Quiz #13; Wed, 4/27/2016 Math 53 with Prof. Stankova Section 107/110; MWF10-11 GSI: Christopher Eur

Student Name: _____

Problem. Let $\mathbf{F} := \langle ye^{xy} \sin x + e^{xy} \cos x, xe^{xy} \sin x \rangle$ be a vector field on \mathbb{R}^2 , and let C be a path from (1,0) to (0,1) along the circle of radius 1. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$. (Hint: is \mathbf{F} conservative?)

Solution. One can check that the vector field \mathbf{F} is closed and defined on \mathbb{R}^2 which is open and simplyconnected. Hence, \mathbf{F} is conservative. Alternatively, we can skip the above step and try finding fsuch that $\nabla f = \mathbf{F}$, in which case we have $f = e^{xy} \sin x + K$ for any constant K. This also shows that \mathbf{F} is conservative. Now, by FTLI, we have that the line integral is $f(0, 1) - f(1, 0) = \sin 1 - 0 = \sin 1$.