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Abstract

We give a minimalistic guide to understanding a central result of Part II of [GKZ94]—that the Chow
polytope, the secondary polytope, and the Newton polytope of principal A-determinant all coincide.
After giving preliminary definitions and theorems, we illustrate these for some families of examples.

Among central themes of Discriminants, Resultants and Multidimensional Determinants ([GKZ94]) is
describing the structure of loci of non-generic behaviors: when do two polynomials share a root? When does
a polynomial have repeated roots? When is a matrix not invertible? For polynomials of one variable, the
classical answers to these questions are resultants, discriminants, and determinants, respectively.

A main goal of Part II of [GKZ94] is to generalize these notions through the lens of toric geometry.
In Section §1, we give a brief summary of definitions and results regarding A-resultants, A-discriminants,
and (principal) A-determinants, and in Section §2 we work out numerous examples illustrating concepts
mentioned in §1. The codes used for computation in Macaulay2 are described in Section §3, and are available
for download on the third author’s website.

Notation. Let A = {a1, . . . , an} ⊂ Zk−1 be a finite subset of Zk−1; often we will write A as a (k − 1) × n
matrix. Let XA ⊂ Pn−1

C be the projective toric variety defined by A; i.e. it is the closure of the set
{(xa1 : xa2 : . . . : xan) | x = (x1, . . . , xk−1) ∈ (C∗)k−1}. Denote by CA := {

∑n
i=1 cix

ai} the Laurant
polynomials in C[x±1 , . . . , x

±
k−1] with supports in A. Denote by Q = Conv(A), and by VolΓ(Q) the volume of

Q in Γ, the lattice of affine integer span of A where a unit (dimQ)-simplex is normalized to have volume 1.

1 The theory

A central result, obtained by combining Theorem 8.3.1 and Theorem 10.1.4 of [GKZ94], is as follows.

Main Theorem. The Chow polytope Ch(XA) of XA, the secondary polytope Σ(A) of A, and the Newton
polytope of the principal A-determinant Newt(EA) coincide,

Ch(XA) ' Σ(A) ' Newt(EA).

We now walk through the necessary definitions.

Given a Laurent polynomial f =
∑
α cαx

α ∈ K[x±1 , . . . , x
±
n ], we define the Newton polytope of f to be

the convex hull of the exponents of nonzero monomial terms of f :

Newt(f) := Conv(α | cα 6= 0) ⊂ Zn.

More generally, suppose a torus (C∗)m acts on a C-vector space V . Then the characters χ : (C∗)m → C∗
of (C∗)m are just Laurent polynomials, and can be identified with Zm, so we have a decomposition V =
⊕χ∈ZmVχ where Vχ = {v ∈ V : t · v = χ(t)v}. We then define the weight polytope of v =

∑
χ vχ ∈ V to be

Wt(v) := Conv(χ | vχ 6= 0) ⊂ Zm.
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Example 1.1. (1) The weight polytope of a polynomial where we have the usual action of (C∗)n on
C[x±1 , . . . , x

±
n ] is the Newton polytope.

(2) More generally, consider the action of (C∗)n on Gr(k, n) induced by its action on Cn, which gives an
action of (C∗)n on the Plücker coordinate ring B of Gr(k, n) by t · pi1,...,ik = t−1

i1
· · · t−1

ik
pi1,...,ik . Thus, a

Plücker coordinate pI = pi1,...,ik has weight −eI := −
∑
i∈I ei. As multiplication by −1 and addition by all

1 vector are affine Z-isomorphisms, we sometimes set pI to have weight eI , and if Plücker coordinates are
indexed by complements then pI = [[n] \ I] is set to have weight

∑
j /∈I ej .

Note. For this document, we’ll set a Plücker coordinate pI to have weight
∑
j /∈I ej .

For X ⊂ Pn−1
C a projective variety of dimension k−1 and degree d, define the associated hypersurface

of X by
Z(X) := {H ∈ Gr(n− k, n) | H ∩X 6= ∅}.

By [GKZ94, Proposition 3.2.2], Z(X) is a hypersurface of degree d in the (Plücker embedding) of Gr(n−k, n),
and we call its defining equation the Chow form RX ∈ Bd of X, where B is the Plücker ring of the
Grassmannian. Lastly, the Chow polytope Ch(X) is the weight polytope of the Chow form RX .

Example 1.2. If X ⊂ Pn−1
C is a hypersurface given by a homogeneous polynomial F , then Z(X) correspond

to points on X, so that the Chow form is F . Thus, its Chow polytope is equivalent to the Newton polytope
of F .

Example 1.3. If L ⊂ Pn−1
C is a linear subspace, say given by the row span of a full rank k × n matrix M ,

then Ch(L) is the matroid polytope of the linear matroid of the columns of M (and indeed doesn’t depend
on the choice of M for L).

A triangulation T of (Q,A) (where Q = Conv(A)) is a collection Σ of simplices with vertices in A such
that the support |Σ|= Q and any intersection of two simplices in Σ is in Σ and is a face of each. The weight
or characteristic function ωT ∈ ZA of a triangulation is defined as ωT (a) :=

∑
σ VolΓ(σ), where the sum

is over maximal simplices σ ∈ T in which a is a vertex. The secondary polytope Σ(A) of (Q,A) is the
convex hull of the weights of triangulations:

Σ(A) := Conv(ωT | T a triangulation of (Q,A)) ⊂ ZA.

The dimension of Σ(A) is #|A|−k (where A ⊂ Zk−1), and the vertices of Σ(A) correspond to coherent
(regular) triangulations, which are triangulations obtained by the projections of lower convex hull of lifts
of A to Zk−1 × R via a function ψ : A→ R ([GKZ94, Theorem 7.1.7]).

Example 1.4. Let A =

[
0 1 0 −1
0 0 1 −1

]
. The toric variety XA ⊂ P3

C is a hypersurface V (w3 − xyz),

which is an orbifold obtained as P2
C/(Z/3). Its Chow form RX is w3 − xyz, so that the Chow polytope is

Conv((0, 3, 3, 3), (3, 2, 2, 2)). As expected from [GKZ94, Theorem 8.3.1], this is also the secondary polytope
Σ(A) (of dimension 4− 3 = 1), since (Q,A) has two triangulations of weights (0, 3, 3, 3) and (3, 2, 2, 2).

Figure 1: Chow polytope of XA, which is a segment, is also its secondary polytope

2



Given A1, . . . , Ak ⊂ Zk−1 each R-affinely generating Rk−1 and together Z-affinely generating Zk−1, we
define the mixed (A1, . . . , Ak)-resultant, denoted RA1,...,Ak

, as the defining equation of the Zariski closure
of

∇A1,...,Ak
:= {(f1, . . . , fk) ∈

∏
i

CAi | V (f1, . . . , fk) 6= ∅ in (C∗)k−1}.

[GKZ94, Theorem 8.1.1] guarantees that the closure ∇A1,...,Ak
is irreducible and that RA1,...,Ak

can be taken
to be an irreducible polynomial over Z. When A1 = · · · = Ak = A, we call RA = RA,...,A the A-resultant
of A. In this case, when RA(f1, . . . , fk) is written as a polynomial in the brackets [i1, . . . , ik], it is the same
as the Chow form RXA

([GKZ94, Corollary 8.3.2]).

The A-discriminant ∆A is the defining equation of the closure of the set

∇0 :=

{
f ∈ CA | V

(
f,

∂f

∂x1
, . . . ,

∂f

∂xk−1

)
6= ∅ in (C∗)k−1

}
when ∇0 is a hypersurface in CA; otherwise ∆A is set to be 1. ∇0 is in fact conical (projective), as it is the
affine cone of the projective dual variety of XA.

Example 1.5. For A = [0, 1, . . . , d], the A-discriminant ∆A is the classical discriminant of a univariate
polynomial of degree d. For example, for d = 2 we get a2

1 − 4a0a2.

The principal A-determinant EA is defined as a particular type of the A-resultant defined above:

EA := RA

(
f, x1

∂f

∂x1
, . . . , xk−1

∂f

∂xk−1

)
.

There is a nice prime factorization of EA by [GKZ94, Theorem 10.1.2] as follows:

EA = ±
∏
P�Q

∆A∩P (f |A∩P )multXP
XA .

Note that when XA is smooth, multXP
XA = 1. Hence, in this case, the Newton polytope Newt(EA) ⊂ ZA

is Minkowski sums of A-discriminants over all faces of Q.

Remark 1.6. If v ∈ Q is a vertex, then ∆A∩v(f |A∩v) = ai where ith column of A is v. Thus, when
computing the Newton polytope of EA, the contribution from the vertices of Q is just a translation, so we’ll
often ignore them when computing Newt(EA). More generally, we can ignore the faces of Q that are standard
simplices (i.e. simplices of induced volume 1) since k-standard simplices for k > 1 have A-discriminant 1.
Moreover, just as in Example 1.1(2), we’ll take some liberty in translation by a multiple of the all 1 vector
and multiplication by −1 when identifying a polytope to another.

Example 1.7. In the Example 1.4, the A-discriminant ∆A is a3
1 + 27a2a3a4, and the proper faces of

Q are standard simplices. Hence, the Newton polytope of the principal A-determinant is Newt(EA) '
Conv((3, 0, 0, 0), (0, 1, 1, 1)) ' Conv((0, 3, 3, 3), (3, 2, 2, 2)) = Σ(A) (subtract (3, 3, 3, 3) and take minus).

Example 1.8 (An−1). As is shown in [GKZ94, Example 3.3.5(a)], the Chow polytope of a single point
(x1 : . . . : xn) ∈ Pn−1 is the convex hull of {ei | xi 6= 0}. Hence the Chow polytope of ei− ej for i < j is just

[ei, ej ]. By definition, the Chow form of a cycle
∑
i

miXi is
∏
i

Rmi

Xi
for an algebraic cycle; and we know by

construction that the Newton polytope of a product of polynomials is the Minkowski sum of their individual
Newton polytopes. Thus we will know that the Chow polytope of the finite set {ei− ej |1 ≤ i < j ≤ n} is the
n-dimensional permutohedron, if we can show that it is the appropriate Minkowski sum of these

(
n
2

)
intervals.

To recall, the permutohedron is defined as the convex hull of {(σ(1), σ(2), . . . , σ(n))|σ ∈ Sn} ⊂ Rn. The
easiest way to prove the above claim is to use the fact that the permutohedron is a zonotope (this argument
is from [Zieg95]): consider the D =

(
n
2

)
-dimensional cube ID, and project it down to the Minkowski sum

[e1, en]+[e2, en]+. . .+[en−1, en]+. . .+[e1, e2]. To show that this Minkowski sum is the desired permutohedron,
it suffices to say that it is Sn-invariant, and that the point in it which maximizes α ∈ (Cn)∗, α =

∑n
i=1 αie

∗
i ,

where α1 < α2 < . . . < αn, is simply the point e1 + 2e2 + . . .+ nen.
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Example 1.9 (Twisted cubic). Let A = [0 1 2 3], so that XA ⊂ P3 is the twisted cubic. Its Chow form
defines a cubic hypersurface in Gr(2, 4) given by

x3
1,2 − x0,2x1,2x1,3 + x0,1x

2
1,3 + x2

0,2x2,3 − 2x0,1x1,2x2,3 − x0,1x0,3x2,3.

The Chow polytope is thus the convex hull of


3 2 2 1 2 1
0 1 0 3 1 2
0 1 3 0 1 2
3 2 1 2 2 1

, whose vertices are


1 2 1 3
2 0 3 0
2 3 0 0
1 1 2 3

.

The A-discriminant is the classical discriminant of a univariate degree 3 polynomial a1 + a2x+ a3x
3 + a4x

3:

DA = a2
2a

2
3 − 4a1a

3
3 − 4a3

2a4 + 18a1a2a3a4 − 27a2
1a

2
4,

so that its principal A-determinant is EA = a1a4DA. The Newton polytope Newt(EA) thus has (again)

vertices


1 2 1 3
2 0 3 0
2 3 0 0
1 1 2 3

, as expected. The following figure also shows that the Chow polytope Ch(XA)

(which coincides with Newt(EA)), is indeed the secondary polytope as well:

Figure 2: Secondary polytope of A = [0 1 2 3], same as its Chow polytope and Newton polytope of EA

Remark 1.10. The above example indeed generalizes to A = [0 1 . . . d], the dth-dilate of ∆1. Its secondary
polytope is the (d − 1)-dimensional cube, and its A-discriminant is the classical discriminant of a generic
univariate polynomial of degree d.
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2 The examples

2.1 ∆2 ×∆2

In this section we study the example A = ∆2 × ∆2. Following Polymake, we take the simplex to be the
convex hull of the points (1, 0, 0), (1, 1, 0), (1, 0, 1) in homogeneous coordinates. Then, (transpose of) A in
our case is 

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0


.

The polytope Q = conv(A) is 4 dimensional. It has 9 vertices, 18 edges, 16 two-dimensional faces, and 6
facets. Its Schlegel diagram is depicted below.

Figure 3: The Schlegel diagram of ∆2 ×∆2

We now wish to study the secondary polytope Σ(A) of A. The secondary fan of A will be the outer
normal fan of Σ(A), and we can compute the secondary fan in Polymake. From this, we know that the
secondary polytope has dimension 4, with f -vector (108, 222, 144, 30).

Next, we study Ch(XA). The variety XA is the Segre variety; it is the embedding of P2 × P2 with

(x0 : x1 : x2, y0 : y1 : y2) 7→ (x0y0, x0y1, x0y2, x1y0, x1y1, x1y2, x2y0, x2y1, x2y2).

This can be interpreted as the space of rank one matrices, because each rank one matrix is given by multi-
plying a vector and a covector, as we have done here. An attempt was made to compute its Chow polytope
in Macaulay2 using the code in the appendix, but this did not terminate.
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The dual variety of XA is therefore the set of 3 × 3 matrices which do not have full rank. This is the
hypersurface whose defining polynomial is the 3× 3 determinant.

Lastly, we consider Newt(EA). The faces of ∆2 × ∆2 are products Γ1 × Γ2 where Γ1 is a face of the
first simplex and Γ2 is a face of the second. So, the faces correspond to pairs of nonempty subsets (I, J) of
{0, 1, 2}. Denote by Γ(I, J) the face corresponding to the pair (I, J). The A∩Γ(I, J) discriminant is 1 when
I and J have different cardinalities, and when they are equal it is the minor ∆IJ(aij) of the matrix aij , on
the rows from I and columns from J . Therefore, by Theorem 10.B.1.2, we have

EA(f) =
∏
I,J

∆IJ(aij).

The above product has 9 + 9 + 1 terms. In Mathematica we compute that this is a polynomial with 408
terms. We compute the Newton polytope of EA in Polymake, and find that it is the polytope with vertex
set given by

{(6, 3, 1, 3, 4, 3, 1, 3, 6), (6, 3, 1, 3, 2, 5, 1, 5, 4), (6, 3, 1, 2, 5, 3, 2, 2, 6), (6, 3, 1, 2, 2, 6, 2, 5, 3), (6, 3, 1, 1, 5, 4, 3, 2, 5),

(6, 3, 1, 1, 3, 6, 3, 4, 3), (6, 2, 2, 3, 5, 2, 1, 3, 6), (6, 2, 2, 3, 2, 5, 1, 6, 3), (6, 2, 2, 2, 6, 2, 2, 2, 6), (6, 2, 2, 2, 2, 6, 2, 6, 2),

(6, 2, 2, 1, 6, 3, 3, 2, 5), (6, 2, 2, 1, 3, 6, 3, 5, 2), (6, 1, 3, 3, 5, 2, 1, 4, 5), (6, 1, 3, 3, 3, 4, 1, 6, 3), (6, 1, 3, 2, 6, 2, 2, 3, 5),

(6, 1, 3, 2, 3, 5, 2, 6, 2), (6, 1, 3, 1, 6, 3, 3, 3, 4), (6, 1, 3, 1, 4, 5, 3, 5, 2), (5, 4, 1, 4, 1, 5, 1, 5, 4), (5, 4, 1, 3, 1, 6, 2, 5, 3),

(5, 4, 1, 2, 5, 3, 3, 1, 6), (5, 4, 1, 1, 5, 4, 4, 1, 5), (5, 3, 2, 4, 1, 5, 1, 6, 3), (5, 3, 2, 3, 1, 6, 2, 6, 2), (5, 3, 2, 2, 6, 2, 3, 1, 6),

(5, 3, 2, 1, 6, 3, 4, 1, 5), (5, 2, 3, 4, 5, 1, 1, 3, 6), (5, 2, 3, 3, 6, 1, 2, 2, 6), (5, 2, 3, 2, 2, 6, 3, 6, 1), (5, 2, 3, 1, 3, 6, 4, 5, 1),

(5, 1, 4, 4, 5, 1, 1, 4, 5), (5, 1, 4, 3, 6, 1, 2, 3, 5), (5, 1, 4, 2, 3, 5, 3, 6, 1), (5, 1, 4, 1, 4, 5, 4, 5, 1), (4, 5, 1, 5, 2, 3, 1, 3, 6),

(4, 5, 1, 5, 1, 4, 1, 4, 5), (4, 5, 1, 1, 4, 5, 5, 1, 4), (4, 5, 1, 1, 3, 6, 5, 2, 3), (4, 3, 3, 3, 6, 1, 3, 1, 6), (4, 3, 3, 3, 1, 6, 3, 6, 1),

(4, 1, 5, 5, 4, 1, 1, 5, 4), (4, 1, 5, 5, 3, 2, 1, 6, 3), (4, 1, 5, 1, 6, 3, 5, 3, 2), (4, 1, 5, 1, 5, 4, 5, 4, 1), (3, 6, 1, 5, 2, 3, 2, 2, 6),

(3, 6, 1, 5, 1, 4, 2, 3, 5), (3, 6, 1, 4, 3, 3, 3, 1, 6), (3, 6, 1, 3, 1, 6, 4, 3, 3), (3, 6, 1, 2, 3, 5, 5, 1, 4), (3, 6, 1, 2, 2, 6, 5, 2, 3),

(3, 5, 2, 6, 2, 2, 1, 3, 6), (3, 5, 2, 6, 1, 3, 1, 4, 5), (3, 5, 2, 1, 4, 5, 6, 1, 3), (3, 5, 2, 1, 3, 6, 6, 2, 2), (3, 4, 3, 6, 3, 1, 1, 3, 6),

(3, 4, 3, 1, 3, 6, 6, 3, 1), (3, 3, 4, 6, 1, 3, 1, 6, 3), (3, 3, 4, 1, 6, 3, 6, 1, 3), (3, 2, 5, 6, 3, 1, 1, 5, 4), (3, 2, 5, 6, 2, 2, 1, 6, 3),

(3, 2, 5, 1, 6, 3, 6, 2, 2), (3, 2, 5, 1, 5, 4, 6, 3, 1), (3, 1, 6, 5, 4, 1, 2, 5, 3), (3, 1, 6, 5, 3, 2, 2, 6, 2), (3, 1, 6, 4, 3, 3, 3, 6, 1),

(3, 1, 6, 3, 6, 1, 4, 3, 3), (3, 1, 6, 2, 6, 2, 5, 3, 2), (3, 1, 6, 2, 5, 3, 5, 4, 1), (2, 6, 2, 6, 2, 2, 2, 2, 6), (2, 6, 2, 6, 1, 3, 2, 3, 5),

(2, 6, 2, 5, 3, 2, 3, 1, 6), (2, 6, 2, 3, 1, 6, 5, 3, 2), (2, 6, 2, 2, 3, 5, 6, 1, 3), (2, 6, 2, 2, 2, 6, 6, 2, 2), (2, 5, 3, 6, 3, 1, 2, 2, 6),

(2, 5, 3, 5, 4, 1, 3, 1, 6), (2, 5, 3, 3, 1, 6, 5, 4, 1), (2, 5, 3, 2, 2, 6, 6, 3, 1), (2, 3, 5, 6, 1, 3, 2, 6, 2), (2, 3, 5, 5, 1, 4, 3, 6, 1),

(2, 3, 5, 3, 6, 1, 5, 1, 4), (2, 3, 5, 2, 6, 2, 6, 1, 3), (2, 2, 6, 6, 3, 1, 2, 5, 3), (2, 2, 6, 6, 2, 2, 2, 6, 2), (2, 2, 6, 5, 2, 3, 3, 6, 1),

(2, 2, 6, 3, 6, 1, 5, 2, 3), (2, 2, 6, 2, 6, 2, 6, 2, 2), (2, 2, 6, 2, 5, 3, 6, 3, 1), (1, 6, 3, 6, 2, 2, 3, 2, 5), (1, 6, 3, 6, 1, 3, 3, 3, 4),

(1, 6, 3, 5, 3, 2, 4, 1, 5), (1, 6, 3, 4, 1, 5, 5, 3, 2), (1, 6, 3, 3, 3, 4, 6, 1, 3), (1, 6, 3, 3, 2, 5, 6, 2, 2), (1, 5, 4, 6, 3, 1, 3, 2, 5),

(1, 5, 4, 5, 4, 1, 4, 1, 5), (1, 5, 4, 4, 1, 5, 5, 4, 1), (1, 5, 4, 3, 2, 5, 6, 3, 1), (1, 4, 5, 6, 1, 3, 3, 5, 2), (1, 4, 5, 5, 1, 4, 4, 5, 1),

(1, 4, 5, 4, 5, 1, 5, 1, 4), (1, 4, 5, 3, 5, 2, 6, 1, 3), (1, 3, 6, 6, 3, 1, 3, 4, 3), (1, 3, 6, 6, 2, 2, 3, 5, 2), (1, 3, 6, 5, 2, 3, 4, 5, 1),

(1, 3, 6, 4, 5, 1, 5, 2, 3), (1, 3, 6, 3, 5, 2, 6, 2, 2), (1, 3, 6, 3, 4, 3, 6, 3, 1)}.

The volume of ∆2 ×∆2 is 6, which means that it will be divided in to 6 simplices which each contain 5
vertices. So, each vector should sum to 30 (which they do). For instance, the first vertex in the list induces
the regular subdivision with the following simplices:

{{v0, v1, v4, v7, v8}, {v0, v1, v2, v5, v8}, {v0, v1, v4, v5, v8}, {v0, v3, v4, v7, v8}, {v0, v3, v6, v7, v8}, {v0, v3, v4, v5, v8}}.

We can verify that this triangulation corresponds to the expected vertex. The vertex v0 is contained in all
6 simplices, each with volume 1; vertex v1 is contained in 3 simplices; vertex v2 is contained in one simplex;
vertex v3 is contained in 3 simplices; vertex v4 is contained in 4 simplices, and so on. This gives the expected
vertex of the secondary polytope:

(6, 3, 1, 3, 4, 3, 1, 3, 6).

An attempt to draw this triangulation is displayed in the figure.
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Figure 4: The sample triangulation ∆2×∆2, in an exploded format. Vertex 0 and vertex 8 are contained in
all simplices.

The discriminant ∆A is the 3 × 3 determinant. Its monomials correspond to permutations of the set of
3 elements. We can verify this in Macaulay2 as follows.

R = QQ[a_(0,0)..a_(2,2),x_0..x_2,y_0..y_2]

f = sum flatten for i from 0 to 2 list for j from 0 to 2 list a_(i,j)*x_i*y_j

XI= ideal(for i from 0 to 2 list diff(x_i,f))

YI = ideal(for i from 0 to 2 list diff(y_i,f))

F = ideal(f)

I = F + XI+YI

J =saturate(I,product flatten entries vars R)

eliminate(J,{x_0,x_1,x_2,y_0,y_1,y_2})

2.2 ∆1 ×∆n−1

Let us compute the principal A-determinant EA, A = ∆1×∆n−1. Clearly CA is identified with the space of
biliear forms in {x1, x2}, {y1, . . . , xn}, which we identify with the space of matrices C2×n. Following [GKZ94,
p. 272], let A′ = ∆m−1 × ∆n−1 for a moment, and define f =

∑
i,j aijxiyj ∈ CA and the column vectors

x = [x1, . . . , xm]t, y = [y1, . . . , yn]t. Then ∂f
∂xi

=
∑
j aijyj , and this is the ith entry of [aij ] · y; similarly

for x. Thus for f, ∂f∂xi
, ∂f∂yj , 1 ≤ i ≤ m, 1 ≤ j ≤ n to have a common root is equivalent to the existence of

x, y such that xt · [aij ] = 0, [aij ] · y = 0, i.e. for there to be nontrivial kernels. This demonstrates that the

A′-discriminant is ∆A′(f) =

{
1, m 6= n

det[aij ], m = n
.

Resetting back to m = 2 and working with A, and using the product formula [GKZ94, Theorem 10.1.2],
we find that EA([aij ] is the product of the entries in [aij ] and all 2 × 2 minors, of which there are

(
n
2

)
:

EA =

 2,n∏
i,j=1

aij

 ·
 ∏

1≤k<`≤n

a1ka2` − a1`a2k

. Expanding, Newton polytope of the second factor is a
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shifted permutohedron: each individual factor is an interval, and the product yields the permutohedron as
a Minkowski sum as in 1.8. The first factor corresponds to a point in CA and shifts the permutohedron, to
agree with the secondary polytope as we will now compute.

By contrast with the principal determinant, GKZ do not claim to have an effective way to enumerate the
triangulations of ∆m−1 ×∆n−1. By the theorems cited above, i.e. the correspondence of Σ(∆m−1 ×∆n−1)
with coherent triangulations and Σ(A) ∼= Newt(RA), we know in principal the characteristic functions of
these coherent triangulations; but the book claims to not be aware of whether all triangulations are in fact
coherent.

This is the case, however, for A = ∆1 ×∆n−1, as it does give an explicit enumeration of these triangu-
lations, indeed of the entire face lattice of Σ(A) as well, which we now review. Define ωij = ei + fj ∈
A, 1 ≤ i ≤ 2, 1 ≤ j ≤ n, where e1, e2 are the vertices of ∆1 and similarly for fj . To two subsets
J1, J2 ⊂ {1, 2, . . . , n} we associate the subset σ(J1, J2) = {ωi,ji |i = 1, 2; ji ∈ Ji}. Then by direct ob-

servation, dim Conv (σ(J1, J2)) =

{
|J1 ∪ J2|, J1 ∩ J2 6= ∅
|J1 ∪ J2|−1, J1 ∩ J2 = ∅

. Any such set Conv(σ(J1, J2)) which is a

hyperplane section (e.g. of maximal dimension and not the whole Conv(A)) and is not a facet of Conv(A)
is then called a diagonal ; we say two diagonals cross to mean they intersect at an interior point (e.g. not
just because they share a vertex). The dimension formula then shows that Conv(σ(J1, J2)) is a diagonal
iff J2 = {1, 2, . . . , n} − J1. Hence if two diagonals do not cross, their intersection is a common face of
strictly smaller dimension, and so every set D of non-pairwise crossing diagonals yields a subdivision (not
necessarily triangulation) SD of (Q,A) (where as usual Q := Conv(A)). It is obvious that this is a poset
anti-homomorphism, i.e. SD refines SD′ iff D′ ⊂ D. The book then shows that this is a bijection for all
subdivisions: this is due to the fact that the diagonals are themselves simplices, hence cannot be subdivided.
Given a subdivision S = {(Qi, Ai)}, any interior facet of Qi (i.e. not a facet of Q) belongs to some diagonal,
and the previous sentence thus demonstrates that it must equal the entire diagonal. It is then possible to
then explicitly construct a piecewise-convex functional for each such set of diagonals, i.e. showing that all
subdivisions (triangulations) are coherent.

This shows that the face lattice of Σ(A) is anti-isomorphic to the lattice of non-crossing subdivisions;
we thereby wish to determine the ordering on the latter, hence the maximal subdivisions, and hence the
vertices of Σ(A). Well, by definition of the convex hull, a point (α, β) ∈ Q ⊂ R2 × Rn is in the boundary

∂Q, iff one of its coordinates equals 0. Then, the diagonal dJ is given by dJ = {(α, β) ∈ Q|α1 =
∑
j∈J

βj}, and

hence: the diagonals dJ , dJ′ do not cross if and only if J ⊂ J ′ or J ′ ⊂ J . At this point, defining a flag in
{1, 2, . . . , n} to be a strictly increasing set of subsets, it follows that the faces of Σ(A) are in bijection with
flags, and that there are n! maximal flags (choose a first subset, F1 = {i}, 1 ≤ i ≤ n; choosing a following flag
element is the same as choosing a distinct element of {1, 2, . . . , n}). Since Sm acts on the vertices of ∆n−1

via the (unreduced) permutation representation, it acts on Q by affine automorphisms; and since it clearly
acts transitively on the set of maximal flags in {1, 2, . . . , n}, it acts transitively on the vertices of Σ(A). Thus
we only need to compute a single characteristic function (on whose coordinates Sn also acts), to now verify
that Σ(A) is a permutohedron. Pick the canonical flag, {1} ⊂ {1, 2} ⊂ . . . ⊂ {1, 2, . . . , n}, and see that
the corresponding triangulation consists of the simplices σp = Conv(ω11, ω12, . . . , ω1p, ω2p, ω2,p+1, . . . , ω2,n),
where 1 ≤ p ≤ m. Since simplices have volume normalized to 1, the characteristic function ϕ(ωij) just counts
the number |{p|ωij ∈ σp}|. Clearly then ϕ(ω11) = n, ϕ(ω21) = 1, and similarly ϕ(ω1i) = n− i+1, ϕ(ω2i) = i.
It is here that we identify CA with the space of 2×n matrices, as in the principal A-determinant computation,
whereby we can identify the vector of the characteristic function of this particular triangulation, with the

matrix

[
n n− 1 . . . 2 1
1 2 . . . n− 1 n

]
. Finally, taking the Sn-action, taking the convex hull of these points, we

find that this is precisely Newt(RA) as claimed. Moreover, we see that the projection onto the first row is a
an affine isomorphism, and the image is clearly, by definition, the standard embedding of the permutohedron
in Rn.
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2.3 Hirzebruch surfaces

A Hirzebruch surface Ha,b(' Hr) is defined as the toric variety of A =

[
0 1 · · · a 0 1 · · · b
1 1 · · · 1 0 0 · · · 0

]
,

where a − b = r, i.e. by a monomial parametrization (x, y) 7→ (y, xy, . . . , xay, 1, x, . . . , xb). As schemes,
Hirzebruch surfaces Ha,b with a − b = r for a fixed r are isomorphic (although not as embedded projective
schemes). Below is an illustration of the convex hull of A:

Hirzebruch surfaces in various different contexts. They are also called rational normal scrolls because they
can be considered the join of Veronese embeddings of P1 of degree a and b. They can also be realized as a
P1-fiber bundle over P1; for their properties as a ruled surface, see [Har77, V.2].

Write CA = {α0y + α1xy + · · · + αax
ay + β0 + β1x + · · ·βbxb}. Denoting by p, q generic polynomials

in x of degree a, b (respectively), we have that CA = {f ∈ CA : f = p(x)y + q(x)}. The Chow form of
a Hirzebruch surface is generally hard to compute, but its A-discriminant and principal A-determinant are
easier to understand.

Claim: The A-discriminant is the classical resultant of two polynomials of degree a and b. Moreover, the
principal A-determinant is

EA(f) = α0αaβ0βb∆(p)∆(q) Res(p, q)

where ∆(p),∆(q) denotes the classical discriminants of polynomials of degree a, b (respectively), and Res(p, q)
is the classical resultant of two polynomials in degree a, b.

To see this, note that by writing f ∈ CA as p(x)y+q(x) we have that V (f, fx, fy) = V (p(x), q(x), p′(x)y+
q′(x)) 6= ∅ in (C∗)2 when p, q share a simple nonzero root. Taking closure, the A-discriminant exactly
measures when p(x) and q(x) share a factor; in other words, ∆A should be the classical resultant Res(p, q)
of two polynomials p, q in degree a, b (respectively). For the A-determinant, use the factorization of EA
([GKZ94, Theorem 10.1.2]) along with observations made in Remark 1.6 and Remark 1.10.

Let’s now carry out concretely the computations illustrating the main theorem regarding Ch(XA), Σ(A),
and Newt(EA) for H3,2 and H4,2. All the computations are done via codes in readingGKZ.m2. For details
see Section §3.1.

2.3.1 H3,2

Take X = H3,2, i.e. A =

[
0 1 2 0 1
1 1 1 0 0

]
. The Chow form is

RX = x1,2x
2
1,3 − x0,2x1,3x2,3 + x0,1x

2
2,3 − x0,2x1,3x1,4 + x0,1x

2
1,4 + x0,2x0,3x2,4 − x0,1x0,4x2,4 − 2x0,1x1,2x3,4,

so that its Chow polytope is a convex hull of


3 2 2 2 2 1 1 2
0 2 2 1 0 3 2 1
2 1 1 2 3 1 2 2
1 1 1 2 3 2 3 2
3 3 3 2 1 2 1 2

, with vertices


1 2 1 2 3
2 0 3 2 0
2 3 1 1 2
3 3 2 1 1
1 1 2 3 3

.

Computing the principal A-determinant directly or using the Claim above gives

EA = a1a
2
2a

2
3a

3
4a5 − 4a2

1a
3
3a

3
4a5 − a1a

3
2a3a

2
4a

2
5 + 4a2

1a2a
2
3a

2
4a

2
5 + a2

1a
2
2a3a4a

3
5 − 4a3

1a
2
3a4a

3
5,

so that Newt(EA) has vertices (again)


1 2 1 2 3
2 0 3 2 0
2 3 1 1 2
3 3 2 1 1
1 1 2 3 3

 as expected (the fourth term of EA has weight that

is half the sum of 2nd and 4th columns of the vertex matrix). Lastly, we can confirm that this polytope also
arise as the secondary polytope Σ(A):
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2.3.2 H4,2

Take X = H4,2, i.e. A =

[
0 1 2 3 0 1
1 1 1 1 0 0

]
. The Chow form starts to become hard to compute (takes

about 15 seconds on M2).

RX = x1,2,3x
3
1,2,4−x0,2,3x

2
1,2,4x1,3,4 +x0,1,3x1,2,4x

2
1,3,4−x0,1,2x

3
1,3,4 +x0,2,3x0,2,4x1,2,4x2,3,4−2x0,1,3x

2
1,2,4x2,3,4

− x0,1,3x0,2,4x1,3,4x2,3,4 + 3x0,1,2x1,2,4x1,3,4x2,3,4 + x0,1,2x0,3,4x1,3,4x2,3,4 + x0,1,3x0,1,4x
2
2,3,4

− x0,1,2x0,2,4x
2
2,3,4 − x0,2,3x

2
1,2,4x1,2,5 + x0,1,3x1,2,4x

2
1,2,5 − x0,1,2x

3
1,2,5 + x0,2,3x0,2,4x1,2,4x1,3,5

− x0,1,3x0,2,4x1,3,4x1,3,5 + x0,1,2x0,3,4x1,3,4x1,3,5 − x0,1,3x0,2,4x1,2,5x1,3,5 + x0,1,2x0,2,5x1,2,5x1,3,5

+x0,1,3x0,1,4x
2
1,3,5−x0,1,2x0,1,5x

2
1,3,5−x0,2,3x

2
0,2,4x2,3,5 +2x0,1,3x0,2,4x1,2,4x2,3,5 +x0,1,3x0,2,4x0,3,4x2,3,5

− x0,1,2x
2
0,3,4x2,3,5 − 2x0,1,2x0,2,4x1,3,4x2,3,5 + 2x0,1,2x0,1,4x2,3,4x2,3,5 + x0,1,3x0,2,4x0,2,5x2,3,5

− x0,1,2x
2
0,2,5x2,3,5 − 2x0,1,3x0,1,4x1,2,5x2,3,5 + 2x0,1,2x0,1,5x1,2,5x2,3,5 − x0,1,3x0,1,4x0,3,5x2,3,5

+ x0,1,2x0,1,5x0,3,5x2,3,5 − 2x0,1,3x1,2,3x1,2,4x1,4,5 + 3x0,1,2x1,2,3x1,3,4x1,4,5 + 3x0,1,2x1,2,3x1,2,5x1,4,5

− 2x0,1,2x0,2,3x1,3,5x1,4,5 + x0,1,3x0,2,3x1,2,4x2,4,5 − 3x0,1,2x1,2,3x1,2,4x2,4,5 − 2x0,1,2x0,2,3x1,3,4x2,4,5

+ x0,1,2x0,1,3x2,3,4x2,4,5 − x0,1,2x0,2,3x1,2,5x2,4,5 + 2x0,1,2x0,2,3x0,3,5x2,4,5 + x0,1,2x0,1,3x1,3,5x2,4,5

+ 3x2
0,1,2x2,3,5x2,4,5 − 2x2

0,1,3x1,2,4x3,4,5 + 3x0,1,2x0,2,3x1,2,4x3,4,5 + 2x0,1,2x0,1,3x1,3,4x3,4,5

− 3x2
0,1,2x2,3,4x3,4,5 − 2x0,1,2x0,2,3x0,2,5x3,4,5 + 2x0,1,2x0,1,3x1,2,5x3,4,5 − 3x2

0,1,2x1,3,5x3,4,5

The Chow polytope P = Ch(RX) has the f -vector (12, 18, 8, 1). Its 12 vertices are
1 2 1 3 1 2 1 1 2 3 2 4
2 0 3 0 2 0 3 4 2 0 3 0
2 3 0 0 3 4 2 0 2 3 0 0
2 2 3 4 1 1 1 2 1 1 2 3
4 4 4 4 3 3 2 2 1 1 1 1
1 1 1 1 2 2 3 3 4 4 4 4


The principal A-determinant is a lot easier to compute:
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EA = a1a
2
2a

2
3a

2
4a

4
5a6 − 4a2

1a
3
3a

2
4a

4
5a6 − 4a1a

3
2a

3
4a

4
5a6 + 18a2

1a2a3a
3
4a

4
5a6 − 27a3

1a
4
4a

4
5a6

− a1a
2
2a

3
3a4a

3
5a

2
6 + 4a2

1a
4
3a4a

3
5a

2
6 + 4a1a

3
2a3a

2
4a

3
5a

2
6 − 18a2

1a2a
2
3a

2
4a

3
5a

2
6 + 27a3

1a3a
3
4a

3
5a

2
6

+ a1a
3
2a

2
3a4a

2
5a

3
6 − 4a2

1a2a
3
3a4a

2
5a

3
6 − 4a1a

4
2a

2
4a

2
5a

3
6 + 18a2

1a
2
2a3a

2
4a

2
5a

3
6 − 27a3

1a2a
3
4a

2
5a

3
6

− a2
1a

2
2a

2
3a4a5a

4
6 + 4a3

1a
3
3a4a5a

4
6 + 4a2

1a
3
2a

2
4a5a

4
6 − 18a3

1a2a3a
2
4a5a

4
6 + 27a4

1a
3
4a5a

4
6

whose convex hull is the same as the Chow polytope. The polytope P can be visualized as follows:

Remark 2.4 (Missing polytope!). The above polytope is a Minkowski sum of ∆1,∆1,∆3. We weren’t able
to find the name of this polytope however; if you know what its name is, please let us know!
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3 Macaulay2: “readingGKZ.m2”

The file readingGKZ.m2 is available for download at https://math.berkeley.edu/~ceur/notes. Loading
readingGKZ.m2 requires packages Polyhedra.m2 and Resultants.m2. The package Resultants.m2 is not
a standard package for Macaulay2 distribution 1.10; one can download the package at https://faculty.

math.illinois.edu/Macaulay2/doc/Macaulay2-1.10/share/doc/Macaulay2/Resultants/html/.

The core functions in readingGKZ.m2 are as follows.

AtoIdeal

Input: a matrix A of columns in Zk−1

Output: the homogeneous ideal defining XA

ChowForm

Input: a homoegeneous ideal I defining X ⊂ Pn
Output: the Chow form RX in Plücker coordinates

Comments: – imported from the package Resultants.m2

– implemented using Gauss maps

ChowForm2

Input: a homoegeneous ideal I defining X ⊂ Pn
Output: the Chow form RX in Plücker coordinates

Comments: – an implementation of Chow form using incidence variety and elimination.
– (unfortunately) about 10 times slower than ChowForm in the current state

ChowPolytope Option: Normalize=>true/false
Input: a homogeneous ideal I or a matrix A

Output: the Chow polytope of V (I) or XA

Comments: – implemented using weights as set in the Note below Example 1.1.
– has an option to normalize (shift by an appropriate all 1 vector) so that it will
match the secondary polytope. Default is not to normalize when the input is an ideal,
and to normalize when the input is a matrix.

pDual

Input: a homogeneous ideal defining X ⊂ Pn
Output: ideal of the projective dual X∨

Comments: – when X = XA, this is the same as the A-discriminant

Adiscriminant

Input: a matrix A
Output: the A-discriminant ∆A.

Comments: – computed by forming the incidence variety and elimination.

principalAdet

Input: a matrix A for which the toric variety XA is smooth
Output: the principal A-determinant EA of XA

Comments: – computed using [GKZ94, Theorem 10.1.2].
– usually much faster than computing the Chow form.
– when XA not smooth, the Newton polytope of the output is at least
combinatorially equivalent to the secondary polytope Σ(A).
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The computations for the examples in Section §2.3 are done as follows:

--Section 2.3: Hirzebruch H_{3,2}

A = matrix{{0,1,2,0,1},{1,1,1,0,0}}

RX = ChowForm AtoIdeal A

P = ChowPolytope A, << ", vertices" << vertices P

DA = Adiscriminant A, pDual AtoIdeal A --should be the same

EA = principalAdet A

Q = newtonPolytope EA, << "vertices" << vertices Q

vertices P == vertices Q

--Section 2.3: Hirzebruch H_{4,2}

A = matrix{{0,1,2,3,0,1},{1,1,1,1,0,0}}

time RX = ChowForm AtoIdeal A; -- 15 seconds

P = ChowPolytope A, << ", vertices" << vertices P -- 15 seconds also

DA = Adiscriminant A, pDual AtoIdeal A --should be the same

EA = principalAdet A

Q = newtonPolytope EA, << "vertices" << vertices Q

vertices P == vertices Q

--Section 2.3: Hirzebruch H_{5,2} --optional

A = matrix{{0,1,2,3,4,0,1},{1,1,1,1,1,0,0}}

time EA = principalAdet A; -- 0.22 seconds!

Q = newtonPolytope EA

fVector Q
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