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The Model

Background

• Suppose you would like to make a presentation, but you
yourself do not have the time to make all of the slides.

• Often times, there are many people in this situation. If only
one presentation is needed, then a natural solution is to
have each person make one slide based on the previous
slide.

• This process leads to a random walk on slides which
terminates with a presentation (This will all certainly be
made formal in upcoming slides).

• The hope is that this process converges to what is called a
coherent presentation.

For completeness, we define a graph to be a pair (V ,E) where
V is a set of elements called vertices and
E ⊆

(V
2

)
= {e ⊂ V : |e| = 2}.
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The Model

We will be particularly interested in (non-looping) directed
graphs, where the edge set E is an irreflexive relation on V .
For the following definitions, fix a digraph with vertex set V and
edge relation E , which we call the talk graph.
• A slide is a vertex v ∈ V .
• If v and u are slides, and (v ,u) ∈ E then we say that v is a

prerequisite of u.
• A presentation is an walk in the underlying graph. We say

that a presentation is coherent if it satisfies the following
two properties:

1 Hamiltonian
1 Complete: Every slide appears in the presentation.
2 Non-Redundant: No slide appears twice in the presentation.

2 Gradual: If v and u appear in the presentation and v is a
prerequisite for u then v appears earlier.

• A talk graph is complicated if it had no coherent
presentations.
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The Model

Theorem (Szpilrajn, 1930)
A talk with countably many slides has at most one coherent
presentation.

• If this coherent presentation exists, it can be obtained
using the following algorithm:

1 Select the first slide which has no prerequisites among
unselected slides.

2 Add it to the presentation and repeat.

• This algorithm is not guaranteed to yield a presentation
(though if it does return a presentation, it will always be
coherent).

• For almost all talks, the output will contain a slide not
connected in any way to the previous slide.
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The Model

The uncountable case
Szpilrajn’s Theorem left the existence question open in the
uncountable case.

Theorem (Natorc, 1938)
A talk with uncountably many slides cannot have a coherent
presentation.
Roughly, the proof goes as follows: assume a coherent
presentation P exists.

1 Select a countable subset of slides, and assume it too has
a coherent presentation. This must be a subpresentation
of P.

2 There remains uncountably many slides to present, so one
must iterate this process (use the concatenation Lemma).

3 There are only countably many coherent presentations.
After a while, one runs out of things to say.
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The Model

The proof may be visualized as follows:

P HuncountableL

Coherent countable subset Countable extensions
Hvia concatenationL

A countable union of countable sets is countable, so we cannot
exhaust P.
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The Model

Do We Really Have A Choice?

In the absence of the Axiom of Choice (AC), however, a
countable union of countable sets is not necessarily countable!

In fact, without AC, it is consistent that the real numbers are a
countable union of countable sets, even though choice is not
needed to prove that the real numbers are uncountable (try it!).

This naturally raises the question...

Question: Is our theorem true without the Axiom of Choice?
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The Model

Answer: NO!

Proof sketch: Consider (Ω,F ,P), the standard probability
space over models of ZF¬C.

Let the random variable M be a model chosen according to
this distribution.

After some heavy calculation, we see that
P [M |= our theorem] < 1. QED

But this proof is nonconstructive. Question: Can we
produce M in polynomial time?
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The Model

Answer:YES!

We construct a Linear Program to specify the model, M. The
size of this LP will be polynominal in the size of M.

Variables: For each pair of elements in M, A and B, we will
have a variable, xAB which is 1, if A ∈ B, and 0 otherwise.

Constraints: For each axiom of ZF¬C and for our theorem, we
will have a number of constraints that is polynomial in the size
of M. (Eg. to specify that if A ∈ B then B 6∈ A, we include the
constriant xAB + xBA ≤ 1)

It is obvious that these constraints form a unimodular matrix,
and therefore the optimal solution has xAB ∈ {0,1} for each
variable xAB.
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The Model

Suppose there are d possible pairs of elements A and B in M,
then since xAB ∈ {0,1}, then the optimal solution

X = ΠA,B∈M {xAB}

is in the lattice{0,1}d . −�

Example
In 3 dimensions, one can see that the optimal solutions are
extremal points of the solution set below:

Figure: Solution set in 3 dimensions, except that 0.5 on the left
should be a 0.

When it was discovered, this result lead to its author winning a
Fields medal. It also lead to new research questions today such
as: what happens when you let d →∞?

Math Graduate Students The Convergence of a Random Walk on Slides to a Presentation



The Model

The following sequence of figures illustrates what happens as
d →∞, beginning with d = 3:

0 1 2 3 4 5 6 7 8 9 10

a b c d e f g h i j k . . .

0 1 2 3 4 5 6 7 8 9 10

a b c de f g h i j k . . .

0 1 2 3 4 5 6 7 8 9 10

a b c def g h i j k . . .

0 1 2 3 4 5 6 7 8 9 10

a b c defgh i j k . . .

Theorem.
As d →∞, this process asymptotically approaches

O(abc) + defghijklmnopqrstuvwxyz . . . = O(abc) + defghijklnopqrstuvwxyzm,

where defghijklnopqrstuvwxyzm is the Euler–Smasheroni constant, defghijklnopqrstuvwxyzm ≈ 0.577215664901532860. . .
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The Model

Our approach to proving the Theorem is Proof by Quest.

The Proof can be found behind one of the following doors; we
will find it by asking one of the guards one question and then
choosing a door:
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The Model

Thanks
Alot
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