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Abstract

It has been claimed by some mathematicians that Bernhard Riemann
was the last great ”Renaissance man” of mathematics, in that he was
quite knowledgeable of–and, indeed, proved major theorems in–several
seemingly disjoint branches of the subject. One could argue for other
notable exceptions from the 20th century–perhaps John von Neumann,
Bertrand Russell, even Douglas Hofstadter–but the fact remains that it
has become genuinely more and more unlikely (converging towards im-
possible, even) to hold this polymathic position. Consider this hour-long
seminar my humble attempt to help us all along the path towards this
esteemed and noble title. By the end of the hour, we will have proven
some interesting and fundamental results in number theory, graph theory,
geometry and combinatorics, using techniques from topology, probability
theory, linear algebra, and analysis! Nothing will be particularly difficult
or advanced; rather, we seek to celebrate the diversity of mathematics and
the beauty and elegance inherent to some theorems and their proofs.

“If only I had the theorems! Then I should find
the proofs easily enough.”
—Bernhard Riemann

“I have tried to avoid long numerical compu-
tations, thereby following Riemann’s postulate
that proofs should be given through ideas and
not voluminous computations.”
—David Hilbert
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1 Infinitude of Primes:
Number Theory via Topology

This ingenious proof (and the original motivation to construct this talk, in fact!)
is due to Israeli-American mathematician Hillel (Harry) Fürstenberg, and was
published in 1955 [1] when he was a 20-year old undergraduate at Yeshiva Uni-
versity. He has since gone on to be known for his applications of probability
and ergodic theory to number theory and Lie groups. In particular, he proved
Szemerédi’s Theorem, concerning minimal density to guarantee arithmetic pro-
gressions, using ergodic theory; Szemerédi’s original, ingenious proof was a di-
rect generalization of previous combinatorial arguments for small cases of the
statement.

First, recall the statement of this theorem–one of the most fundamental
ideas in all of mathematics, really–and Euclid’s original proof, as translated
from Book IX, Proposition 20 of his Elements.

Theorem 1. There are infinitely many prime numbers.

Proof. Consider any finite list of prime numbers, say p1, p2, . . . , pk. Define P =
p1p2 · · · pk to be the product of those primes, and let q = P + 1. We claim that
we have now identified at least one more prime not contained in the finite list
first considered. We have two cases:

• If q is prime, then this is a new prime, since q > pi for any i.

• If q is composite, then some prime p divides it. We claim p cannot be any
of the pi primes in the original list. If it were, then p divides both P (since
p is in the product) and q (by assumption), so p divides their difference,
which is 1. This is clearly not possible. Thus, p is a new prime not in the
original list.

In either case, we have shown there is at least one more prime. Since this holds
for an arbitrary list of finite numbers, there are infinitely many primes.

Fairly ingenious, right? Notice that this is not a proof by contradiction, but
it does contain a reductio ad absurdum argument within one of the cases.

Now, let’s go through Fürstenberg’s proof. You can view his original paper
here.

Proof. We will define a topology τ on the set of integers Z known as the evenly
spaced integer topology. Specifically, we define a base for the topology. Recall
that a topology is a set of subsets of a set S that are defined to be open; it must
satisfy:

1. ∅ and S are open

2. any (arbitrary) union of open sets is open

3. any finite intersection of opens sets is open
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A base is a set of subsets of the larger space, and it is used to create a topology
by specifying that open sets are unions of sets in the base. We say that a base
generates a topology.

In this specific instance, our base is the set of all arithmetic progressions.
An arithmetic progression is a set of integers of the form

S(a, λ) = {a+ kλ | λ ∈ Z}

for any a, λ ∈ Z. We then define

B = ∅ ∪
⋃
a,λ∈Z

S(a, λ)

and let τ be the topology generated by this base. (Notice that we include ∅ ∈ B
so that ∅ is open by definition.)

For illustration, let’s consider some open sets in this topology. Any arith-
metic progression is, itself, an open set, as is any union of arithmetic progressions
For instance, the following are all open sets in τ :

{. . . , 1, 6, 11, 16, 21, 26, 31} = S(1, 5) = Z \
⋃

b∈{2,3,4,5}

S(b, 5)

{. . . , 2, 5, 8, 11, 14, 17, . . . } = S(2, 3) = Z \ (S(1, 3) ∪ S(3, 3))

{. . . , 1, 2, 4, 5, 7, 8, 10, 11, . . . } = S(1, 3) ∪ S(2, 3) = Z \ S(3, 3)

{. . . , 1, 3, 5, 6, 7, 9, 11, 13, 15, 16, . . . } = S(1, 2) ∪ S(1, 5)

{. . . , 3, 4, 8, 12, 13, 16, 18, 20, 23, 24, 28 . . . } = S(3, 5) ∪ S(4, 4)

Z = S(0, 1)

The last line (plus ∅ ∈ B) verifies property (1) of a topology. The fact that B
is a base guarantees property (2) holds. We now prove that property (3) holds.
For illustration, we keep the following example in mind, which is constructed
from the examples above:

S(1, 5) ∩ S(2, 3) = {−4, 11, 26, 41, . . . } = S(11, 15) =

Another interesting example, which is much harder to think about but very
much true, is presented below:

[S(1, 3) ∪ S(2, 3)] ∩ [S(1, 2) ∪ S(1, 5)] = {. . . , 1, 5, 7, 11, 13, 16, 17, 19, 23, . . . }
= S(1, 6) ∪ S(5, 6)

This sub-proof relies on the following important property of topological bases:

∀B1, B2 ∈ B. ∀x ∈ B1 ∩B2 .∃B3 ∈ B. (x ∈ B3 ∧ B3 ⊆ B1 ∩B2)

When this property holds, we can define B1 ∩B2 as an arbitrary union of basic
open sets by just unioning over all x ∈ B1 ∩ B2, and for each such x, finding a
basic open set containing x that “fits inside” the intersection. (For an example,
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think about the fact that the set of all open intervals is a base for the standard
topology on the real line. In that case, we can always squeeze an open interval
around any point contained in the intersection of two open intervals; namely,
that intersection, itself!) Considering general open sets, we can just write them
as a union of basic open sets, and then consider the individual intersections of
those basic sets. Note: this indicates the benefit of defining toplogies in terms
of bases; we only have to work with these simple, basic sets.

We now can easily verify this property holds for our base B. Let B1, B2 ∈ B
be two basic open sets, say B1 = S(a1, λ1) and B2 = (a2, λ2), and let x ∈
B1 ∩B2. We seek an arithmetic progression containing x that is also contained
in B1 and B2. Since x is in both of those arithmetic progressions, we just need
to adjust the “step size” to incorporate only elements from those progressions.
A moment’s thought reveals that definining λ = lcm(λ1, λ2) will work:

x ∈ B3 := S(x, λ) ⊆ S(x, λi) = Bi for each i ∈ {1, 2}

Look back at the two examples given above to see how this works. Also, note
that sometimes B1∩B2 = B3 (as in the first, easier example presented) whereas
sometimes B1∩B2 must be written as a union of basic open sets (as in the second
example). (Also, note that the quantification is over all x ∈ B1 ∩ B2, so this
allows for vacuous quantification in the case where B1 ∩B2 = ∅.)

Now that we know τ is a topology, we can explore its properties! Specifically,
we will start relating τ to the primes. Consider the following equality

Z \ {−1,+1} =
⋃

p prime

S(0, p)

This follows from the Fundamental Theorem of Arithmetic (every integer, except
−1 and +1, is a multiple of some prime). We want to somehow argue that the
union on the right-hand side must be an infinite union. Somewhat surprisingly,
we will accomplish this via contradiction, using the notion of open and closed
sets in this topology! Recall that a closed set is the complement of some open
set.

Can the set on the left- or right-hand side of the above equality be open or
closed? First, notice that {−1,+1} is not open because it is finite (and every
open set is infinite, since it contains an arithmetic progression), so Z \ {−1,+1}
is not closed. FWIW it is open, though, since

Z \ {−1,+1} =
⋃

a∈{2,3,4,... }

S(a, a)

Anyway, what about the set on the right? To answer this, we notice that any
arithmetic progression is actually clopen. We saw some examples above, and
we can generalize those ideas to the following:

S(a, λ) = Z \
λ−1⋃
j=1

S(a+ j, λ)
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That is, an arithmetic progression consists of all integers except those that
belong to any arithmetic progression whose starting point has been shifted from
that of the original progression by an amount less than the step size. This shows
that, in particular, S(0, p) is closed for all primes p. By the basic properties of
a topology, any finite union of closed sets is closed (since the complement is a
finite intersection of open sets).

Thus, if there were only finitely many primes, then the union representation
on the right-hand side would be closed while the complement representation on
the left-hand side would be not closed. This is a contradiction and, therefore,
there are infinitely many primes!

There is a fantastic (and fantastically concise) paper by Idris Mercer [2] that
removes the topological language of this proof and presents only the essence
of the construction. Specifically, there are two claims about intersections and
unions of arithmetic progressions (namely that finite unions of finite intersec-
tions can also be written as finite intersections of finite unions, and that any
intersections thereof are empty or infinite) and then the final equality considered
in the proof above. In a way, this is “better” because it can be completed in
half a page and doesn’t require anything from the reader beyond a willingness
to think about integers; however, in a way, this is “worse” because it doesn’t
present any further properties of the integers that this topology uncovers, nor
does it actually make the connection to a seemingly disjoint branch of mathe-
matics that makes Fürstenberg’s proof so noteworthy.

See page 5 in [3] and [4] and [5] for more information.
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2 Turán’s Theorem:
Graph Theory via Probability and Analysis

This is a fundamental result of graph theory, and one of the earliest examples
of the burgeoning field of extremal combinatorics, which is closely related to
Ramsey Theory. Heuristically speaking, Ramsey Theory answers questions of
the form “How big does a structure have to be to guarantee a certain substructure
can be found?”, whereas extremal combinatorics answers questions of the form
“How big can a structure be before a certain substructure pops up, and how can
we construct a largest counterexample?”. They don’t seem so different now,
actually . . .

Anyway, Turán’s Theorem concerns how large a simple graph can be without
creating a large clique. Recall that a simple graph is just a finite set of vertices
and edges between them, and a clique is a subset of the vertices such that any
pair of vertices is joined by an edge. (That is, a clique is a subgraph that is,
itself, a complete graph.) Let p ∈ N and try to construct a graph G on n vertices
that does not contain a p-clique (i.e. the largest clique is of size ω(G) ≤ p− 1).

We can maximize the number of edges by partitioning the vertices into p−1
pairwise disjoint subsets V1, . . . , Vp−1, each of size n

p−1 , and adding an edge

between x ∈ Vi and x ∈ Vj if and only if i 6= j (i.e. x and y belong to
different vertex subsets). We call this the Turán graph on p and n. With this
construction, the number of edges is

|E| =
(
p− 1

2

)(
n

p− 1

)2

=

(
1− 1

p− 1

)
n2

2

since, for every pair of vertex subsets, all possible edges are added between the
n
p−1 vertices in each subset. (There are constructions of a very similar form

when p− 1 - n which are also called Turán graphs, but we will ignore those for
sake of simplicity. It only affects the sharpness of the bound presented in the
result below.) The theorem in question tells us that this construction is optimal,
that it “packs the most edges possible” into such a graph.

Theorem 2. Let G = (V,E) be a simple, finite graph on n vertices. Let p ≥ 2
and assume G has no p-clique. Then

|E| ≤
(

1− 1

p− 1

)
n2

2

The case p = 2 is trivial, and proofs of the case p = 3 (wherein triangle-free
graphs have at most n2/4 edges) were known prior to Turán’s proof (and there
are some amazingly elegant proofs, now known, that use the Cauchy and Arith-
metic/Geometric Mean inequalities!). What we present here is a proof of the
general theorem using probability theory and the Cauchy-Schwarz inequality.

Proof. Label the vertices V = {v1, . . . , vn} and let di be the degree of vi (that
is, the number of edges incident to vi). Let ω(G) denote the size of the largest
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clique. First, we prove the following claim:

ω(G) ≥
n∑
i=1

1

n− di

(This is the part of the proof that is probabilistic.) Choose a random permuta-
tion of the vertices, denoted by π = v1v2 · · · vn, chosen uniformly at random, so
each permutation is chosen with probability 1

n! . We now construct a clique of
G from this permutation, and we will call it Cπ.

For the i-th vertex vi of the permutation π, include vi ∈ Cπ if and only if vi
is adjacent to all the vertices vj with j < i that precede it in π. By definition,
v1 ∈ Cπ, and Cπ is a clique. (Think about ordering the elements of Cπ according
to the permutation π.) Define X = |Cπ| to be a random variable on the space
of permutations Π. To deduce the claimed bound, we find E[X].

Specifically, we write X =
∑n
i=1Xi as a sum of indicator random variables,

where Xi = 1 or Xi = 0, depending on whether vi ∈ Cπ or vi /∈ Cπ. Now,
let’s think about the permutations π that yield vi ∈ Cπ. To have this, vi must
appear before all of its non-neighbors in the permutation. The vertex vi has
n− 1− di non-neighbors, and thus there are n− di vertices (including vi itself)
that we want to consider. With equal probability, any one of them will be the
first to appear in the ordering of the permutation, so the probability that vi is
the first one is 1

n−di . Thus, E[Xi] = 1
n−di . Then, by linearity of expectation,

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

1

n− di

Since this essentially tells us the “average size” of a clique, there must be a
clique with at least this size. This proves the lower bound on ω(G) that we
claimed above.

Now, we move into the analytics part of the proof, which is actually quite
short. Recall the Cauchy-Schwarz inequality, which states that for any two sets
of real numbers, {a1, . . . , an} and {b1, . . . , bn},(

n∑
i=1

aibi

)2

≤

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
Using ai = 1√

n−di
and bi = 1

ai
, we have aibi = 1 and thus

n2 ≤ ω(G)

n∑
i=1

(n− di)

after applying the previous claim. We assumed that ω(G) ≤ p− 1, and we can
simplify the sum on the far right, yielding

n2 ≤ ω(G)

n∑
i=1

(n− di) = ω(G)

(
n∑
i=1

n−
n∑
i=1

di

)
= ω(G)

(
n2 − 2|E|

)
≤ (p− 1)(n2 − 2|E|)
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Simplifying this inequality yields the original result!

This technique of doing “something” random to a graph–ordering the ver-
tices or edges, coloring the vertices or edges, or what have you–is actually fairly
common in Ramsey Theory and extremal combinatorics and falls under the um-
brella of the Probabilistic Method, pioneered by Erdös. It is a striking example
of how the techniques and results of one branch of mathematics apply imme-
diately to another, with some ingenuity, of course. Unfortunately, one of the
main drawbacks is that this method is highly non-constructive, in that it can
guarantee the existence of some object or property without giving any indica-
tion as to how to find it, in practical terms. Still, this method and its concepts
is mathematically beautiful, and this particular proof is surprising and elegant
enough to warrant exposition.

The standard proof of Turán’s Theorem assumes a graph G with the maximum

number of edges and shows that there cannot exist vertices u, v, w such that edge uv is

present but neither uw nor vw is present. This provides an equivalence relation on the

vertices of G where u ∼ v if and only if they are non-neighbors. The next claim argues

that this number of edges is maximized when the sizes of the equivalence classes differ

by at most one. See pages 207-210 in [3] and [6] for more information.
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3 Cayley’s Formula:
Combinatorics via Linear Algebra

Cayley’s Formula–which says that the number of trees on n labeled vertices
is nn−2–should probably be known as Borchardt’s Formula, since it was the
Prussian/German mathematician Carl Wilhelm Borchardt who first proved the
formula in 1860. Cayley cited Borchardt’s paper in his 1889 note that general-
ized some of the notions contained therein, but perhaps it was his introduction
of some of the corresponding graph theoretic terminology that made the name
“Cayley’s Formula” stick. Interestingly enough, though, the proof we present
below is probably vastly more similar to Borchardt’s original proof than Cay-
ley’s generalization. (Not having been able to track down Borchardt’s paper, I
can’t confirm this claim; I am merely relying on the fact that Wikipedia asserts
that Borchardt’s proof was “via a determinant” [9].) Cayley’s proof relies on
the aptly-named Prüfer Sequences that uniquely identify trees; establishing this
bijection between trees and sequences allows one to combinatorially count the
sequences and prove the formula. The proof we present here is rooted in linear
algebra; specifically, we apply Kirchhoff’s Matrix Tree Theorem, a more general
claim about the number of spanning trees in a connected graph.

First, we must introduce some terminology and preliminary results. Our
ultimate goal here is to count the number of trees on n labeled vertices. Recall
that a tree on n vertices is a simple, connected graph with no cycles; equivalently,
it has n − 1 edges, its vertices are connected by unique paths, it is maximally
acyclic, or it is minimally connected. Given any simple, connected graph G =
(V,E) a spanning tree is a subgraph of G that is, itself, a tree and includes
all the vertices of G. (This is why we specify G is connected, otherwise this is
not possible.) Kirchhoff’s theorem states a fact about the number of spanning
trees on a general graph. Later on, we will apply the theorem to a specific
case–namely, the complete graph Kn on n vertices–to derive Cayley’s Formula.

To state Kirchhoff’s theorem, we need to define some matrices. To any
simple, connected graph G = (V,E) where V = [n] (i.e. the n vertices are
labeled), we associate three n×n matrices: the degree matrix D, the adjacency
matrix A, and the Laplacian matrix L. The first two matrices are defined by

Dij =

{
deg(i) if i = j

0 otherwise

Aij =

{
1 if ij ∈ E
0 otherwise

and then we define L = D −A.
One important observation is that all of the rows of L sum to 0; this is

because the diagonal entry Lii is the degree of vertex i, and the off-diagonal
entries Lij (with i 6= j) on that row are either 0 or −1, depending on whether
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vertices i and j are adjacent. Since this holds for every row, it follows that λ = 0
is an eigenvalue of L, corresponding to the eigenvector v = [1, . . . , 1]T . There
will be n − 1 other eigenvalues, as well. This fact relies on some properties of
the Laplacian matrix that we will not fully discuss here. (If you are looking for
a little convincing, in the paragraph below, we point out that we can express
L = CCT , where C is an n×m (where E = [m]) edge incidence matrix arising
from an arbitrary assignment of directions to all edges. This shows that L is
positive semi-definite, and therefore has n real eigenvalues.)

Furthermore, it is always possible to factor the Laplacian matrix as L =
CCT , and this is the form of the matrix to which we will apply the Binet-
Cauchy formula. Specifically, we first define the edge incidence matrix B, where
the rows are indexed by the vertex set, [n], and the columns are indexed by the
vertex set [m] (where |E| = m and m ≥ n− 1 since G is connected), and

Bij =

{
1 if vertex i is incident to edge j

0 otherwise

Next, we assign an arbitrary direction to all the edges and construct a new
incidence matrix C that switches some of the 1s to −1s based on whether that
directed edge is going “into” or “out of” that vertex. It is important to note
that the direction really can be arbitrary, and we only do this to make all of
the columns (corresponding to edges) have a sum of 0. This allows us to take
advantage of some useful properties of matrices, linearly dependent vectors, and
determinants. You’ll see what we mean as we go along! ,

We claim L = CCT . Notice that L is an n × n symmetric matrix (because
LT = (CCT )T = CCT ), the diagonal entries Mii are the degrees of vertex i
(because CCT takes every row of C and “dot products” it with itself, producing
a +1 any time a −1 or +1 appears in the row), and the off-diagonal entries Lij
(with i 6= j) are either −1 (if ij ∈ E, because then row i and row j will have a
−1 and +1 appear in one column and in all other columns, one of the rows will
have a 0 entry) or 0 (if ij /∈ E, because then every column will show a 0 entry in
one of the two rows). This corresponds with our previous definition L = D−A.

Now, we can state Kirchhoff’s Theorem:

Theorem 3. Let G be a simple, connected graph with V = [n], and let λi, for
1 ≤ i ≤ n − 1, be the nonzero eigenvalues of L. Then the number of spanning
trees t(G) on G is given by

t(G) =
1

n

n−1∏
i=1

λi

Equivalently t(G) = Cij, where Cij is any cofactor of the matrix L. (Recall
that the cofactor is the signed minor, (−1)i+j det(L6i 6j), where L6i 6j is the matrix
produced by removing row i and column j from L.)

It is actually the second part of the theorem that we will use to obtain
Cayley’s Formula. For now, we will prove a modified subcase of this theorem,
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ignoring the statement about eigenvalues and only considering signed minors
along the diagonal, i.e. where i = j so (−1)i+j = 1. (This will make the
complicated argument much easier to follow.) The first step of the proof, though,
requires a powerful linear algebraic result known as the Binet-Cauchy Formula
[10], so we state that first.

Lemma 1. Let A be an r×s matrix and B be an s×r matrix. Let
(
[s]
r

)
represent

the set of subsets of [s] of size r. For any S ∈
(
[s]
r

)
, let A[r],S represent the r× r

submatrix of A whose columns are the columns of A whose indices belong to S;
similarly, let BS,[r] be the r × r submatrix of B whose rows are the rows of B
whose indices belong to S. Then,

det(AB) =
∑

S∈([s]
r )

det
(
A[r],S

)
det
(
BS,[r]

)
Later on, we will be considering a special situation where B = AT . In that

case, notice that

BS,[r] = AT[r],S ⇒ det
(
BS,[r]

)
= det

(
AT[r],S

)
= det

(
A[r],S

)
and so the Binet-Cauchy formula simplifies to a sum of squares of determinants.

A proof of the Binet-Cauchy Formula falls outside the scope of this talk, so
we will skip it. There are several known proofs, though, the most “direct” being
a formal manipulation of definitions of determinants and a careful following of
notation. Interestingly enough, though, there is a proof (see pages 170-172 in
[3]) of the result via graph theoretic considerations, where the matrices represent
weighted bipartite graphs and the formula represents the weights of disjoint path
systems.

Consider the following example and keep it in mind as we prove Kirchhoff’s
Theorem. We will use it to construct all of the relevant matrices and make some
arguments about the situation, in general.

Example 1. Let G be the kite graph on [4].
******** Find B and C and L. Consider removing row 1, so i = 1 in the

proof.
In first case (NOT a tree) M by columns 2,3,5.
In second case (IS a tree) M by columns 1,3,5

Finally, we are ready to prove Kirchhoff’s Theorem!

Proof (of Theorem 3). Let G = (V,E) be a simple, connected graph with V =
[n] and E = [m]. Construct the incidence matrix B, then assign the edges E
an arbitrary direction to construct the n×m directed incidence matrix C, and
define L = CCT . Let i ∈ [n] and remove row i and column i from L to obtain
L6i 6i. Notice that

L6i 6i = C 6iC
T
6i
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where C 6i is the matrix C with row i removed. We want to find det(L 6i6i), and
we will do this by applying the Binet-Cauchy Formula,

detL6i 6i =
∑
M

(detM)2

where the summation is over all matrices M that are (n−1)×(n−1) submatrices
of C, identified by choosing n−1 columns (i.e. edges) from the m total columns.
(Note: this is always possible since m ≥ n− 1 because G is connected, and we
removed row i from C, so there are m columns and n− 1 rows.)

We now consider what happens for different choices of M in this summation.
First, we claim that M always corresponds to a subgraph of G with n− 1 edges
and n vertices. (Note: the subgraph may or may not be connected! That con-
sideration comes next!) The n−1 columns identify edges, so certainly there are
n − 1 of them, and this encodes information about vertex i still (this is repre-
sented by columns whose sum is nonzero, implying that there is a corresponding
±1 in row i). Now, the important part: we claim that

detM =

{
±1 if the edges identified by M span a tree in G

0 otherwise

Suppose the n − 1 edges identified by M do not span a tree. This means the
subgraph of G that M represents contains at least two connected components,
and thus one such component does not contain vertex i. Consider the rows of
M corresponding to the vertices of that component. All edges incident to those
vertices in the corresponding subgraph are contained within this component, so
every column has both a −1 and +1. Thus, if we sum these rows, we obtain a
row vector of 0s. This means those row vectors are linearly dependent and thus
detM = 0 (because we could perform some row operations to yield a row of 0s
in the matrix).

Now, suppose the n − 1 edges identified by M do span a tree. This means
the subgraph of G with the edges identified by the columns of M is a tree,
and can therefore be “deconstructed” by removing, one at a time (breaking ties
arbitrarily), a leaf (i.e. a vertex of degree 1). Furthermore, there is always
at least two leaves in any tree, so we can always identify a leaf that does not
correspond to vertex i (whose corresponding row was removed from C). We
now describe how this “deconstruction” process corresponds to finding detM .
A leaf corresponds to a row of M with only a −1 or +1 in it (i.e. only one
edge, either coming in or going out) and the other entries 0, so we use that row
in the standard definition of finding a determinant. Crossing out that row and
the column corresponding to that ±1 (i.e. that edge in the tree subgraph), we
now need to find the determinant of an (n− 2)× (n− 2) submatrix of M that
also corresponds to a tree! Thus, the same argument applies: we can find a row
with only a single ±1 and other entries 0, and use that row in the determinant
calculation. By standard properties of trees, we can continue this (breaking ties
arbitrarily if there is more than one leaf at any step) and eventually completely

12



“deconstruct” the tree and reduce the situation to a 1×1 matrix that is ±1. At
every step in this process, we are multiplying by ±1, and therefore detM = ±1.

This completes the proof, because the summation stated above counts any
spanning tree as (±1)2 = 1 and any other subgraph as 0. Therefore, we have
shown that t(G) = det(L 6i6i) for any i ∈ [n].

Where were we? Oh right, Cayley’s Formula! Let’s apply Kirchhoff’s The-
orem to the particular case where G = Kn, the complete graph on n vertices.
The Laplacian of Kn is an n × n matrix whose diagonal entries are all n − 1
(the degree of all vertices) and whose off-diagonal entries are all n − 1 (every
vertex is adjacent to every other vertex). Let’s use i = 1 and remove that row
and column, leaving L6161 which is an (n − 1) × (n − 1) matrix with the same
structure as L. We need to find det(L61 61). Our reference [3] claims this is “an
easy computation” and we will attempt to describe the process here. It is a se-
ries of row operations on the matrix to convert it to an upper triangular matrix
without altering the determinant.

1. In L61 61, subtract the last row from row j, for every 2 ≤ j ≤ n − 2, and
place that in row j. This yields ns on those diagonals, a column of −ns
in those far-right columns, and 0s elsewhere.

2. Add (n− 1) times the last row to the first row and place that in the first
row. This yields 0 in the top-left entry, n(n − 2) in the top right entry,
and 0s elsewhere in the top row.

3. Successively add row j, for every 2 ≤ j ≤ n − 2, to the first row and
place that in the first row. This yields all 0s in the top row except for the
top-right entry, which is n.

4. Swap rows 1 and (n− 1), while also scaling the new top row by −1. This
double-step does not alter the determinant (−1×−1 = 1).

5. We now have an upper triangular matrix with 1 in the top-left entry, and
n as every other diagonal entry. Thus,

detL6161 = 1 · n · n · · ·n︸ ︷︷ ︸
n−2 times

= nn−2

See pages 173-178 in [3] and [8] and [9] for more information.
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