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lterated Function Systems (IFS)

e Set of transformations from R? to R?

— Contractions, rotations, translations
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Uniqueness of Attractors

* For every set of transformations T, there
exIsts a unigue nonempty, compact subset
of R?that Is fixed by T

— This Is called the attractor of T

* Random IFS converges to the same
attractor at infinity

— Varying probabillities only affects the “rate” of
convergence
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What Convergence Means

. Continually applying each transformation to the previous generation yields
the attractor (“at «”)

(

* Let’s see an animation of convergence:
http://classes.yale.edu/fractals/IntroToFrac/IFS/GasketCat.html#GCAnchor
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What Else Can We Do?

* We know we can get different fractals by
changing the transformations

— We can also change the # of transformations
* What If we keep the same set of

transformations but restrict the order In
which they can be applied?

— Can we get new fractals?
— Does this add anything to the big picture?
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Our Standard IFS

4 transformations:

T fixes the unit square, S
— S is the attractor of T

Applying transformation
k = “being In state K"

A sequence of
transitions Is written as,
for example:

1-3-3-4-2
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Addresses & Seguences

* This Is how we s | 4 33]34]45 |44
. . A1 13214142
gather information AP
] 2
about the fractals X 1[12]21]22
We proo uce length 1\gddresses [Ength 2 addresses
333|334i343|344(433|434{443|444 S. . : —\ T. (<. | : )
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Forbid a Pair of Transformations

* For example: T, never
immediately follows T,

— |f we're In state 1, we
can’t enter state 4

* This Is akin to restricting
the allowed sequences

of transitions so that we
never see:

.. —)1—)4—) -
* Equivalent statement
about addresses:

— Any box with address ...
41... IS empty
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Forbid Multiple Pairs

* For example:

— T, never immediately
follows T,

— T, never immediately
follows T,

— T, never immediately
follows T,

— T, never immediately
follows T,
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Transition Graph

* This Iis a way to visualize the allowed
transitions

— Vertices represent each state

— Directed edges represent the allowed
transitions

* For example:




Probabllity Matrix

. . 1/3 L) 1/3 1/3
which transitions are allowed and £=|,, , o 1/
which are forbidden 14 1/4 14 14

e Pis an n x n matrix for T with n
transformations
— ] -kis allowed iff P>0

e This is another way of encoding [” 141 ”]

* This can be simplified by knowing
that the probabilities do not
matter

— WIll converge to the same attractor
as the deterministic rIFS

— We only care whether P, is 0 or not
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Classifying Attractors

When do we get a fractal that can be produced
by a standard IFS without forbidden transitions?

— We call such an attractor IFS-able

Might there be an infinite # of transformations?
— We call such an attractor Infinitely IFS-able

When do we get a fractal that cannot be
produced by a standard IFS?

— We call such an attractor Non-IFS-able

How can we determine the answer by looking at
the transition graph and/or probability matrix?
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Full States

* We say that the state k is full iff k can
Immediately follow any other transition:

—Allofl-k, 2 -k, 3 -k, 4 -k are allowed
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Criteria for Classification

e |FS-able
—There exists a full state

* Infinitely IFS-able
—There exists a full state, and
an infinite sequence of non-full states

e Non-IFS-able
—There are no full states

“When is a recurrent IFS attractor a standard IFS attractor?”
M. Frame, J. Lanski, Fractals, 7 (1999), 257-266.
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Some Classified Attractors
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Forbidding Triples

* For example, 1 -1 - 3 is forbidden
* We ask the same question:

— When do we get a fractal that is IFS-able, Infinitely
IFS-able, or Non-IFS-able?

— Also, when do we get a fractal that cannot also be
generated by a 1-memory system?

e \We believe we have established criteria to

classify an attractor produced by a 2-memory

system as IFS-able, Infinitely IFS-able, or Non-
IFS-able

— Must look at probability matrix, not transition graph
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Examples of 2-Memory Fractals
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Finitely IFS-able Infinitely IFS-able  Non-IFS-able

We also believe none of these 3 attractors
are produce-able by a 1-memory system.
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Generalizing The Problem

* Open guestions:

—When is an attractor produced by an n-
level memory system also produce-able
by an m-level memory system (m < n)?

—Given a fractal, what Is the least integer n
such that the attractor can be generated
by an n-level memory IFS system?
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