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Fractals

Definitions

A fractal is . . .

. . . a set exhibiting self-similarity.

. . . a set that “looks irregular; but more importantly, after
it is magnified it still looks irregular.” [1]

. . . “by definition a set for which the Hausdorff-Besicovitch
dimension strictly exceeps the topological dimension.” [2]
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Fractals

Canonical examples

Figure: Simple, iteratively generated fractals

(a) Van Koch curve (b) Sierpinski
triangle

(deterministic)

(c) Sierpinski triangle
(probabilistic)
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Fractals

Dimensional analysis

Let X be a metric space. If S ⊆ X and d ∈ [0,∞), the
d-dimensional Hausdorff measure of S is

Cd
H(S) = inf

{∑
i

rdi | ∃ cover of S by balls with radii ri > 0

}

and the Hausdorff dimension of S is

dimH(S) = inf{d ≥ 0 | Cd
H(S) = 0

The Lebesgue covering dimension of a topological space X
is the minimum n such that every finite open cover A of X
admits a finite open cover which refines A in which no point is
included in more than n+ 1 elements.
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Fractals

Dimensional analysis

Example

Cantor set: Hausdorff dim. ln 2
ln 3 ; topological dim. 0

Sierpinski 4: Hausdorff dim. ln 3
ln 2 ; topological dim. 1

Van Koch curve: Hausdorff dim. ln 4
ln 3 ; topological dim. 1
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Fractals

Canonical examples

Figure: More complex, iteratively generated fractals

(a) Mandelbrot set (b) Mandelbrot set
growth

(c) Julia set
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Canonical examples

Figure: Fractals generated by iterated function systems

(a) Shrinking box
border (b) Pointy leaf boxes

(c) Sierpinskitty
trifelinegle
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Applications

Nature

(a) Clouds [3] (b) Plants (c) Coastlines (d) Snowflakes
[4]
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Applications

Art

(a) Literature (b) Painting [5] (c) Music [6]
“Wind and Metal” [7]
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Applications

Science and Computing

(a) Anatomy [9] (b) Graphics [17] (c) DNA [18]
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Iterated Function Systems

Formal definition

Let (X, ρ) be a metric space and T : X → X a function.

Definition

We say T is a contraction map iff

∃k ∈ [0, 1). ∀a, b ∈ X. ρ(T (x), T (y)) ≤ kρ(x, y)

Theorem (Banach Fixed Point)

If (X, ρ) is a complete metric space and T : X → X a
contraction map, then T has exactly one fixed point; i.e.

∃! x̂ ∈ X. T (x̂) = x̂
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Iterated Function Systems

Formal definition

Definition

An IFS is a finite set of contraction maps
T = {Ti | i = 1, . . . , N} on a complete metric space (X, ρ).

The Hutchinson Operator H applies an IFS to any subset
S ∈ P(X) via

H(S) =
N⋃
i=1

Ti(S)

Question: Does H have any “fixed points”?
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Iterated Function Systems

Formal definition

Partial Answer:

Theorem (Hutchinson, 1981)

For X = Rd with the standard metric, every IFS admits a
unique compact set A ⊂ Rd satisfying H(A) = A.

Proof.

Show that H is a contraction map on K(X), the set of compact
subsets of X. Apply Banach Fixed Point.

A is the attractor of the IFS and is a fractal.
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Iterated Function Systems

Formal definition

Constructive approach:

Choose an initial compact set S0 ∈ K(X)

Iteratively apply H:

Si+1 = H(S0) = T1(Si) ∪ · · · ∪ TN (Si)

Take limit:
A = lim

i→∞
H i(S0)

Proof.

Corollary to Banach Fixed Point: this limit converges to A for
any choice of S0.
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Iterated Function Systems

Examples

Standard contraction maps in Rd are scalings (with factor
r < 1), rotations, reflections, translations.

Example

Cantor Set, C:

T1(x) =
x

3
T2(x) =

x

3
+

2

3

C = T1(C) ∪ T2(C)
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Iterated Function Systems

Examples

Example

Cantor-style dust:
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Iterated Function Systems

Examples

Example

Cantor-style dust:
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1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

)

1 2

3 4
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+
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2
,
y
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+

(
1

2
,
1

2
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1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

)
11 12 21 22

13 14 23 24

31 32 41 42

33 34 43 44
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1-IFS

Standard context

X = [0, 1]2 with standard metric and T = {T1, T2, T3, T4}, where

T1(x, y) =
(x

2
,
y

2

)
+

(
0, 0

)
T2(x, y) =

(x
2
,
y

2

)
+

(
1

2
, 0

)
T3(x, y) =

(x
2
,
y

2

)
+

(
0,

1

2

)
T4(x, y) =

(x
2
,
y

2

)
+

(
1

2
,
1

2

)
111112121122211212221222

113114123124213214223224

131132141142231232241242

133134143144233234243244

311312321322411412421422

313314323324413414423424

331332341342431432441442

333334343344433434443444
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1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2

4
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1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2
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1-IFS

Standard context

Being in state i means applying Ti
Addresses indicate the reverse order of the transformations
required to land in that box.

Example

Map composition:
(T2 ◦ T1 ◦ T4)(X)

Address: 214

State transformation:
4→ 1→ 2

214
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1-IFS

Forbidden pairs: 1-IFS

Main idea: Restrict the constructive approach by disallowing
certain pairs of transformations from occurring consecutively.

The system has “1 level of memory” because it looks at the
currently-applied transformation in the construction to
determine which transformations can be applied next.

Where you are (but not how you got there) affects where you
are allowed to go.
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1-IFS

Forbidden pairs: 1-IFS

Questions:

What types of attractors does this yield?

How does forbidding multiple pairs affect the attractors?

Can we look at an attractor and determine which pairs
were forbidden?

Which attractors can be realized as a standard IFS (with
“0 levels of memory”) by redefining the set of contraction
maps?

Which attractors can be realized as a standard 0-IFS but
require infinitely many contraction maps?

Which attractors cannot be realized as a standard 0-IFS?
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1-IFS

Forbidden pairs: 1-IFS

Example

Cannot go from state 1 to state 4

⇐⇒ T4 cannot follow T1
⇐⇒ (T4 ◦ T1)(A) = ∅
⇐⇒ Any address with 41 as a substring is empty
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1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

1 2

3 4
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1-IFS

Forbidden pairs: 1-IFS

Example

Any address with 41 as a substring is empty

11 12 21 22

13 14 23 24

31 32 42

33 34 43 44
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1-IFS

Forbidden pairs: 1-IFS

Example

Forbid 1→ 4, 4→ 1, 2→ 3, 3→ 2
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1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty
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1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

11 12 21 22

13 24

31 42

33 34 43 44
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1-IFS

Forbidden pairs: 1-IFS

Example

Addresses with 14, 41, 23, 32 are empty

111112121122211212221222

113 124213 224

131 242
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Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Representing allowed transitions

Vertex set is T .
Directed edge from Ti to Tj if i→ j is allowed.
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Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Transition matrices

Represent directed edges by a 0-1 matrix.
Rows/columns indexed by states.
Mij = 1 ⇐⇒ j → i is allowed.


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1


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Background IFS with Memory Memory Reduction

Transition Graphs/Matrices

Dimensional analysis

Can use transition matrix M to compute Hausdorff dimension
of the attractor A.
Let rj be the contraction factor of Tj .

Theorem

The Hausdorff dimension of A is the unique d for which the
spectral radius of

M(d) =
[
mijr

d
j

]
ij

is exactly 1.

Recall: the spectral radius of a matrix M is

ρ(M) = max{|λi| | λi is an eigenvalue of M}
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Background IFS with Memory Memory Reduction

Classification

Terminology

Definition

The attractor of a 1-IFS is . . .

IFS-able if it can be realized by a 0-IFS.

∞-IFS-able if it can be realized by a 0-IFS with
countably-many transformations.

non-IFS-able if it cannot be realized by any 0-IFS,
regardless of how many transformations are used.
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Classification

Terminology

Definition

A transformation Ti is called a full state if it can immediately
follow any other transformation;

i.e. 1→ i, 2→ i, 3→ i, 4→ i are all allowed.

Also known as a Rome, because all roads in the transition
graph lead to it. (Not to be confused with a roam.)

Corresponds to a row of 1s in transition matrix.
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Background IFS with Memory Memory Reduction

Classification

Main result: 1-IFS to 0-IFS

1 There exists a Rome.

2 Every transformation has a path to it starting at a Rome.

3 There are infinite sequences of non-Romes.

Theorem

The attractor of a 1-IFS is . . .

IFS-able ⇐⇒ (1) and (2) hold.

∞-IFS-able ⇐⇒ (1) and (2) and (3) hold.

non-IFS-able ⇐⇒ (1) or (2) fails.

Proof.

Manipulating strings and addresses . . . [13]
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Background IFS with Memory Memory Reduction

Classification

Classifying examples

Main idea: look for scaled copies of the attractor within itself.

IFS-able with 8 transformations
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Classification

Your turn!

IFS-able with 5 transformations
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Classification

Your turn!

non-IFS-able (no Romes)
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Background IFS with Memory Memory Reduction

2-IFS and beyond

Forbidden pairs and triples: 2-IFS

Define IFS by set F of forbidden strings.

2-IFS means F contains triples and pairs.

In general, n-IFS means F contains strings with length at most
n+ 1, and contains at least one with exactly that length.
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Background IFS with Memory Memory Reduction

2-IFS and beyond

Forbidden pairs and triples: 2-IFS

Working example: F = {14, 23, 32, 441}
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Background IFS with Memory Memory Reduction

Theory

Subshifts of finite type

Let A be a finite alphabet. Let X be the set of bi-infinite
strings from A, called the full shift:

X = AZ = {(. . . x−1.x0x1 . . . ) | xi ∈ A}

Given set of words F from A, the shift space determined by
F is the set of strings from X that contain no element of F as a
substring, written as XF .

If F is finite, XF is a subshift of finite type.

If the longest string in F has length N + 1, say XF is an
N-step shift.
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Background IFS with Memory Memory Reduction

Theory

Graph vertex shifts

Let G be a directed graph. The vertex shift of G has alphabet
A = V (vertices of G) and is

X̂G = {. . . v1.v0v1 · · · | ∀i. (vi, vi+1) ∈ E}

the set of all infinite paths in G.

Lemma

Graph vertex shifts are 1-step shifts of finite type.

Goal: Exploit graph shifts to reduce n-IFS to 1-IFS.
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Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Given A,F , and XF (an N -step shift).

Let BN (XF ) be the set of allowed strings of length N in XF .

Let βN : XF → (BN (XF ))Z be defined by

(βN (x))i = xixi+1 . . . xi+N−1

where x = . . . x−1.x0x1 . . . .
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Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Example

Let A = {1, 2, 3, 4}, F = {14, 23, 32, 441} (i.e. N = 2).

Consider x = . . . 12443 . . .

β2(x) = . . . 12244443 . . .
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Background IFS with Memory Memory Reduction

Theory

Higher block shifts

Definition

The N-th higher block shift is the image

X
[N ]
F = βN (XF )

Theorem

If XF is an N -step shift, then there exists a directed graph G
such that

X
[N ]
F = X̂G

i.e. N -th higher block shift can be realized as a 1-step shift!
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Background IFS with Memory Memory Reduction

Theory

Higher block shifts as graph shifts

Proof is in [14].
Vertices of G are BN (XF ), the allowed N -length strings.
Edge from a1 . . . aN to b1 . . . bN iff

1 a2 . . . aN = b1 . . . bN−1

2 a1a2 . . . aNbN is an allowed string in XF

Condition (1) ensures correct overlap.
Condition (2) ensures overlap is allowed.

Directed graph encodes which N -length strings of XF can
follow one another; i.e. it encodes which sequences of
transformations are allowed by considering longer strings as the
most basic elements.
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Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}

XF is all strings from I = {1, 2, 3, 4} without a substring in F .

X
[2]
F has alphabet J consisting of 13 allowed pairs:

J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}

Construct directed graph with J as vertex set.

Encode edges via transition matrix.

Ensure conditions (1) and (2) from Theorem in [14] are
satisfied, i.e. correct and allowed overlaps.
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Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}

J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}
Column is source of edge, row is target.

Mij,km = 1 ⇐⇒ i = m and kij is allowed.

Overlap conditions yield many 0 entries.
(Only 41/169 nonzero entries in this example.)
Helpful in computational applications, such as computing
Hausdorff dimension, powers of transition matrix, etc.
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Demonstration

Mij,km = 1 ⇐⇒ m = i and kij is allowed. Recall F = {14, 23, 32, 441}

M =



11 12 13 21 22 24 31 33 34 41 42 43 44

11 1 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 0 1 1 1 0 0 0 0 0 0 0

13 0 0 0 0 0 0 1 1 1 0 0 0 0

21 1 1 1 0 0 0 0 0 0 0 0 0 0

22 0 0 0 1 1 1 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 1 1 1 1

31 1 1 1 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 1 1 1 0 0 0 0
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Background IFS with Memory Memory Reduction

Demonstration

Reducing 2-IFS to 1-IFS: F = {14, 23, 32, 441}
Recall J = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}.

Define F ′ to be the forbidden pairs from alphabet J :

F ′ = {ij, km ∈ J |Mij,km = 0}

The same attractor is realized from this 1-IFS, J(F ′)!
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Results

Reducing n-IFS to 1-IFS

Generalizing this procedure, any n-IFS (forbidden strings of
length ≤ n+ 1) can be reduced to a 1-IFS (forbidden pairs
only):

1 List all allowed strings of length n

2 Populate transition matrix by following overlap conditions

3 Apply constructive procedure to this new IFS

Theorem

The n-IFS I(F) and the 1-IFS J(F ′) have the same attractor.

Proof.

Compare addresses of attractors, rewrite as I-strings. [11]
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Results

Reducing n-IFS to 1-IFS

Observations:

Procedure doesn’t reduce 1-IFS to 0-IFS.
Overlap conditions are vacuous.

Previous results in [13] still helpful.

Can now characterize all n-IFS as IFS-able / ∞-IFS-able /
non-IFS-able

If F contains strings of length n+ 1, alphabet J may have
up to 4n elements!

Question: What is the most efficient memory reduction
procedure, yielding the least number of transformations?
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Results

Efficient memory reduction: F = {14, 23, 32, 441}
Notice 441 is a primary string, i.e. it does not contain a
forbidden substring.

Subdivide T4 into four transformations. Define new set S by

S1 = T1

S2 = T2

S3 = T3

S4 = T4 ◦ T1
S5 = T4 ◦ T2
S6 = T4 ◦ T3
S7 = T4 ◦ T4

M =



1 2 3 4 5 6 7

1 1 1 1 0 0 0 0
2 1 1 0 1 1 1 1
3 1 0 1 1 1 1 1
4 1 1 1 0 0 0 0
5 1 1 0 1 1 1 1
6 1 0 1 1 1 1 1
7 0 1 1 0 1 1 1



FS = {14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74}
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Results

Efficient memory reduction: 2-IFS to 1-IFS

Conjecture

Given 2-IFS, I(F), efficiently equivalent 1-IFS is generated by

1 Remove non-primary strings from F
2 ∀ijk ∈ F , subdivide i and j

3 Reduce forbidden ijk; 2 cases on whether k subdivided

4 Reduce forbidden ij; 4 cases on whether i, j subdivided

5 Reduce forbidden i; remove compositions

Cases determine how many transformations needed in total.

To be proved and investigated for n-IFS in [15].
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Conclusions and Future Work

Results

Can reduce any n-IFS to 1-IFS, perhaps efficiently.

Can classify any n-IFS as IFS-able or not.

Can apply method of [16] to calculate Hausdorff dimension.

Know that memory length is not a measure of fractal
complexity.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems



Background IFS with Memory Memory Reduction

Conclusions and Future Work

Results

Can reduce any n-IFS to 1-IFS, perhaps efficiently.

Can classify any n-IFS as IFS-able or not.

Can apply method of [16] to calculate Hausdorff dimension.

Know that memory length is not a measure of fractal
complexity.

Brendan W. Sullivan Carnegie Mellon University Undergraduate Math Club

Memory Reduction in Iterated Function Systems



Background IFS with Memory Memory Reduction

Conclusions and Future Work

Lingering questions

Is the efficient procedure correct?

Is the efficient procedure actually helpful in applications?

What exactly is the trade-off between memory length and
# of transformations? Are certain formulations best for
different applications?

How many memory reductions are there with a fixed # of
transformations?

What is the relationship between m-IFS and n-IFS? Are
there embeddings? Is calculting Hausdorff dimension easier
in certain settings? (Partially investigated in [12])
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