
Background IFS with Memory Memory Reduction

Memory Reduction in Iterated
Function Systems

Closing off (kind of) an avenue of
measuring fractal complexity

Brendan W. Sullivan

Carnegie Mellon University
Undergraduate Math Club

February 15, 2012

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1 Background
Fractals
Applications
Iterated Function Systems

2 IFS with Memory
1-IFS
Transition Graphs/Matrices
Classification
2-IFS and beyond

3 Memory Reduction
Theory
Demonstration
Results
Conclusions and Future Work

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Fractals

Definitions

A fractal is . . .

. . . a set exhibiting self-similarity.

. . . a set that “looks irregular; but more importantly, after
it is magnified it still looks irregular.” [1]

. . . “by definition a set for which the Hausdorff-Besicovitch
dimension strictly exceeps the topological dimension.” [2]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Fractals

Canonical examples

Figure: Simple, iteratively generated fractals

(a) Van Koch curve (b) Sierpinski
triangle

(deterministic)

(c) Sierpinski triangle
(probabilistic)

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Fractals

Dimensional analysis

Let X be a metric space. If S ⊆ X and d ∈ [0,∞), the
d-dimensional Hausdorff measure of S is

Cd
H(S) = inf

{∑
i

rdi | ∃ cover of S by balls with radii ri > 0

}

and the Hausdorff dimension of S is

dimH(S) = inf{d ≥ 0 | Cd
H(S) = 0

The Lebesgue covering dimension of a topological space X
is the minimum n such that every finite open cover A of X
admits a finite open cover which refines A in which no point is
included in more than n+ 1 elements.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Fractals

Dimensional analysis

Example

Cantor set: Hausdorff dim. ln 2
ln 3 ; topological dim. 0

Sierpinski 4: Hausdorff dim. ln 3
ln 2 ; topological dim. 1

Van Koch curve: Hausdorff dim. ln 4
ln 3 ; topological dim. 1

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Fractals

Canonical examples

Figure: More complex, iteratively generated fractals

(a) Mandelbrot set (b) Mandelbrot set
growth

(c) Julia set

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Canonical examples

Figure: Fractals generated by iterated function systems

(a) Shrinking box
border (b) Pointy leaf boxes

(c) Sierpinskitty
trifelinegle

Background IFS with Memory Memory Reduction

Applications

Nature

(a) Clouds [3] (b) Plants (c) Coastlines (d) Snowflakes
[4]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Applications

Art

(a) Literature (b) Painting [5] (c) Music [6]
“Wind and Metal” [7]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

http://bowerbird-studios.com/aicaramba/media/windmetal.mp3

Background IFS with Memory Memory Reduction

Applications

Science and Computing

(a) Anatomy [9] (b) Graphics [17] (c) DNA [18]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Let (X, ρ) be a metric space and T : X → X a function.

Definition

We say T is a contraction map iff

∃k ∈ [0, 1). ∀a, b ∈ X. ρ(T (x), T (y)) ≤ kρ(x, y)

Theorem (Banach Fixed Point)

If (X, ρ) is a complete metric space and T : X → X a
contraction map, then T has exactly one fixed point; i.e.

∃! x̂ ∈ X. T (x̂) = x̂

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Let (X, ρ) be a metric space and T : X → X a function.

Definition

We say T is a contraction map iff

∃k ∈ [0, 1). ∀a, b ∈ X. ρ(T (x), T (y)) ≤ kρ(x, y)

Theorem (Banach Fixed Point)

If (X, ρ) is a complete metric space and T : X → X a
contraction map, then T has exactly one fixed point; i.e.

∃! x̂ ∈ X. T (x̂) = x̂

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Let (X, ρ) be a metric space and T : X → X a function.

Definition

We say T is a contraction map iff

∃k ∈ [0, 1). ∀a, b ∈ X. ρ(T (x), T (y)) ≤ kρ(x, y)

Theorem (Banach Fixed Point)

If (X, ρ) is a complete metric space and T : X → X a
contraction map, then T has exactly one fixed point; i.e.

∃! x̂ ∈ X. T (x̂) = x̂

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Definition

An IFS is a finite set of contraction maps
T = {Ti | i = 1, . . . , N} on a complete metric space (X, ρ).

The Hutchinson Operator H applies an IFS to any subset
S ∈ P(X) via

H(S) =
N⋃
i=1

Ti(S)

Question: Does H have any “fixed points”?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Definition

An IFS is a finite set of contraction maps
T = {Ti | i = 1, . . . , N} on a complete metric space (X, ρ).

The Hutchinson Operator H applies an IFS to any subset
S ∈ P(X) via

H(S) =

N⋃
i=1

Ti(S)

Question: Does H have any “fixed points”?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Definition

An IFS is a finite set of contraction maps
T = {Ti | i = 1, . . . , N} on a complete metric space (X, ρ).

The Hutchinson Operator H applies an IFS to any subset
S ∈ P(X) via

H(S) =

N⋃
i=1

Ti(S)

Question: Does H have any “fixed points”?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Partial Answer:

Theorem (Hutchinson, 1981)

For X = Rd with the standard metric, every IFS admits a
unique compact set A ⊂ Rd satisfying H(A) = A.

Proof.

Show that H is a contraction map on K(X), the set of compact
subsets of X. Apply Banach Fixed Point.

A is the attractor of the IFS and is a fractal.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Partial Answer:

Theorem (Hutchinson, 1981)

For X = Rd with the standard metric, every IFS admits a
unique compact set A ⊂ Rd satisfying H(A) = A.

Proof.

Show that H is a contraction map on K(X), the set of compact
subsets of X. Apply Banach Fixed Point.

A is the attractor of the IFS and is a fractal.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Constructive approach:

Choose an initial compact set S0 ∈ K(X)

Iteratively apply H:

Si+1 = H(S0) = T1(Si) ∪ · · · ∪ TN (Si)

Take limit:
A = lim

i→∞
H i(S0)

Proof.

Corollary to Banach Fixed Point: this limit converges to A for
any choice of S0.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Constructive approach:

Choose an initial compact set S0 ∈ K(X)

Iteratively apply H:

Si+1 = H(S0) = T1(Si) ∪ · · · ∪ TN (Si)

Take limit:
A = lim

i→∞
H i(S0)

Proof.

Corollary to Banach Fixed Point: this limit converges to A for
any choice of S0.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Constructive approach:

Choose an initial compact set S0 ∈ K(X)

Iteratively apply H:

Si+1 = H(S0) = T1(Si) ∪ · · · ∪ TN (Si)

Take limit:
A = lim

i→∞
H i(S0)

Proof.

Corollary to Banach Fixed Point: this limit converges to A for
any choice of S0.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Formal definition

Constructive approach:

Choose an initial compact set S0 ∈ K(X)

Iteratively apply H:

Si+1 = H(S0) = T1(Si) ∪ · · · ∪ TN (Si)

Take limit:
A = lim

i→∞
H i(S0)

Proof.

Corollary to Banach Fixed Point: this limit converges to A for
any choice of S0.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Examples

Standard contraction maps in Rd are scalings (with factor
r < 1), rotations, reflections, translations.

Example

Cantor Set, C:

T1(x) =
x

3
T2(x) =

x

3
+

2

3

C = T1(C) ∪ T2(C)

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Examples

Example

Cantor Set, C:

T1(x) =
x

3
T2(x) =

x

3
+

2

3

C = T1(C) ∪ T2(C)

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Examples

Example

Cantor Set, C:

T1(x) =
x

3
T2(x) =

x

3
+

2

3

C = T1(C) ∪ T2(C)

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Examples

Example

Cantor-style dust:

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Iterated Function Systems

Examples

Example

Cantor-style dust:

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

)

1 2

3 4

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

) 1 2

3 4

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

)
11 12 21 22

13 14 23 24

31 32 41 42

33 34 43 44

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

)
111112121122211212221222

113114123124213214223224

131132141142231232241242

133134143144233234243244

311312321322411412421422

313314323324413414423424

331332341342431432441442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2

4

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2

4

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2

14

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2

214

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Main idea: Restrict the constructive approach by disallowing
certain pairs of transformations from occurring consecutively.

The system has “1 level of memory” because it looks at the
currently-applied transformation in the construction to
determine which transformations can be applied next.

Where you are (but not how you got there) affects where you
are allowed to go.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4

⇐⇒ T4 cannot follow T1
⇐⇒ (T4 ◦ T1)(A) = ∅
⇐⇒ Any address with 41 as a substring is empty

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4
⇐⇒ T4 cannot follow T1

⇐⇒ (T4 ◦ T1)(A) = ∅
⇐⇒ Any address with 41 as a substring is empty

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4
⇐⇒ T4 cannot follow T1
⇐⇒ (T4 ◦ T1)(A) = ∅

⇐⇒ Any address with 41 as a substring is empty

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4
⇐⇒ T4 cannot follow T1
⇐⇒ (T4 ◦ T1)(A) = ∅
⇐⇒ Any address with 41 as a substring is empty

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

1 2

3 4

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

11 12 21 22

13 14 23 24

31 32 42

33 34 43 44

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

111112121122211212221222

113114123124213214223224

131132 142231232 242

133134143144233234243244

311312321322 421422

313314323324 423424

331332 342431432 442

333334343344433434443444

...
Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Forbid 1→ 4, 4→ 1, 2→ 3, 3→ 2

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

11 12 21 22

13 24

31 42

33 34 43 44

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

111112121122211212221222

113 124213 224

131 242

133134 243244

311312 421422

313 424

331 342431 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

111112121122211212221222

113 124213 224

131 242

133134 243244

311312 421422

313 424

331 342431 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

111112121122211212221222

113 124213 224

131 242

133134 243244

311312 421422

313 424

331 342431 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

111112121122211212221222

113 124213 224

131 242

133134 243244

311312 421422

313 424

331 342431 442

333334343344433434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

111112121122211212221222

113 124213 224

131 242

133134 243244

311312 421422

313 424

331 342431 442

333334343344433434443444

...
Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 22, 23, 33 are empty

111112121 211212

113114 124213214

131132141142 241242

134143144 243244

311312321 411412421

313314 324413414 424

341342431432441442

343344 434443444

...
Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Representing allowed transitions

Vertex set is T .
Directed edge from Ti to Tj if i→ j is allowed.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Representing allowed transitions

Vertex set is T .
Directed edge from Ti to Tj if i→ j is allowed.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Representing allowed transitions

Vertex set is T .
Directed edge from Ti to Tj if i→ j is allowed.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Transition matrices

Represent directed edges by a 0-1 matrix.
Rows/columns indexed by states.
Mij = 1 ⇐⇒ j → i is allowed.


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1



Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Transition matrices

Represent directed edges by a 0-1 matrix.
Rows/columns indexed by states.
Mij = 1 ⇐⇒ j → i is allowed.


1 1 1 1
1 0 0 1
1 1 0 1
1 1 1 1




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1



Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Transition matrices

Represent directed edges by a 0-1 matrix.
Rows/columns indexed by states.
Mij = 1 ⇐⇒ j → i is allowed.


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1



Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Dimensional analysis

Can use transition matrix M to compute Hausdorff dimension
of the attractor A.
Let rj be the contraction factor of Tj .

Theorem

The Hausdorff dimension of A is the unique d for which the
spectral radius of

M(d) =
[
mijr

d
j

]
ij

is exactly 1.

Recall: the spectral radius of a matrix M is

ρ(M) = max{|λi| | λi is an eigenvalue of M}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Dimensional analysis

Can use transition matrix M to compute Hausdorff dimension
of the attractor A.
Let rj be the contraction factor of Tj .

Theorem

The Hausdorff dimension of A is the unique d for which the
spectral radius of

M(d) =
[
mijr

d
j

]
ij

is exactly 1.

Recall: the spectral radius of a matrix M is

ρ(M) = max{|λi| | λi is an eigenvalue of M}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Terminology

Definition

The attractor of a 1-IFS is . . .

IFS-able if it can be realized by a 0-IFS.

∞-IFS-able if it can be realized by a 0-IFS with
countably-many transformations.

non-IFS-able if it cannot be realized by any 0-IFS,
regardless of how many transformations are used.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Terminology

Definition

A transformation Ti is called a full state if it can immediately
follow any other transformation;

i.e. 1→ i, 2→ i, 3→ i, 4→ i are all allowed.

Also known as a Rome, because all roads in the transition
graph lead to it. (Not to be confused with a roam.)

Corresponds to a row of 1s in transition matrix.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Terminology

Definition

A transformation Ti is called a full state if it can immediately
follow any other transformation;

i.e. 1→ i, 2→ i, 3→ i, 4→ i are all allowed.

Also known as a Rome, because all roads in the transition
graph lead to it. (Not to be confused with a roam.)

Corresponds to a row of 1s in transition matrix.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Main result: 1-IFS to 0-IFS

1 There exists a Rome.

2 Every transformation has a path to it starting at a Rome.

3 There are infinite sequences of non-Romes.

Theorem

The attractor of a 1-IFS is . . .

IFS-able ⇐⇒ (1) and (2) hold.

∞-IFS-able ⇐⇒ (1) and (2) and (3) hold.

non-IFS-able ⇐⇒ (1) or (2) fails.

Proof.

Manipulating strings and addresses . . . [13]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Main result: 1-IFS to 0-IFS

1 There exists a Rome.

2 Every transformation has a path to it starting at a Rome.

3 There are infinite sequences of non-Romes.

Theorem

The attractor of a 1-IFS is . . .

IFS-able ⇐⇒ (1) and (2) hold.

∞-IFS-able ⇐⇒ (1) and (2) and (3) hold.

non-IFS-able ⇐⇒ (1) or (2) fails.

Proof.

Manipulating strings and addresses . . . [13]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Main result: 1-IFS to 0-IFS

1 There exists a Rome.

2 Every transformation has a path to it starting at a Rome.

3 There are infinite sequences of non-Romes.

Theorem

The attractor of a 1-IFS is . . .

IFS-able ⇐⇒ (1) and (2) hold.

∞-IFS-able ⇐⇒ (1) and (2) and (3) hold.

non-IFS-able ⇐⇒ (1) or (2) fails.

Proof.

Manipulating strings and addresses . . . [13]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

IFS-able with 8 transformations

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

IFS-able with 8 transformations

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

∞-IFS-able

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

∞-IFS-able

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

non-IFS-able

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

non-IFS-able

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Your turn!

IFS-able with 5 transformations

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Your turn!

IFS-able with 5 transformations

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Your turn!

non-IFS-able (no Romes)

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Your turn!

non-IFS-able (no Romes)

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Your turn!

∞-IFS-able

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Classification

Your turn!

∞-IFS-able

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

2-IFS and beyond

Forbidden pairs and triples: 2-IFS

Define IFS by set F of forbidden strings.

2-IFS means F contains triples and pairs.

In general, n-IFS means F contains strings with length at most
n+ 1, and contains at least one with exactly that length.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

2-IFS and beyond

Forbidden pairs and triples: 2-IFS

Working example: F = {14, 23, 32, 441}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Subshifts of finite type

Let A be a finite alphabet. Let X be the set of bi-infinite
strings from A, called the full shift:

X = AZ = {(. . . x−1.x0x1 . . .) | xi ∈ A}

Given set of words F from A, the shift space determined by
F is the set of strings from X that contain no element of F as a
substring, written as XF .

If F is finite, XF is a subshift of finite type.

If the longest string in F has length N + 1, say XF is an
N-step shift.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Subshifts of finite type

Let A be a finite alphabet. Let X be the set of bi-infinite
strings from A, called the full shift:

X = AZ = {(. . . x−1.x0x1 . . .) | xi ∈ A}

Given set of words F from A, the shift space determined by
F is the set of strings from X that contain no element of F as a
substring, written as XF .

If F is finite, XF is a subshift of finite type.

If the longest string in F has length N + 1, say XF is an
N-step shift.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Graph vertex shifts

Let G be a directed graph. The vertex shift of G has alphabet
A = V (vertices of G) and is

X̂G = {. . . v1.v0v1 · · · | ∀i. (vi, vi+1) ∈ E}

the set of all infinite paths in G.

Lemma

Graph vertex shifts are 1-step shifts of finite type.

Goal: Exploit graph shifts to reduce n-IFS to 1-IFS.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Graph vertex shifts

Let G be a directed graph. The vertex shift of G has alphabet
A = V (vertices of G) and is

X̂G = {. . . v1.v0v1 · · · | ∀i. (vi, vi+1) ∈ E}

the set of all infinite paths in G.

Lemma

Graph vertex shifts are 1-step shifts of finite type.

Goal: Exploit graph shifts to reduce n-IFS to 1-IFS.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Given A,F , and XF (an N -step shift).

Let BN (XF) be the set of allowed strings of length N in XF .

Let βN : XF → (BN (XF))Z be defined by

(βN (x))i = xixi+1 . . . xi+N−1

where x = . . . x−1.x0x1

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Given A,F , and XF (an N -step shift).

Let BN (XF) be the set of allowed strings of length N in XF .

Let βN : XF → (BN (XF))Z be defined by

(βN (x))i = xixi+1 . . . xi+N−1

where x = . . . x−1.x0x1

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Example

Let A = {1, 2, 3, 4}, F = {14, 23, 32, 441} (i.e. N = 2).

Consider x = . . . 12443 . . .

β2(x) = . . . 12244443 . . .

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Example

Let A = {1, 2, 3, 4}, F = {14, 23, 32, 441} (i.e. N = 2).

Consider x = . . . 12443 . . .

β2(x) = . . . 12

244443 . . .

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Example

Let A = {1, 2, 3, 4}, F = {14, 23, 32, 441} (i.e. N = 2).

Consider x = . . . 12443 . . .

β2(x) = . . . 1224

4443 . . .

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Example

Let A = {1, 2, 3, 4}, F = {14, 23, 32, 441} (i.e. N = 2).

Consider x = . . . 12443 . . .

β2(x) = . . . 122444

43 . . .

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Example

Let A = {1, 2, 3, 4}, F = {14, 23, 32, 441} (i.e. N = 2).

Consider x = . . . 12443 . . .

β2(x) = . . . 12244443 . . .

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Definition

The N-th higher block shift is the image

X
[N]
F = βN (XF)

Theorem

If XF is an N -step shift, then there exists a directed graph G
such that

X
[N]
F = X̂G

i.e. N -th higher block shift can be realized as a 1-step shift!

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Definition

The N-th higher block shift is the image

X
[N]
F = βN (XF)

Theorem

If XF is an N -step shift, then there exists a directed graph G
such that

X
[N]
F = X̂G

i.e. N -th higher block shift can be realized as a 1-step shift!

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts as graph shifts

Proof is in [14].
Vertices of G are BN (XF), the allowed N -length strings.
Edge from a1 . . . aN to b1 . . . bN iff

1 a2 . . . aN = b1 . . . bN−1

2 a1a2 . . . aNbN is an allowed string in XF

Condition (1) ensures correct overlap.
Condition (2) ensures overlap is allowed.

Directed graph encodes which N -length strings of XF can
follow one another; i.e. it encodes which sequences of
transformations are allowed by considering longer strings as the
most basic elements.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Theory

Higher block shifts as graph shifts

Proof is in [14].
Vertices of G are BN (XF), the allowed N -length strings.
Edge from a1 . . . aN to b1 . . . bN iff

1 a2 . . . aN = b1 . . . bN−1

2 a1a2 . . . aNbN is an allowed string in XF

Condition (1) ensures correct overlap.
Condition (2) ensures overlap is allowed.

Directed graph encodes which N -length strings of XF can
follow one another; i.e. it encodes which sequences of
transformations are allowed by considering longer strings as the
most basic elements.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}

XF is all strings from I = {1, 2, 3, 4} without a substring in F .

X
[2]
F has alphabet J consisting of 13 allowed pairs:

J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}

Construct directed graph with J as vertex set.

Encode edges via transition matrix.

Ensure conditions (1) and (2) from Theorem in [14] are
satisfied, i.e. correct and allowed overlaps.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}

XF is all strings from I = {1, 2, 3, 4} without a substring in F .

X
[2]
F has alphabet J consisting of 13 allowed pairs:

J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}

Construct directed graph with J as vertex set.

Encode edges via transition matrix.

Ensure conditions (1) and (2) from Theorem in [14] are
satisfied, i.e. correct and allowed overlaps.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}

J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}
Column is source of edge, row is target.

Mij,km = 1 ⇐⇒ i = m and kij is allowed.

Overlap conditions yield many 0 entries.
(Only 41/169 nonzero entries in this example.)
Helpful in computational applications, such as computing
Hausdorff dimension, powers of transition matrix, etc.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}

J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}
Column is source of edge, row is target.

Mij,km = 1 ⇐⇒ i = m and kij is allowed.

Overlap conditions yield many 0 entries.
(Only 41/169 nonzero entries in this example.)
Helpful in computational applications, such as computing
Hausdorff dimension, powers of transition matrix, etc.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Mij,km = 1 ⇐⇒ m = i and kij is allowed. Recall F = {14, 23, 32, 441}

M =



11 12 13 21 22 24 31 33 34 41 42 43 44

11 1 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 0 1 1 1 0 0 0 0 0 0 0

13 0 0 0 0 0 0 1 1 1 0 0 0 0

21 1 1 1 0 0 0 0 0 0 0 0 0 0

22 0 0 0 1 1 1 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 1 1 1 1

31 1 1 1 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 1 1 1 0 0 0 0

34 0 0 0 0 0 0 0 0 0 1 1 1 1

41 1 1 1 0 0 0 0 0 0 0 0 0 0

42 0 0 0 1 1 1 0 0 0 0 0 0 0

43 0 0 0 0 0 0 1 1 1 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 1 1 1


Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Mij,km = 1 ⇐⇒ m = i and kij is allowed. Recall F = {14, 23, 32, 441}

M =



11 12 13 21 22 24 31 33 34 41 42 43 44

11 1 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 0 1 1 1 0 0 0 0 0 0 0

13 0 0 0 0 0 0 1 1 1 0 0 0 0

21 1 1 1 0 0 0 0 0 0 0 0 0 0

22 0 0 0 1 1 1 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 1 1 1 1

31 1 1 1 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 1 1 1 0 0 0 0

34 0 0 0 0 0 0 0 0 0 1 1 1 1

41 1 1 1 0 0 0 0 0 0 0 0 0 0

42 0 0 0 1 1 1 0 0 0 0 0 0 0

43 0 0 0 0 0 0 1 1 1 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 1 1 1


Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Mij,km = 1 ⇐⇒ m = i and kij is allowed. Recall F = {14, 23, 32, 441 }

M =



11 12 13 21 22 24 31 33 34 41 42 43 44

11 1 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 0 1 1 1 0 0 0 0 0 0 0

13 0 0 0 0 0 0 1 1 1 0 0 0 0

21 1 1 1 0 0 0 0 0 0 0 0 0 0

22 0 0 0 1 1 1 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 1 1 1 1

31 1 1 1 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 1 1 1 0 0 0 0

34 0 0 0 0 0 0 0 0 0 1 1 1 1

41 1 1 1 0 0 0 0 0 0 0 0 0 0

42 0 0 0 1 1 1 0 0 0 0 0 0 0

43 0 0 0 0 0 0 1 1 1 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 1 1 1


Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}
Recall J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}.

Define F ′ to be the forbidden pairs from alphabet J :

F ′ = {ij, km ∈ J |Mij,km = 0}

The same attractor is realized from this 1-IFS, J(F ′)!

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}
Recall J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}.

Define F ′ to be the forbidden pairs from alphabet J :

F ′ = {ij, km ∈ J |Mij,km = 0}
The same attractor is realized from this 1-IFS, J(F ′)!

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Reducing n-IFS to 1-IFS

Generalizing this procedure, any n-IFS (forbidden strings of
length ≤ n+ 1) can be reduced to a 1-IFS (forbidden pairs
only):

1 List all allowed strings of length n

2 Populate transition matrix by following overlap conditions

3 Apply constructive procedure to this new IFS

Theorem

The n-IFS I(F) and the 1-IFS J(F ′) have the same attractor.

Proof.

Compare addresses of attractors, rewrite as I-strings. [11]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Reducing n-IFS to 1-IFS

Generalizing this procedure, any n-IFS (forbidden strings of
length ≤ n+ 1) can be reduced to a 1-IFS (forbidden pairs
only):

1 List all allowed strings of length n

2 Populate transition matrix by following overlap conditions

3 Apply constructive procedure to this new IFS

Theorem

The n-IFS I(F) and the 1-IFS J(F ′) have the same attractor.

Proof.

Compare addresses of attractors, rewrite as I-strings. [11]

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Reducing n-IFS to 1-IFS

Observations:

Procedure doesn’t reduce 1-IFS to 0-IFS.
Overlap conditions are vacuous.

Previous results in [13] still helpful.

Can now characterize all n-IFS as IFS-able / ∞-IFS-able /
non-IFS-able

If F contains strings of length n+ 1, alphabet J may have
up to 4n elements!

Question: What is the most efficient memory reduction
procedure, yielding the least number of transformations?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Reducing n-IFS to 1-IFS

Observations:

Procedure doesn’t reduce 1-IFS to 0-IFS.
Overlap conditions are vacuous.

Previous results in [13] still helpful.

Can now characterize all n-IFS as IFS-able / ∞-IFS-able /
non-IFS-able

If F contains strings of length n+ 1, alphabet J may have
up to 4n elements!

Question: What is the most efficient memory reduction
procedure, yielding the least number of transformations?

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Efficient memory reduction: F = {14, 23, 32, 441}
Notice 441 is a primary string, i.e. it does not contain a
forbidden substring.

Subdivide T4 into four transformations. Define new set S by

S1 = T1

S2 = T2

S3 = T3

S4 = T4 ◦ T1
S5 = T4 ◦ T2
S6 = T4 ◦ T3
S7 = T4 ◦ T4

M =



1 2 3 4 5 6 7

1 1 1 1 0 0 0 0
2 1 1 0 1 1 1 1
3 1 0 1 1 1 1 1
4 1 1 1 0 0 0 0
5 1 1 0 1 1 1 1
6 1 0 1 1 1 1 1
7 0 1 1 0 1 1 1



FS = {14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Efficient memory reduction: F = {14, 23, 32, 441}

Subdivide T4 into four transformations. Define new set S by

S1 = T1

S2 = T2

S3 = T3

S4 = T4 ◦ T1
S5 = T4 ◦ T2
S6 = T4 ◦ T3
S7 = T4 ◦ T4

M =



1 2 3 4 5 6 7

1 1 1 1 0 0 0 0
2 1 1 0 1 1 1 1
3 1 0 1 1 1 1 1
4 1 1 1 0 0 0 0
5 1 1 0 1 1 1 1
6 1 0 1 1 1 1 1
7 0 1 1 0 1 1 1


FS = {14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Efficient memory reduction: F = {14, 23, 32, 441}

Subdivide T4 into four transformations. Define new set S by

S1 = T1

S2 = T2

S3 = T3

S4 = T4 ◦ T1
S5 = T4 ◦ T2
S6 = T4 ◦ T3
S7 = T4 ◦ T4

M =



1 2 3 4 5 6 7

1 1 1 1 0 0 0 0
2 1 1 0 1 1 1 1
3 1 0 1 1 1 1 1
4 1 1 1 0 0 0 0
5 1 1 0 1 1 1 1
6 1 0 1 1 1 1 1
7 0 1 1 0 1 1 1



FS = {14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Efficient memory reduction: F = {14, 23, 32, 441}

Subdivide T4 into four transformations. Define new set S by

S1 = T1

S2 = T2

S3 = T3

S4 = T4 ◦ T1
S5 = T4 ◦ T2
S6 = T4 ◦ T3
S7 = T4 ◦ T4

M =



1 2 3 4 5 6 7

1 1 1 1 0 0 0 0
2 1 1 0 1 1 1 1
3 1 0 1 1 1 1 1
4 1 1 1 0 0 0 0
5 1 1 0 1 1 1 1
6 1 0 1 1 1 1 1
7 0 1 1 0 1 1 1


FS = {14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74}

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Results

Efficient memory reduction: 2-IFS to 1-IFS

Conjecture

Given 2-IFS, I(F), efficiently equivalent 1-IFS is generated by

1 Remove non-primary strings from F
2 ∀ijk ∈ F , subdivide i and j

3 Reduce forbidden ijk; 2 cases on whether k subdivided

4 Reduce forbidden ij; 4 cases on whether i, j subdivided

5 Reduce forbidden i; remove compositions

Cases determine how many transformations needed in total.

To be proved and investigated for n-IFS in [15].

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Conclusions and Future Work

Results

Can reduce any n-IFS to 1-IFS, perhaps efficiently.

Can classify any n-IFS as IFS-able or not.

Can apply method of [16] to calculate Hausdorff dimension.

Know that memory length is not a measure of fractal
complexity.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Conclusions and Future Work

Results

Can reduce any n-IFS to 1-IFS, perhaps efficiently.

Can classify any n-IFS as IFS-able or not.

Can apply method of [16] to calculate Hausdorff dimension.

Know that memory length is not a measure of fractal
complexity.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Conclusions and Future Work

Lingering questions

Is the efficient procedure correct?

Is the efficient procedure actually helpful in applications?

What exactly is the trade-off between memory length and
of transformations? Are certain formulations best for
different applications?

How many memory reductions are there with a fixed # of
transformations?

What is the relationship between m-IFS and n-IFS? Are
there embeddings? Is calculting Hausdorff dimension easier
in certain settings? (Partially investigated in [12])

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Conclusions and Future Work

Lingering questions

Is the efficient procedure correct?

Is the efficient procedure actually helpful in applications?

What exactly is the trade-off between memory length and
of transformations? Are certain formulations best for
different applications?

How many memory reductions are there with a fixed # of
transformations?

What is the relationship between m-IFS and n-IFS? Are
there embeddings? Is calculting Hausdorff dimension easier
in certain settings? (Partially investigated in [12])

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

Conclusions and Future Work

Lingering questions

Is the efficient procedure correct?

Is the efficient procedure actually helpful in applications?

What exactly is the trade-off between memory length and
of transformations? Are certain formulations best for
different applications?

How many memory reductions are there with a fixed # of
transformations?

What is the relationship between m-IFS and n-IFS? Are
there embeddings? Is calculting Hausdorff dimension easier
in certain settings? (Partially investigated in [12])

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

References I

G. Edgar.
Measure, Topology, and Fractal Geometry.
Springer, 2008.

B. B. Mandelbrot
The Fractal Geometry of Nature.
W.H. Freeman and Co., 1982.

Univ. Illinois Urbana-Champaign
Geometry Center Graphics Archive
http://www.geom.uiuc.edu/graphics/

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

References II

Wired
Earth’s Most Stunning Natural Fractal Patterns
http://www.wired.com/wiredscience/2010/09/fractal-patterns-in-nature/?pid=164

Univ. New South Wales
Can Science Be Used To Further Our Understanding Of
Art?
http://phys.unsw.edu.au/phys about/PHYSICS!/FRACTAL EXPRESSIONISM/fractal taylor.html

Third Apex to Fractovia
http://www.fractovia.org/art/fmusic/index.html

Dmitry Kormann
http://bowerbird-studios.com/aicaramba/page2.html

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

References III

Yale Univ.
Fractal geometry course
http://classes.yale.edu/fractals/

Yale Univ., Fractals Panorama
http://classes.yale.edu/fractals/panorama/Biology/Physiology/Physiology.html

Eric Green, Univ. Wisc.
Iterated Function Systems
http://pages.cs.wisc.edu/ ergreen/honors thesis/IFS.html

R. Bedient, M. Frame, K. Gross, J. Lanski, B. Sullivan
Higher Block IFS 1: Memory Reduction and Dimension
Computations
Fractals, Vol. 18, No. 2 (2010) 145-155

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

References IV

R. Bedient, M. Frame, K. Gross, J. Lanski, B. Sullivan
Higher Block IFS 2: Relations Between IFS with Different
Levels of Memory
Fractals, Vol. 18, No. 4 (2010) 399-408

M. Frame, J. Lanski
When is a recurrent IFS attractor a standard IFS attractor?

Fractals, 7 (1999), 257-266.

D. Lind, B. Marcus
An Introduction to Symbolic Dynamics and Coding
Cambridge Univ. Press, 1995

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

References V

K. Gross, R. Bedient, M. Frame
Efficient memory reduction of IFS with memory

R. Mauldin, S. Williams
Hausdorff dimension in graph directed constructions
Trans. Am. Math. Soc. 309 (1988) 811-829

AI Game Programmers Guild, Rescue on Fractalus!
http://gameai.com/wiki/index.php?title=Rescue on Fractalus!

Applications of Fractals - Molecules
http://library.thinkquest.org/26242/full/ap/ap13.html

Fractals for the Classroom
http://www.squidoo.com/fractalsclassroom

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

Background IFS with Memory Memory Reduction

THANK YOU

,

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems

	Background
	Fractals
	Applications
	Iterated Function Systems

	IFS with Memory
	1-IFS
	Transition Graphs/Matrices
	Classification
	2-IFS and beyond

	Memory Reduction
	Theory
	Demonstration
	Results
	Conclusions and Future Work

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	3.23:
	3.24:
	3.25:
	3.26:
	3.27:
	3.28:
	3.29:
	3.30:
	3.31:
	3.32:
	3.33:
	3.34:
	3.35:
	3.36:
	3.37:
	3.38:
	3.39:
	3.40:
	3.41:
	3.42:
	3.43:
	3.44:
	3.45:
	3.46:
	3.47:
	3.48:
	3.49:
	3.50:
	3.51:
	3.52:
	3.53:
	3.54:
	3.55:
	3.56:
	3.57:
	3.58:
	3.59:
	3.60:
	3.61:
	3.62:
	3.63:
	3.64:
	3.65:
	3.66:
	3.67:
	3.68:
	3.69:
	3.70:
	3.71:
	3.72:
	3.73:
	3.74:
	3.75:
	3.76:
	3.77:
	3.78:
	3.79:
	3.80:
	3.81:
	3.82:
	3.83:
	3.84:
	3.85:
	3.86:
	3.87:
	3.88:
	3.89:
	3.90:
	3.91:
	3.92:
	3.93:
	3.94:
	3.95:
	3.96:
	3.97:
	3.98:
	3.99:
	3.100:
	3.101:
	3.102:
	3.103:
	3.104:
	3.105:
	3.106:
	3.107:
	3.108:
	3.109:
	3.110:
	3.111:
	3.112:
	3.113:
	3.114:
	3.115:
	3.116:
	3.117:
	3.118:
	3.119:
	3.120:
	3.121:
	3.122:
	3.123:
	3.124:
	3.125:
	3.126:
	3.127:
	3.128:
	3.129:
	3.130:
	3.131:
	3.132:
	3.133:
	3.134:
	3.135:
	3.136:
	3.137:
	3.138:
	3.139:
	3.140:
	3.141:
	3.142:
	3.143:
	3.144:
	3.145:
	3.146:
	3.147:
	3.148:
	3.149:
	3.150:
	3.151:
	3.152:
	3.153:
	3.154:
	3.155:
	3.156:
	3.157:
	3.158:
	3.159:
	3.160:
	3.161:
	3.162:
	3.163:
	3.164:
	3.165:
	3.166:
	3.167:
	3.168:
	3.169:
	3.170:
	3.171:
	3.172:
	3.173:
	3.174:
	3.175:
	3.176:
	3.177:
	3.178:
	3.179:
	3.180:
	3.181:
	3.182:
	3.183:
	3.184:
	3.185:
	3.186:
	3.187:
	3.188:
	3.189:
	3.190:
	3.191:
	3.192:
	3.193:
	3.194:
	3.195:
	anm3:
	4.0:
	4.1:
	4.2:
	4.3:
	4.4:
	4.5:
	4.6:
	4.7:
	4.8:
	4.9:
	4.10:
	anm4:
	5.0:
	5.1:
	5.2:
	5.3:
	5.4:
	5.5:
	5.6:
	5.7:
	5.8:
	5.9:
	5.10:
	5.11:
	5.12:
	5.13:
	5.14:
	5.15:
	5.16:
	5.17:
	5.18:
	5.19:
	5.20:
	5.21:
	5.22:
	5.23:
	5.24:
	5.25:
	5.26:
	5.27:
	5.28:
	5.29:
	5.30:
	5.31:
	5.32:
	5.33:
	5.34:
	5.35:
	5.36:
	5.37:
	5.38:
	5.39:
	5.40:
	5.41:
	5.42:
	5.43:
	5.44:
	5.45:
	5.46:
	5.47:
	5.48:
	5.49:
	5.50:
	5.51:
	5.52:
	5.53:
	5.54:
	5.55:
	5.56:
	5.57:
	5.58:
	5.59:
	5.60:
	5.61:
	5.62:
	5.63:
	5.64:
	5.65:
	5.66:
	5.67:
	5.68:
	5.69:
	5.70:
	5.71:
	anm5:
	6.0:
	6.1:
	6.2:
	6.3:
	6.4:
	6.5:
	anm6:
	7.0:
	7.1:
	7.2:
	7.3:
	7.4:
	7.5:
	7.6:
	7.7:
	7.8:
	7.9:
	anm7:
	8.0:
	8.1:
	8.2:
	8.3:
	8.4:
	8.5:
	8.6:
	8.7:
	8.8:
	anm8:

