lovasz’s result on the Kneser Conjecture without
proof. First, we need define some notions.

Definition 4.1. Given a finite simple graph G = (V,E), its neighborhood complex N(G) is
defined as the simplicial complex with vertex set V and simplicies given by subsets A ⊂ V such that
all vertices in A have a common neighbor.

Example 4.2. The following figures show an example of the neighborhood complex of a graph:

Figure 3: The graph G and its neighborhood complex N(G)

Example 4.3. One can check that for a cycle Cn, the neighborhood complex N(Cn) is a disjoint
union of two cycles if n is even, and N(Cn) is Cn if odd. Also, the neighborhood complex of a complete
graph Kn is the boundary complex of the standard (n− 1)-simplex, and hence N(Kn) ' Sn−2.

Definition 4.4. A topological space X is k-connected if for all ` = 0, 1, . . . , k, any continuous
map f : S` → X extends to a continuous map f̃ : B`+1 → X (i.e. f̃ |S` = f). The largest k such that
X is k-connected is called the connectivity of X, denoted conn(X) (and conn(X) = −1 when X
is disconnected).

Example 4.5. 0-connected means that the space is path-connected. In Example 4.2, N(G) is 0-
connected but not 1-connected. If n is even, N(Cn) is −1-connected, whereas it is 0-connected if n
is odd.

Proposition 4.6. [Lon13, B.27] conn(Sn) = n− 1.

We are now ready to state the main theorem:

Theorem 4.7 (Lovasz). [Lon13, 2.3] Let G = (V,E) be a finite simple graph. If the neighborhood
complex N(G) of G is k-connected, then the graph has chromatic number at least k + 3. In other
words,

χ(G) ≥ conn(N(G)) + 3
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Example 4.8. Let’s do some sanity checks. With this theorem, Example 4.5 implies that the
chromatic number of even cycles is (at least) 2, whereas it is (at least) 3 for odd cycles. Moreover,
in combination with Proposition 4.6, we have that the chromatic number of Kn is (at least) n, as
expected. One can also check that the graph is Example 4.2 has chromatic number 3, and applying
the theorem says the same since its neighborhood complex is 0-connected (but not 1-connected).

Theorem 4.7 is remarkable in that it tells us a lower bound for the chromatic number of any
graph. In fact, this is how Lovasz first proved Kneser conjecture by proving the following proposition:

Proposition 4.9. [Lon13, 2.4] The neighborhood complex N(KGn,k) of the Kneser graph is ho-
motopy equivalent to a wedge of spheres of dimension n − 2k. In particular, conn(N(KGn,k)) =
n− 2k − 1.

Combined with Proposition 4.6, this shows that χ(KGn,k) ≥ n− 2k + 2.
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