MATH 54 FALL 2016: DISCUSSION 102/105 QUIZ#9

GSI: CHRISTOPHER EUR, DATE: 10/28/2016

STUDENT NAME: S‘f Yen j o thin \C[?S -

Problem 1. Define a linear operator L : Po — Py by L(p(z)) = p”"(z) — 2zp'(z) (where P is the
vector space of polynomials with real coefficients of degree < 2).
(a) (2 points) Write down the matrix A that represents this linear operator L with respect to
the basis E = (1, z,x?) on Pa.
(b) (3 points) Find all eigenvalues of L and find the basis for each corresponding eigenspaces.
(¢) (2 points) Use the previous part to find a matrix P such that P~ L AP is diagonal, and check
that P~1AP is indeed diagonal.
(d) (2 points) Compute L59(2?) (You need not compute out powers of a single number such as
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(1 point) Show that there is noYpolynomial g(x) of degree < 2 such that L(g(z)) = 5¢(x).
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