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Abstract

In this talk, we will investigate how the late, great Leonhard Euler
originally proved the identity ζ(2) =

∑∞
n=1 1/n2 = π2/6 way back in

1735. This will briefly lead us astray into the bewildering forest of com-
plex analysis where we will point to some important theorems and lemmas
whose proofs are, alas, too far off the beaten path. On our journey out
of said forest, we will visit the temple of the Riemann zeta function and
marvel at its significance in number theory and its relation to the prob-
lem at hand, and we will bow to the uber-famously-unsolved Riemann
hypothesis. From there, we will travel far and wide through the kingdom
of analysis, whizzing through a number N of proofs of the same original
fact in this talk’s title, where N is not to exceed 5 but is no less than
3. Nothing beyond a familiarity with standard calculus and the notion of
imaginary numbers will be presumed.

Note: These were notes I typed up for myself to give this seminar talk.
I only got through a portion of the material written down here in the
actual presentation, so I figured I’d just share my notes and let you read
through them. Many of these proofs were discovered in a survey article by
Robin Chapman (linked below). I chose particular ones to work through
based on the intended audience; I also added a section about justifying
the sin(x) “factoring” as an infinite product (a fact upon which two of
Euler’s proofs depend) and one about the Riemann Zeta function and its
use in number theory. (Admittedly, I still don’t understand it, but I tried
to share whatever information I could glean!)

http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
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The Basel Problem was first posed by the Italian mathematician Pietro
Mengoli in 1644. His question was simple:

What is the value of the infinite sum ζ(2) =

∞∑
n=1

1

n2
?

Of course, the connection to the Riemann zeta function came later. We’ll
use the notation for now and discuss where it came from, and its signif-
icance in number theory, later. Presumably, Mengoli was interested in
infinite sums, since he had proven already not only that the harmonic
series is divergent, but also

∞∑
n=1

(−1)n+1 1

n
= ln 2

and that Wallis’ product

∞∏
n=1

2n

2n− 1
· 2n

2n+ 1
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · = π

2
.

is correct. Let’s tackle the problem from the perspective of Euler, who
first “solved” the problem in 1735; at least, that’s when he first announced
his result to the mathematical community. A rigorous proof followed a few
years later in 1741 after Euler made some headway in complex analysis.
First, let’s discuss his original “proof” and then fill in some of the gaps
with some rigorous analysis afterwards.

Theorem 1. ζ(2) = π2

6

Proof #1, Euler (1735). Consider the Maclaurin series for sin(πx)

sin(πx) = πx− (πx)3

3!
+

(πx)5

5!
− · · · =

∞∑
n=1

(−1)n+1 π
2n+1x2n+1

(2n+ 1)!
=: p(x)

We know that the roots of sin(πx) are the integers Z. For finite polyno-
mials q(x), we know that we can write the function as a product of linear
factors of the form (1 − x

a
), where q(a) = 0. Euler conjectured that the

same trick would work here for sin(πx). Assuming, for the moment, that
this is correct, we have

p̂(x) : = πx
(

1− x

1

)(
1 +

x

1

)(
1− x

2

)(
1 +

x

2

)(
1− x

3

)(
1 +

x

3

)
· · ·

= πx

(
1− x2

1

)(
1− x2

4

)(
1− x2

9

)
· · · = πx

∞∏
n=1

(
1− x2

n2

)
Notice that we have included the leading x factor to account for the root
at 0, and the π factor to make things work when x = 1. Now, let’s examine
the coefficient of x3 in this formula. By choosing the leading πx term, and

then − x2

n2 from one of the factors and 1 from all of the other factors, we
see that

p̂(x)[x3] = −π
(

1

1
+

1

4
+

1

9
+ · · ·

)
= −π

∞∑
n=1

1

n2
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Comparing this to the coefficient from the Maclaurin series, p(x)[x3] =

−π
3

6
, we obtain the desired result!

−π
3

6
= −π

∞∑
n=1

1

n2
⇒

∞∑
n=1

1

n2
=
π2
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So why is it that we can “factor” the function sin(πx) by using what we
know about its roots? We can appeal to the powerful Weierstrass factor-
ization theorem which states that we can perform this root factorization
process for any entire function over C.

Definition 2. A function f : D → C is said to be holomorphic on a
domain D ⊆ C provided ∀z ∈ D ∃δ such that the derivative

f ′(z0) = lim
y→z0

f(y)− f(z0)

y − z0
exists ∀z0 ∈ B(z, δ). A function f is said to be entire if it is holomorphic
over the domain D = C.

There are two forms of the theorem, and they are essentially converses
of each other. Basically, an entire function can be decomposed into factors
that represent its roots (and their respective multiplicities) and a nonzero
entire function. Conversely, given a sequence of complex numbers and a
corresponding sequence of integers satisfying a specific property, we can
construct an entire function having exactly those roots.

Theorem 3 (Weierstrass factorization theorem). Let f be an entire func-
tion and let {an} be the nonzero zeros of f repeated according to multi-
plicity. Suppose f has a zero at z = 0 of order m ≥ 0 (where order 0
means f(0) 6= 0). Then ∃g an entire function and a sequence of integers
{pn} such that

f(z) = zm exp(g(z))

∞∏
n=1

Epn

(
z

an

)
where

En(y) =

{
(1− y) if n = 0,

(1− y) exp
(
y1

1
+ y2

2
+ · · ·+ yn

n

)
if n = 1, 2, . . .

This is a direct generalization of the Fundamental Theorem of Algebra.
It turns out that for sin(πx), the sequence pn = 1 and the function g(z) =
log(π) works. Here, we attempt to briefly explain why this works. We
start by using the functional representation

sin(πz) =
1

2i

(
eiπz − e−iπz

)
and recognizing that the zeros are precisely the integers n ∈ Z. One of the
Lemmas that provides the bulk of the proof of the Factorization Theorem
requires that the sum

+̂∞∑
n=−∞

(
r

|an|

)1+pn

< +∞
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be finite for all r > 0, where the hat ·̂ indicates the n = 0 term is removed.
Since |an| = n, we see that pn = 1 ∀n suffices, and so

sin(πx) = z exp(g(z))

∞̂∏
n=−∞

(
1− z

n

)
exp(z/n)

and we can cancel the terms exp(z/n)·exp(−z/n) and combine the factors
(1± z/n) to say

f(z) := sin(πx) = z exp(g(z)) =

∞∏
n=1

(
1− z2

n2

)
=: exp(g(z))zh(z)

for some entire function g(z). Now, a useful Lemma states that for analytic
functions fn and a function f =

∏
n fn, we have

∞∑
k=1

f ′k(z)
∏
n 6=k

fn(z)


which immediately implies

f ′(z)

f(z)
=

∞∑
n=1

f ′n(z)

f(z)

This allows us to write

π cot(πz) =
f ′(z)

f(z)
=
g′(z) exp(g(z))

exp(g(z))
+

1

z
+

∞∑
n=1

−2z/n2

1− z2/n2

= g′(z) +
1

z
+

∞∑
n=1

2z

z2 − n2

and according to previous analysis, we know

π cot(πz) =
1

z
+

∞∑
n=1

2z

z2 − n2

which is based on integrating
∫
γ
π(z2−a2)−1 cot(πz) dz for a non-integral

and where γ is an appropriately chosen rectangle. As we enlarge γ, the
integral goes to 0, and we get what we want. This means g(z) = c for
some c. Putting this back into the formula above, we have

sin(πz)

πz
=

ec

π

∞∏
n=1

(
1− z2

n2

)
for all 0 < |z| < 1. Taking z → 0 tells us ea = π, and we’re done!

Remark 4. Notice that plugging in z = 1
2

and rearranging yields the
aforementioned Wallis’ product for π

π

2
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
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Now, let’s define the Riemann zeta function and discuss some of the
interesting number theoretical applications thereof.

Definition 5. The Riemann zeta function is defined as the analytic con-
tinuation of the function defined by the sum of the series

ζ(s) =

∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · <(s) > 1

This function is holomorphic everywhere except for a simple pole at
s = 1 with residue 1. A remarkable elementary result in this field is the
following.

Theorem 6 (Euler product formula). For all s > 1,

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s

Sketch. Start with the sum definition for ζ(s) and subtract off the sum
1
2s
ζ(s):

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ · · ·

We see that this removes all terms 1
ns

where 2 | n. We repeat this process
by taking the difference between(

1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+ · · ·

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+

1

27s
+ · · ·

and we see that this removes all of the terms 1
ns

where 2 | n or 3 | n or
both. Continuing ad infinitum, we have

· · ·
(

1− 1

11s

)(
1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1

and dividing by the factors on the left yields the desired result.

Remark 7. To prove a neat consequence of this formula, let’s consider
the case s = 2. We have∏

p prime

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
≈ 0.6079271016

Let’s think about what the product on the left hand side represents. Given
two random integers m,n, the probability that 2 | m is 1

2
(and so is 2 | n)

since “roughly half” of the integers are divisible by two. Likewise, the
probability that 3 | m is 1

3
(and same for 3 | n). Thus, each term in the

product is just the probability that a prime p does not divide both m and
n. Multiplying over all primes p gives us the probability that m,n have no
common factors, i.e. that m and n are relatively prime, or gcd(m,n) = 1.
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The Riemann zeta function has a non-series definition, given by

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) ζ(1− s)

where

Γ(z) =

∫ ∞
0

tz−1e−t dt

is the so-called Gamma function that analytically extends the factorial
function to the complex plane. This is what allows us to think of ζ(s)
as a function over the whole complex plane (except s = 1). Notice that
ζ(−2k) = 0 for any k ∈ N, since the sin term vanishes; these are the
so-called trivial zeros of the ζ function. The famous Riemann hypothesis
asserts that

<z =
1

2
∀ζ(z) = 0 nontrivial

This problem is famously unsolved (and is worth quite a bit of fame and
money), and it is generally believed to be true; in fact, “modern computer
calculations have shown that the first 10 trillion zeros lie on the critical
line,” (according to Wikipedia) although this is certainly not a proof,
and some have even pointed to Skewes’ number (an astronomically huge
number that served as an upper bound for some proof) as an example
of phenomena occurring beyond the scope of current computing power.
The bottom line is that this is closely related to the distribution of prime
numbers in N. Riemann’s original explicit formula involves defining the
function

f(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + · · ·

where π(x) is the number of primes less than x. If we can find f(x), then
we can recover

π(x) = f(x)− 1

2
f(x1/2)− 1

3
f(x1/3)− · · ·

Riemann’s huge result is that

f(x) = Li(x)−
∑
ρ

Li(xρ)− log(2) +

∫ ∞
x

dt

t(t2 − 1) log(t)

where Li(x) is the logarithmic integral function

Li(x) =

∫ x

0

dx

log(x)

and the sum
∑
ρ is over the nontrivial zeros of ζ(s). There are a number

of results that have been shown to be true after assuming the hypothesis,
and there are a variety of conditions that have been shown to be equivalent
to the hypothesis. From Wikipedia: “In particular the error term in the
prime number theorem is closely related to the position of the zeros; for
example, the supremum of real parts of the zeros is the infimum of numbers
β such that the error is O(xβ).” An interesting equivalency is that “ζ has
only simple zeros on the critical line is equivalent to its derivative having
no zeros on the critical line.” Also from Wikipedia: ”Patterson (1988)
suggests that the most compelling reason for the Riemann hypothesis for
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most mathematicians is the hope that primes are distributed as regularly
as possible.” and ”The proof of the Riemann hypothesis for varieties over
finite fields by Deligne (1974) is possibly the single strongest theoretical
reason in favor of the Riemann hypothesis.”

It’s also possible that Riemann initially made the conjecture with the
hopes of proving the Prime Number Theorem.

Theorem 8 (Prime Number Theorem). Let π(x) = |{p < x}|. Then

lim
x→∞

π(x)

x/ log x
= 1

We also know that

lim
x→∞

π(x)

x
= 0

so that there are “infinitely many less primes than composite integers,”
which gives some heuristic credence to the result above regarding the
(relatively high) probability that 2 random integers are relatively prime.

This area is incredibly rich, deep, diverse and mathematically stimu-
lating, but most of it is way behind what we have time to discuss here.
It’s about time that we move on and race through a bunch of other proofs
of Euler’s original result.

At least, while we’re on the tangential topic of complex analysis, let’s
do a complex proof, i.e. use the calculus of residues. We’ll make use of
the following ideas. We will frequently use Euler’s formula

exp(iθ) = cos(θ) + i sin(θ)

which also allows us to define, for z ∈ C,

sin z =
exp(iz)− exp(−iz)

2i
cos(z) =

exp(iz) + exp(−iz)
2

Definition 9. Suppose U ⊆ C is open and ∃a such that f is holomorphic
over U \ {a}. If ∃g : U → C holomorphic and a positive integer n such
that

f(z) =
g(z)

(z − a)n
∀z ∈ U \ {a}

then a is called a pole of order n. A pole of order 1 is called a simple
pole.

Definition 10. For a meromorphic function f with pole a, the residue
of f at a, denoted by Res(f, a), is defined to be the unique value R such
that f(z) − R

z−a has an analytic antiderivative in some punctured disk
0 < |z − a| < δ. For a simple pole, we can use the formula

Res(f, c) = lim
z→c

(z − c)f(z).

An alternative definition is to use the Laurent expansion about z = a

f(z) =

+∞∑
n=−∞

an(z − a)n

7



If f has an isolated singularity at z = a, then the coefficient a−1 =
Res(f, a). Finally, the definition we will likely use is as follows: Sup-
pose f has a pole of order m at z = a and put g(z) = (z − a)mf(z);
then

Res(f ; a) =
1

(m− 1)!
g(m−1)(a)

Theorem 11 (Residue theorem). Assume f is analytic except for singu-
larities at zj, and that C is a closed, piecewise smooth curve. Then

1

2πi

∫
C

f(z) dz =

k∑
j=1

Res(f, zj)

Now, we’re ready for proof number 2!

Proof #2, complex analysis textbook. Define the function

f(z) = πz−2 cot(πz)

so the function has poles at z ∈ Z. The pole at 0 is of order 3 because

z3f(z) =
πz

sin(πz)
cos(πz)→ 1 as z → 0

and the poles at z = n ∈ Z are simple (of order 1) because

(z − n)f(z) =
π(z − n)

sin(πz)
· cos(πz)

z2
→ ±1 · ± 1

n2
=

1

n2
as z → n

So to evaluate Res(f ;n) for n ∈ Z, we simply need to apply the limit
definition from above, which we just evaluated, to obtain 1

n2 . It takes
much more work to find Res(f ; 0); we need to consider

g(z) = πz cot(πz)

and evaluate
1

2
lim
z→0

g′′(z)

We find

g′(z) = π cot(πz)− π2z csc2(πz)

g′′(z) = −2π2 csc2(πz) + 2π3z csc2(πz) cot(πz)
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and then we can evaluate

lim
z→0

g′′(z) = lim
z→0
−2π2 csc2(πz) + 2π3z csc2(πz) cot(πz)

= 2π2 lim
z→0

πz cot(πz)− 1

sin2(πz)
L’H

= 2π2 lim
z→0

π cot(πz)− π2z csc2(πz)

2π sin(πz) cos(πz)

= π2 lim
z→0

cos(πz) sin(πz)− πz
sin3(πz) cos(πz)

L’H

= π2 lim
z→0

cos2(πz)− sin2(πz)− 1

3 sin2(πz) cos2(πz)− sin4(πz)
L’H

= π2 lim
z→0

−2 cos(πz) sin(πz)

3 sin(πz) cos3(πz)− 5 sin3(πz) cos(πz)
L’H

= π2 lim
z→0

−2 cos2(πz) + 2 sin2(πz)

3 cos4(πz) + p(sin(πz))
= −2π2

3

and so Res(f ; 0) = −π
2

3
. Now, let N ∈ N and take CN to be the square

with vertices (±1 ± i)(N + 1
2
). By the residue integral theorem, we can

say

−π
2

3
+ 2

N∑
n=1

1

n2
=

1

2πi

∫
CN

f(z) dz =: IN

The goal now is to show IN → 0 as N → ∞. The trick is to bound the
quantity | cot(πz)|2 on the edges of the rectangle. Consider πz = x + iy.
Then we can use the identities

sin(x+ iy) = sinx cosh y + i cosx sinh y

and
cos(x+ iy) = cosx cosh y − i sinx sinh y

(which one can verify easily) to write

| cot(πz)|2 =

∣∣∣∣cos(x+ iy)

sin(x+ iy)

∣∣∣∣2 =

∣∣∣∣cosx cosh y − i sinx sinh y

sinx cosh y + i cosx sinh y

∣∣∣∣2
=

∣∣∣∣ sinx cosx− i sinh y cosh y

sin2 x cosh2 y + cos2 x sinh2 y

∣∣∣∣2
=

sin2 x cos2 x+ sinh2 y cosh2 y

(sin2 x cosh2 y + cos2 x sinh2 y)2

= · · · = cos2 x+ sinh2 y

sin2 x+ sinh2 y

Thus, if z lies on the vertical edges of CN then x = <(πz) = ±π 2N+1
2

so

| cot(πz)|2 =
sinh2 y

1 + sinh2 y
< 1

and if z lies on the horizontal edges of CN then y = =(πz) = ±π 2N+1
2

=: k
so

| cot(πz)|2 ≤ 1 + sinh2 k

sinh2 k
= coth2 k ≤ coth2

(π
2

)
=: K2 > 1
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since coth is a monotone decreasing function on (0,∞). So far any z on
the rectangle CN , we know

|f(z)| = π

|z|2 | cot(πz)| ≤ πK ·
(

2

2N + 1

)2

Since the lengths of the edges of CN is L = 4(2N + 1), then we can say

|IN | ≤
1

2π
· 4(2N + 1) · πK ·

(
2

2N + 1

)2

=
8K

2N + 1
→ 0

as n→∞. Therefore,

−π
2

3
+ 2 lim

N→∞

N∑
n=1

1

n2
= 0⇒ ζ(2) =

π2

6

A similar consideration of the infinite series for cot(πz) allows us to
conclude ζ(2k) for all values of k. Specifically, we have

1 +

∞∑
k=1

(−1)k
22k

(2k)!
π2kB2kz

2k = πz cot(πz) = 1− 2

∞∑
k=1

(
∞∑
n=1

1

n2k

)
z2k

where Bn are the Bernoulli numbers given by the nice linear relations

2B1 + 1 = 0

3B2 + 3B1 + 1 = 0

4B3 + 6B2 + 4B1 + 1 = 0

5B4 + 10B3 + 10B2 + 5B1 + 1 = 0

...

This tells us

ζ(2) =
π2

6
ζ(4) =

π4

90
ζ(6) =

π6

945
ζ(8) =

π8

9450
ζ(10) =

π10

35 · 5 · 7 · 11

Okay, so that’s enough complex analysis. Let’s do some good old
”calculusy” proofs.

Proof #3, Apostol (1983). This is taken from an article in the Mathemat-
ical Intelligencer. First, observe that∫ 1

0

∫ 1

0

xn−1yn−1 dx dy =

∫ 1

0

xn−1 dx ·
∫ 1

0

yn−1 dy =
1

n2

Now, we sum over all n and apply the monotone convergence theorem to
say

∞∑
n=1

1

n2
=

∫ 1

0

∫ 1

0

∞∑
n=1

(xy)n−1 dx dy =

∫ 1

0

∫ 1

0

1

1− xy dx dy
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Our goal now is to evaluate this integral. There are issues with the x-
and y-axes, so we transform this unit rectangle into a different rectangle
in the uv-plane. Specifically, let

u =
x+ y

2
v =
−x+ y

2
⇐⇒ x = u− v y = u+ v

which transforms the square into the square with vertices (0, 0) and (1/2,−1/2)
and (1, 0) and (1/2, 1/2), in order. Notice that

1

1− xy =
1

1− (u2 − v2)
=

1

1− u2 + v2

and we have the Jacobian

J =

[
1 −1
1 1

]
⇒ | det J | = 2

Also, since we have symmetry across the u-axis, we can write (recognizing
the arctan derivative in the integrands, from Calc II)

ζ(2) = 2

∫ 1/2

0

∫ u

0

2 dv du

1− u2 + v2
+ 2

∫ 1

1/2

∫ 1−u

0

2 dv du

1− u2 + v2

= 4

∫ 1/2

0

1√
1− u2

[
arctan

(
v√

1− u2

)]v=u
v=0

du

+ 4

∫ 1

1/2

1√
1− u2

[
arctan

(
v√

1− u2

)]v=1−u

v=0

du

= 4

∫ 1/2

0

1√
1− u2

arctan

(
u√

1− u2

)
du

+ 4

∫ 1

1/2

1√
1− u2

arctan

(
1− u√
1− u2

)
du

since arctan 0 = 0. We now want to replace the arctan expressions above
with simpler stuff. Set up the right triangle with angle φ and bases
u,
√

1− u2 and hypotenuse 1, and we see that

arctan

(
u√

1− u2

)
= arcsinu

Next, we see that

θ = arctan

(
1− u√
1− u2

)
⇒ tan2 θ =

1− u
1 + u

and using the identity tan2 θ + 1 = sec2 θ, we have

sec2 θ = 1 +
1− u
1 + u

=
2

1 + u
⇒ u = 2 cos2 θ − 1 = cos(2θ)

Rearranging for θ yields

θ =
1

2
arccosu =

π

4
− 1

2
arcsinu

11



and this is an expression that will be helpful in the integral above. We
can now straightforwardly evaluate

ζ(2) = 4

∫ 1/2

0

arcsinu√
1− u2

du+ 4

∫ 1

1/2

π/4√
1− u2

−
1
2

arcsinu
√

1− u2
du

= [2 arcsin2 u]
1/2
0 + [π arcsinu− arcsin2 u]11/2

= 2
(π

6

)2
− 0 + π · π

2
−
(π

2

)2
− π · π

6
+
(π

6

)2
=
π2

18
+
π2

2
− π2

4
− π2

6
+
π2

36
=
π2

6

Proof #3b, Calabi, Beukers, Kock. This is very similar to the previous
proof. Start by observing that∫ 1

0

∫ 1

0

x2my2m dx dy =
1

(2m+ 1)2
n ≥ 0

and then sum, applying the monotone convergence theorem, to get

∞∑
m=0

1

(2m+ 1)2
=

∫ 1

0

∫ 1

0

1

1− x2y2 dx dy

Make the substitution

x =
sinu

cos v
y =

sin v

cosu

so that

u = arctan

(
x

√
1− y2
1− x2

)
v = arctan

(√
1− x2
1− y2

)

(One can check that this actually works.) This gives us the Jacobian
matrix

J =

[
cosu
cos v

sinu sin v
cos2 v

sinu sin v
cos2 u

cos v
cosu

]
and so, magically,

|det J | = 1− sin2 u sin2 v

cos2 u cos2 v
= 1− x2y2

which eliminates everything in the integrand. Now, the unit square is
transformed to the triangular region

A =
{

(u, v) : u, v > 0 and u+ v <
π

2

}

12



which has area π2

8
. It only remains to observe that

∞∑
m=0

1

(2m+ 1)2
= 1 +

1

9
+

1

25
+

1

49
+ · · ·

=

(
1 +

1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+

1

64
+ · · ·

)
−
(

1

4
+

1

16
+

1

36
+

1

64
+ · · ·

)
= ζ(2)− 1

4
ζ(2) =

3

4
ζ(2)

So we’ve shown 3
4
ζ(2) = π2

8
⇐⇒ ζ(2) = π2

6
.

Proof #4, Fourier analysis textbook. Consider the Hilbert space

X = L2[0, 1] =

{
f : [0, 1]→ C :

∫ 1

0

|f(x)|2 dx < +∞
}

with inner product

〈f, g〉 =

∫ 1

0

fg dx

One can prove that the set of functions {en}n∈Z given by

en(x) = exp(2πinx) = cos(2πnx) + i sin(2πnx)

form a complete orthonormal set in X; that is,

〈em, en〉 =

∫ 1

0

em(x)en(x) dx = 0 ∀m 6= n

and ‖en‖2 = 〈en, en〉 = 1 ∀n. Note that this uses the fact that

exp(2πinx) = exp(−2πinx)

Basically, {en} is a “basis” for X, in some sense. This allows us to apply
Parseval’s formula, which says that

〈f, f〉 = ‖f‖2 =
∑
n∈Z

|〈f, en〉|2

In a Hilbert space, this formula is equivalent to being a complete orthonor-
mal set (also called an orthonormal basis). The trick now is to apply this
formula to the simple function f(x) = x ∈ X. It’s easy to see that

〈f, f〉 =

∫ 1

0

x2 dx =
1

3

and

〈f, e0〉 =

∫ 1

0

x dx =
1

2

Applying integration by parts, we can show that∫ 1

0

x exp(−2πinx) dx = − 1

2πin

13



This completes the brunt work of the proof, because now we apply Par-
seval’s formula to say

1

3
=

1

4
+
∑̂
n∈Z

1

4π2n2
⇒ 1

12
=

1

4π2
2ζ(2)⇒ ζ(2) =

π2

6

Remark 12. An essentially equivalent proof applies Parseval’s formula
to the function g = χ[0,1/2] and uses the equivalent formulation for 3

4
ζ(2)

we discussed above.

For the next proof, we’ll require DeMoivre’s Formula.

Lemma 13. For any z ∈ C and n ∈ Z,

(cos z + i sin z)n = cos(nz) + i sin(nz)

Proof. Follow’s directly from Euler’s formula (see above), or can be proven
easily by induction.

Proof #5, Apostol. This can be found in Apostol’s Mathematical Analy-
sis. Note that for 0 < x < π

2
the following inequalities hold

sinx < x < tanx ⇒ cot2 x <
1

x2
< csc2 x = 1 + cot2 x

Let n,N ∈ N with 1 ≤ n ≤ N . Then 0 < nπ
2N+1

< π
2

, so

cot2
(

nπ

2N + 1

)
<

(2N + 1)2

n2π2
< 1 + cot2

(
nπ

2N + 1

)
and multiplying everything by π2

(2N+1)2
and summing from n = 1 to n = N

yields

π2

(2N + 1)2
AN <

N∑
n=1

1

n2
<

Nπ2

(2N + 1)2
+

π2

(2N + 1)2
AN

where

AN =

N∑
n=1

cot2
(

nπ

2N + 1

)
We now claim that

lim
N→∞

AN
N2

=
2

3

Before proving this claim, notice that this finishes the proof. Taking
N →∞ in the two way inequality above, we obtain

π2

4
· 2

3
≤ ζ(2) ≤ 0 +

π2

4
· 2

3
⇒ ζ(2) =

π2

6

Now, to prove the claim, take 1 ≤ n ≤ N as before and let

θ =
nπ

2N + 1
⇒ sin ((2N + 1)θ) = 0 , sin θ 6= 0

14



By DeMoivre’s Formula,

sin((2N + 1)θ) = =
[
(cos θ + i sin θ)2N+1

]
Now, if we think of actually expanding the 2N + 1 copies in the product
on the right in the line above, then we can see that

sin((2N + 1)θ) =

N∑
k=0

(−1)k
(

2N + 1

2N − 2k

)
cos2N−2k θ · sin2k+1 θ

where k = 0 corresponds to one factor of i sin θ and the rest cos θ, k = 1
corresponds to 3 factors of i sin θ, etc. But we know this is 0, so we can
divide by the nonzero factor sin2N+1 θ and distribute this into the sum to
obtain

0 =

N∑
k=0

(−1)k
(

2N + 1

2N − 2k

)
cot2N−2k θ =: F (cot2 θ)

which is some polynomial in cot2 θ, where

F (x) = (2N + 1)xN −

(
2N + 1

3

)
xN−1 +

(
2N + 1

5

)
xN−2 − · · ·

+ (−1)N−1

(
2N + 1

2

)
x+ (−1)N

From above, we know that the roots x such that F (x) = 0 are precisely
cot2 θ for 1 ≤ n ≤ N . It is a well-known result that

∑
rn = −an−1

an
for

the roots rn of any polynomial. This tells us

AN =
(2N + 1)!

(2N − 2)!3!(2N + 1)
=
N(2N − 1)

3
⇒ AN

N2
→ 2

3

as N →∞.

The next proof is rather slick and should be mentioned, although I
won’t go through the calculations at all.

Proof #6, Fourier analysis. If f is continuous, of bounded variation on
[0, 1], and f(0) = f(1), then the Fourier series of f converges to f point-
wise. Using the function f(x) = x(1 − x), we can calculate the Fourier
coefficients to get

x(1− x) =
1

6
−
∞∑
n=1

cos(2πnx)

π2n2

Let x = 0 and we get ζ(2) = π2

6
immediately. Also, letting x = 1

2
gives

us the interesting, and related, result

π2

12
=

∞∑
n=1

(−1)n+1 1

n2
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Here we list a sketch of the big ideas behind some other known proofs.

Proof #7, Boo Rim Choe. Taken from a note by Boo Rim Choe in the
American Mathematical Monthly in 1987. Use the power series for arcsin:

arcsinx =

∞∑
n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
· x

2n+1

2n+ 1

which is valid for |x| ≤ 1. Let x = sin t and apply the integral formula∫ π
2

0

sin2n+1 x dx =
2 · 4 · · · (2n)

3 · 5 · · · (2n+ 1)

to get the 3
4
ζ(2) formulation, as before.

Proof #8. The series

f(t) =

∞∑
n=1

cos(nt)

n2

is uniformly convergent on R. With some complex (i.e. imaginary num-
bers) calculus, we can show that

g(t) =

∞∑
n=1

sin(nt)

n

is uniformly convergent on [ε, 2π − ε], by Dirichlet’s test. Then for t ∈
(0, 2π), we have

f ′(t) = −g(t) =
t− π

2

Apply the FTC from t = 0 to t = π to the function f ′(t).

Proof #9, Matsuoka. Found in American Mathematical Monthly, 1961.
Consider

In =

∫ π/2

0

cos2n x dx

and

Jn =

∫ π/2

0

x2 cos2n x dx

A well-known reduction formula says

In =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
· π

2

and applying integration by parts to In and simplifying yields the relation

π

4n2
=

4n−1(n− 1)!2

(2n− 2)!
Jn−1 −

4nn!2

(2n)!
Jn

Add this from n = 1 to n = N and then one just needs to show that

lim
N→∞

4NN !2

(2N)!
JN = 0

which is accomplished by bounding JN above by the difference π2

4
(IN −

IN+1).
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Proof #10. Consider the “well-known” identity for the Fejer kernel

f(x) :=

(
sin(nx/2)

sin(x/2)

)2

= n+ 2

n∑
k=1

(n− k) cos(kx)

Integrate ∫ π

0

xf(x) dx

to obtain some series. Let n→∞.

Proof #11. Start with Gregory’s formula

π

4
=

∞∑
n=0

(−1)n

2n+ 1

and square both sides “carefully.” This is an exercise in Borwein & Bor-
wein’s Pi and the AGM (Wiley, 1987).

Proof #12. Let r(n) be the number of representations of a positive integer
n as a sum of four squares. Then

r(n) = 8
∑

m|n,4 6|m

m

Let R(N) =
∑N
n=0 r(n). Then R(N) is asymptotic to the volume of the

4-dimensional ball of radius
√
N ; i.e. R(N) ∼ π2

2
N2. Use r(n) to relate

this to ζ.
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