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0 Introduction

1 Matchings

1.1 Matchings in Bipartite Graphs

Definition 1.1. A matching s ***#**Fxssxsx
Theorem 1.2 (Hall, 1930), *### sk
Proof, skt 0
Definition 1.3. A k-factor of a graph G is a k-regular spanning subgraph of G.
Note: a 1-factor is a complete matching and a 2-factor divides GG into cycles.
Theorem 1.4. Any k-reqular bipartite graph has a 1-factor.

Proof. Let S C A. Then e(S, N(S)) = k|S| and e(N(S), A) = k|N(S)|. Certainly, e(N(S), A) > e(S, N(S))
so |[N(S)| > |S|. Thus, Hall’s condition is satisfied and so 3 a matching, i.e. a 1-factor. O

Theorem 1.5 (Petersen, 1891). Every regular graph of positive, even degree has a 2-factor.

Proof. Let G be 2k-regular. Then we can find an Eulerian tour through G (i.e. a closed walk through
vertices, of the form vgvy - --vg = wo, that visits every edge). Replace every v by (v™,vT) and add edge
6? = V;Vi+1 O

kskokokkokkok



1.2 Matchings in General (Simple) Graphs
For a given graph G, let ¢(G) denote the number of odd components of G.
Theorem 1.6 (Tutte, 1947). G has a I-factor <= q(G —S) < |S|VS CV (Tutte’s Condition, or TC).

Proof. (=) If G has a 1-factor then

(<) Suppose TC holds and G has no 1-factor. Add edges to G to form G* such that G* has no 1-factor
but G* + e contains a 1-factor for any possible additional edge e. Then ¢(G* — S) < ¢(G — S) < |S] for all
S CV.If S=0then ¢(G*) =0 and |V| is even. Consider U = {v € V : dg(v) =n — 1} where n = |V/|.
Notice U # V otherwise G* is a complete graph on n = 2k vertices, so it would have a matching.
Claim: G* — U is a disjoint union of complete graphs. Proof: Suppose not. Then Jz,y,z such that
xy,yz € E(G*) and 2z ¢ E(G*). Since y ¢ U, 3 such that yw ¢ E(G*). Let My be the matching in G* 4+ zz
and M be the matching in G* + yw. Let H = M;AM,. Notice H is a disjoint union of even cycles.
Case 1: zz and yw belong to different cycles. ****
Case 2: zz and yw belong to the same cycle. ****** O

Theorem 1.7 (Petersen). Fuvery bridgeless cubic graph has a 1-factor.

Proof. Pick S, arbitrary. Let C be an odd component of G — S. Then e(C,S) > 3. Let e be the number of
edges from S to odd components. Then 3¢(G — S) < e < 3|S| by our assumptions. Thus, TC holds and so
G has a 1-factor. O

kokoskoskosk

Goal for today is to state and prove a theorem stronger than Tutte’s theorem in that it implies Tutte’s
theorem and tells us some other stuff.

Definition 1.8. A graph G = (V, E) is factor-critical if G # (0 and G — v has a 1-factor Vv € V.

Definition 1.9. Let C, be the components of G. A vertex set S C V is called matchhable to Cq_g if the
graph obtained by contracting components of G — S to single vertices and deleting edges within S contains a
matching of S.

The following is Theorem 2.2.3 from Diestel.

Theorem 1.10. Every graph G = (V, E) contains a vertex set S C V with the following two properties:
1. S is matchable to Ca_g
2. Every component of G — S is factor-critical

Given such an S, the graph contains a I-factor < |S| =|Cq-s|.

Why does this imply Tutte’s theorem? The first property of S implies |S| < |Cg—s| and the second
condition implies |Cq_g| = ¢(G—9). Tutte’s condition then implies |Cqa_s| = ¢(G—S5) < |S],s0|S| = |Ca—s].

Proof. The 1-factor <= part follows from properties (1) and (2):

(=) If 3 1-factor then ¢(G — S) < |S]| < ¢(G = S) so |S| = |Ca—s].

(<) If |S| = |Ca—g| then match S to one vertex of each component in Cg_g and then use factor-criticality

to find a matching in each component with one vertex removed (accounting for the matchability to S).
Now, to show existence of S, we use induction on |G|.

Base case: |G| = 0. Take S = 0.

Indcutive step: Let G be given, |G| > 0 and suppose the theorem holds for graphs with fewer vertices.

Conisder the sets T' C V where Tutte’s condition fails “the worst”, i.e.

d(T) :=da(T) :=q(G=T) = |T|

is a maximum. So d(T) > d(0) > 0. Let S be a largest such set.



Claim 1: Every component C' € Cg_g =: C is odd.
Proof of Claim 1: Suppose some C' € C is even. Pick a vertex ¢ € C and let T := S U {c}. WWTS
d(T) > d(S) to obtain a contradiction. Notice C' — {c¢} has odd order and so it has at least one odd
component which is also a component of G —T. Then

d(T) = q(G=T) = |T| 2 ¢(G = 5) + 1= (IS|+1) = ¢(G = 5) - [5] = d(5)

and this contradicts our assumption that S was the largest set that maximumized d. This proves Claim 1.
Claim 2: Every C € C is factor-critical.

Proof of Claim 2: Suppose 3C € C and ¢ € C such that C’ := C — {c} has no 1-factor. By the inductive

hypothesis, 35" C V(C”) such that g(C’' — S") > |S’| (using the fact that the current theorem implies Tutte’s

Theorem). Notice |C’| is even, so if |.S’| is even then ¢(C’' —5’) is even (since |C" — 5| is even, too); similarly,

if |8’] is odd then ¢(C’ — S’) is odd. Thus, ¢(C’' —S’) > |S’| + 2, using the previously established inequality.

Furthermore, we have two equalities involving |T| := S U {c} U S":

qG—-T)=q(G-S)+q(C"=8) and |T|=|S|+1+|9|
Then,
d(T) =q(G=T) = |T|=q(G=95) = 1+q(C" = &) =S| =1 =[5 = ¢(G = §) — 5] = d(5)

This proves Claim 2.

Claim 3: S is matchable to Cq_g.
Proof of Claim 3: Suppose not. Then 35’ C S such that |N¢(S”)| < |S’| by Hall’s Theorem. Let T' = (S”)¢
and S =S5"UT. So,

d(T) = q(G=T) = |T| > q(G = ) = [Ne(S)| = IT| > q(G = §) = |9'| = |T| = (G = 5) —|S]
This proves Claim 3 and completes the proof. O

Let M be any matching and kj; := number of edges in M with at least 1 end in S, and let kg := number
of edges in M with both ends in G — S. Notice M satisfies kg < [S| and kg < 5 ([V]—|S| —[C|). Any
maximum matching satisfies these at equality.

Theorem 1.11 (Gallai-Edmonds Structure Theorem). Let G = (V, E) be any graph. Let D be the set of
vertices which are not covered by at least one maximal matching. Let A be the vertices in V. — D which are
adjacent to at least 1 vertex in D. Let C =V — D — A. Then

1. The components of G[D] are factor critical.
2. G[C] has a perfect matching

3. The bipartite graph on AU Cqp) has positive surplus viewed from A; that is, N(S) > |S| for every
SCA(S#0D).

4. Any mazximal matching has
e a near perfect matching of components of G[D]

e perfect matchings on components of G[C]

e matches each vertex with distinct components of G| D]

5. M| =% ([V| - c(G[D]) + |A|), where c(-) is the number of components.

Proof. Kook okook okok ok ok sk okook ok kok kokkok OJ



Definition 1.12. H has the Erdés-Posa property if there 3f : N — R, k — f(k), such that Vk either G
contains k disjoint subgraphs, each isomorphic to a graph in H, or there is a set U C V(Q) with |U| < f(k)
such that G — U has no subgraph in H.

Goal: prove class of all cycles has E-P property (with f(k) ~ 4klogk). For the rest of today, consider

dkry, itk >2

:=logk + loglogk + 4 =
Tk og k + loglogk + Sk {1 k<1

Lemma 1.13. Let k € N and let H be a cubic (3-regular) multigraph (loops and multiple edges allowed). If
|H| > sy, then H contains k disjoint cycles.

Proof. Induction on k. Base case: k < 1 trivial. Inductive step: Let k£ > 2 be given and let C' be a
shortest cycle in H. CLaim: H — C contains a subdivision of a cubic multigraph H' with |H'| > |H|—2|C].

*** subdivision picture ***

Proof of claim: Let m be the number of edges between C' and H — C. Since H is 3-regular and the
average degree of C'is 2, m < |C|. Now, consider the following sequence of bipartitions of V| {V;,V,}. Start
with V; = V(C). If H[V5] has a vertex of degree < 1, move it to V;. Then the number of crossing edges
decreases by > 1 each time. Suppose you can do this n times, but no more. Then {Vi,V5} is crossed by
< m —n edges. Hence H[V;] has at most m — n vertices of degree < 3 and these vertices have degree = 2
(otherwise we moved it over to V7). Now “suppress” the vertices of degree 2 in H[V5] (i.e. delete such a
vertex v and add an edge between its neighbors). This yields a cubic graph multigraph H’. Notice

|H'|>|H[- €] - n - (m-n) =|H|-2|C|
~— ~~ ——

move-over provess

original cycle suppress degree 2s

This proves the claim.

Now, we just have to show |H’| > si_1. Corollary 1.3.5 (in Diestel) says if §(G) > 3 then ¢(G) < 2log|G]|
(where g(+) is the girth, i.e. length of shortest cycle). So |C| < 2log|H]|. Since |H| > s > 6 and z — 4logz
is increasing for = > 6, we get

\H'| > |H| — 2|C| > |H| — 4log |H| > sj, — 4log s,

To complete the proof WWTS s, —4log sy > sk—1. For k=2 wehave 4-2-(1+0+4) —4log40 > 1 = s;.
Also, notice 7, < 4logk for k > 3 (for k = 3 use a calculator, and for k > 4 it’s obvious). So for k > 3

s — 4log s = 4kry, — 4log(dkry) = 4(k — 1)ry, + 4logk + 4loglogk + 16 — (8 + 4logk + 4log 1)
> sg—1 +4loglogk + 8 — 4log(4log k) = sk—1

Theorem 1.14 (Erdés, Posa, 1965). The class of all cycles has E-P property.

Proof. Let f(k) := s +k—1. Let k be given and G be any graph (and assume G has a cycle, otherwise it’s
trivial). So it has a maximal (with respect to the subgraph relation) subgraph H where all degrees in H are
either 2 or 3. Let U be its set of degree 3 vertices and let C be the set of cycles in G that avoid U and meet
H in exactly 1 vertex. Let Z C V(H) — U be the set of vertices in a member of C. For each z € Z, pick one
cycle C, € C and let C' = {C, : z € Z}. The cycles in C’ are disjoint by maximality of H (otherwise take
part of cycles until first meeting point and add to H). Let D be the set of 2-regular components of H that
avoid Z. Then C' UD is a set of disjoint cycles. So if [C’ UD| > k then we’re done. Otherwise, take one
vertex from each D-cycle and add it to Z to get a set X of size < k — 1 which meet all cycles in C and all
2-regular components of H. Consider any cycle of G which avoids X. It has to meet H by maximality. It
has to meet U because: it can’t be all in H (otherwise in D), it can’t meet H in just one vertex (otherwise
in C), and it can’t connect 2 vertices of H — U with a path outside of H, so it must hit U. So every cycle
in G meets X UU. We know |X| < k — 1. If |U| < s, then we have < f(k) vertices meeting each cycle. If
|U| > sg, suppress all degree 2 vertices in H to get a 3-regular multigraph H' with |H'| = |U| > sg. Apply
the lemma. O



1.3 Tree Packing
Let G be a given graph.

Theorem 1.15 (Menger’s Theorem). If G is k-edge connected, then 3k disjoint paths between any 2 vertices
in G.

Question: How many edge-disjoint spanning trees| exist in G?7
Necessary condition: k-edge connectivity.
Is this condition sufficient? No. Consider k = 2 and take a cycle with 4 vertices.
Another necessary condition: for all partitions of V(@) into r sets, each spanning tree has > r—1 cross-edges
(edges with ends in different partitions).

Theorem 1.16 (Nash-Williams 1961, Tutte 1961). A multigraph G has k edge-disjoint spanning trees
<= G has > k(r — 1) cross edges for any partition of size r.

Corollary 1.17. FEvery 2k-edge connected multigraph G has k edge-disjoint spanning trees.
Proof of Corollary. ***** picture = G has > 1 3°7 | 2k = kr > k(r — 1). Open: is this bound sharp? [

Set up for proof of theorem: Let G be a given multigraph and £ € N. Let F be the set of all
k-tuples F' = (Fy, Fs, ..., F}) where the F;s are edge-disjoint spanning forests such that || F|| := |E[F]| =
|E[Fy]U--- U E[F]| is as large as possible.

If Fe Fand e € E\ E[F] then F; + e fori=1,2,...,k constains a cycle. For some fixed i, take ¢’ in
this cycle (¢’ # e). Then setting F} := F; + e — ¢’ and F] := F; for j # i yields a new F' = (Fj,..., F})
such that F/ € F. We say F’ is obtained from F by the replacement of ¢’ with e. Note: for every path
x...y € F! AxFy.

Consider the fixed k-tuple FO = (FY,..., F?) € F. Let F° be the set of all k-tuples that can be obtained
from F° by a series of edge replacements. Let E° := U (E\ E[F]) and G° := (V, E?).

FeF°

Lemma 1.18. For any ¢ € E \ E[F°] there exists U C V(G) that is connected in every F? and contains
the ends of €.

Proof. *** “we believe the lemma” O

Proof of Theorem. (<) Induction on |G|. Base case: |G| = 2. Done. Induction step: Suppose for each
partition P of V(G), 3 > k(|P| — 1) cross edges. We will construct k edge-disjoint spanning trees.
Fix a k-tuple FO = (F?,...,FY) € F. If each F? is a tree, done; otherwise,

k

IE =Y I < k(GI - 1)

i=1

(Recall: |||l denotes # of edges.) We have |G|| > k(|G| —1) by assumption, when we consider P to be single
vertices. Thus, 3e° € E\ E[F]. By the Lemma , 3U C V(G) that is connected in each F and contains
ends of €. In particular, |U| > 2.

Since every partition of the contracted multigraph G \ U induces a partition of G with the same # of
cross edges, G\ U has > k(|P| — 1) cross edges, with respect to any partition P. By induction, G\ U has k
disjoint spanning trees 71, ..., Ty. In each T;, replace Vi; by the spanning tree F° N G[U].

Apparently the other direction is obvious. O

We say subgraphs Gy, ..., Gy partition G if their edge sets form a partition of F(G).
Question: Into how many connected spanning subgraphs can we partition a given G?
If we can answer that question, then we can answer the question: Into how few acyclic spanning subgraphs
can we partition G? Or, for a given k, which graphs can be partitioned into k forests?
Necessary: VU C V(G) induces < k(|U| — 1) edges.


http://en.wikipedia.org/wiki/K-edge-connected_graph
http://en.wikipedia.org/wiki/Spanning_tree

Theorem 1.19 (Nash-Williams 1961). A multigraph G can be partitioned into at most k forests <=
IGIU]|| < k(|U| = 1) for all u CV(G).

Proof. We will show: every k-tuple F = (Fi,...,Fy) € F partitions G. Suppose otherwise; then Je €
E \ E[F]. Use the Lemma By the Lemma, 3U C V connected in every F; and containing ends of e.
Therefore, G|U] has |U| — 1 edges in each F; in addition to e, so ||G[U]|| > k(|U| — 1), a contradiction. [J

1.4 Path Covering (for digraphs)

Definition 1.20. A path partition in a digraph D is a family of vertex disjoint directed paths that cover all
of the vertices of D. We let a(D) denote the mazimum size of an independent set in D.

Theorem 1.21 (Gallai-Milgram 1960). Every digraph D has a path partition with < a(D) paths.

Proof. By induction on |D|. Will show: if P is a path partition with |P| > «a(D) then 3Q with |Q| = |P| -1
and Start(Q) C Start(P) where Start(P) is the set of starting vertices of paths in P.
FRAAE
picture
Let P, be a path starting at w, for some u € Start(P). Since |P| > a(D), Jub where v € Start(P). If
len(P,) = 0, replace P, by uwvP, and we’re done. If len(P,) > 1, then Juw € P,. Let D’ = D — u. Notice
a(D") < a(D). Let Q be a path partition of D’. Notice |Q| = |P| > a(D) > «(D’). By induction, 3Q such

that |Q'| = |Q| — 1 and Start(Q’) C Start(P) — {u} + {w}. O
Let p be the size of a maximal matching in a bipartite digraph. Then the min size of a path cover is
n — 2u + p = n — p where X has n vertices. ***** picture

Corollary 1.22. Konig’s Theorem

Corollary 1.23 (Dilworth 1960). In every finite poset (P, <), maz size of an antichain = min size of chain
partition.

Proof. Let e be a chain partition and A the max antichain. Certainly |e| > |A|. WWTS |A| chains suffice.
Use Gallai-Milgram on D with edges {(x,y) : < y}. In this graph, antichain < independent set and chain
cover < path cover. O

1.5 Connectivity

Definition 1.24. G is k-connected if the minimum size of a separator is > k. The connectivity k(G) =
max k such that G is k-connected.

Definition 1.25. A block is a mazimal connected (sub)graph with no cut-vertez.

Examples of blocks are K7, bridges, maximal 2-connected subgraphs, etc. We can form a natural block
graph that is a bipartite graph with one set of vertices as the blocks and the other set as the cut vertices
that blocks share.

*HEXE picture

Proposition 1.26. The block graph of a connected graph is a tree.

Proof. G is connected = the block graph is connected. Can the block graph have cycles? No, by the
maximality of blocks. O

Proposition 1.27. A graph is 2-connected <= 3 sequence cycle = Go,G1,...,Gy = G such that Giy1 is
obtained from G; by adding a G;-path.

kokoskoskok Kokskskk <
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Proof. (<) Trivial, since G; 2-connected = G,11 2-connected.
(=) Given a sequence Ggy,G1,...,G;, suppose G; # G. Then Je € E(G) — E(G;). Let e = zy with
x € V(G;). We know G — z is connected so 3 path from y to 2z € V(G;). Adding e gives G11. O

Theorem 1.28 (Tutte 1961). G is 3-connected <= 3 seq Gy, G1,...,Gy, = G such that G;+1 has an edge
e = xy with deg(x),deg(y) > 3 and G; = Gi41/e.

Lemma 1.29. If G is 3-connected with |V (G)| > 4 then Je € E(G) such that G/e is 3-connected.

Proof. Suppose not. Then Ve = zy € E(G), G/e has a cut-set of < 2 vertices. We know, then, that V,, € S,
the cut-set, since kK(G) > 3. Let S = {V,y,2}. Then X = {z,y, 2} is a cut-set of G = every vertex in X
has an edge to every component of G — X. Let C be the smallest component of G — X over all {z,y, z}.
Let w € N(z) N C. By assumption, G/f has a cut-set of size < 2, so Jv such that {v, z,w} is a cut-set of
G and each of these vertices has an edge to every component of G — {v, z,w}. Since z,y are connected, 3
component D that does not contain z and y. Thus, § # D C N(w) NV (C), so D C C, contradiction our
assumption that C was the smallest such component. ****¥¥% picgure *HsHHRwk O

Proof of theorem. (=) by Lemma

(<) K4 is 3-connected. Suppose G; is 3-connected but G;41 is not. Then G; = G;t1/e (e = zy) where
Giy1 is 2-connected. Let S be a cut-set of size < 2; let C1,Cy be two components of G;1 — 5. Since z,y
are connected, we may assume V(Cp) N {z,y} = 0. Also, Cy cannot contain both z and y (otherwise S
is a cutset of G;), nor can it contain any v ¢ {z,y} (otherwise V,, will be disconnected from C; in G; by
removing < 2 vertices). This is a contradiction of the degree assumption! O

Theorem 1.30 (Tutte’s Wheel Theorem). Every 3-connected graph can be obtained by the following proce-
dure:

o Start with K4

o Ghiven G; pick a verter v

e Split into v' and v and add edge {v',v"}

Today we decide whether k-connectivity is equivalent to having k independent paths.

Definition 1.31. Let A,B C V(G). An A — B path is a path P = (u_...,v) where PN A = {u} and
PN B={v}.
A set S is an A — B separator if there is no A — B path in G — S.

Theorem 1.32 (Menger 19217). The minimum size of an A — B separator = mazimum number of disjoint
A — B paths.

Proof. Let k = min size of an A — B separator. Clearly #paths < k. We will construct £ disjoint A — B
paths, by induction on |E(G)].

Base: |E(G)| = 0. Here |AN B| =k and k vertices form trivial paths.

Inductive: Suppose zy = e € E(G). Consider G/e. Put V,,, in A or B (or both) if  or y is in A or B.
Suppose the max # of disjoit A — B paths in G is < k — 1. Then the same holds in G/e. By induction,
JA — B separator S’ of size < k — 1 and V,, € S’ (otherwise S’ is an A — B separator in G).

Now, S = 5"\ {Vay} U{z,y} is a separator in G of size k. Consider G’ = G —e. Note: every A — S separator
and every S — B separator is also an A — B separator; therefore, the mnimum size of an A — S separator
is > k. By induction, 3k disjoint paths from A to S, likewise from S to B. These paths cannot intersect
outside AU S U B. Since |S| = k, combine the 2 sets of paths. Done. O

Definition 1.33. Suppose B C V(G) and a € V(G) \ B. An a — B fan is a set of paths from a to B that
intersect only at a.



Corollary 1.34 (Fan Theorem). Min # of vertices needed to separate a from B = maz size of an a — B

fan.
Proof. Apply Menger’s Theorem to A = N(a) and B. O

Corollary 1.35 (Local Version of Menger’s Theorem). 1. If ab ¢ E(G), then min size of a —b separator
= max # internally disjoint a — b paths.

2. If a £ b, min # edges needed to separate a from b = max # edge disjoint a — b paths.
Proof. 1. Apply Menger’s Theorem to A = N(a) and B = N(b).

2. Apply Menger’s Theorem to the line graph of G: A = E(a) := {e € E(G) : e is incident to a} and
B = E(b).
O

Corollary 1.36 (Global Version of Menger’s Theorem). 1. G is k-connected <= 3k independent paths
between any 2 vertices.

2. G is k-edge-connected <= 3k edge-disjoint paths.

Proof. 1. Done except when ab € E(G) (rest follows from Local Version 1). Suppose ab € E(G) and let
G' = G —ab. If G’ has k — 1 disjoint a — b paths, we’re done, so suppose otherwise. Then we know the
max # disjoint @ — b paths in G’ is < k — 2 and so, by Menger’s Theorem, 3 an a — b separator S of
size < k — 2. Since |V(G)| > k, Jw ¢ SU{a,b}. S is either an a — w separator or a b — w separator
(otherwise 3 an a — b path not hitting S), but S U {b} is an a — w separator in G of size k — 1. This is
a contradiction.

2. Follows from the Local Version 2.
O

Definition 1.37. A graph G is k-linked if for any two sets of size k (say, with vertices {ay,...,ar} and
{b1,...,br}) we can find disjoint paths from a; to b;.

Observation: k-linked = k-connected.
Question: If a graph is f(k)-connected, can this be enough to guarantee k-linked? Is this even possible? If
so, for which f(k) is this true?

Theorem 1.38 (Jung, Larman, Mani 1970). If a graph is 210]“2, this be enough to gquarantee k-linked.
Observation: If graph is k-connected then the average degree > minimum degree > k.
Proposition 1.39. If a graph has average degree d, then it has a subgraph with all degrees > %.

Proof sketch, algorithmic. Algorithm for finding that subgraph: if we have any vertex of degree < g, throw
it away. Question: Why does this stop before all vertices gone? Answer: As we do this, the average degree
is nondecreasing (basically...). The condition E > %n is preserved.

New E = Old E — degree of deleted vtx > Old E — = >

|,

Proposition 1.40. If all degrees in graph are > § then graph has cycle of length > § + 1.

Proof. Suppose you take the longest path and let v be the last vertex. All neighbors of v must fall back onto
path, otherwise there’s a longer path. Since there are > § such neighbors, choose the furthest one from v
along the path and close the path to make a cycle. This has length > § + 1. O



Corollary 1.41. If average degree > d then we have a cycle of length > g + 1.

Definition 1.42. A graph has a topological K, minor if Ir branch vertices and (;) vertez-disjoint paths
connecting them.

Question: What average degree, if any, is enough to guarantee existence of a topological K, minor?

r—2
r—1

Remark 1.43. Turan’s Theorem says average degree >~ n = K, subgraph. We hope for a bound that

does not depend on n.

Lemma 1.44. Average degree > 2(2) = we have a topological K — r minor.

Proof. Consider only > 3. Induction (on m): Prove the statement: average degree > 2™ where m =
rr+1,..., (g) then we have a topological minor with r vertices and m edges (topologically, meaning we
have r branch vertices and some m vertex-disjoint paths between them).

Base case: Given average degree d > 2", find a topological minor with r vertices and r edges, i.e. an
r-cycle. By the previous proposition/observation, we have a cycle of length > 2"~ +1 > r. We can turn
this topologically into an r-cycle by choosing r of the vertices if the length is > r.

Inductive step: Assume true for m — 1. Given average degree d > 2™. Would be nice if we could get
a connected set U such that inside N(u) the average degree is > 2™~ Then, by induction we can find a
topological copy of r vertices with m — 1 edges. Connected back to U gives us an extra edge to make m,
since U is connected. Now, we need to find such a set U.

Since the average degree > 2" in all of G some component of G has average degree > 2™, so WOLOG G
is connected. Pick U maximal such that U is connected and if U is contracted then % > 2m~1 Suppose
deg(v) inside N(U) is < 2™~ Then what if we were to add v to U? U would still be connected, and after
contracting U + v then nw edges > 2™~ !(vtxs) — 2™~ 1. This contradicts U being maximal. We know such
a U exists because we can pick U to be any one vertex with high degree. O

Theorem 1.45. If a graph is (2 2(%) + 2k> -connected then it is k-linked.

Proof. Fix any vertex sets {ai,...,ar} and {by,...,bx} and find disjoint paths between each a; and b;.
3k

Find a topological Ksi; notice it’s still > 2(%)_connected. Menger’s Theorem allows us to connect 3k

branch vertices with 2k vertex-disjoint paths **** picture **** while minimizing the # of edges not on the

topological K3;. Let cq,. .., c, be the unused branch vertices. **** picture **** show there can’t be crossing

of topological T path and Menger M path. O
Theorem 1.46 (Thomas, Wollan 2005). 2k-connected and average degree > 10k = k-linked.

Note: 10k-connected implies hypotheses of theorem.
Corollary 1.47. Awverage degree > 8r? = 3 topological K, minor.

Proof. (Mader’s Theorem, Diestel Thm 1.4.3) = have subgraph which is > r2-connected and has average
degree > 5r2 = 1r2linked. Pick r branch vertices and r — 1 neighbors of each. This is 7% vertices and can
dictate links between all %7"2 pairs of vertices. O

Let G = (V, E) with an enumeration of the edges e, ea,...,e,. We want to define a vector space with
m dimensions.

Definition 1.48. Formally, we let G = (V,E) be a fixed graph with |V| = n and |E| = m. The edge
space E(G) 1is the vector space over Fy of all functions f : E — Fy with the usual vector addition on Fy (so
this corresponds to the symmetric difference A of two subgraphs of G). Note: a basis for the edge space is

{{exh {eads o {em})



For any subspace F C £(G), let
Fr={Dec&(G):(F,D)=0VF ¢ F}

where
m

(FF') =Y XX, for F=(At,..dm), F'= (X, .. 0))

i=1
Notice dim F + dim F+ = m.
Definition 1.49. The cycle space C = C(G) is the subspace of E(G) spanned by all cycles in G.

Question: What is dimC? Goal: Prove dimC = m — n 4+ 1 (when G is connected, otherwise we just
consider each component separately).

Proposition 1.50. The induced cycles in G generate its entire cycle space.
Proof. By induction on the number of vertices in a given cycle. O
Proposition 1.51. TFAE:

1. F € C(G).

2. F is a disjoint union of (edges sets of ) cycles.

3. All vertex degrees of the graph (V, F) are even.

Proof. (1)=(3): Symmetric difference preserves the even parity.
(3)=(2): Induction on |F|. If F' # () then F contains a cycle C. Remove those edges and repeat.
(2)=-(1): By definition, disjoin union is a sum of vectors. O

Definition 1.52. The cut space of G is *FF*FFssdrsfrsfrx

Proposition 1.53. Together with (), the cuts in G form a subspace C*. This space is generated by cuts of
the form E(v).

Ezample 1.54. **¥*¥¥¥*% picture

Proof. Let C* denote the set of all cuts in G, plus AU). WWTS D,D' € C* = D+ D' € C*. Recall
D+ D" = DAD'. Set Vi = (VinV{)uU (VanVy) and Vo = (ViNV3) U (VaN V). Then D + D’ corresponds
to all edges between V; and Vs, so it is also a cut. (“pick the diagonal”, essentially)
Next, E(V1,Va) = > oy, E(v). **% picture O
Definition 1.55. A minimal non-empty cut in G is a bond.

Remember: minimal in the sense of containment of the sets of crossing edges.
Ezample 1.56. ¥kl bictures

Observation: A cut is a bond (in a connected graph) <= both sides of the corresponding vertex
partition are conneceted induced subgraphs.

Proposition 1.57. FEvery cut is a disjoint union of bonds.
Proof. Take D € C*. Look at the components of V; and V5 ..., ¥tk O
Theorem 1.58. The cycle space C and the cut space C* of any graph satisfy

1. C=(C*)* and

2. C*=Ct

10



Proof. (1) WWTS C C (C*)1. Note that any cycle in G has an even number of edges in each cut. Also,
observe that (F, F') =0 <= F and F’ have an even number of edges in common. So (C,D) = 0 for all
DecC.
For the other direction, WWTS F ¢ C = F ¢ (C*)*. So 3v € V(F) such that deg(v) is odd. So then
(E(v), F) =1.

(2) Tt suffices to show that C* = ((C*)*)L. [This is true, for free, assuming some knowledge of finite-
dimensional vector spaces.]
First, F € C* = VF' € (C*)! we have (F,F’) = 0. Next, dimC* + dim(C*)t = m = dim(C*)* +
dim((C*)4)*. O
Definition 1.59. Let G be a given connected graph and let T be a spanning tree of G. Let e € E(G)\ E(T).
Then C. is the fundamental cycle with respect to T.

Definition 1.60. Given G and T a spanning tree and e € E(T), then D, is the fundamental cut.

Theorem 1.61. Let G be a fixed connected graph and let T be a fized spanning tree of G. Then the
corresponding fundamental cycles and cuts form a basis of C and C*, respectively. Also, dimC =n —m + 1
and dimC* =n — 1.

Proof. Pick e € E(T) and try to write the fundamental cut as a sum. You can’t! So the set of fundamental
cuts is a linearly independent subset of C*, and thus dim C* > n — 1. Similarly, dimC > m —n + 1. Now,

dimC*+dimC=m=(n—-1)+ (m—n+1) <dimC* +dimC

so they’re all equal. O
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