
May 7, 2010 9:29 0218-348X S0218348X10004804

Fractals, Vol. 18, No. 2 (2010) 145–155
c© World Scientific Publishing Company
DOI: 10.1142/S0218348X10004804

Articles

HIGHER BLOCK IFS 1: MEMORY REDUCTION
AND DIMENSION COMPUTATIONS

RICHARD BEDIENT,∗ MICHAEL FRAME,‡,§ KEITH GROSS,∗

JENNIFER LANSKI and BRENDAN SULLIVAN†
∗Mathematics Department, Hamilton College

Clinton, NY 13323,USA
†Mathematics Department, Carnegie Mellon University

Pittsburgh, PA 15213, USA
‡Mathematics Department, Yale University

10 Hillhouse Ave., P. O. Box 208283
New Haven, CT 06520-8283, USA

§michael.frame@yale.edu

Received June 17, 2009
Accepted September 28, 2009

Abstract
By applying a result from the theory of subshifts of finite type,1 we generalize the result of
Frame and Lanski2 to IFS with multistep memory. Specifically, we show that for an IFS I
with m-step memory, there is an IFS with 1-step memory (though in general with many more
transformations than I) having the same attractor as I.

Keywords : Iterated Function System; Subshift of Finite Type; Higher Block Shift.

1. INTRODUCTION: IFS AND
MEMORY

Recall the standard formulation for an iterated
function system (IFS).3,4 Given contraction maps

T1, . . . , Tn : R
2 → R

2, define a function T :
C(R2) → C(R2), the compact subsets of R

2, by
T (B) = ∪n

i=1{Ti(x) : x ∈ B}. In the Hausdorff
metric h on C(R2),T is a contraction map. Because

§Corresponding author. Partially supported by NSF DMS 0203203.

145

http://dx.doi.org/10.1142/S0218348X10004804

May 7, 2010 9:29 0218-348X
S0218348X10004804

146 R. Bedient et al.

C(R2) is complete in h, for any B ∈ C(R2) the
sequence T (B),T 2(B),T 3(B), . . . converges to a
unique A ∈ C(R2), the attractor of the IFS T .
The set A is characterized by T (A) = A. In this
formulation, note that the transformations Ti are
applied in all combinations: T (B) = ∪n

i=1Ti(B),
T 2(B) = ∪n

j=1∪n
i=1Tj(Ti(B)), and so on. Thus we

could call this an unrestricted or memoryless IFS.
We say an IFS has memory if some compositions

of the Ti are forbidden. This notion has a fairly long
history (for any topic in the field of fractals) and a
substantial literature. Versions of this construction
are called graph-directed, recurrent, hierarchcal, and
Markov IFS. See Refs. 3, 5–17, for example. Distinc-
tions between these types of IFS with memory can
be found in Ref. 18.

An example is given in Sec. 2, but the mean-
ing should be clear when we say an IFS has 1-step
memory if certain pairs Ti ◦ Tj are forbidden. This
information can be encoded in a transition matrix
M = [mij], where mij = 0 if Ti ◦ Tj is forbid-
den, and mij = 1 if Ti ◦ Tj is allowed. Note that
if Ti2 ◦Ti1 is forbidden, so also is every composition
Tjk

◦ · · · ◦ Tj1, where i2 and i1 are two consecutive
indices in jk, . . . , j1.

An IFS has 2-step memory if (perhaps some pairs
are forbidden and) some compositions Ti3 ◦Ti2 ◦ Ti1

are forbidden, where the triple i3i2i1 does not con-
tain a forbidden pair.

An IFS has m-step memory if it is determined
by specifying forbidden combinations up through
length m+1, and least one forbidden (m+1)-tuple
does not contain a forbidden j-tuple for 1 ≤ j ≤ m.
Call an IFS with m-step memory an m-IFS. A stan-
dard IFS (without memory) is called a 0-IFS.

We represent the composition Tim ◦ · · · ◦ Ti1 by
the m-string im · · · i1, called the label of the compo-
sition, and also by the sequence of transitions

i1 → · · · → im.

Note the presented order of the string agrees with
that of the composition and of the transition
sequence, taking note of the directions of the arrows
in the sequence.

Early work on IFS with memory included com-
puting the Hausdorff dimension of the attractor
A.17 Taking rj to be the contraction factor of the
similarities Tj, the Hausdorff dimension of A is the
unique d for which the spectral radius of M(d) =
[mijr

d
j] equals 1. Recall the spectral radius ρ of a

matrix M is

ρ(M) = max{|λi| : where λi is an eigenvalue of M}.

That is, the dimension is given by

ρ[mijr
d
j] = 1. (1)

Because the matrix M(d) is non-negative, the
Perron-Frobenius theorem guarantees this maxi-
mum is achieved by a real eigenvalue. This formula
generalizes the Moran equation

∑n
i=1 rd

i = 1 for
the dimension of IFS without memory. This was
extended further to random constructions in Refs. 8
and 16. Replacing mijr

d
j by pq

ijr
β(q)
j , where pij is the

probability that the composition Ti ◦Tj occurs, and
q is a parameter ranging over R, the f(α) curve is
obtained by the Legendre transform of β(q) gotten
by solving ρ[pq

ijr
β(q)
i] = 1. See Refs. 10 and 12.

Applications of IFS with memory include com-
pressing images,19 developing variants of the chaos
game approach to visualizing DNA sequences20,21

to distinguish introns from exons5 and to trace evo-
lutionary relations of species,22 analyzing nonlinear
time series,23 and defining Laplacians on fractals
generated by IFS with memory.11,24

In Frame and Lanski2 we investigated the circum-
stances under which the attractor of a 1-IFS could
be realized as the attractor of a 0-IFS. The solution
can be expressed neatly in the language of directed
graphs. Associate each Ti with a node of the graph,
and place an edge from i to j if Tj can follow Ti,
that is, if the transition i → j is allowed. A node i
is called a rome if for every j there is an edge j → i.
In Ref. 2, we called this a full state, being unaware
of the sensible use of the word “rome” in this con-
text. Doug Lind mentioned this language to us, but
because this was in a conversation, we thought the
word was “roam.” Some confusing, though enter-
taining, Google searches resulted.

The main result of Ref. 2 is that a 1-IFS attractor
can be realized as the attractor of a 0-IFS if and
only if

(1) the 1-IFS graph has at least one rome, and
(2) there is a path to each non-rome from a rome.

Moreover, among those that can be realized as
attractors of 0-IFS, this IFS requires infinitely may
transformations if and only if the graph contains a
cycle through non-rome nodes. Unknown to us at
the time, our theorem answered a question posed
in Layman and Womack.13 An algorithm for find-
ing a 0-IFS representation for a 1-IFS with a rome
is presented in Máté.15 All compositions of trans-
formations containing a single rome in the terminal
position suffice.

May 7, 2010 9:29 0218-348X
S0218348X10004804

Higher Block IFS 1: Memory Reduction and Dimension Computations 147

Our purpose here is to investigate what addi-
tional complications arise if we add more steps to
the memory of the IFS. The existence of memory
reduction is a straightforward adaptation of a result
on subshifts of finite type. Other relations between
IFS with different levels of memory can be more
nuanced.

2. BASIC CONCEPTS AND SOME
ILLUSTRATIVE EXAMPLES

We build most IFS from four transformations,
I = {T1, T2, T3, T4}, where

T1(x, y) =
(

x

2
,
y

2

)
+ (0, 0),

T2(x, y) =
(

x

2
,
y

2

)
+

(
1
2
, 0

)
,

T3(x, y) =
(

x

2
,
y

2

)
+

(
0,

1
2

)
,

T4(x, y) =
(

x

2
,
y

2

)
+

(
1
2
,
1
2

)
.

(2)

As a 0-IFS, these transformations produce the
filled-in unit square S.

Transformations (2) divide S into subsquares
with addresses determined by the appropriate com-
positions. For example, the 2−n × 2−n subsquare

Sin···i1 = Tin ◦ · · · ◦ Ti1(S)

has address in · · · i1. Note the order of indices of the
address agrees with the order of the composition of
transformations, and observe

Siq ⊃ Siqiq−1 ⊃ · · · ⊃ Siq···i1 . (3)

Figure 1 illustrates Eq. (3). Note S2 ⊃ S23, for
example.

Forbidding certain combinations of transforma-
tions gives rise to IFS with memory. For an IFS
with tansformations T1, . . . , Tm, the alphabet A is
{1, . . . ,m}. For most of our examples, m = 4. Sup-
pose F is a finite collection of strings from this

1 2

3 4

21 22

23 24

Fig. 1 An illustration of addresses.

alphabet. Say the longest string in F has length
n+1. The n-IFS determined by F forbids the com-
positions Tiq ◦ · · · ◦ Ti1 where iq · · · i1 ∈ F . The set
of all forbidden strings is the set of all strings on A
that contain an element of F as a substring. We say
F generates the collection of all forbidden strings.

The indexing of the n-IFS is meant to indicate
that forbidden pairs are determined by 1-step mem-
ory, forbidden triples by 2-step memory, and so on.

If A is the attractor of an IFS with memory based
on transformations (2), then Ain···i1 = A∩Sin···i1 is
the address in · · · i1 region of the attractor.

Example 2.1. 1-IFS with F1 = {14, 23, 32}

The regions A14, A23, and A32 are empty, as is every
region with address containing 14, 23, or 32. See the
left side of Fig. 2. Note boxes indicating the length
3 address regions are included.

Example 2.2. 2-IFS with F2 = {14, 23, 32, 441}

The regions A14, A23, A32, and A441 are empty, as is
every region with address containing 14, 23, 32, or
441. See the right side of Fig. 2. The most obvious
difference between the left and right sides of Fig. 2
lies in address 441, but this implies other differ-
ences. Consider 344 and 244, for example.

Denote by I(F) the attractor of the IFS I with
forbidden strings F . We say F is a generating set for
the attractor. Suppose the longest string in F has
length n. Then there is a set F ′ with all strings hav-
ing length n and I(F) = I(F ′). This is most easily
seen through an example. Take A = {1, 2, 3, 4} and

F = {11, 123}. Then

F ′ = {111, 112, 113, 114, 123}.

In terms of addresses, every element iq · · · i1 of F
determines the region Aiq···i1 of the attractor having
address iq · · · i1. If q < n, we replace iq · · · i1 with

Fig. 2 Attractors for Example 2.1 (left) and Example 2.2
(right).

May 7, 2010 9:29 0218-348X
S0218348X10004804

148 R. Bedient et al.

the 4n−q sequences iq · · · i1jn−q · · · j1 where each jk

takes on all four values 1, 2, 3, 4.
This observation suggests a generalization, relat-

ing forbidden addresses to longer addresses contain-
ing them. Because int(Ain···i1) can be empty even
though int(Sin···i1) ∩ A �= ∅, we define the sense in
which we call the region Aiq ···i1 empty.

To avoid some additional special cases of little
interest, we assume

A ∩ int(S) �= ∅. (4)

IFS for which (4) fails are left as exercises.

Definition 2.1. The region Aiq ···i1 is empty if A ∩
int(Siq···i1) = ∅.

Lemma 2.1. The region Aiq···i1 is empty if and
only if the address iq · · · i1 is forbidden.

Proof. If iq · · · i1 is forbidden, then Tiq ◦ · · · ◦ Ti1

cannot be applied. If there were some x ∈ A ∩
int(Siq···i1), then

x = Tiq ◦ · · · ◦ Ti1(y) (5)

for some y ∈ int(S). Because x ∈ int(Siq···i1), we
have x �= Tkp ◦· · · ◦Tk1(z) and so (5) is the only way
A could contain such an x. We see this is impossible
because that composition is forbidden.

Now suppose A∩ int(Siq ···i1) = ∅. If Tiq ◦ · · · ◦ Ti1

were allowed, then the invariance of A under the
allowed compositions of the Ti would show A ⊃
Tiq ◦ · · · ◦ Ti1(A). Then by condition (4),

Tiq ◦ · · · ◦ Ti1(A) ∩ Tiq ◦ · · · ◦ Ti1(S) �= ∅
contradicting A ∩ int(Siq ···i1) = ∅.

Lemma 2.2. If iq · · · i1 is a forbidden address, so
is ja · · · j1iq · · · i1kb · · · k1 for all a ≥ 0 and b ≥ 0.

Proof. If iq · · · i1 is a forbidden address, then
Aiq ···i1 is empty. By Eq. (3),

Aiq···i1 ⊃ Aiq ···i1kb···k1

so Aiq ···i1kb···k1 = ∅ and iq · · · i1kb · · · k1 is a forbid-
den address by Lemma 2.1.

Next,

Aja···j1iq···i1kb···k1 = Tja ◦ · · · ◦ Tj1(Aiq ···i1kb···k1)

If there were some x ∈ A ∩ int(Sja···j1iq ···i1kb···k1),
then x = Tja ◦ · · · ◦ Tj1(y) for some y ∈ A ∩
int(Siq···i1kb···k1), but there is no such y. Applying
Lemma 2.1 again, ja · · · j1iq · · · i1kb · · · k1 is a for-
bidden address.

By a substring of iq · · · i1 we mean any jm · · · j1

for which

iq · · · i1 = pa · · · p1jm · · · j1qb · · · q1

where we allow a = 0 or b = 0. A simple conse-
quence of Lemmas 2.1 and 2.2 is the following

Corollary 2.1. The region Aiq ···i1 is empty if and
only if some substring of iq · · · i1 belongs to some F
determining this IFS.

If Tin ◦· · ·◦Ti1 is forbidden, then we can conclude
int(Sin···i1) = ∅. We cannot conclude Sin···i1 = ∅,
because Sin···i1 shares edges with four other address
length n subsquares. If one of these has nonempty
interior, the common edge with Sin···i1 may be
nonempty.

For later use we need another observation about
edges.

Lemma 2.3. If int(Sin···i2∗) = ∅ for ∗ = 1, 2, 3, and
4, then int(Sin···i2) = ∅.

Proof. Because int(Sin···i2∗) = ∅, the four compo-
sitions Tin ◦ · · · ◦ Ti2 ◦ T∗ are forbidden. Then the
common edge of Sin···i21 and Sin···i22 is empty, as are
the other three common edges of the Sin···i2∗, and
so int(Sin···i2) = ∅.

Corollary 2.1 has a geometric characterization
that emphasizes Mandelbrot’s dictum “A fractal is
as easily described by what has been removed as by
what remains.” For an m-IFS with attractor A let

E(A) = {(in · · · i1) :

int(Sin···i1) ∩ A = ∅, 1 ≤ n < ∞}. (6)

Then Corollary 2.1 can be restated as

E(A) = {(in · · · i1) : a substring of in · · · i1
belongs to Fm+1},

where Fm+1 is a generating set of forbidden
sequences of the m-IFS.

If A is the attractor of an m-IFS and B is the
attractor of an n-IFS, both built from the transfor-
mations of Eq. (2), then certainly

A = B if and only if E(A) = E(B). (7)

3. REVIEW OF SUBSHIFTS OF
FINITE TYPE

An excellent reference for subshifts is Lind and
Marcus.1 Given a finite alphabet A, the full shift
on A is

X = AZ = {(· · · x−1x0x1 · · ·) : xi ∈ A}.

May 7, 2010 9:29 0218-348X
S0218348X10004804

Higher Block IFS 1: Memory Reduction and Dimension Computations 149

For any collection F of finite strings of symbols from
A, the shift space determined by F is XF , the ele-
ments of X containing no element of F . Of course,
XF can equal XG for different collections of finite
strings F and G. If F is a finite collection, then XF
is a subshift of finite type of the full shift X.

For example, take A = {1, 2, 3, 4} and F =
{41, 32, 23}. Certainly XF is a subshift of finite
type; the left side of Fig. 2 is a geometric realization
of this subshift using the transformations (2). Some
care is needed in reading these strings. Typically,
elements of a subshift are read left to right, while
strings of transformations in an IFS are read right
to left, consistent with the order of composition of
functions.

On the other hand, the set

Y = {x ∈ X : the block 122n1

does not occur in x, for any n}
is not a subshift of finite type: no finite set of for-
bidden strings specifies Y .

The notion of subshifts of finite type can be
refined: call a subshift Y N -step if Y = XF where
the longest strings in F have length = N + 1.

Given a (directed) graph G, the vertex shift of G
has alphabet AG = {vi : vi is a vertex of G} and is
defined by

X̂G = {· · · v1v0v1 · · · : for all i, vi ∈ AG

and G has an edge from vi to vi+1}.
Next we describe the subshift memory reduction

addressed in Sec. 2.3 of Ref. 1. Suppose X is a sub-
shift over the alphabet A. Denote by BN (X) the set
of all allowed strings of length N in X, and define

βN : X → (BN (X))Z

by

(βN (x))i = xixi+1 · · · xi+N−1,

where x = · · · x−1x0x1 · · ·. The Nth higher block
shift X [N] is defined by

X [N] = βN (X).

Proposition 2.3.9 of Ref. 1 shows that if X is an
N -step shift, then X [N] is a 1-step shift and there is
a graph G with X [N] = X̂G. The vertices of G are
the allowed strings of length N in X, and there is
an edge from vertex a1 · · · aN to vertex b1 · · · bN if
and only if

(1) a2 · · · aN = b1 · · · bN−1, and
(2) a1a2 · · · aN bN is an allowed string in X.

Note that X̂G has alphabet the vertices of G, that is,
the allowed length N strings of X. The forbidden
length 2 strings of X̂G are the pairs of length N
strings of X for which either of these two conditions
does not hold.

4. IFS MEMORY REDUCTION

Can the method given in Propositon 2.3.9 of Ref. 1
be applied to reduce every n-IFS to a 1-IFS? Con-
sider this example. The right side of Fig. 2 shows
the attractor of the 2-IFS I(F2) of Example 2.2.
Proposition 2.3.9 of Ref. 1 instructs us to convert
the 2-IFS I(F2) to the 2nd higher block IFS I [2](F2).
How is this done?

Example 4.1. Realizing a 2-IFS as a 1-IFS using
the 2nd higher block IFS.

The 2-IFS of Example 2.2 forbids three pairs, 14,
23, and 32, so the 2nd higher block IFS has trans-
formations J consisting of the 13 pairs allowed by
F2. That is,

Sk = Ti ◦ Tj,

where ij is the kth element of

V = {11, 12, 13, 21, 22, 24, 31, 33, 34, 41, 42, 43, 44}.
In constructing the transition matrix for I [2](F2),
recall the column index is the source of the edge,
the row index the target. Then to satisfy conditions
of Proposition 2.3.9 of Ref. 1, the matrix entry in
column ij and row km is 1 if and only if

(1) i = m, and
(2) kij is an allowed string.

With these conditions, the matrix is

M =




1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1




.

For example, the 0 in entry M13,10 (row 13 and col-
umn 10) results from forbidding the triple 441.

May 7, 2010 9:29 0218-348X
S0218348X10004804

150 R. Bedient et al.

Fig. 3 A graphical realization of the 2nd higher block IFS
of Example 4.1. Left: Incorrect compositions. Right: Correct
compositions.

Each vertex of the graph, and row and column
of the matrix, is indexed by a composition of two
transformations. For example v2 corresponds to 12,
i.e., T1 ◦T2, and v6 to T2 ◦T4. A first guess at imple-
menting the 1-IFS corresponding to the matrix M
would apply the composition T1◦T2◦T2◦T4 because
M2,6 = 1. Generating the image in this way gives
the picture on the left side of Fig. 3. This approach
is incorrect, because it fails to account for the over-
lap imposed by condition 1 of Proposition 2.3.9.
Taking this into account, M2,6 = 1 signals allowing
the composition T1 ◦ T2 ◦ T4. Interpreted this way,
we obtain the picture on the right side of Fig. 3.

We see the attractor of the 2-IFS I(F2) of Exam-
ple 2.2 is identical with that of the 1-IFS I [2](F2) =
J(F3) of Example 4.1, where F3 is the set of pairs pq
for which Mpq = 0. How general is this observation?

Suppose F is a collection of strings of length
n + 1, so I(F) is an n-IFS. The nth higher block
IFS I [n](F) has transformations

J = {Tin ◦ · · · ◦ Ti1 : in · · · i1j /∈ F
for at least one of j = 1, 2, 3, or 4}

The allowed transitions are Tin ◦ · · · ◦ Ti1 follows
Tjn ◦ · · · ◦ Tj1 if and only if

in−1 · · · i1 = jn · · · j2, and (8)

in · · · i1j1 /∈ F . (9)

Denoting by F ′ the forbidden pairs of transforma-
tions from J , we define

I [n](F) = J(F ′).

Note this method cannot be applied to the problem
of reducing a 1-IFS to a 0-IFS because the overlap
condition would be vacuous.

Conditions under which a 1-IFS has the same
attractor as a 0-IFS were derived in France and
Lanski.2 A consequence of Theorem 4.1 below is

that the only obstruction to IFS memory reduction
is contained in Ref. 2: for all n > 1, every n-IFS
has the same attractor as some 1-IFS with a finite
collection of transformations.

Theorem 4.1. The n-IFS I(F) and the 1-IFS
I [n](F) have the same attractor.

Proof. Denote by A1 the attractor of I(F), and by
An the attractor of I [n](F). Regions of A1 can be
given addresses that are I-strings, that is, strings
over I. Regions of An can be given addresses that
are J-strings, but comparisons of A1 and An are
easier if regions of An are given addresses that are
I-strings.

By Corollary 2.1, the region A1
iq ···i1 is empty if

and only if iq · · · i1 contains a substring jn+1 · · · j1 ∈
F . Then either

(1) for all k = 1, 2, 3, and 4, jn+1 · · · j2k ∈ F , or
(2) for some k = 1, 2, 3, or 4, jn+1 · · · j2k /∈ F .

In Case 1, Tjn+1 ◦ · · · ◦ Tj2 /∈ J and so An
jn+1···j2 is

empty. It follows that An
iq···i1 is empty, regardless of

whether or not all the length n substrings of iq · · · i1
belong to J , or if those with length n − 1 overlaps
are related by allowed J-transitions.

In Case 2, Tjn+1 ◦ · · · ◦ Tj2 ∈ J , but because
jn+1 · · · j1 ∈ F , An

jn+1···j1 is empty, regardless of
whether or not jn · · · j1 ∈ J . Arguing as in case
1, An

iq ···i1 is empty.
That is, every I-address empty in A1 also is

empty in An, so An ⊆ A1.
For the other containment, suppose the region

An
iq ···i1 is empty. Then either

(1) for some substring jn · · · j1 of iq · · · i1 we have
jn · · · j1k ∈ F for k = 1, 2, 3, and 4, or

(2) condition 1 fails for all length n substrings of
iq · · · i1, but a length n+1 substring kn+1 · · · k1

of iq · · · i1 is an element of F .

Condition 1 implies the composition Tjn ◦ · · · ◦ Tj1

is not an element of J ; condition 2 that Tkn+1 ◦ · · · ◦
Tk2 and Tkn ◦ · · · ◦ Tk1 are elements of J , but the
first cannot follow the second because of (9). (Note
the overlap condition (8) need not be considered,
because two length n substrings ia+n · · · ia+1 and
ia+n−1 · · · ia necessarily satisfy (8).) In both cases,
A1

iq ...i1
is empty. That is, every I address empty in

An also is empty in A1, so A1 ⊆ An.

Example 4.2. Realizing a 3-IFS as a 1-IFS using
the 3rd higher block IFS.

May 7, 2010 9:29 0218-348X
S0218348X10004804

Higher Block IFS 1: Memory Reduction and Dimension Computations 151

Fig. 4 A graphical realization of the 3rd higher block IFS
of Example 4.2. Arrows indicate the points of the attractor.

A 3rd higher bolck IFS could have as many as 43

transformations. To keep this example manageable,
we use a very simple 3-IFS, characterized by these
allowed strings

A = {1112, 1121, 1211, 2111}.

All other length 4 compositions are forbidden. The
attractor consists of the four points comprising the
4-cycle obtained by iterating T2 ◦ T1 ◦ T1 ◦ T1.
That is, the points (1/15, 0), (2/15, 0), (4/15, 0),
and (8/15, 0), having addresses (1112)∞, (1121)∞,
(1211)∞, and (2111)∞. See Fig. 4. The transfor-
mations of the 3rd higher block IFS consist of the
allowed triples

S1 = T1 ◦ T1 ◦ T1, S2 = T1 ◦ T1 ◦ T2,

S3 = T1 ◦ T2 ◦ T1, and S4 = T2 ◦ T1 ◦ T1.

The transition matrix, imposed by conditions (8)
and (9), is 


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

Figure 4 also shows the attractor of this 1-IFS.

Fig. 5 Attractors of the 2-IFS of Example 5.1 (left), the equivalent 1-IFS using the method of Sec. 4 (middle), and the
efficient equivalent 1-IFS (right).

5. OTHER WAYS TO REDUCE
MEMORY

The memory reduction from an n-IFS to a 1-IFS
given in Theorem 4.1 establishes the existence of a
solution of the memory reduction problem, but it
does not address the issue of classifying such reduc-
tions, or even the simpler problem of finding the
most efficient (in terms of fewest transformations)
memory reduction. In Fig. 5 we see the attractor of
the 2-IFS I(F) with

F = {22, 23, 32, 33, 43, 421}.

Because five compositions Ti ◦Tj are forbidden, the
1-IFS given by the construction of Sec. 4 has 16 −
5 = 11 transformations. Can we do better? That
is, can we find a 1-IFS with the same attractor and
fewer than 11 transformations?

Example 5.1. An efficient 1-IFS of Fig. 5.

The forbidden triple 421 is not a consequence of
any of the forbidden pairs of F . The first step is
to subdivide T4 and T2, obtaining a new set of ten
transformations

R1 = T1, R2 = T2 ◦ T1, R3 = T2 ◦ T2,

R4 = T2 ◦ T3, R5 = T2 ◦ T4,

R6 = T3, R7 = T4 ◦ T1, R8 = T4 ◦ T2,

R9 = T4 ◦ T3, R10 = T4 ◦ T4.

(10)

Some of these may be unnecessary, depending on
the forbidden pairs of Ti. For example, if T4 ◦
T3 is forbidden, then R9 can be dropped from
the Ri.

We find the pairs of Ri that are forbidden as
a consequence of the forbidden pairs and triples
of Ti. Because some Ri are compositions of two
Ti, to identify all the forbidden pairs of Ri,
we must consider superstrings of elements of F .

May 7, 2010 9:29 0218-348X
S0218348X10004804

152 R. Bedient et al.

Specifically,

∗22, 22∗, ∗23, 23∗, ∗32, 32∗, ∗33,

33∗, ∗43, 43∗, ∗421, 421∗, (11)

where ∗ stands for 1, 2, 3, and 4.
We explore ∗22 and 22∗ in detail, then state the

results for the other superstrings in (11). We use the
notation R−→ to indicate translating T strings (com-
positions of the Ti) to R strings, and a(j)T for the R
string a followed by the still untranslated T string j.
In these symbol strings we denote the 10 for R10

by X.

∗22 = 122, 222, 322, 422
R
−→ 13, 3(2)T , 63, 8(2)T

= 13, 32, 33, 34, 35, 63, 82, 83, 84, 85;

22∗ = 221, 222, 223, 224
R
−→ 31, 3(2)T , 36, 3(4)T

= 31, 32, 33, 34, 35, 36, 37, 38, 39, 3X

= 3.

Not surprisingly, forbidding the T string 22* forbids
the R transformation R3. Then this transformation
is not needed, and every forbidden string containing
3 can be deleted from the list of forbidden strings.

Some of these, *32 for example, include R string
of length 3 that are forbidden as conseqences of
length 2 forbidden R strings arising from other ele-
ments of (11). We list only the length 2 R strings.

∗32 R
−→ 42, 43, 44, 45, 92, 93, 94, 95

32∗ R
−→ 62, 63, 64, 65

∗23 R
−→ 14, 36, 64, 86 23∗ R

−→ 4

∗33 R
−→ 46, 96 33∗ R

−→ 66

∗43 R
−→ 19, 56, 69,X6 43∗ R

−→ 9

∗421 R
−→ 52,X2 421∗ R

−→ 81

Removing the length 2 R strings containing forbid-
den length 1 R strings, we obtain this 1-IFS

R1, R2, R5, R6, R7, R8, R10, (12)

with forbidden strings

52, 56, 62, 65, 66, 81, 82, 85, 86,X2,X6. (13)

Writing the transition matrix, we see the R
addresses 1, 2, and 7 are romes, and there are tran-
sitions to each nonrome from some rome, so addi-
tional reduction in the level of memory is possible.

This attractor can be realized as the attractor of
a 0-IFS, but because there are loops between non-
romes, 8 ↔ X, for example, the equivalent 0-IFS
requires infinitely many transformations.

Example 5.2. Another efficient 1-IFS equivalent
to a 2-IFS.

For another example, recall the right side of Fig. 2,
the attractor of the 2-IFS with forbidden strings

F2 = {14, 23, 32, 441}.

Because 441 does not contain any forbidden pair, to
forbid it as a pair, we must subdivide T4 into four
transformations. Call the new transformations Si:

S1 = T1, S2 = T2, S3 = T3, S4 = T4 ◦ T1,

S5 = T4 ◦ T2, S6 = T4 ◦ T3, S7 = T4 ◦ T4. (14)

Carrying out the analogous analysis, the forbidden
T strings *14, 41*, *23, 23*, *32, 32*, *441, 441*
translate into the forbidden R strings

14, 15, 16, 17, 23, 32, 44, 45, 46, 47, 53, 62, 71, 74.

The 1-IFS with these transformations and forbidden
pairs generates the attractor pictured in the right
side of Fig. 2.

While fairly straightforward, this construction is
tedious. A more compact and systematic method of
finding the efficient equivalent 1-IFS for a given 2-
IFS is given in the conjecture. First, two definitions.
The label i of a transformation is subdivided if in the
efficient equivalent IFS the transformation Ti must
be replaced by Ti ◦T1, Ti ◦T2, Ti ◦T3, and Ti ◦T4. A
forbidden composition in ◦ · · · ◦ i1 is primary if no
substring is forbidden.

Conjecture. Given a 2-IFS with forbidden strings
F , the equivalent efficient 1-IFS can be generated
by these steps.

(1) Remove all non-primary strings from F .
(2) For every ijk ∈ F , subdivide i and j. Say S

is the total number of subdivided labels. This
gives the initial efficient generating set of trans-
formations. Some of these may be removed in
the process of reducing the forbidden strings.

(3) Efficient reduction of a forbidden triple ijk.

(a) If k is subdivided, S + 4 addresses are
needed.

(b) If k is not subdivided, S + 1 addresses are
needed.

(4) Efficient reduction of a forbidden pair ij.

May 7, 2010 9:29 0218-348X
S0218348X10004804

Higher Block IFS 1: Memory Reduction and Dimension Computations 153

(a) If i is subdivided, then some generating
transformation maps to address ij, so this
transformation can be removed from the
generating set. However, some elements
still are necessary to forbid ∗ij.
(i) If j is subdivided, then 4S + 4 − S

addresses are needed.
(ii) If j is not subdivided, then 4 addresses

are needed.
(b) If i is not subdivided and j is subdivided,

then 4S + 4 addresses are needed.
(c) If neither i nor j are subdivided, then S +1

addresses are needed.
(5) Efficient reduction of a forbidden address i.

Remove Ti and all compositions including Ti

from the generating set of transformations;
remove every forbidden address that includes i.

As an illustration, we apply this method
to find the equivalent efficient IFS of Exam-
ple 5.1. First note that every element of F =
{22, 32, 23, 33, 43, 421} is a primary string. Next, the
forbidden string 421 requires we subdivide 4 and
2, obtaining the generating set R1, . . . , R10 of (10).
Note S = 2.

By 3(a), 421 gives rise to 3 forbidden pairs.
Because 2 and 4 are subdivided, *421 gives rise to
two pairs 2421T = 52R and 4421T = X2R, and 421*
gives rise to 81R.

Applying 4(a) to 22, 23, and 43, the R3 = T2 ◦T2,
R4 = T2 ◦ T3, and R9 = T4 ◦ T3 can be eliminated
from the generating set of transformations.

By 4(a)(i), 22 gives rise to 10 forbidden pairs.
The T string *22 gives the R strings 13, 32, 33, 34,
35, 63, 82, 83, 84, and 85. The T string 22* gives
the R strings 3*, the reason R3 is eliminated.

By 4(a)(ii), both 23 and 43 give rise to 4 forbid-
den pairs: the T string *23 gives the R strings 14,
36, 64, and 86; 23* gives 4; *43 gives 19, 56, 69, and
X6; 43* gives 9.

By 4(b), 32 gives rise to 12 forbidden pairs. From
*32, 232T produces T strings 2321, 2322, 2323, and
2324, hence R strings 42, 43, 44, and 45. Similarly,
432T gives R strings 92, 93, 94, and 95. The T
strings of 32* give the R strings 62, 63, 64, and 65.

By 4(c), 33 gives rise to 3 forbidden pairs.
From *33, the T strings 233 and 433 give the R
strings 46 and 96. The T strings 33* give the R
string 66.

Aggregating these results, the transformations
that remain are those of (12). Removing the for-
bidden strings that contain 3, 4, or 9 we obtain the
forbidden set (13).

The correctness of this conjecture, and its gen-
eralization to reductions of n-IFS to 1-IFS, will be
explored in Fiross et al.25

6. SOME DIMENSION
COMPUTATIONS

For 1-IFS the dimension of the attractor can be
computed by applying Eq. (1) using the transi-
tion matrix and scaling factors of the 1-IFS . With
Examples 4.1 and 5.1 we illustrate the computation
of the dimension of a 2-IFS attractor by applying
memory reduction and computing the dimension of
the attractor of the 1-IFS obtained.

In Example 4.1 we might expect we would replace
each 1 in the matrix M with (1/4)d because each
of the 13 transformations of I [2](F2) is a compo-
sition Ti ◦ Tj , so has contraction factor 1/4. This
ignores the overlap of the row and column indices.
For example, the 1 in M26 refers to T1 ◦ T2 follow-
ing T2 ◦ T4. Because of the overlap, this 1 allows
the composition T1 ◦ T2 ◦ T4. That is, in going from
T2 ◦T4 to T1 ◦T2 ◦T4, only the transformation T1 is
applied. Consequently, in computing the dimension
of the attractor, each 1 of M must be replaced by
(1/2)d. So in Example 4.1, Eq. (1) becomes

1 = ρ(Mij(1/2)d) = (1/2)dρ(M). (15)

The (numerical) eigenvalues of M are

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3.15276,

−0.576379 ± i
√

0.549684,

so ρ(M) ≈ 3.15276 and d ≈ log2(3.15276) ≈
1.65657.

For Example 5.1, the transition matrix is

N =




1 1 1 1 1 1 0
1 1 0 1 1 0 1
1 0 1 1 0 1 1
0 1 1 0 1 1 0
0 1 1 0 1 1 1
0 1 1 0 1 1 1
0 1 1 0 1 1 1




.

In the transformations (14), S1, S2, and S3 have
contraction factor 1/2, while S4, S5, S6, and S7 have
contraction factor 1/4. Then Eq. (1) becomes

ρ




x x x x2 x2 x2 0
x x 0 x2 x2 0 x2

x 0 x x2 0 x2 x2

0 x x 0 x2 x2 0
0 x x 0 x2 x2 x2

0 x x 0 x2 x2 x2

0 x x 0 x2 x2 x2




= 1

May 7, 2010 9:29 0218-348X
S0218348X10004804

154 R. Bedient et al.

where x = (1/2)d. Numerical explorations show this
equation is satisfied for d ≈ 1.65657.

This agreement is no surprise: Examples 4.1 and
5.1 have the same attractor. Example 5.1 is included
to illustrate the computational issues that arise if
different scaling factors occur.

The main point is this: the method of Eq. (1) for
computing dimensions of 1-IFS need not be ex-
tended to n-IFS. Rather, apply Theorem 4.1 to find
a 1-IFS generating the same attractor and compute
the dimension by applying Eq. (1) to this 1-IFS.

7. CONCLUSION

Adapting the concept of nth higher block codes
from symbolic dynamics, the attractor of any n-IFS
can be realized as the attractor of a 1-IFS, the nth
higher block IFS. Then the theorem of Frame and
Larski2 determines which of these can be realized as
the attractor of a 0-IFS. The nth higher block IFS
often does not generate the attractor by a 1-IFS
with the fewest transformations. Section 5 provides
a method for finding the most efficient 1-IFS, in the
sense of using the fewest transformations, having
the same attractor as a given n-IFS. The conjec-
ture of that section gives a quick way to find the
minimum number of transformations and forbidden
strings. Details will be provided in Gross et al.25

By showing that the attractor of an n-IFS can
be realized as the attractor of a 1-IFS, the method
of Mauldin and Williams17 can be used to compute
the Hausdorff dimension of the attractors of n-IFS.

Dimension is one measure of the complexity of
compact subsets of Euclidean space. For attrac-
tors of IFS with memory, the length of memory
might have served as another measure of com-
plexity. Theorem 4.1 shows this is not a produc-
tive direction to pursue. On the other hand, this
memory-reduction method does point out an inter-
esting trade-off between the length of memory and
number of transformations needed to generate a
fractal.

In Bedient et al.26 we explore some relations
between IFS with different levels of memory, and
build up a hierarchy of attractors resulting from
different embeddings of m-step memory rules into
n-step memory rules, for n < m.

REFERENCES

1. D. Lind and B. Marcus, An Introduction to Sym-
bolic Dynamics and Coding (Cambridge Univerisity
Press, 1995).

2. M. Frame and J. Lanski, When is a recurrent
IFS attractor a standard IFS attractor? Fractals 7
(1999) 257–266.

3. M. Barnsley, Fractals Everywhere, 2nd edn. (Aca-
demic Press, 1993).

4. K. Falconer, Fractal Geometry. Mathematical Foun-
dations and Applications (John Wiley, New York,
1990).

5. D. Ashlock and J. Golden, Chaos automata: iter-
ated function systems with memory, Physica D 181
(2003) 274–285.

6. M. Barnsley, J. Elton and D. Hardin, Recurrent
iterated function systems, Constr. Approx. 5 (1989)
3–31.

7. A. Barbé, On a class of fractal matrices (III): limit
structures and hierarchical iterated function sys-
tems, Int. J. Bifurc. Chaos 5 (1995) 1119–1156.

8. A. Barbé, F. von Haesler and G. Skordev, Limit
sets of restricted random substitutions, Fractals 14
(2006) 37–47.

9. G. Edgar, Integral, Probabilty, and Fractal Measures
(Springer-Verlag, New York, 1998).

10. G. Edgar and R. Mauldin, Multifractal decomposi-
tions of digraph recursive fractals, Proc. Lond. Math.
Soc. 65 (1992) 604–628.

11. B. Hambly and S. Nyberg, Finitely ramified graph-
directed fractals, spectral asymptotics and the mul-
tidimensional renewal theorem, Proc. Edinburgh
Math. Soc. 46 (2003) 1–34.

12. J. King and J. Geronimo, Singularity spectrum
for recurrent IFS attractors, Nonlinearity 6 (1992)
337–348.

13. J. Layman and T. Womack, Linear Markov iter-
ated function systems, Comput. Graph. 14 (1990)
343–353.

14. P. Massopust, Fractal Functions, Fractal Surfaces,
and Wavelets (Academic Press, San Diego, CA,
1994).

15. L. Máté, On Full-Like Sofic Shifts, preprint.
16. R. Mauldin, S. Graf and S. Williams, Exact Haus-

dorff dimension in random recursive constructions,
Proc. Natl. Acad. Sci. USA 84 (1987) 3959–
3961.

17. R. Mauldin and S. Williams, Hausdorff dimension
in graph directed constructions, Trans. Am. Math.
Soc. 309 (1988) 811–829.

18. J. Hart, Iterated Function Systems and Recurrent
Iterated Function Systems, PhD thesis (Washington
State University, Pullman, WA, USA, 1996).

19. H.-O. Peitgen, H. Jürgens and D. Saupe, Chaos
and Fractals. New Frontiers in Science, 2nd edn.
(Springer-Verlag, New York, 2004).

20. H. Jeffrey, Chaos game representation of gene struc-
ture, Nucleic Acid Res. 18 (1990) 2163–2170.

21. H. Jeffrey, Chaos game visualization of sequences,
Comput. Graph. 16 (1992) 25–33.

May 7, 2010 9:29 0218-348X
S0218348X10004804

Higher Block IFS 1: Memory Reduction and Dimension Computations 155

22. B.-L. Hao, H. Lee and S.-Y. Zhang, Fractals related
to long DNA sequences and complete genomes,
Chaos Solitons Fractals 11 (2000) 825–836.

23. T. Suzuki, T. Ikeguchi and M. Suzuki, Applications
of chaos game respresentation to nonlinear time
series analysis, Fractals 14 (2006) 27–35.

24. V. Metz, “Laplacians” on finitely ramified, graph
directed fractals, Math. Ann. 330 (2004) 809–828.

25. K. Gross, R. Bedient and M. Frame, Efficient mem-
ory reduction of IFS with memory, in preparation.

26. R. Bedient, M. Frame, K. Gross, J. Lanski and
B. Sullivan, Higher block IFS 2: relations between
IFS with different levels of memory, to appear in
Fractals .

	1 INTRODUCTION: IFS AND MEMORY
	2 BASIC CONCEPTS AND SOME ILLUSTRATIVE EXAMPLES
	3 REVIEW OF SUBSHIFTS OF FINITE TYPE
	4 IFS MEMORY REDUCTION
	5 OTHER WAYS TO REDUCE MEMORY
	6 SOME DIMENSION COMPUTATIONS
	7 CONCLUSION

