21-801 Advanced Topics in Discrete Math: Graph Theory Fall 2010

Prof. Andrzej Dudek notes by Brendan Sullivan

October 18, 2010

Contents

0	Introduction	1
1	Matchings	1
	1.1 Matchings in Bipartite Graphs	1
	1.2 Matchings in General (Simple) Graphs	2
	1.3 Tree Packing	5
	1.4 Path Covering (for digraphs)	6
	1.5 Connectivity	6

0 Introduction

1 Matchings

1.1 Matchings in Bipartite Graphs

Definition 1.1. A matching is **********

```
Theorem 1.2 (Hall, 1930). **********
```

Proof. ********

Definition 1.3. A k-factor of a graph G is a k-regular spanning subgraph of G.

Note: a 1-factor is a complete matching and a 2-factor divides G into cycles.

Theorem 1.4. Any k-regular bipartite graph has a 1-factor.

Proof. Let $S \subseteq A$. Then e(S, N(S)) = k|S| and e(N(S), A) = k|N(S)|. Certainly, $e(N(S), A) \ge e(S, N(S))$ so $|N(S)| \ge |S|$. Thus, Hall's condition is satisfied and so \exists a matching, i.e. a 1-factor. \Box

Theorem 1.5 (Petersen, 1891). Every regular graph of positive, even degree has a 2-factor.

Proof. Let G be 2k-regular. Then we can find an Eulerian tour through G (i.e. a closed walk through vertices, of the form $v_0v_1\cdots v_\ell = v_0$, that visits every edge). Replace every v by (v^-, v^+) and add edge $e_i^* = v_iv_{i+1}$

1.2 Matchings in General (Simple) Graphs

For a given graph G, let q(G) denote the number of odd components of G.

Theorem 1.6 (Tutte, 1947). G has a 1-factor $\iff q(G-S) \leq |S| \forall S \subseteq V$ (Tutte's Condition, or TC).

Proof. (\Rightarrow) If G has a 1-factor then

(\Leftarrow) Suppose TC holds and G has no 1-factor. Add edges to G to form G^* such that G^* has no 1-factor but $G^* + e$ contains a 1-factor for any possible additional edge e. Then $q(G^* - S) \leq q(G - S) \leq |S|$ for all $S \subseteq V$. If $S = \emptyset$ then $q(G^*) = 0$ and |V| is even. Consider $U = \{v \in V : d_{G^*}(v) = n - 1\}$ where n = |V|. Notice $U \neq V$ otherwise G^* is a complete graph on n = 2k vertices, so it would have a matching. **Claim**: $G^* - U$ is a disjoint union of complete graphs. **Proof**: Suppose not. Then $\exists x, y, z$ such that

 $xy, yz \in E(G^*)$ and $xz \notin E(G^*)$. Since $y \notin U$, \exists such that $yw \notin E(G^*)$. Let M_1 be the matching in $G^* + xz$ and M_2 be the matching in $G^* + yw$. Let $H = M_1 \Delta M_2$. Notice H is a disjoint union of even cycles. **Case 1**: xz and yw belong to different cycles. ****

Case 2: xz and yw belong to the same cycle. *****

Theorem 1.7 (Petersen). Every bridgeless cubic graph has a 1-factor.

Proof. Pick S, arbitrary. Let C be an odd component of G - S. Then $e(C, S) \ge 3$. Let e be the number of edges from S to odd components. Then $3q(G - S) \le e \le 3|S|$ by our assumptions. Thus, TC holds and so G has a 1-factor.

Goal for today is to state and prove a theorem stronger than Tutte's theorem in that it implies Tutte's theorem and tells us some other stuff.

Definition 1.8. A graph G = (V, E) is factor-critical if $G \neq \emptyset$ and G - v has a 1-factor $\forall v \in V$.

Definition 1.9. Let C_g be the components of G. A vertex set $S \subseteq V$ is called matchable to C_{G-S} if the graph obtained by contracting components of G-S to single vertices and deleting edges within S contains a matching of S.

The following is Theorem 2.2.3 from Diestel.

Theorem 1.10. Every graph G = (V, E) contains a vertex set $S \subseteq V$ with the following two properties:

- 1. S is matchable to C_{G-S}
- 2. Every component of G S is factor-critical

Given such an S, the graph contains a 1-factor $\iff |S| = |\mathcal{C}_{G-S}|$.

Why does this imply Tutte's theorem? The first property of S implies $|S| \leq |\mathcal{C}_{G-S}|$ and the second condition implies $|\mathcal{C}_{G-S}| = q(G-S)$. Tutte's condition then implies $|\mathcal{C}_{G-S}| = q(G-S) \leq |S|$, so $|S| = |\mathcal{C}_{G-S}|$.

Proof. The 1-factor \iff part follows from properties (1) and (2): (\Rightarrow) If \exists 1-factor then $q(G-S) \leq |S| \leq q(G-S)$ so $|S| = |\mathcal{C}_{G-S}|$. (\Leftarrow) If $|S| = |\mathcal{C}_{G-S}|$ then match S to one vertex of each component in \mathcal{C}_{G-S} and then use factor-criticality to find a matching in each component with one vertex removed (accounting for the matchability to S).

Now, to show existence of S, we use induction on |G|. Base case: |G| = 0. Take $S = \emptyset$.

Inductive step: Let G be given, |G| > 0 and suppose the theorem holds for graphs with fewer vertices. Consider the sets $T \subseteq V$ where Tutte's condition fails "the worst", i.e.

$$d(T) := d_G(T) := q(G - T) - |T|$$

is a maximum. So $d(T) \ge d(\emptyset) \ge 0$. Let S be a largest such set.

Claim 1: Every component $C \in \mathcal{C}_{G-S} =: \mathcal{C}$ is odd.

Proof of Claim 1: Suppose some $C \in C$ is even. Pick a vertex $c \in C$ and let $T := S \cup \{c\}$. WWTS $d(T) \geq d(S)$ to obtain a contradiction. Notice $C - \{c\}$ has odd order and so it has at least one odd component which is also a component of G - T. Then

$$d(T) = q(G - T) - |T| \ge q(G - S) + 1 - (|S| + 1) = q(G - S) - |S| = d(S)$$

and this contradicts our assumption that S was the largest set that maximumized d. This proves Claim 1. Claim 2: Every $C \in \mathcal{C}$ is factor-critical.

Proof of Claim 2: Suppose $\exists C \in C$ and $c \in C$ such that $C' := C - \{c\}$ has no 1-factor. By the inductive hypothesis, $\exists S' \subseteq V(C')$ such that q(C' - S') > |S'| (using the fact that the current theorem implies Tutte's Theorem). Notice |C'| is even, so if |S'| is even then q(C' - S') is even (since |C' - S'| is even, too); similarly, if |S'| is odd then q(C' - S') is odd. Thus, $q(C' - S') \ge |S'| + 2$, using the previously established inequality. Furthermore, we have two equalities involving $|T| := S \cup \{c\} \cup S'$:

$$q(G-T) = q(G-S) + q(C'-S')$$
 and $|T| = |S| + 1 + |S'|$

Then,

$$d(T) = q(G - T) - |T| = q(G - S) - 1 + q(C' - S') - |S| - 1 - |S'| \ge q(G - S) - |S| = d(S)$$

This proves Claim 2.

Claim 3: S is matchable to C_{G-S} .

Proof of Claim 3: Suppose not. Then $\exists S' \subseteq S$ such that $|N_{\mathcal{C}}(S')| < |S'|$ by Hall's Theorem. Let $T = (S')^c$ and $S = S' \cup T$. So,

$$d(T) = q(G - T) - |T| \ge q(G - S) - |N_{\mathcal{C}}(S')| - |T| > q(G - S) - |S'| - |T| = q(G - S) - |S|$$

This proves Claim 3 and completes the proof.

Let M be any matching and $k_M :=$ number of edges in M with at least 1 end in S, and let $k_G :=$ number of edges in M with both ends in G - S. Notice M satisfies $k_S \leq |S|$ and $k_G \leq \frac{1}{2}(|V| - |S| - |C|)$. Any maximum matching satisfies these at equality.

Theorem 1.11 (Gallai-Edmonds Structure Theorem). Let G = (V, E) be any graph. Let D be the set of vertices which are not covered by at least one maximal matching. Let A be the vertices in V - D which are adjacent to at least 1 vertex in D. Let C = V - D - A. Then

- 1. The components of G[D] are factor critical.
- 2. G[C] has a perfect matching
- 3. The bipartite graph on $A \cup C_{G[D]}$ has positive surplus viewed from A; that is, N(S) > |S| for every $S \subseteq A$ $(S \neq \emptyset)$.
- 4. Any maximal matching has
 - a near perfect matching of components of G[D]
 - perfect matchings on components of G[C]
 - matches each vertex with distinct components of G[D]

5. $|M| = \frac{1}{2} (|V| - c(G[D]) + |A|)$, where $c(\cdot)$ is the number of components.

Definition 1.12. \mathcal{H} has the Erdös-Posa property if there $\exists f : \mathbb{N} \to \mathbb{R}$, $k \mapsto f(k)$, such that $\forall k$ either G contains k disjoint subgraphs, each isomorphic to a graph in \mathcal{H} , or there is a set $U \subseteq V(G)$ with $|U| \leq f(k)$ such that G - U has no subgraph in \mathcal{H} .

Goal: prove class of all cycles has E-P property (with $f(k) \approx 4k \log k$). For the rest of today, consider

$$r_k := \log k + \log \log k + 4 \qquad s_k := \begin{cases} 4kr_k & \text{if } k \ge 2\\ 1 & \text{if } k \le 1 \end{cases}$$

Lemma 1.13. Let $k \in \mathbb{N}$ and let H be a cubic (3-regular) multigraph (loops and multiple edges allowed). If $|H| \ge s_k$ then H contains k disjoint cycles.

Proof. Induction on k. Base case: $k \le 1$ trivial. Inductive step: Let $k \ge 2$ be given and let C be a shortest cycle in H. CLaim: H - C contains a subdivision of a cubic multigraph H' with $|H'| \ge |H| - 2|C|$. *** subdivision picture ***

Proof of claim: Let m be the number of edges between C and H - C. Since H is 3-regular and the average degree of C is 2, $m \leq |C|$. Now, consider the following sequence of bipartitions of V, $\{V_1, V_2\}$. Start with $V_1 = V(C)$. If $H[V_2]$ has a vertex of degree ≤ 1 , move it to V_1 . Then the number of cossing edges decreases by ≥ 1 each time. Suppose you can do this n times, but no more. Then $\{V_1, V_2\}$ is crossed by $\leq m - n$ edges. Hence $H[V_2]$ has at most m - n vertices of degree < 3 and these vertices have degree = 2 (otherwise we moved it over to V_1). Now "suppress" the vertices of degree 2 in $H[V_2]$ (i.e. delete such a vertex v and add an edge between its neighbors). This yields a cubic graph multigraph H'. Notice

$$|H'| \ge |H| - \underbrace{|C|}_{\text{original cycle}} - \underbrace{n}_{\text{move-over provess}} - \underbrace{(m-n)}_{\text{suppress degree 2s}} \ge |H| - 2|C|$$

This proves the claim.

Now, we just have to show $|H'| \ge s_{k-1}$. Corollary 1.3.5 (in Diestel) says if $\delta(G) \ge 3$ then $g(G) \le 2 \log |G|$ (where $g(\cdot)$ is the girth, i.e. length of shortest cycle). So $|C| \le 2 \log |H|$. Since $|H| \ge s_k \ge 6$ and $x - 4 \log x$ is increasing for $x \ge 6$, we get

$$|H'| \ge |H| - 2|C| \ge |H| - 4\log|H| \ge s_k - 4\log s_k$$

To complete the proof WWTS $s_k - 4 \log s_k \ge s_{k-1}$. For k = 2 we have $4 \cdot 2 \cdot (1 + 0 + 4) - 4 \log 40 \ge 1 = s_1$. Also, notice $r_k \le 4 \log k$ for $k \ge 3$ (for k = 3 use a calculator, and for $k \ge 4$ it's obvious). So for $k \ge 3$

$$s_k - 4\log s_k = 4kr_k - 4\log(4kr_k) = 4(k-1)r_k + 4\log k + 4\log \log k + 16 - (8 + 4\log k + 4\log r_k)$$

$$\geq s_{k-1} + 4\log \log k + 8 - 4\log(4\log k) = s_{k-1}$$

Theorem 1.14 (Erdös, Posa, 1965). The class of all cycles has E-P property.

Proof. Let $f(k) := s_k + k - 1$. Let k be given and G be any graph (and assume G has a cycle, otherwise it's trivial). So it has a maximal (with respect to the subgraph relation) subgraph H where all degrees in H are either 2 or 3. Let U be its set of degree 3 vertices and let C be the set of cycles in G that avoid U and meet H in exactly 1 vertex. Let $Z \subseteq V(H) - U$ be the set of vertices in a member of C. For each $z \in Z$, pick one cycle $C_z \in C$ and let $\mathcal{C}' = \{C_z : z \in Z\}$. The cycles in \mathcal{C}' are disjoint by maximality of H (otherwise take part of cycles until first meeting point and add to H). Let \mathcal{D} be the set of 2-regular components of H that avoid Z. Then $\mathcal{C}' \cup \mathcal{D}$ is a set of disjoint cycles. So if $|\mathcal{C}' \cup \mathcal{D}| \geq k$ then we're done. Otherwise, take one vertex from each \mathcal{D} -cycle and add it to Z to get a set X of size $\leq k - 1$ which meet all cycles in C and all 2-regular components of H. Consider any cycle of G which avoids X. It has to meet H by maximality. It has to meet U because: it can't be all in H (otherwise in \mathcal{D}), it can't meet H in just one vertex (otherwise in C), and it can't connect 2 vertices of H - U with a path outside of H, so it must hit U. So every cycle in G meets $X \cup U$. We know $|X| \leq k - 1$. If $|U| < s_k$ then we have < f(k) vertices meeting each cycle. If $|U| \geq s_k$, suppress all degree 2 vertices in H to get a 3-regular multigraph H' with $|H'| = |U| \geq s_k$. Apply the lemma.

1.3 Tree Packing

Let G be a given graph.

Theorem 1.15 (Menger's Theorem). If G is k-edge connected, then $\exists k \text{ disjoint paths between any } 2 \text{ vertices in } G$.

Question: How many edge-disjoint spanning trees exist in G?

Necessary condition: k-edge connectivity.

Is this condition sufficient? No. Consider k = 2 and take a cycle with 4 vertices.

Another necessary condition: for all partitions of V(G) into r sets, each spanning tree has $\geq r-1$ cross-edges (edges with ends in different partitions).

Theorem 1.16 (Nash-Williams 1961, Tutte 1961). A multigraph G has k edge-disjoint spanning trees $\iff G$ has $\geq k(r-1)$ cross edges for any partition of size r.

Corollary 1.17. Every 2k-edge connected multigraph G has k edge-disjoint spanning trees.

Proof of Corollary. ***** picture \Rightarrow G has $\geq \frac{1}{2} \sum_{i=1}^{r} 2k = kr \geq k(r-1)$. **Open**: is this bound sharp? \Box

Set up for proof of theorem: Let G be a given multigraph and $k \in \mathbb{N}$. Let \mathcal{F} be the set of all k-tuples $F = (F_1, F_2, \ldots, F_k)$ where the F_i s are edge-disjoint spanning forests such that $||F|| := |E[F]| = |E[F_1] \cup \cdots \cup E[F_k]|$ is as large as possible.

If $F \in \mathcal{F}$ and $e \in E \setminus E[F]$ then $F_i + e$ for i = 1, 2, ..., k constains a cycle. For some fixed i, take e' in this cycle $(e' \neq e)$. Then setting $F'_i := F_i + e - e'$ and $F'_j := F_j$ for $j \neq i$ yields a new $F' = (F'_1, ..., F'_k)$ such that $F' \in \mathcal{F}$. We say F' is obtained from F by the *replacement* of e' with e. Note: for every path $x \dots y \in F'_i \exists x F_i y$.

 $\begin{array}{l} x \dots y \in F_i \exists :x F_i y.\\ \text{Consider the fixed } k\text{-tuple } F^0 = (F_1^0, \dots, F_k^0) \in \mathcal{F}. \text{ Let } \mathcal{F}^0 \text{ be the set of all } k\text{-tuples that can be obtained from } F^0 \text{ by a series of edge replacements. Let } E^0 := \bigcup_{F \in \mathcal{F}^0} (E \setminus E[F]) \text{ and } G^0 := (V, E^0). \end{array}$

Lemma 1.18. For any $e^0 \in E \setminus E[F^0]$ there exists $U \subseteq V(G)$ that is connected in every F_i^0 and contains the ends of e^0 .

Proof. *** "we believe the lemma"

Proof of Theorem. (\Leftarrow) Induction on |G|. Base case: |G| = 2. Done. Induction step: Suppose for each partition P of V(G), $\exists \ge k(|P| - 1)$ cross edges. We will construct k edge-disjoint spanning trees. Fix a k-tuple $F^0 = (F_1^0, \ldots, F_k^0) \in \mathcal{F}$. If each F_i^0 is a tree, done; otherwise,

$$\|F^0\| = \sum_{i=1}^k \|F_i^0\| < k(|G| - 1)$$

(Recall: $\|\cdot\|$ denotes # of edges.) We have $\|G\| \ge k(|G|-1)$ by assumption, when we consider P to be single vertices. Thus, $\exists e^0 \in E \setminus E[F^0]$. By the Lemma , $\exists U \subseteq V(G)$ that is connected in each F_i^0 and contains ends of e^0 . In particular, $|U| \ge 2$.

Since every partition of the contracted multigraph $G \setminus U$ induces a partition of G with the same # of cross edges, $G \setminus U$ has $\geq k(|P|-1)$ cross edges, with respect to any partition P. By induction, $G \setminus U$ has k disjoint spanning trees T_1, \ldots, T_k . In each T_i , replace V_U by the spanning tree $F_i^0 \cap G[U]$.

Apparently the other direction is obvious.

We say subgraphs G_1, \ldots, G_k partition G if their edge sets form a partition of E(G). **Question**: Into how many connected spanning subgraphs can we partition a given G? If we can answer that question, then we can answer the **question**: Into how few acyclic spanning subgraphs can we partition G? Or, for a given k, which graphs can be partitioned into k forests? **Necessary**: $\forall U \subseteq V(G)$ induces $\leq k(|U| - 1)$ edges. **Theorem 1.19** (Nash-Williams 1961). A multigraph G can be partitioned into at most k forests \iff $||G[U]|| \le k(|U|-1)$ for all $u \subseteq V(G)$.

Proof. We will show: every k-tuple $F = (F_1, \ldots, F_k) \in \mathcal{F}$ partitions G. Suppose otherwise; then $\exists e \in E \setminus E[F]$. Use the Lemma By the Lemma, $\exists U \subseteq V$ connected in every F_i and containing ends of e. Therefore, G[U] has |U| - 1 edges in each F_i in addition to e, so ||G[U]|| > k(|U| - 1), a contradiction. \Box

1.4 Path Covering (for digraphs)

Definition 1.20. A path partition in a digraph D is a family of vertex disjoint directed paths that cover all of the vertices of D. We let $\alpha(D)$ denote the maximum size of an independent set in D.

Theorem 1.21 (Gallai-Milgram 1960). Every digraph D has a path partition with $\leq \alpha(D)$ paths.

Proof. By induction on |D|. Will show: if \mathcal{P} is a path partition with $|\mathcal{P}| > \alpha(D)$ then $\exists \mathcal{Q}$ with $|\mathcal{Q}| = |\mathcal{P}| - 1$ and $\operatorname{Start}(\mathcal{Q}) \subseteq \operatorname{Start}(\mathcal{P})$ where $\operatorname{Start}(\mathcal{P})$ is the set of starting vertices of paths in \mathcal{P} .

***** picture

Let P_u be a path starting at u, for some $u \in \text{Start}(\mathcal{P})$. Since $|\mathcal{P}| > \alpha(D)$, $\exists \vec{uv}$ where $v \in \text{Start}(\mathcal{P})$. If $\text{len}(P_u) = 0$, replace P_v by uvP_v and we're done. If $\text{len}(P_u) \ge 1$, then $\exists \vec{uw} \in P_u$. Let D' = D - u. Notice $\alpha(D') \le \alpha(D)$. Let \mathcal{Q} be a path partition of D'. Notice $|\mathcal{Q}| = |\mathcal{P}| > \alpha(D) \ge \alpha(D')$. By induction, $\exists \mathcal{Q}$ such that $|\mathcal{Q}'| = |\mathcal{Q}| - 1$ and $\text{Start}(\mathcal{Q}') \subseteq \text{Start}(\mathcal{P}) - \{u\} + \{w\}$.

Let μ be the size of a maximal matching in a bipartite digraph. Then the min size of a path cover is $n - 2\mu + \mu = n - \mu$ where X has n vertices. ***** picture

Corollary 1.22. König's Theorem

Corollary 1.23 (Dilworth 1960). In every finite poset (P, \leq) , max size of an antichain = min size of chain partition.

Proof. Let e be a chain partition and A the max antichain. Certainly $|e| \ge |A|$. WWTS |A| chains suffice. Use Gallai-Milgram on D with edges $\{(x, y) : x < y\}$. In this graph, antichain \leftrightarrow independent set and chain cover \leftrightarrow path cover.

1.5 Connectivity

Definition 1.24. *G* is *k*-connected if the minimum size of a separator is $\geq k$. The connectivity $\kappa(G) = \max k$ such that *G* is *k*-connected.

Definition 1.25. A block is a maximal connected (sub)graph with no cut-vertex.

Examples of blocks are K_1 , bridges, maximal 2-connected subgraphs, etc. We can form a natural *block* graph that is a bipartite graph with one set of vertices as the blocks and the other set as the cut vertices that blocks share.

***** picture

Proposition 1.26. The block graph of a connected graph is a tree.

Proof. G is connected \Rightarrow the block graph is connected. Can the block graph have cycles? No, by the maximality of blocks.

Proposition 1.27. A graph is 2-connected $\iff \exists$ sequence $cycle = G_0, G_1, \ldots, G_n = G$ such that G_{i+1} is obtained from G_i by adding a G_i -path.

***** picture ***** "ear decomposition"

Proof. (\Leftarrow) Trivial, since G_i 2-connected \Rightarrow G_{i+1} 2-connected.

(⇒) Given a sequence G_0, G_1, \ldots, G_i , suppose $G_i \neq G$. Then $\exists e \in E(G) - E(G_i)$. Let e = xy with $x \in V(G_i)$. We know G - x is connected so \exists path from y to $z \in V(G_i)$. Adding e gives G_{i+1} . \Box

Theorem 1.28 (Tutte 1961). *G* is 3-connected $\iff \exists seq G_0, G_1, \ldots, G_n = G$ such that G_{i+1} has an edge e = xy with $\deg(x), \deg(y) \ge 3$ and $G_i = G_{i+1}/e$.

Lemma 1.29. If G is 3-connected with |V(G)| > 4 then $\exists e \in E(G)$ such that G/e is 3-connected.

Proof. Suppose not. Then $\forall e = xy \in E(G)$, G/e has a cut-set of ≤ 2 vertices. We know, then, that $V_{xy} \in S$, the cut-set, since $\kappa(G) \geq 3$. Let $S = \{V_{xy}, z\}$. Then $X = \{x, y, z\}$ is a cut-set of $G \Rightarrow$ every vertex in X has an edge to every component of G - X. Let C be the smallest component of G - X over all $\{x, y, z\}$. Let $w \in N(z) \cap C$. By assumption, G/f has a cut-set of size ≤ 2 , so $\exists v$ such that $\{v, z, w\}$ is a cut-set of G and each of these vertices has an edge to every component of $G - \{v, z, w\}$. Since x, y are connected, \exists component D that does not contain x and y. Thus, $\emptyset \neq D \subseteq N(w) \cap V(C)$, so $D \subsetneq C$, contradiction our assumption that C was the smallest such component. ****** picture *******

Proof of theorem. (\Rightarrow) by Lemma

 (\Leftarrow) K_4 is 3-connected. Suppose G_i is 3-connected but G_{i+1} is not. Then $G_i = G_{i+1}/e$ (e = xy) where G_{i+1} is 2-connected. Let S be a cut-set of size ≤ 2 ; let C_1, C_2 be two components of $G_{i+1} - S$. Since x, y are connected, we may assume $V(C_1) \cap \{x, y\} = \emptyset$. Also, C_2 cannot contain both x and y (otherwise S is a cut-set of G_i), nor can it contain any $v \notin \{x, y\}$ (otherwise V_{xy} will be disconnected from C_1 in G_i by removing ≤ 2 vertices). This is a contradiction of the degree assumption!

Theorem 1.30 (Tutte's Wheel Theorem). Every 3-connected graph can be obtained by the following procedure:

- Start with K_4
- Given G_i pick a vertex v
- Split into v' and v'' and add edge $\{v', v''\}$

Today we decide whether k-connectivity is equivalent to having k independent paths.

Definition 1.31. Let $A, B \subseteq V(G)$. An A - B path is a path $P = (u, \ldots, v)$ where $P \cap A = \{u\}$ and $P \cap B = \{v\}$.

A set S is an A - B separator if there is no A - B path in G - S.

Theorem 1.32 (Menger 19217). The minimum size of an A - B separator = maximum number of disjoint A - B paths.

Proof. Let $k = \min$ size of an A - B separator. Clearly # paths $\leq k$. We will construct k disjoint A - B paths, by induction on |E(G)|.

Base: |E(G)| = 0. Here $|A \cap B| = k$ and k vertices form trivial paths.

Inductive: Suppose $xy = e \in E(G)$. Consider G/e. Put V_{xy} in A or B (or both) if x or y is in A or B. Suppose the max # of disjoit A - B paths in G is $\leq k - 1$. Then the same holds in G/e. By induction, $\exists A - B$ separator S' of size $\leq k - 1$ and $V_{xy} \in S'$ (otherwise S' is an A - B separator in G).

Now, $S = S' \setminus \{V_{xy}\} \cup \{x, y\}$ is a separator in G of size k. Consider G' = G - e. Note: every A - S separator and every S - B separator is also an A - B separator; therefore, the mnimum size of an A - S separator is $\geq k$. By induction, $\exists k$ disjoint paths from A to S, likewise from S to B. These paths cannot intersect outside $A \cup S \cup B$. Since |S| = k, combine the 2 sets of paths. Done.

Definition 1.33. Suppose $B \subseteq V(G)$ and $a \in V(G) \setminus B$. An a - B fan is a set of paths from a to B that intersect only at a.

Corollary 1.34 (Fan Theorem). *Min* # of vertices needed to separate a from B = max size of an a - B fan.

Proof. Apply Menger's Theorem to A = N(a) and B.

- **Corollary 1.35** (Local Version of Menger's Theorem). 1. If $ab \notin E(G)$, then min size of a b separator = max # internally disjoint a b paths.
 - 2. If $a \neq b$, min # edges needed to separate a from b = max # edge disjoint a b paths.
- *Proof.* 1. Apply Menger's Theorem to A = N(a) and B = N(b).
 - 2. Apply Menger's Theorem to the line graph of $G: A = E(a) := \{e \in E(G) : e \text{ is incident to } a\}$ and B = E(b).
- **Corollary 1.36** (Global Version of Menger's Theorem). 1. G is k-connected $\iff \exists k \text{ independent paths}$ between any 2 vertices.
 - 2. G is k-edge-connected $\iff \exists k \text{ edge-disjoint paths.}$
- *Proof.* 1. Done except when $ab \in E(G)$ (rest follows from Local Version 1). Suppose $ab \in E(G)$ and let G' = G ab. If G' has k 1 disjoint a b paths, we're done, so suppose otherwise. Then we know the max # disjoint a b paths in G' is $\leq k 2$ and so, by Menger's Theorem, \exists an a b separator S of size $\leq k 2$. Since |V(G)| > k, $\exists w \notin S \cup \{a, b\}$. S is either an a w separator or a b w separator (otherwise \exists an a b path not hitting S), but $S \cup \{b\}$ is an a w separator in G of size k 1. This is a contradiction.
 - 2. Follows from the Local Version 2.

Definition 1.37. A graph G is k-linked if for any two sets of size k (say, with vertices $\{a_1, \ldots, a_k\}$ and $\{b_1, \ldots, b_k\}$) we can find disjoint paths from a_i to b_i .

Observation: k-linked \Rightarrow k-connected.

Question: If a graph is f(k)-connected, can this be enough to guarantee k-linked? Is this even possible? If so, for which f(k) is this true?

Theorem 1.38 (Jung, Larman, Mani 1970). If a graph is 2^{10k^2} , this be enough to guarantee k-linked.

Observation: If graph is k-connected then the average degree \geq minimum degree $\geq k$.

Proposition 1.39. If a graph has average degree d, then it has a subgraph with all degrees $> \frac{d}{2}$.

Proof sketch, algorithmic. Algorithm for finding that subgraph: if we have any vertex of degree $\leq \frac{d}{2}$, throw it away. Question: Why does this stop before all vertices gone? Answer: As we do this, the average degree is nondecreasing (basically...). The condition $E \geq \frac{d}{2}n$ is preserved.

New E = Old E – degree of deleted vtx
$$\geq$$
 Old E – $\frac{d}{2} \geq \frac{d}{2}n - \frac{d}{2} = \frac{d}{2}(n-1)$

Proposition 1.40. If all degrees in graph are $\geq \delta$ then graph has cycle of length $\geq \delta + 1$.

Proof. Suppose you take the longest path and let v be the last vertex. All neighbors of v must fall back onto path, otherwise there's a longer path. Since there are $\geq \delta$ such neighbors, choose the furthest one from v along the path and close the path to make a cycle. This has length $\geq \delta + 1$.

Corollary 1.41. If average degree $\geq d$ then we have a cycle of length $\geq \frac{d}{2} + 1$.

Definition 1.42. A graph has a topological K_r minor if $\exists r$ branch vertices and $\binom{r}{2}$ vertex-disjoint paths connecting them.

Question: What average degree, if any, is enough to guarantee existence of a topological K_r minor?

Remark 1.43. Turán's Theorem says average degree $\geq \approx \frac{r-2}{r-1}n \Rightarrow K_r$ subgraph. We hope for a bound that does not depend on n.

Lemma 1.44. Average degree $\geq 2^{\binom{r}{2}} \Rightarrow$ we have a topological K - r minor.

Proof. Consider only $r \ge 3$. Induction (on m): Prove the statement: average degree $\ge 2^m$ where $m = r, r + 1, \ldots, \binom{r}{2}$ then we have a topological minor with r vertices and m edges (topologically, meaning we have r branch vertices and some m vertex-disjoint paths between them).

Base case: Given average degree $d \ge 2^r$, find a topological minor with r vertices and r edges, i.e. an r-cycle. By the previous proposition/observation, we have a cycle of length $\ge 2^{r-1} + 1 \ge r$. We can turn this topologically into an r-cycle by choosing r of the vertices if the length is > r.

Inductive step: Assume true for m-1. Given average degree $d \ge 2^m$. Would be nice if we could get a connected set U such that inside N(u) the average degree is $\ge 2^{m-1}$. Then, by induction we can find a topological copy of r vertices with m-1 edges. Connected back to U gives us an extra edge to make m, since U is connected. Now, we need to find such a set U.

Since the average degree $\geq 2^m$ in all of G some component of G has average degree $\geq 2^m$, so WOLOG G is connected. Pick U maximal such that U is connected and if U is contracted then $\frac{\text{edges}}{\text{vtxs}} \geq 2^{m-1}$. Suppose deg(v) inside N(U) is $< 2^{m-1}$. Then what if we were to add v to U? U would still be connected, and after contracting U + v then nw edges $\geq 2^{m-1}(\text{vtxs}) - 2^{m-1}$. This contradicts U being maximal. We know such a U exists because we can pick U to be any one vertex with high degree.

Theorem 1.45. If a graph is $\left(\geq 2^{\binom{3k}{2}} + 2k\right)$ -connected then it is k-linked.

Proof. Fix any vertex sets $\{a_1, \ldots, a_k\}$ and $\{b_1, \ldots, b_k\}$ and find disjoint paths between each a_i and b_i . Find a topological K_{3k} ; notice it's still $\geq 2^{\binom{3k}{2}}$ -connected. Menger's Theorem allows us to connect 3k branch vertices with 2k vertex-disjoint paths **** picture **** while minimizing the # of edges not on the topological K_{3k} . Let c_1, \ldots, c_k be the unused branch vertices. **** picture **** show there can't be crossing of topological T path and Menger M path.

Theorem 1.46 (Thomas, Wollan 2005). 2k-connected and average degree $\geq 10k \Rightarrow k$ -linked.

Note: 10k-connected implies hypotheses of theorem.

Corollary 1.47. Average degree $\geq 8r^2 \Rightarrow \exists$ topological K_r minor.

Proof. (Mader's Theorem, Diestel Thm 1.4.3) \Rightarrow have subgraph which is $\geq r^2$ -connected and has average degree $\geq 5r^2 \Rightarrow \frac{1}{2}r^2$ -linked. Pick r branch vertices and r-1 neighbors of each. This is r^2 vertices and can dictate links between all $\frac{1}{2}r^2$ pairs of vertices.

Let G = (V, E) with an enumeration of the edges e_1, e_2, \ldots, e_m . We want to define a vector space with m dimensions.

Definition 1.48. Formally, we let G = (V, E) be a fixed graph with |V| = n and |E| = m. The edge space $\mathcal{E}(G)$ is the vector space over \mathbb{F}_2 of all functions $f : E \to \mathbb{F}_2$ with the usual vector addition on \mathbb{F}_2 (so this corresponds to the symmetric difference Δ of two subgraphs of G). Note: a basis for the edge space is $\{\{e_1\}, \{e_2\}, \ldots, \{e_m\}\}$.

For any subspace $\mathcal{F} \subseteq \mathcal{E}(G)$, let

$$\mathcal{F}^{\perp} = \{ D \in \mathcal{E}(G) : \langle F, D \rangle = 0 \; \forall F \in \mathcal{F} \}$$

where

$$\langle F, F' \rangle = \sum_{i=1}^{m} \lambda_i \lambda'_i \quad \text{for } F = (\lambda_1, \dots, \lambda_m), F' = (\lambda'_1, \dots, \lambda'_m)$$

Notice $\dim \mathcal{F} + \dim \mathcal{F}^{\perp} = m$.

Definition 1.49. The cycle space C = C(G) is the subspace of $\mathcal{E}(G)$ spanned by all cycles in G.

Question: What is dim C? Goal: Prove dim C = m - n + 1 (when G is connected, otherwise we just consider each component separately).

Proposition 1.50. The induced cycles in G generate its entire cycle space.

Proof. By induction on the number of vertices in a given cycle.

Proposition 1.51. *TFAE:*

- 1. $F \in \mathcal{C}(G)$.
- 2. F is a disjoint union of (edges sets of) cycles.
- 3. All vertex degrees of the graph (V, F) are even.

Proof. (1) \Rightarrow (3): Symmetric difference preserves the even parity. (3) \Rightarrow (2): Induction on |F|. If $F \neq \emptyset$ then F contains a cycle C. Remove those edges and repeat. (2) \Rightarrow (1): By definition, disjoin union is a sum of vectors.

Proposition 1.53. Together with \emptyset , the cuts in G form a subspace C^* . This space is generated by cuts of the form E(v).

Example 1.54. ****** picture

Proof. Let \mathcal{C}^* denote the set of all cuts in G, plus \emptyset . WWTS $D, D' \in \mathcal{C}^* \Rightarrow D + D' \in \mathcal{C}^*$. Recall $D + D' = D\Delta D'$. Set $\hat{V}_1 = (V_1 \cap V_1') \cup (V_2 \cap V_2')$ and $\hat{V}_2 = (V_1 \cap V_2') \cup (V_2 \cap V_1')$. Then D + D' corresponds to all edges between \hat{V}_1 and \hat{V}_2 , so it is also a cut. ("pick the diagonal", essentially) Next, $E(V_1, V_2) = \sum_{v \in V_1} E(v)$. ********* picture

Definition 1.55. A minimal non-empty cut in G is a bond.

Remember: minimal in the sense of containment of the sets of crossing edges.

Observation: A cut is a bond (in a connected graph) \iff both sides of the corresponding vertex partition are connected induced subgraphs.

Proposition 1.57. Every cut is a disjoint union of bonds.

Proof. Take $D \in \mathcal{C}^*$. Look at the components of V_1 and V_2 **********

Theorem 1.58. The cycle space C and the cut space C^* of any graph satisfy

- 1. $\mathcal{C} = (\mathcal{C}^{\star})^{\perp}$ and
- 2. $\mathcal{C}^{\star}=\mathcal{C}^{\perp}$

Proof. (1) WWTS $\mathcal{C} \subseteq (\mathcal{C}^*)^{\perp}$. Note that any cycle in G has an even number of edges in each cut. Also, observe that $\langle F, F' \rangle = 0 \iff F$ and F' have an even number of edges in common. So $\langle C, D \rangle = 0$ for all $D \in \mathcal{C}^*$.

For the other direction, WWTS $F \notin \mathcal{C} \Rightarrow F \notin (\mathcal{C}^*)^{\perp}$. So $\exists v \in V(F)$ such that $\deg(v)$ is odd. So then $\langle E(v), F \rangle = 1$.

(2) It suffices to show that $\mathcal{C}^{\star} = ((\mathcal{C}^{\star})^{\perp})^{\perp}$. [This is true, for free, assuming some knowledge of finite-dimensional vector spaces.]

First, $F \in \mathcal{C}^* \Rightarrow \forall F' \in (\mathcal{C}^*)^{\perp}$ we have $\langle F, F' \rangle = 0$. Next, $\dim \mathcal{C}^* + \dim(\mathcal{C}^*)^{\perp} = m = \dim(\mathcal{C}^*)^{\perp} + \dim((\mathcal{C}^*)^{\perp})^{\perp}$.

Definition 1.59. Let G be a given connected graph and let T be a spanning tree of G. Let $e \in E(G) \setminus E(T)$. Then C_e is the fundamental cycle with respect to T.

Definition 1.60. Given G and T a spanning tree and $e \in E(T)$, then D_e is the fundamental cut.

Theorem 1.61. Let G be a fixed connected graph and let T be a fixed spanning tree of G. Then the corresponding fundamental cycles and cuts form a basis of C and C^* , respectively. Also, dim C = n - m + 1 and dim $C^* = n - 1$.

Proof. Pick $e \in E(T)$ and try to write the fundamental cut as a sum. You can't! So the set of fundamental cuts is a linearly independent subset of C^* , and thus dim $C^* \ge n - 1$. Similarly, dim $C \ge m - n + 1$. Now,

$$\dim \mathcal{C}^* + \dim \mathcal{C} = m = (n-1) + (m-n+1) \le \dim \mathcal{C}^* + \dim \mathcal{C}$$

so they're all equal.