The Convergence of a Random Walk on Slides to a Presentation

Math Graduate Students

Carnegie Mellon University

May 2, 2013

Math Graduate Students The Convergence of a Random Walk on Slides to a Presentation

(日本) (日本) (日本)

• Suppose you would like to make a presentation, but you yourself do not have the time to make all of the slides.

イロト イポト イヨト イヨト

- Suppose you would like to make a presentation, but you yourself do not have the time to make all of the slides.
- Often times, there are many people in this situation. If only one presentation is needed, then a natural solution is to have each person make one slide based on the previous slide.

(日本) (日本) (日本)

- Suppose you would like to make a presentation, but you yourself do not have the time to make all of the slides.
- Often times, there are many people in this situation. If only one presentation is needed, then a natural solution is to have each person make one slide based on the previous slide.
- This process leads to a random walk on **slides** which terminates with a **presentation** (This will all *certainly* be made formal in upcoming slides).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

- Suppose you would like to make a presentation, but you yourself do not have the time to make all of the slides.
- Often times, there are many people in this situation. If only one presentation is needed, then a natural solution is to have each person make one slide based on the previous slide.
- This process leads to a random walk on **slides** which terminates with a **presentation** (This will all *certainly* be made formal in upcoming slides).
- The hope is that this process converges to what is called a **coherent presentation**.

イロト イヨト イヨト

- Suppose you would like to make a presentation, but you yourself do not have the time to make all of the slides.
- Often times, there are many people in this situation. If only one presentation is needed, then a natural solution is to have each person make one slide based on the previous slide.
- This process leads to a random walk on **slides** which terminates with a **presentation** (This will all *certainly* be made formal in upcoming slides).
- The hope is that this process converges to what is called a **coherent presentation**.

For completeness, we define a *graph* to be a pair (V, E) where V is a set of elements called *vertices* and $E \subseteq \binom{V}{2} = \{e \subset V : |e| = 2\}.$

We will be particularly interested in *(non-looping) directed* graphs, where the edge set E is an irreflexive relation on V. For the following definitions, fix a digraph with vertex set V and edge relation E, which we call the **talk graph**.

- A slide is a vertex $v \in V$.
- If *v* and *u* are slides, and (*v*, *u*) ∈ *E* then we say that *v* is a prerequisite of *u*.
- A **presentation** is an walk in the underlying graph. We say that a presentation is **coherent** if it satisfies the following two properties:
 - Hamiltonian
 - **1** Complete: Every slide appears in the presentation.
 - **2** Non-Redundant: No slide appears twice in the presentation.
 - 2 Gradual: If v and u appear in the presentation and v is a prerequisite for u then v appears earlier.
- A talk graph is complicated if it had no coherent presentations.

Theorem (Szpilrajn, 1930)

A talk with countably many slides has at most one coherent presentation.

- If this coherent presentation exists, it can be obtained using the following algorithm:
 - Select the first slide which has no prerequisites among unselected slides.
 - 2 Add it to the presentation and repeat.
- This algorithm is not guaranteed to yield a presentation (though if it does return a presentation, it will always be coherent).
- For almost all talks, the output will contain a slide not connected in any way to the previous slide.

イロト 不得 とくほ とくほ とう

The uncountable case

Szpilrajn's Theorem left the existence question open in the uncountable case.

Theorem (Natorc, 1938)

A talk with uncountably many slides cannot have a coherent presentation.

Roughly, the proof goes as follows: assume a coherent presentation *P* exists.

- Select a countable subset of slides, and assume it too has a coherent presentation. This must be a subpresentation of *P*.
- 2 There remains uncountably many slides to present, so one must iterate this process (use the concatenation Lemma).
- There are only countably many *coherent* presentations.
 After a while, one runs out of things to say.

ヘロア 人間 アメヨア 人間 アー

3

The proof may be visualized as follows:

A countable union of countable sets is countable, so we cannot exhaust *P*.

イロト イポト イヨト イヨト

In the absence of the Axiom of Choice (AC), however, a countable union of countable sets is not necessarily countable!

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

In the absence of the Axiom of Choice (AC), however, a countable union of countable sets is not necessarily countable!

In fact, without AC, it is consistent that the real numbers are a countable union of countable sets, even though choice is not needed to prove that the real numbers are uncountable (try it!).

個 とくほ とくほう

In the absence of the Axiom of Choice (AC), however, a countable union of countable sets is not necessarily countable!

In fact, without AC, it is consistent that the real numbers are a countable union of countable sets, even though choice is not needed to prove that the real numbers are uncountable (try it!).

This naturally raises the question...

< 回 > < 回 > < 回 >

In the absence of the Axiom of Choice (AC), however, a countable union of countable sets is not necessarily countable!

In fact, without AC, it is consistent that the real numbers are a countable union of countable sets, even though choice is not needed to prove that the real numbers are uncountable (try it!).

This naturally raises the question...

Question: Is our theorem true without the Axiom of Choice?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Math Graduate Students The Convergence of a Random Walk on Slides to a Presentation

æ

Proof sketch: Consider (Ω, \mathcal{F}, P) , the standard probability space over models of $ZF \neg C$.

ヘロト 人間 とくほ とくほとう

æ

Proof sketch: Consider (Ω, \mathcal{F}, P) , the standard probability space over models of $ZF \neg C$.

Let the random variable M be a model chosen according to this distribution.

ヘロト 人間 とくほ とくほ とう

1

Proof sketch: Consider (Ω, \mathcal{F}, P) , the standard probability space over models of $ZF \neg C$.

Let the random variable M be a model chosen according to this distribution.

After some heavy calculation, we see that $P[M \models our \ theorem] < 1. \text{ QED}$

<ロト < 回 > < 回 > < 回 > < 回 > = 回

Proof sketch: Consider (Ω, \mathcal{F}, P) , the standard probability space over models of $ZF \neg C$.

Let the random variable M be a model chosen according to this distribution.

After some heavy calculation, we see that $P[M \models our \ theorem] < 1. \text{ QED}$

But this proof is nonconstructive. Question: Can we produce M in polynomial time?

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

Answer:YES!

We construct a Linear Program to specify the model, M. The size of this LP will be polynominal in the size of M.

Variables: For each pair of elements in *M*, *A* and *B*, we will have a variable, x_{AB} which is 1, if $A \in B$, and 0 otherwise.

Constraints: For each axiom of $ZF\neg C$ and for our theorem, we will have a number of constraints that is polynomial in the size of *M*. (Eg. to specify that if $A \in B$ then $B \notin A$, we include the constraint $x_{AB} + x_{BA} \le 1$)

It is obvious that these constraints form a unimodular matrix, and therefore the optimal solution has $x_{AB} \in \{0, 1\}$ for each variable x_{AB} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Suppose there are *d* possible pairs of elements *A* and *B* in *M*, then since $x_{AB} \in \{0, 1\}$, then the optimal solution

$$X = \prod_{A,B \in M} \{x_{AB}\}$$

is in the lattice $\{0, 1\}^d$. –

Example

In 3 dimensions, one can see that the optimal solutions are extremal points of the solution set below:

Figure: Solution set in 3 dimensions, except that 0.5 on the left should be a 0.

When it was discovered, this result lead to its author winning a Fields medal. It also lead to new research questions today such as: what happens when you let $d \to \infty$?

The following sequence of figures illustrates what happens as $d \rightarrow \infty$, beginning with d = 3:

イロト 不得下 不同下 不同下

The following sequence of figures illustrates what happens as $d \rightarrow \infty$, beginning with d = 3:

イロト イヨト イヨト

э

The following sequence of figures illustrates what happens as $d \rightarrow \infty$, beginning with d = 3:

(日本) (日本) (日本)

The following sequence of figures illustrates what happens as $d \rightarrow \infty$, beginning with d = 3:

→ Ξ → < Ξ →</p>

< 🗇 🕨

э

The following sequence of figures illustrates what happens as $d \rightarrow \infty$, beginning with d = 3:

(日本) (日本) (日本)

э

The following sequence of figures illustrates what happens as $d \rightarrow \infty$, beginning with d = 3:

Theorem.

As $d \to \infty$, this process asymptotically approaches

 $O(abc) + defghijklmnoporsturvexyz \ldots = O(abc) + \#,$

where # is the Euler-Smasheroni constant, $\# \approx 0.57256905330...$

э

→ 포 ► < 포 ►</p>

イロト イポト イヨト イヨト

ъ

The Proof can be found behind one of the following doors; we will find it by asking one of the guards one question and then choosing a door:

イロト イポト イヨト イヨト

The Proof can be found behind one of the following doors; we will find it by asking one of the guards one question and then choosing a door:

イロト イポト イヨト イヨト

The Proof can be found behind one of the following doors; we will find it by asking one of the guards one question and then choosing a door:

★ E → ★ E →

イロト イポト イヨト イヨト

ъ