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0 Introduction

0.1 What is CM?

What is Continuum Mechanics? Essentially, it is a set of azioms that extend
Newton’s Laws for the motion of particles to the behavior of continua. Recall
that Newton’s Laws for particles are:

e Particles have mass m

e Positions are characterized by position z(t) € R? (where d = 3, usually)
and velocity v(t) = &(t), etc. This is kinematics.

e forces f(t) act on the particles and mi(t) = f(t). This is dynamics.

0.2 Systems of Particles

Consider a collection of particles with masses m; and positions z;(t) € R? with
forces f, (t) acting on them. We can now write down Newton’s Laws for each
particle, at least.

This roughly corresponds to an “integral over a body” when we take the number
of particles to infinity. We now define the center of mass to be

1
zo(t) = i Zmlgz(t) , M = Zmz
which is really a weighted average. Then,

Mic(t) =) f,(t)

%
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We now decompose the forces into external and interparticle forces

Li=5 +ZL’;‘

JFi
and so
Mic = Z i+ Zizj
i i
Next, we use Newton’s Third Law, Lj = 7iﬁ, to eliminate the second term in

the sum, yielding
. e

Miq = ZL
Ezxample 0.1. We may have gravitational forces, where if = m;g so Mg =
2 15
0.2.1 Angular Momentum about a point
Consider a point z(t). Then

Lo(t) = Y (2;(t) — zo(t)) x mad; (1)

and so

Lo(t) = —io X (Z mﬂ%) + Z (&i - @0) X mz£1
=—Mz, Xic"‘Z(L‘ —zy) X f,

Recall that we write L, = Le + Z#j Lj, so we can simplify the last term in the
line above by utilizing the Newtonian assumptions Lj =— iji and LJHL —Z;.
This allows us to cancel many terms and conclude

Lo(t) = =M, Xic‘*‘Z(L‘ —zo) X [}

We can now make convenient and natural choices for z,,, namely either some
fixed z, € R3 independent of ¢ or z, = Z¢. In the second case, we would just
have the second term remaining, since & X £ = 0.

Ezample 0.2. Uf f7 = m;g (gravity), then
M (z; — o) x g = > _ (2 — o) X [

The formula Mic = F =3, f7 and Lo=3, (z; — z) % £ gives a system
of 6 ODEs for certain averages of a system of particles.



0.2.2 Rigid Motions
Consider motions of particles where |z,(t) — z,;(t)| = |P; — P;|, with P; = z,(0).

Theorem 0.3. Assume X : R? : R? satisfies |X(p) — X(q)| = |p — q| for all
P,q € Re. Then 3z, € R and Q € R™? an orthogonal matriz (i.e. QTQ =1)
such that X (p) = zy + Qp.

The matrix @) represents a rotation. If a system is undergoing a rigid motion,
then we know

L(t) = lo(t) + Q(t)gi

and notice, then, that
L S AT . AT
;= 2o+ QC Qﬂi—£0+QQ (L'_io)

Also, note that QQT + QQT =0,5 QQT = —QQT = —(QQT)T, i.e. QQT is
skew symmetric. Let W := QQT. Then, Wa = w X a, where

0 —Wws w2
W = w3 0 —Ww1
—W?2 w1 0

Thus, &;(t) = &o(t) + w(t) x (2;(t) — () and Q@ = W (w)Q.

Note that the space of orthogonal matrices is a set of 2 3-manifolds in the
9-D space R3*3 (we have 2 since det W = +1).

If we selct the origin at ¢ = 0 to be the origin, i.e. ﬁ > mip; =0, then

£00) = 57 Yo mi () = 37 i (2(0) + Q)

=z0(t) + Q (Ali Z mz‘l@) = zo(t)

i.e. with this choice of origin at ¢ = 0, we have

S

z;(t) = zo(t) + Q(t)p,
For angular momentum, we have
Lo =Y (z;—z,) x m,

We now use z = 2o + Qp and & = 2o +w X (4

— z) and the identity



ax (bx¢c)=(a-c)b— (a-b)cto write
Lo = ZQ& X m; (@c +w x Q]ji)
= lemipi X 2o+ ZmiQBi X (wx Qp,)
= Zm (|Q]3i|2w —(Qp, -w)QQi)
= Zm (Ip,2QQ"w - Q(p, ©p)Q"w)
= QY mi (I —p,p,) Q" = QAQ"

which is independent of t. We will use the notation Jy to denote the sum term
above. We can now write Lc = J(t)w(t) where

J(t) = Q(t)JoQ (t)

Let’s summarize where we stand thus far:

Mic=F=> ff

(Jw) = Ne = Z(L —zo) X fi

Q=WwQ where W(w)a =w X a
We can simplify the expression (Jw) by using the relation W = QQ” = QQT
and write
(Jw) = (QTJoQuw) = Jir+ Q(QTQ)JoQ"w + QJo(QTQ)Q"w
=Ju+Wilw+ JWw=Jw+wx Jw+ JwXw
=Jw+wx Jw= N¢

0.3 Rigid Bodies

We have some set B, C R* and a map z = z(t) + Q(t)p to a new set B(t). We
assume the following:

1. The continuum B, can be “approximated” by a collection of particles
{m;}}, with initial positions {Qi}i]\il undergoing a rigid motion.

2. If ¢ : R? — R3 is a smooth function, then

N

i > ol )mi = [ e @) dp

N—oo
it By

where p, : R? — [0, 00) is the mass density of B,..



Observe that

Zo = ﬁ Zmz@i = % Zm (%(t) + Q(%—)

= m(0) + 3,Q(0) (Z m@)

and so )
5+ Q057 [ o)y

We select the origin in the configuration so that [ pp(p) dp = 0. We have

MiCZFZZfi:Z(Tg)mi

7

and we are thinking of m; — 0. If, for example, 7{7 = g(z¢(t) + Qp,) with g
the gravitational force at z;, then we have

Mig = /B f(ze + Qp)or(p) dp

Note: under the change of variables z = x5 + Qp, so dz = det Q dp = dp, then
Miq = /B( )Q(L tpr (QT(z — ) dz
t

This shows a fundamental dichotomy of knowledge; when we integrate [ f(-)p(:)
versus [ f(-)p(-+), we know either the force or the point but not both. So as we
let m; — 0, we have

Jo=Ymi(Ip,’1-p,®p,) = /B (IpI° = p®p) pr(p) dp

r

where we think of p,.(p) dp as a measure.

1 Balance Laws

1.1 Balance of Mass

Note that we don’t discuss the “conservation” of mass. The content here is
found in Chapter 3 of Gurtin’s book.
Assumptions:

e We are given a reference configuration of a body B, C R?, where the
set B, is measurable.

e Kinematics. We have a measurable map X : B, — R?.



e Mass density. The measurable function p,. : B, — [0, 00) represents the
density in the reference configuration

In some sense, this set of assumptions is minimal. We don’t require everything
to be continuous, say, but measurability is mathematically essential.

Definition 1.1. The mass density p : RY — [0, 00) is the function characterized
by
| e@prde = [ o (X@) 0. (0) dp Ve € CRY

T

where
Cc(Rd) ={p: R? — R with compact support}

This is roughly akin to the “push-forward” of a measure.

Example 1.2. If Ay, A5 C B, both get mapped into a set A C B, then we can
take p(x) = xa(x), the characteristic function of the set A, and find that

/ @pdw=/pdwé/ (QOOX)PrdB:/ pr dp
R4 A B A1UA5
so p = 2.

Remark 1.3. If B = X(B,) then p vanishes outside B; i.e. supp(p) C B.

Classical statements: Assume X : B, — R? is a diffeomorphism onto its
range B = X(B,). Under the change of variables x € X(p) we have

dx = det [gp] dp where {g;]m = g;;

Standard notation: We write F' = {%ﬂ to be the Jacobian of the change of

variables; it is also called the deformation gradient. Then the balance of mass
says

[ e@p@rde= [ @ox)pox)den(Pyap= [ (porip,dp voe Cu(r)

Localization (as in the method of Calculus of Variations) yields

)
_eelp)
det(F(p))

where x = X(p). This is useful for solid mechanics when we want to compute
r=X(p).

(po X)det(F) = p, = p(x) =



1.1.1 Calculus

Chain rule. Consider a time dependent motion X(¢t,-) : B, — B(t) C R%
Consider the change of variables x = X(t,p). Given ¢.(t,-) : B, — R, define
@(t, ) : B— R by ¢(t,r) = ¢.(t,p). Then,

890 dp 8:81
ot ﬂ_ Ox; Ot

=pt+v-Vop

where [, indicates we are keeping p constant, and v(t, x) = (¢, p) and & = g [p-

Definition 1.4. The convective derivative of ¢(t,-) : B — R is ¢ = ¢s+v-Ve.

Derivative of the Jacobian. We write

Fa=51p F(t,plia = 5 op. (t,p) = s 5t = Bp.
= Z avi % = %Fja

0z Opa r Ox;j

and notice that the last expression above is a matrix product. We write

61)1'
6l‘j

= (Vu)F where (Vu);; =

If we write F' = F(t,x) then the equation becomes
(Fia)t + v VFiq = (VOF)q

and we write
Fi+ @ -V)F = (Vu)F
where the operation (v - V) is done component-wise on F.

Remark 1.5. Given p, : B, — [0,00), we define p by pdz = p, dp and think of
it as the “push-forward” of a measure or the Radon-Nikodym derivative. That
is, we require

/ o X(@)pr () dp = / p(@)p(x)dz Vi € Co(RY)
B, R4

Classical case: If X : B, — B is a diffeomorphism (smooth enough) with
Jacobian F' = [8‘“} where z = X(¢), then

()
P2) = Sen(F ()

Note: this is the static (equilibirum) problem, with no time. Now, let’s consider
the same problem with time.



1.1.2 Evolutionary form

Let X : (0,T) x B, — R Then

/wX(t,cp)pr(so)dw:/ o(t,z)p(t,x)dz VYC. ((0,T) x RY)
B, R4

We still get
pr(9)
t N S VA
P2) = Gt (F(t, )

where © = X (¢, ).
Chain rule: ¢(t,z) = ¢.(t,p) under z = X(¢,p), a family of (smooth
enough) diffeomorphisms. Given ¢, : (0,T) x B, — R, then

p(t,2) = o, (£, X7 (t,2))
Alternatively, given ¢ : (0,T) x B(t) — R, define
er(t, 0) = ¢ (1, X(L, )
So,

orlt,0) = 5 o 2rlt:0) = @ult,) + (v~ V)e(t,2)

Derivative of Jacobian. Recall F' = [g;“’w} Then, using v(t, x) = &(t, @),
we have 9 9 Y 90 8
: x; % v; 0x;
Fi = — v = L = Kl
ot o OPa  Opa zj: 0z Opa

and thus F = (Vu)F. Note that Vo is a matriz with entries (Vv);; = gzj
Gurtin uses the notation L = Vu. Also, we point out that Roman indices (like
i) are used for “real world” variables, and Greek indices (like a) are used for
“reference” variables.
Derivative of determinant. Observe that
det (A + 0A) = det (A (I + A7'6A)) = det(A) det (I + A™'6A)
=det(A4) (1+tr (A7'64) + O(64%))
and so
det(A + 5A) — det(A) = det(A)tr (A7'6A) + O(64?)
Recall the Frobenius inner product on matrices A, B € R?*¢, defined by

A:B= ZAijBij = ZZAU(BT)N = Z(ABT)” = tI‘(ABT)
i, i g

K3
Similarly, one can show

A: B =tr(ABT) = tr(ATB) = tr(BT A) = tr(BAT)



and so |A|? = A: A = tr(AT A). This implies
det(A + 5A) — det(A) = det(A) (A™T : 6A) + O(6A%)

That is,
Odet(A)
which is sometimes written as D det(A) = det(A)A~T. Thus,

= det(4) (A™T)

ij

. - *pT(QO) e .
M0 = G

= _detp(TF)Q det(F) (F_T : F)

Pr 7.
= “Ga(p £ (VOF)

= —p(I: Vo) = —pdiv(v)

where we have used the facts that A : BC = BTA : C = ACT : B and
I: A =tr(A). Finally, we can write

pt+v-Vp+ pdiviv) =0 = p; + div(pr) =0
Reynolds transport formula. Suppose X : (0,T) x B, — B(t) C R? is a
family of diffeomorphisms and ¢ : (0,7) x R¢ — R is smooth. Then,
d

d
7 o(t,x)p(t,r)dr = — [ poX(t,p)pr(p)dp
B(t)

T dt Jp,
=/B @ o X(t,p)pr(p)dp

so then

d
- / ppdr = / ppdx
dt Jp) B(t)

where B(t) is the image of B, under X and p is the density on B(t) under X.
Leibniz’s Formula. In 1-D,

PRO) b(t)

s f(t, @) de = fe(t,z) dz + f (¢,0(8)) U'(t) — f (t,a(t) a'(t)
a(t) a(t)

and in many-D

G| seod= [ peades [ fu,da
dt ) B(t) oB(t)

where v, (¢, s) is the normal velocity of the point s € 9B(t). We often write

v, = v-n where v(t,z) is the velocity of points x € dB(t) and n(t,s) is the
normal at s € 9B(t).

10



Note: if R C R is a fized region, then the divergence theorem implies

0:/ pt+diV(py)dx:/pt+/ pu-n
R R OR

Lo
dt Jr or

1.2 Balance of Momentum

and therefore

Q: How can we generalize Newton’s Laws?

Kinematics: Suppose X : (0,7) x B, — B(t) € R is a smooth family
of diffeomorphisms. Given a “part” P, of the body B, (i.e. P. C B,.) at the
current location P(t) C B(t), then

1. The linear momentum of P, is

I(t,P,) == /P(t) pydx:/P pri

and

2. the angular momentum of P about 0 € R? is
a(t,Py) := / (z —0) x pvdx
P(t)

Q: What forces act on P(t)? First, there are external forces per unit volume,
denoted by b(t,x). The external force acting on P(t) is fp(t) b(t,z) de. What
about the force that B(t) \ P(t) exerts upon P(¢)? To answer this, we follow
the ideas of Cauchy.

Cauchy’s Hypotheses

1. The force exerted on a part P(t) of a body B(t) by the complement B(t) \
P(t) can be represented as a surface attraction (force per unit area) acting
on 9P(t), so that the force is [op, s

2. The surface traction at z € 9P(t) can be expressed as a function of the
form s(t,z,n), so that s only depends on 9P(t) via the normal vector n.

Note: If Py(t), P2(t) are two parts of the body with a point « € 9P; NOP; with
common normal vector, then the traction that B\ P; exerts on Py at z is equal
to the traction that B\ P exerts on Py at x. Notation from Gurtin: A force
“system” for B, is a pair (b(¢,z),s(t,z,n)) of body forces and tractions.

11



1.2.1 Classical statements of balance of momentum

d
— pgda::/ deJr/ sdu
dt Jp) P(t) oP(t)

(x—Q)X(py)dx:/ (x —0) x bdx

dt Jp) P(t)

= / (z —0) x sda
aP(t)

Remark 1.6. If the balance of linear momentum holds and the balance of angular
momentum about 0 holds, then the balance of angular momentum holds about
any 0’ € R?

Proof. Observe that

d
—/ (ac—Q’)xpy—/ (:E—Q')xb—/ (x—0")xs
dt Jp) P(t) oP(t)

:i (m—Q)xpy—/ (JJ—Q)xb—/ (r—0)xs
dt Jpw) P aP(t)

(t)
d
—(0—0’)><<dt/ pv—/ b—/ s)
P(t) P(t) OP(t)

=0+0=0
O
We summarize here the classical statements for Linear Momentum
d
a4 pQ:/ @+/ s YP(t)=X(tLP). P, CB (2
dt Jp) Pt) oP(t)

and Reynolds’ form thereof,

/ o = / b+ / s (3)
AP(t) P(t) oP(t)

as well as Angular Momentum

d
— (gxy)p:/ §><b+/ T XS (4)
dt Jpq Pt) oP(1)

and Reynolds’ form thereof

/ (gxg)p=/ §><b+/ T X8 (5)
P(t) P(t) OP(t)

since (z xv) =& xv+zx0=04+z X 0.

12



Theorem 1.7 (Cauchy). Suppose B, undergoes a classical motion (i.e. smooth
diffeomorphisms) subjected to a (smooth) force system (b,s) and assume the
postulates of Cauchy hold (i.e. s = s(t,x,n)). Then a necessary and sufficient
condition for the Balance of Linear Momentum to hold is the existence of a
stress tensor T = T(t,x) for which

1. s(t,z,n) =T(t,x)n, and
2. pv =div(T) = b where

3
0
div(T E 37 E, i5,J
j=1 J

In this situation, the Balance of Angular Momentum holds <= T =T7.

Proof. (=) Fixt > 0 and = € B(t) and write s(n) = s(t,z,n).

Step 1: Let {e;}3_; be a basis for R? and let k € S? be a unit vector
such that k- e; > 0. Let K. be the right tetrahedron with center x and force
normal K with volume &3. Select P(t) = K.. (Note that the normal to the
xz,xy,yz coordinate planes of the tetrahedron are —es, —e3, —ej respectively,
and the normal to the skew plane is k.) Now, the Balance of Linear Momentum

states
1 1 . K|, .
S s=5 [ wi-n=0 (bl ) =06
& oK. g K. E

Note the following fact:

1
- dy ——

1 1 (3
Y NECEE10 9] TSRy )
3
= 5% (Z |Ails(—ei) + |Aols(k) + |aK|o(1)>

_ |A0 (Z ||jo| (k) +0(1)>

since the normals are constant on the faces, s(t,-,n) is continuous, and both

| Ao, [0K.| = O(g?). Also, note that ||£;|I =k - e;. This tells us

So then,

3

0 =5 [ stm=c- (Zuc ei)s(—e) + (k) + o<1>>

i=1

13



Letting ¢ — 0, we find

3
Z (k-e))s(—e;) fork-e; >0 ,i=1,2,3

i=1

Step 2: Note that s(e;) = —s(—e;). This follows because s(t,x,n) is con-
tinuous in k € S2, so we may let k — e; and so

3
s(e;) = kli_)rrc} s klllrc} Z (k-ej)s(—ej) = —s(—e;)
Thus,
3
s(k) = (k-e)s(e;) Vhke S withk-e; >0
i=1

where we have applied continuity to relax the condition to > 0.
Step 3: Let k € S? be arbitrary and define &; = sgn(k - e;)e; = ;. Then
{€;}3_, is an orthonormal basis for R® and k -é; > 0 for i = 1,2,3. Thus,

3

s(k) = Z (k-&;)s ngn (k-e)?(k-e;)s(e ):Z(hei)s(ei)

i=1

for every k € S?. So we have shown that s(k) is linear in k, and thus it must

be a matrix. Define s
T := Z s(e;) ®e;
i=1

Then s
Th=> (k-e;)s(e:) = s(k)

i=1
since (a ® b)e = (b- ¢)a. O

Recall that the Balance of Momentum holds <= s(n) = T'n, in which case

s(n) = /8’P(t) Tn = /P(t) dw(t)

and all integrands are continuous. Also, note that

/diV(T)i:/TijJ:/ Tij-nj :/ (T?’L)l
P P oP oP

ie. fp div(T) = [,p Tn. Then the Balance of Momentum implies fp( B PO =
div(T fp (1) bs and so
pv —div(T) = b

14



Furthermore, this implies

/ pz'):/ b+/ Tn
P(t) P(t) OP(t)

so if s(n) = T'n then the Balance of Momentum (M) holds. Thus, we have the

equivalency
(M) <= s(n)=TN,po—div(T)=b

Given s(n) = T'n, then the Balance of Angular Momentum holds <= T =T7.
Recall the Balance of Angular Momentum

/ p(xxi)):/ ;v><b+/ x x s(n)
P(t) P(t) OP(t)

We compute (using the Levi-Civita symbol €;;)
(x x Tn); = gijpr;(Tn)y = ijre; Trene

and so

/ (m X Tn)l = / (5ijkijk£)7g
OP(t) P

=/ €ijk (00The + 2 Txe 0)
P

= / €ijiThj + x5 div(T)y
P
Define Rot(T'); = €;j%Tjx. Then

/ x x (Tn) = / —Rot(T) + = x div(T)
oP P

/xx(pv):/xxb+/ x x (Tn)
P P oP
which holds <=

/Pxx(pi})_/pxxb+/P—Rot(T)+x><div(T)

and then

and so
/ 2 x (pi — div(T) — b) +Rot(T) = 0
P

linear momentum

which finally implies
/ Rot(T) = 0 VP C B(t) = Rot(T) =0
P

Observe that

T3 — T3
Rot(T) = [T31 —Th3| =0 <= TT =T
Tio — 1o

15


http://en.wikipedia.org/wiki/Levi-Civita_symbol

1.2.2 Classical Configurations
1. Given a surface S with normal n,

(a) the normal traction is Tn-n = n?Tn or (nTTn)n = (n®n)Tn, and

(b) the shearing traction is (I —n ® n)T'n
2. A “hydrostatic” stress tensor is one of the form T = —pl, so then Tn =
—pn for all normals n. Note that T’ =T — Ltr(T)I which is trace-free.
1.2.3 Alternative Forms of the Momentum Equation

The standard statement + Leibniz’s Rule gives us

/ (pv)¢ + div(pv ® v) — div(T) = / b
P(t) P(t)
and localizing yields
(pv)¢ + div(pv @ v) — div(T) = b
This is the conservation form of the equation. We also have the skew sym-

metrized form, which is used in numerical codes:

% (p0 + (pv)y + div(pv @ v)) —div(T) = b

Lemma 1.8. Suppose the Balance of Mass, Linear Momentum and Angular
Momentum hold. Then,

d v]?
— p—— + T:D(v) = b-v+ Tn-v
dt Jpwy 2 P(t) P(t) oP(t)

This is called the “principal of virtual work”. The first term represents kinetic
energy, the middle term is some kind of dissipation, and the right hand side
represents power.

Proof. Apply Reynolds’ formula to write

d |v]? / (|U|2)' / . / .
— p—— = pl— ) = pUv -0 = (div(T) +b) - v
at Jpwy 2 Jpw \ 2 P(1) P(1)

z/ b-v—T:Vv—i—/ Tn-v
P(t) aP(t)

Thus,

d |v]?
— p—— + T:Vv= b-v+ Tn-v
dt Jpuy = 2 ) Pt oP(t)

If T =TT, then T : Vv reduces to the desired form, according to the identities
A:B=3A:B+ AT : BT = A: 3(B+ BT) for any symmetric matrix A and
arbitrary B, and recalling that D(v) = (Vv + (Vv)T). O

16



Before moving on to study fluids, we note the following properties of incom-
pressible materials:

det F—1 <= div(v) =0 <= p = const.
Proof.
p+pdivi) =0 = (p=0 < div(v) =0 <= p(t,z(t,p)) = pr(p))
and

p(t,x(t,p)) = _rp) = (p = const. <= det I' = const.

- det(F(t,p))
< det F=det F(0) =detI =1)

2 Classical Fluids

Inviscid fluids have a stress tensor given by T'(¢t,x) = —p(t,x)I. Then,

div(T); = Tij; = (=pdij) j = —.j0ij — pdjj = —pi = —(Vp)i
Take pv — Vp = b. Then

2
t=v+WV)v=0v,+V <|U2|> — v X curl(v)

which implies
|v]? 1 1
v+ V(—— ) —vxcurllv)=-Vp=-b
2 p p

1. If the fluid is incompressible then p =const.
2. If p = p(p), then

1Vp_v/pp/(£)df—p/(p)Vp—1Vp—V<lp> _.vp
p 3 p p p

3. If the force per unit mass f = %b is the gradient of a potential, i.e. f =
VF, then we obtain

2
vt—&—V('gl—&—P(p)—F) — v x curl(v) =0

If v = Vi for some scalar ¢, then curl(v) = 0 and v; = Vi, so

| 2

v(%+“2+P(p)—F> —0

17



(from classical fluid study), so then

2
oL + % + P(p) — F = const.

This is Bernoulli’s Equation!
Ezxample 2.1. Consider a steady flow on an incompressible fluid. Then
[v]?

2

+B—g=C
p

for some constant C, where f = gz and g ~ 9.81 (gravity). Consider the setup
of a Pitot tube, with pressure pg at v = 0. Then
o> | P [v]?

—+——gz=0+@—922>7=p_p0
2 p p 2 p

2.1 Inviscid Fluids

We assume T = —pl. For a barotropic fluid, p = p(p). Bernoulli’s equation
states that if v = Vyp and f = % = VF, then

o]

Y+ ——

5 TP =F

We have two natural questions: Why should v = V? And why should p = p(p)
and not p = p(p, ), where 6 is the temperature in the gas law % = R6.

Theorem 2.2 (Velocity transport theorem). Assume T = —pl, wherep = p(p),
and f = = VF. Then (F—l (%)) —0.

Proof. Recall

[vl®

@vm:v(Q

) —vXw , where w = curl(v)
Then the momentum equation becomes

2
vt+V<|v2|+P(p)F>v><w—0

where

Take the curl of both sides to get

wy —curl(v X w) =0
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since curl(VH) = 0 for any smooth H. Now, we use the identity
curl(v x w) = (w.V)v — (v.V)w — div(v)w

to write
wt + (0. V)w + div(v)w = (w.V)v

which simplifies to
w+div(v)w = (Vv)w (6)

)
since (w.V)v; = w;v; j; = v; jw; = [(Vv)w];. Observe that

1\’ 1 1
-] =—=p=—-div(v
(P) PP (®)

(;) - %div(v) =0 (7)

Now, we take the sum of % times @) and w times and apply the product

rule to write )
w w
2) — (v 2
( P ) (V0) P

Now, recall that F' = [%} and F' = (Vv)F, and notice that

which we will write as

0=I=(FF') = (FY)Y =-F'FF!'=-F'WVoFF ' =-F 'V

(P )30 ()

= —F 'V 4 FlveY =0
p p

Then,

O

Corollary 2.3. If every particle in the flow originates from a region with zero
vorticity (and the flow is smooth), then w = curl(v) = 0.

Example 2.4. Designing an aerofoil.

2.2 Balance of Energy
Assumptions:
2
1. The energy per unit mass is e + %, where e is the “internal energy” (i.e.
inherent to the material)

2. 3(r,q) where r is the "energy source” and g is the “energy flux”. Specifi-
cally, 7 : B(t) — R and g : 9P(t) — R? for all parts P(t) C B(t).
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3. The Balance of Energy equation holds:

i) = /
— + ) = r+b-v+ —q-n+s-v
dt Jpa) 2 0 oP(t)

Using Reynolds’ Formula and Gauss’ Divergence Theorem (plus Balance of
Mass) and the fact that S = Tn = s-v = (TTv) - n, we can prove that
the Balanceof Energy equation above implies

/ ple+v-v)= / r+b-v—div(q) + div(T"v)
P(t) P(1)

Note that
diV(TT ) = Z Z Z Z Z 4,105 + Tj505

= Z div(T),v; + Tji(W)ji = div(T) cv+T: Vo

This allows us to write

/ pé+ (po —div(T) —b) v+ div(q) = / r+T:Vv
P(t) P(t)

=0 by Momentum Eqn

and localizing shows that
pé+div(q) =r+T: Vv

This is an example of the phenomenon of the “decoupling” of kinetic and ther-
mal/internal energy. The equation in the linea above has something to do with
“mechanized heating”.

Also, when T'=T7, then T': Vo =T : D(v) where D(v) = (V0)sym.

Ezample 2.5. Let 6 be temperature, and e = cf for some ¢ € RT, a specific
heat, and ¢ = —kV# for some k € R, a conductivity. This is where heat flows
down a temperature gradient. Suppose v = 0 (a rigid solid). Then Vv = 0 and
0 =0, +vV6 = 0,. Thus,

By — kNG =7

which is the classical heat equation!

Let’s return to the case of an inviscid fluid and try to convince ourselves why
p = p(p) and not p = p(p,0). We assume T = —pl and p = p(e, p). Suppose,
for example, we have an ideal gas, so e = ¢f and p(e, p) = pf = %pe. Suppose
further that the fluid is non-heat conducting, so ¢ = 0. Finally, suppose r = 0.
Then the energy equation becomes

pe =T :Vv=—pdiv(v) = pé+pdiv(v) =0 (8)
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Also, we have
p+pdiviv) =0 (<= p+div(pv) =0) (9)
We take p times Equation and subtract p times Equation (]E[) to get
pre—pp=0
which we write as
_P. 0
é g p=

Suppose, now, that p = p(e,p) and we can construct 7(e, p) (which is like
entropy) such that

dn _ ple,p) dn

dp P2 de

_ p(eép) (

Then 7 is constant along curves of the form -e(p) = see method of

characteristics). This implies
dn. dn.

— —p=0 ie.n=20
dee+dpp Le. 7

Thus, if the flow originates from a state where 7., =const., then

n (e(t,x),p(t,:z:)) = Too V(t,l‘)

That is, n(e,p) = Moo implies that we could write e = e(p), which in turn
implies that p(e(p),p) = p(p), by the Implicit Function Theorem (since e(p) is
increasing). This shows that, indeed, pressure is a function of density only, and

not temperature. Note that for an ideal gas, we typically have n = In (p%) for

some constant . Let’s look at this example more specifically:
Ezample 2.6 (Ideal Gas). Set

p _
n(p,e) =N +Cln (m> =17e +Cln (ep1 7)

where the second equality follows from the ideal gas law &= = p. Also. we are

still assuming e = cf. Then,

dyp _c_1
de e 0
and
dn c _
& 1 ¥
0 epl_y( v)p

_CO=D (= _(dn) (_p
p Rpb de P2
provided v =1 + % Note: n(p, e) represents the (specific) entropy of the ideal
gas (where “specific” indicates “per unit mass”).
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Bernoulli’s Formula

2
M ppy=F , v=vy

P+ 9

follows as a corollary to this example.

Theorem 2.7. Let w : R? — R? be a C! wvector field, and suppose w does not
vanish in a neighborhood R? D U > xg with U open. Then In: V C U — R
differentiable that is constant on trajectories of w and Vn #0 on V.

Ezample 2.8. As in the previous example (ideal gas), for entropy we define
w = [-p, p?]T. Then having 7 constant on trajectories of w means

dn

Pt %)

O: . frd
Vn-w T

which is true, as we have seen.

Proof. We sketch the proof of the theorem above. Select coordinates so that z
lies at the origin and w(x,) lies along the z-axis. Consider the system of ODEs

i(t;n) = w(z(t;n))
z(0;m) = [O]

n

Show that the mapping (¢,7) — (z(t;n), y(t;n)) is a bijection (by Implicit Func-
tion Theorem). Thus, n = n(z,y) is the required function. O

2.3 Frame-Indifference

To distinguish materials, we have the quantities b, s = Tn,r,q. We still wonder
about the properties of T, and frame-indifference (a.k.a. “change of observer”)
will dictate certain properties of 7.

Definition 2.9. Given a reference body B, C R¢ and two motions x = X (t,p)
and z* = X*(t,p), we say x and x* are related by a change of observer provided

a”(t,p) = y(t) + Q) (¢, p)

for some y : (0,T) — R and Q : (0,T) — Orth™ (i.e. Q(t) is orthogonal and
det(Q(t)) = +1 V).

If f(t,z) := y(t) + Q(t)z, this just says z*(¢,p) = f o x(¢,p).
Remark 2.10. A cynical aside: Gurtin’s book uses the term Q(¢)(z — 0) to
“vectorize” the point x. But really, these quantities are interchangeable because

there is a canonical isomorphism and a linear map between tangent spaces to
manifolds.
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Consider the quantities

ox; . | OxF
F= [ﬁp(j and F*= [3p(j

Then z =y + Qz =y; + >_, Qi;r;, and so

*
ox}

Opa

or;
=0,

which implies F* = QF.

Theorem 2.11 (Polar Decomposition). Given F € R4 IR UV € R*4,
with R orthogonal and U,V symmetric and positive semi-definite, such that
F = RU =VR. (This decomposition is unique when F is nonsingular.)

Proof. We leave the full proof as an exercise and sketch the idea here. We would
guess that we need to satisfy

FT =UTRT =UR" = FTF=URTRU =U?

so it would make sense to set U = v FTF. This is okay since FTF is symmetric
and positive semi-definite. Defininf V' is similar. O

We use this theorem to write
F*=RU*=V*R*, F=RU=VR = F*=QF
and furthermore
(U*)? = (FY)TF* = FTQTQF = FTF = U?
so U* = U is invariant under a change of observer! Also,
RU*=F*=QF =QRU = R*=QR
since det F' # 0. Finally, we also observe
V*R*=F*=QF =QVR = V*QR=QVR = V* =QvQ"

so V' is not invariant.

Notation: The matrix C = FTF = U? is sometimes called the right
Cauchy-Green tensor and B = FFT = V? is sometimes called the left Cauchy-
Green tensor or finger tensor. These are defined to be such that

C*=(F)'F*=F'F=C
is invariant, but

B* = F*(F*)T _ FFT _ QBQT
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is not. Also, notice that Cg = FioFjs so C uses only Greek indices and is thus
invariant, whereas B;; = Fj,Fj, uses Latin indices and so it depends on the
frame, i.e. the “spectacles” with which we view our experiment.

Start from

a*(t,p) = y(t) + Q) (¢, p)

and take a t derivative to get
@*(t,p) = 9(t) + Q()z(t,p) + Qi(t, p)
—— ——
v* (t,a*) v(t,z)
and then take % of both sides using the chain rule to get
J

* *
ovy 0xf

6252 . 8xj

. avk
=0+ Qd;; + szaTj

*
L

where we have used the fact that = Qri, which follows from the equation

for * a few lines above. We now write this derivative equation as
V' Q = Q + QVv = V' = QQT + QVvQ”
Note that QTQ = I = QQ is skew. Thus,
(V0 )y = @ (V0) o Q7

which we write as
D*(v*) = QD(v)Q"
where D(v) = £ (Vo + VoT).

2.3.1 Normals to Surfaces

Consider a surface S, of B, with normal n,.(p), and the corresponding surface
S of B with normal n(z). Given p € S,, we construct (locally) the function
o : B, — R for which

Sy ={p:¢r(p) =0} = the zero level set of ¢,

Then
_ Vpor
" Ve
since Ve, is L to level sets. Taking S = X(S,) and ¢(z) = ¢.(p), then (locally)
Oy dp Oz
S = : = O d = .
-
=F;q

Thus, Vyo, = FI'V,0 and Ve, || ny and Vi || n. Accordingly, n,. = cF'n
or n = cF~Tn, for some constant. It follows that c¢(F*)Tn* = n, = kFTn,
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and since we can write F* = QF, we can reduce this to cn* = k@Qn. But,
[n*| = |n| = |@Qn| =1 sok = ¢ = 1. Thus, n* = Qn!

This shows that a vector-valued quantity in the reference configuration is
“transported” by the maps x = X(p) and «* = X*(p) corresponding to a
change of observer related by n* = Qn.

Thus, if s* = T*n* and s = Tn and the surface forces correspond to the
same “experiment” then s* = QJs. Thus,

T*n*=Q(Tn) = T*Qn=QTn

This should hold for all n, so T*Q = QT and therefore T* = QT'Q™. This now
rules out many possibilities for what T" can be.

Traditionally, a formula for T is frame-indifferent if under a change of ob-
server given by 2* = y + Qx we have T* = QTQ".

Example 2.12. 1. If T = —pI then T* = —pl = —pQQT = Q(—pI)QT =
QT Q" which works.

2. If T = uD(v) then we have shown D*(v*) = QD(v)QT so T* = QTQT
which works.

3. f T = uB = uFFT then F* = QF implies T* = F*(F*)T = QFFTQT =
QTQT which works.

4. However, if T = puC = puFTF then (F*)TF* = (QF)T(QF) = FTF #
QFTF)QT so C is T = puC is not frame-indifferent.
2.4 Newtonian Fluids

How do we distinguish a solid from a fluid? Thinking about forces, we can say
that solids resist (static) shear whereas a fluid will deform and “relax” to a state
of zero stress.

For instance, consider

sz HpEX(p) and F:[(l) ﬂ

For a fluid, T doesn’t depend upon F. A fluid will resist a state of shear, e.g. a
nontrivial velocity gradient. A solid resists a deformation gradient.
We consider constitutive relations of the form

T=-wl+C(L)

where 7 denotes the pressure (so as not to coincide with the coordinate p),
L =Vv, and C : Lin — Lin (i.e. C: R™4 — R9*?) is linear. Think of C as the

1st term in some Taylor expansion:
T =T(L) = —nI +C(L) + o(|L|?)

1. If L =Vv =0 then T = —nl is a hydrostatic stress.
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2. There is a degeneracy
T=—-nl+C(L)=—7I+C(L)
with R
7=n+p(L) and C(L)=C(L)+p(L)I

where 3 : Lin — R is linear, i.e. 3 € L(R?*< R). By convention, we select
the representation for which tr(C(L)) = 0, so then

where d is the dimension.
3. With this convention, tr(T) = —ntr(I) = —dmr.
4. If the fluid is incompressible, 0 = div(v) = tr(L). In general,
C:Lin — Ling := {4 € R™?: tr(4) = 0}

but when the fluid is incompressible, we have C : Linyg — Ling since
L € Ling.

5. If the Balance of Angular Momentum is to hold, we should have T' = T’
i.e. we need

C:Lin — Sym, := {A € Lin: A = AT} NLing

Note dim (Sym,) = @ — 1 which is 5 in 3D. For incompressible fluids,

dim (Ling) = d? — 1 which is 8 in 3D.

6. The quantity Ty = T — 2tr(T)I is called the deviatoric stress; it is, in
some sense, the “amount” that we are “away” from being incompressible.
We write T'= —nl + Tp. (Note: Tp is sometimes denoted by T”.) This is
closely related to the shear.

Definition 2.13. A Newtonian fluid is one for which Ty = C(L) (where L =
Vv) and C : Lin — Symy,.

Theorem 2.14. A necessary and sufficient condition for a Newtonian fluid to
be frame-indifferent is

Ty = 2uD(v) = p(L + L)
where = p(p) is a scalar (that is frame-indifferent, i.e. p* = ).

Proof. (<) Suppose Ty = 2uD(v) and x(¢, p) and x* (¢, p) are related by a change
in observer (so that z* = y + Qz). We have shown that D* = QDQ”. Thus,

T} = 2uD* = 2uQDQT = QTHQ"

Then
T*__*I * ok T T o T _ T
=-mI+T§ = -m"QQ" +QToQ" =Q(-7"I+Tp) Q" =QTQ
using the fact that 7* = 7 since 7 is a scalar, so 7*(z*) = 7(x). O
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Note: If a response function T = T(- - ) is independent of observer, then
tr(T*) = tr(QTQT) = tr(T)
For Newtonion fluids,
1
To=T- gtr(T)I =C(Ly)
where C : Ling — Sym,, is linear (and L = Vv, Ly = trace-free part of L). This
should tell us how to make the “correct” statement in the theorem below.

Theorem 2.15. The response function of a Newtonian fluid is independent of
observer <= C(Lo) = 2uDg and the trace of the stress tensor is a “scalar”
(i.e. independent of observer).

Proof. (<) Let x,2* : (0,T) x B, — R6d be related by a change of observer.
Then

L*=QLQT +QQT and D*=QDQT
N~
skew

Now,

1
T* = tx(T*)] + 24" Dj

1
= gtr(T)I +2uD§ (by hypothesis)
1
—Q (Guln)r + 2000 ) Q7 = QTQ”

i.e. frame-indifference.

(=) Suppose the response function T'= —xI 4+ C(L) is independent of ob-
server. If x,a* are related by a change of observer and T* = —7*I + C(L*),
then tr(7T) = tr(T*) = m = «* since C : Lin — Sym,,. Thus,

T* = —al +C(L") = -l +C (QLQT + QQT)
and frame-indifference requires
QCD)QT = ¢ (QLQT +QQT) (10)
since C is linear. We complete the proof in the following steps.
1. If L € Lin is fixed and F(t) = exp(Lt), then set x(t,p) = F(t)p, so that
i=Fp=Lexp(Lt)p=LFp=Lzr = Vo=1L

Thus, holds for all (fixed) L and arbitrary @), since we can define
z*(t,p) = Q(t)x(t, p) = QFp.
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2. Also, for L fixed, let Q(t) = exp(—Wt), where W = (L — LT). Then
Q= -WQ so QQT = —W and Q(0) = I. Evaluating with this
choice of L and Q(0) gives

C(L)=C(L—-W)=C(D) where D= %(L + LT
i.e. C depends only upon the symmetric part of L.
3. Since tr(T) = tr(T*), it follows that Ty = QTpQ7, i.e.
C(QDQ™) =c(D*) =C(D)

We now make the claim:

C : Sym — Sym

C(@DQT) =C(D) _
O € Orth = C(D) = Mr(D)I +2uD
C linear
for some scalars A, . This claim then tells us tr(C(D)) = 0 = C(D) =

2IU,D0

2.5 Isotropic Functions

Definition 2.16. A function ¢ : Lin — R is isotropic provided p(A) =

P(QAQT) for all Q € Orth.
A function G : Lin — Lin is isotropic provided QG(A)QT = G(QAQT) for
all @ € Orth.

Theorem 2.17 (Representation of scalar-valued isotropic functions). A func-
tion ¢ : A C Sym — R is isotropic <= ) : T4 — R such that p(A) = (14)
where T4 € RY are the invariants of A and T = {Ia: A € A}.

Proof. (=) It suffices to show that Ty = Zp = ¢(A) = ¢(B). If Ty = Ip then
A and B have the same set of eigenvalues (since they have the same characteristic
polynomial), call them {w;}. Then write

A= Zwiei ®e; and B = Zwifi R fi
where {e;}, { f;} are orthonormal bases of eigenvectors for A and B, respectively.

(Remember A, B are symmetric.) Let Qe; = f; with QQ* = I. Specifically, we
can define Q =Y. e; ® f;. Then,

P(A) = p(QAQT) = ¢ (Z wiQ(e; ® €z‘)QT>

= w; Qe; ® Qe;) = (B
P2 wiei @ Qe) = o(B)
=fi®fi
({Z) Note I, = IQAQT- O
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2.5.1 Tensor-Valued Functions

Lemma 2.18. Let G : A C Sym — Lin be isotropic. Then each eigenvector of
A € A is an eigenvector of G(A).

Proof. Let e = e; be an eigenvector of A € A. By the Spectral Theorem,
3{e;}?_, an orthonormal basis of eigenvectors of A. Let

Q=—-ec1®e+ea®@ez+e3Res
so that QQT = I. Claim: QAQT = A. To see why, notice that
(QAQT)61 = QA(—e1) = Q(=Aie1) = A1 = Aey
(QAQT)e; = QA(e;) = Q(Nies) = Nie; = Ae; , i =2,3
i.e. QAQTx = Ax for a basis, and hence for all z, which proves the claim. Next,
QRG(AQT = G(QAQT) = G(A)

and applying all of these tensors e;, we have QG(A)e; = —G(A)ey, so Q(z) =
—x, i.e. Qz is parallel to (with opposite sign of) x, where x = G(A)e;. It
follows that G(A)e; is parallel to ey, i.e. G(A)e; = wey. O

Lemma 2.19. Let A € Sym and set A = ) . w;e; ® e; to be the spectrail
decomposition.

1. If A has 3 dsitrinct eigenvalues, then {I, A, A?} are linearly independent
and span{I, A, A%} = span{e; ® e;}3_;.

2. If A has 2 distinct eigenvalues, then write A = wie @ e + wa(l —e®e).
Then {I, A} are linearly independent and span{I, A} = span{e ® e} =
span{e @ e,I — e ® e}.

3. If A has 1 distinct eigenvalue, then A = X for A € R.
Proof. 1. Suppose aA? + BA +~I = [0]. Multiply by e; to get
(aw? + fw; +7)e =0 = p(w;) = aw? + fw; +y=0fori=1,2,3

i.e. p(w) is a quadratic with 3 roots, which means p(w) == 0 and hence
a = =~=0. Thus, {I, A, A?} are, indeed, linearly independent. Next,

A% = Zw?(ei ®e;) for a =0,1,2 = {I,A, A*} = span{e; @ e;}5_,

We know dim(e; ® e;) = 3 and dim{I, A, A%} = 3 (since they're linearly
independent), so the spaces must agree.

The other two statements are similar.
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Theorem 2.20 (Representation of isotropic tensor-valued functions). The func-
tion G : A C Sym — Sym is isotropic <= g, 1, p2 : Lo — R isotropic such
that

G(A) = po(1a)] + p1(1a)A + p2(14)A?

Proof. (<) Suppose G(A) takes the form shown. Then
=A2
—
G(QAQ™) = poIgagr)] + ¢1(Igagr)QAQ" + va(Igagr)Q AQTQAQ"
= Q (po(Ta)I + p1(Ia) A+ p2(14)A%) QT = QG(A)QT

(=) Suppose A has 3 distinct eigenvalues and write A = Y wie; ® ;. We
showed that G(A)e; = B;(A)e; for some §;(A) and since G(A) € Sym, it follows
that

G(A) =) Bi(A)e; @ e; = ag(A) + a1 (A)A + az(A) A’

Claim: «; : Sym — R are isotropic. To see why, notice that

0=QG(A)Q" — G(QAQT) = (a0 (A) — a(QAQT)) I
+ (a1(A4) — a1(QAQT)) QAQT + (aa(A) — a2 (QAQT)) QA*Q™
=A —A2

Since A has three distinct eigenvalues, {I, A, A%} are linearly independent, so

ao(A) = ap(QAQ") = po(1a)

isotropic scalar

The other two cases are similar. O
Remark 2.21. If A is invertible, then
AP+ i1 A +idA+ i ] =0 = A® = —iy —io] —izgA™!
Thus, on invertible matrices,
G(A) = do(La)] + 1 (La)A + o1 (La) A7

where g = o — 122, etc.

Corollary 2.22. A linear function G : Sym — Sym is isotropic <= G(A) =
Mr(A)] + 2pA for constants A, pn € R.
Proof. (<) Trivial.
(=) Let e be a unit vector and set A = e ® e. Then o(A) = {0,0,1} so
I =(1,0,0) = (i1,142,43). Also, A2 = (e®e)? = e ® e. Thus,
Ge®e) = p(1,0,0)] + 1(1,0,0)(e ® €) + v2(1,0,0)(e ® €)
= 0(1,0,0) I + (¢1(1,0,0) + ¢2(1,0,0))(e ® €)
—_———

=A =2pu
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Given A € Sym, write A =), w;e; ® e; and use the linearity of G to write
G(A) =Y wiGlei®e) =AY w)l +2u) wie; ®¢

= Mr(A)I +2pA
O

Corollary 2.23. 1. A linear function G : Symg — Sym is isotropic <=
G(A) = 2uA for some u € R.

2. A linear function G : Sym — Symy is isotropic <— G(A) = 2u(A —
$tr(A)I).

Proof. 1. Given G : Sym, — Sym isotropic, define
. A 1
G:Sym —Sym by G(A)=G (A - 3tr(A)I)

Then G(A) = G(A) for A € Sym,, and G(A) = tr(A) +2uA for A\, u € R.

2. Exercise.
O

Theorem 2.24. Let U C Lin be a linear subspace and let A CU be open. Let
G C Orth be any subset. Suppose G : A — Lin is invariant under G, i.e.

G(QAQ™) = QG(AQ"T VQeg
Then
QDG(A)(U)QT = DG(QAQT(QUQT) VA€ AVU cUNQ <G

Proof. Note: the definition of invariance requires QAQT = A for any Q € G.
Claim: QUQT =U. To see why, fix U € U; since A C U is open then for any
A€ A, Je > 0 such that A+ eld C A. Since QAQ”T = A, then

QAQT +eQUQT c ACU = QUQT cUU
N——

cACU
Next,
G (QUA+U)Q") =G (QAQT +QUQT)
= G(QAQ") + DG(QAQ™)(QUQT) + o(U)
= QG(A)Q" + DG(QAQ™)(QUQT) + o(U)
and

G(QU+TD)QT) =QG(A+TU)Q" = Q(G(A) + DG(A)(U) +o(U)) QT
= QG(A)Q" + QDG(A)(U)Q™ + o(U)

so the last lines of these are equal. O
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2.6 Navier-Stokes Equations

Classical Incompressible Navier-Stokes Fluid:
T=—nl+2uD(v) , where D(v) = %(Vv + Vol), and div(v) =0
The “homogeneous” case is where p = pg = const. and g = pug = const. Then
po¥ — div(—7I 4+ 2uD(v)) = pof = pov + V1 — plAv = pof

Lemma 2.25. Let v satisfy the Navier-Stokes FEquations with conservative
forces. Then

1. W+ D(v)W + WD(v) = AW with W = (Vo — VoT).
2. For any closed material curve,

i v~dz:1/j{ Av - dx
dt Jee) o(t)

with v = %.
3. In two dimensions, W = vAW.
Proof. To prove (1), we write the N-S equations as
v=vVv+V(F —m)
where f = VF. Then
Vi = vA(Vv) + D*(F — 7)
where D?(-) is the Hessian, so then

(Vi) skew = VAW + 0

Now,
(Vi) = (Vv) + VoV
and so 1
(Vi) skew = (V) ew + a(VvVv —vol'vel) =vaAw
Note that

1 1
DW +WD = 1(vu + Vo) (Vo — VoT) + Z(W — Vo) (Vv + VoT)
1
= §(VUVU — Vol vol)

The proof of (2) is left as an exercise; the trick is to show

d
— v-dr = j{ v-dr
dt Je c()
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so then
d

—]{ U'dl':% (VAU—&—V(F—W))-dx:]{ vAv
dt Jew et ()

To prove (3), note that in 2D

0 1
W—:I:w[1 O]

SO

WD+ DW = twdiv(v) {_01 é} =0

Claim: w; = %aijkaj. Proof:

1 1
(wxa); = SEiikwjak = §5ijk5jmanmak

1
= E(Wikak — Whiar) = (Wa);

2.6.1 Stability/Comparison of Solutions
Suppose

’[11 —div (7])1] + 2VD(’U1)) = fl
1.}2 — le (—pg[ + QVD(UQ)) = fg
with div(v1) = div(ve) = 0 and v; [9a= v2 [aq, and assume © C R? is bounded.

Write v = vg—w1, so that v [go= 0, and p = po—p; and f = fo— f1. Subtracting
the two equations yields

ve+ (v2 - V)vg — (v1 - V)uy —div (—pl + 2vD(v)) = f
Take the dot product with w which vanishes on 912, yielding

/vt -w — pdiv(w) + 2vD(v) : D(w) = /Qf cw — [(ve - V)vg — (v1 - V)ui] - w

Put w = v, and recall divv = 0. Then

2
C(lit/sz'UQ +/Q2V|D(U)|2 B /Qflv —[(v2 - V)vz = (v1 - V)ui] - v
We write

(v2 - V)vg — (v1 - V)vr = ((v2 —v1) - V) vg + (v1 - V)(v2 — v1)
=(v-V)va+ (v1 - V)v
=(-V)ve+ (v2-V)v—(v-V)v
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so now we have
2
/ (v V)vs — (01 - V)or) v :/ (0-V)vs+ (v - V)0) - v—v-V ('”')
Q Q 2
LR
= [ ((v-V)va+ (v2-V)v) - v+ =8 divv
Q
< IVvzllolloll® + [lvzloc [Vl ][]
where || - || = || - ||r2. Returning to the equation above, we have
1d
2dt
We now apply the inequality

[vlI* + 20 D@)II* < [flllvll + 1 Voallso 0] + llvalloc [ Voll[]

1 1
< 212 o Sl
£l < SHAIE + 5 vl
and Korn’s Inequality and Young’s e-inequality with ¢ = 2v
1 2
o2 lloo Vo llIlo]] < Cllozlloc [0 [P < 1~ (Cic[v2llso l0])" + I D)

Using these in the line above and absorbing terms, we have

1d 9 5 1 5 1 9
-2 D <= —C
5 0l + VD) < S + 5C]lol

where, for completeness, we note
02
C =1+ SE[ul% + 2| Vo

Multiply through by e~¢ to write

d

= (vll?) + eI D()|* = e~ £

and then
t t
e o(t)|? +V/O e~ D(v(s))]1* ds < [lv(0)[|” +/0 e || f(s)|? ds

Thus, if
o ||Vua|loo, |v2]loo < +00 (assumed) and

o [[u1(t)]| < C and [ [ D(v)|® < oo (from the PDE)
then for fo = f1 and v1(0) = v2(0), it follows that

t
™[ (v2 — v1) ()| +/ ve™ || D(vy — v1)(s)|*ds < 0
0

i.e. va(t) = v1(t). Notice how we have assumed |Jva||, |[Vvz|| < co; being able to
prove this would answer a |million dollar question!
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3 Elastic Materials

Definition 3.1. An elastic body is one for which the stress at each point p € B,

takes the form T(t,z) = T(F(t,p),p) where x = X (t,p).

Proposition 3.2. An elastic response function T: Lin™ — Sym is independent
of observer <= QT(F)QT = T(QF) for all F € Lin* and Q € Orth.

Proof. Recall that if
¥ =y(t)+Q(t)(x —0) for Q(¢) € Orth

then T is independent of observer <= T* = QTQT and F* = QF. Then we
know

T* = QTQ" « T(F*)=QT(F)Q" += T(QF)=QT(F)Q"
O

Recall: We write the polar decomposition of F as F = RU where R € Orth™
and U € Sym™. Also, U = CY/? = (FTF)'/2.

Corollary 3.3. The response function of an elastic material is determined by
restriction to Sym™. Specifically, if F = RU then

T(F) =T(RU) = RT(U)RT

Moreover, there are functions Ty, T, Ty : Symt — Sym such that

Proof. Write F' = RU, so
::Tl(U)

—_—~—
T(F)=T(RU) = RT(U)RT = FU'T(UYU ' FT = FT,(U)FT

and
=T5(C)
~ ~ /A_H
T(F) = RT(U)RT = RT(CY?)RT = RT»(C)R”
and
::Tg(c)
~ /_/%
T(F) = RT,(C)R" = FUT'TL(C)U ' FT = FT3(C)F"
knowing that U~! = C~1/2, O
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3.1 Material Symmetry
Consider conducting Experiment 1
z1=po+F(p—po) , Vo =F

and then somebody rotates your symmetric material by ¢ and you conduct
Experiment 2

x2 =po+ FQ(p —po) (total deformation)

If for some @ € Orth™ we have that T(F) = T(FQ), then we call Q a symmetry
transformation (at pg € B;.).

Lemma 3.4. Let T be a (frame-indifferent) elastic response function. Then
G, = {Q € Orth™ : T(F) = T(FQ) VF € Lm+}

is a subgroup of Orth™.

Proof. Clearly, I € G,. Next, if Q € G, then selecting F' ~ FQ~' shows that
T(FQ™Y) =T(FQ 'Q) = T(F) for all F, so Q"' € G,. Finally, if Q,R € G,
then T(F) = T(FQ) = T((FQ)R) = T(F(QR)) so QR € G,. O

_Recall: We say T : Lin — Lin is énvariant under Q € Orth if T(QFQT) =
QT(F)QT.

Lemma 3.5. Let T be an elastic response function. Then T is invariant under
Gp, as are T1,T5,T5 (as defined above).

Proof. Let @ € G),. Then
T(QFQT) = T(QF) = QT(F)Q"
by the facts that QT € G, and T is independent of observer, respectively. Next,
T1(QUQT) = (QUQT)'T(QUQ™)(QUQ™) ™
= (QUT'QNHQTW)QT(QU'QT) = QU'T(W)U'Q" = QT (U)Q"
The other two are similar. O

Definition 3.6. An elastic material/reponse function is isotropic if G, =
Orth*.

Recall the notation F = RU = VR and C = FTF = U? and B = FFT =
V2. Then

T(F) = RTy(FTF)RT = Ty(RFTFRT) = To(VV) = Ty(B) = Ty (FFT)

if 7' is isotropic. Remember T3 : Sym* — Sym and it is isotropic if G, = Orth™.
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Corollary 3.7. The reponse of an elastic isotropic material (at p € B,.) takes
the form
T = Bo(Z)I + B1(Zp)B + B-1(Ip)B~!

where B = FFT and Ig = {10(B),11(B),12(B)} are the invariants and B3; :
R3 — R.

Moving on,

/6 vendaa) = /a e cof (P da(p)

Note n = C cof (F)n, ~ CF~Tn,,son = %

Piola Stress: Also known as Piola-Kirchoff or 1st Piola Stress.

/m) Tnda(z) = /am T cof (F)n,. da(p)

Deﬁnltlon 3.8. The Piola stress is s = Tcof(F) = det(F)TF~T. So T =
dct det(F) SFT.

Make the change of variables & = X(t.p), de = det(F') dp in the balance of
linear momentum

d
— pv = / of + / Tnda
dt Jp) P(t) oP(t)

and recall that p(t,z) det(F(¢,p)) = p.(p). We obtain

d
a4 / pi= [ 1(t,(tp) + / Sn,
dt Jp, P, oP(r)

and this is rewritten as
/ prE — div(S) = f
P, P Pr
Localizing tells us

pré —div(S) = f

in (0,7) x B, where f = f(t,x(t,p)).

The balance of angular momentum: 7 = T7T, 1SFT = %(SFT)T where
J = det(F), then SFT = FST; ie. S is not symmetrlc

Energy Estimate: Take the dot product of the linear monetum equation
with 2 and integrate by parts:

2
g/ |f”| / S: vpm_/ foa+ | Sn-i
dt oP,

d |JU|2 .
= .
pm / S / f-z+ . Sn,. - &
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Recall: F = VoF and S = det(F)TF~T, s0 S : F = det(F)TF~T : VuF.

Thus,
/S:F:/T:Vu
P, P

_ Independence of Observer: Recall, if T = T(F), then QT(F)QT =
T(QF) for Q € Orth™. Define

S(F) = det(F)T(F)F~T
Then
S(QF) = det(QF)T(QF)(QF) ™"
= det(F)QT(F)Q"QF "
= det(F)QT(F)F~T = QS(F)

Thus, S = S(F) is frame-indifferent <= S(QF) = QS(F).
Recall: If C = FTF, then T(F) = FT3(C)FT. Then

S(F) = det(F)T(F)F~T = det(F)FT5(C)
= F (Vdet(O)T3(C)) = F$5(C)
Then SFT = FST implies
FS3(C)FT = FS3(C)TFT
i.e. S3(C) = S3(C)T. Thus, S5 : Sym™ — Sym.

3.2 Hyperelastic Bodies
Motivation: Suppose f = 0 and Sn, = 0. Then

t .
/ S:F=
0o Jp,
| —
>0
i.e. we expect things to slow down.

Definition 3.9. A (mechanical) process (x,T, f) (or (x,S, f)) is closed on
[to,tl] foﬂ(to) = Z(tl) and Sﬂ(to) = Z(tl)

For a closed process on [to, t1],

t1 . t1 t1
/ /S:F:/ /f¢+/ Sy &
to JPr to JPr to JOP-
11 t1 (31
/ / T:sz/ / pf:b—i—/ / Tn-v
to P(t) to P(t) to 673(t)
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Definition 3.10. The work is nonnegative in a closed process if for every part

P C B,,
t1 .
/ S:F>0
to Pr

Note: localize, then this is equivalent to

for every closed process.

t1 .
S(t,p): F(t,p) >0 VpeB,
to

Definition 3.11. An elastic body is hyperelastic if there exists a (strain energy)
function & : Lin™ x B, — R such that

S(F,p) = D&(F, p)

i.e. Sia = 8%%'

Theorem 3.12. An elastic body is hyperelastic <= the work is nonnegative
for every closed process.

Proof. (=) Notice that

d 06 0F;,

%U( ):aFm o :DU:F:S(F):F

Then, ,
G (Pl = / $(F): F

and the LHS is zero for a closed process. Since x(tg,p) = x(t1,p) implies
F(to) = Vpyx(ty) = Vpz(t1) = F(t1), then we're done.

(<) Assume nonnegativity of work during closed processes.
Step 1: Let F : [to,t;] — Lin" be smooth and satisfy F(ty) = F(t;) and

F(ty) = F(t;). Then
/IQF@yﬁwﬁuzo

Proof: Define z(t,p) = po + F(t)(p — po), so Vz(t) = F(t) and x(tg) = x(t1)
and i(tg,p) = F(to)p = F(t1)p = &(t1,p). Thus, z is closed on [to, 1], which
implies

t1 R .
/ S(F): Fdt>0

t

0

Next, define the “reversal”, z*(t, p) = po+F (to+t1—t)(p—po). Then Va*(t,p) =
F(to +t1 —t) and

x*(to,p) = po + F'(t1)(p — po) = po + F'(to)(p — po) = =" (t1,p)
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Similarly, &*(tg) = @*(¢1). Then,
(Va*) (t) = —F(to +t1 —t)
and so " "
- /t S(F): Pt — /t S(Var) : (Var) (to + 11 — £) dt

Change variables by letting t* = to+t1 —t, so dt* = —dt. Then the RHS above
is

t*=tg 31
/ S(Va) : (Var) () (—dt*) :/ et >0
tr=t1 to

This proves the claim from Step 1.

Step 2: Let F' : [tg,t;] — Lin™ be continuous and piecewise smooth and satisfy

F(tg) = F(t1) = A. Then, )
/ S(F
to

Proof sketch: Extend the domain of F to R by F(t) = A for t ¢ [to,t1], so
F:R — Lin" is continuous. Mollify F to obtain a smooth function F. = Fx¢,.
Note F.(t) = A on R\ [to — &,t1 +¢], so F. = 0 off [tg — &,t1 + €]. We know
F. — F uniformly on R and . — F'in L'(R). Since we assume S is continuous,
then

t1 R . t1+e€ R .
S(F = hm / S : F. = lim S(F.): Fx

to e—0 to*E

but F.(to —¢) = A = F.(t; +¢) and F.(to —¢) = 0 = F.(t; +¢) and F. is
smooth, so Step 1 is applicable, and taking a limit in ¢ tells us what we want.
Step 3: Construct ¢ : Lin™ — R. Given F € Lin™, let F: [0,1] — Lin" be a
smooth curve satisfying F'(0) = I and F(1) = F, and define

1 A ~
_ / S(F
0
First, o(F) is “well-defined” since if F' is another path for which 1;5’(1) = F and
F(0) = I then

/OS(F):(F)‘dt—/O S(F):(F)'dtz/o $(P): Pt

where P : [0,2] — L1n is the map F followed by F reversed. Then P(0) =
P(2)=1so [S(P): P =0 and thus

/5 dt/S

To compute %, let



Then 56 (F 7 (F)
o . O +eJ)—o0
8Fm N Eth(l) S

Let P be any smooth path from I to F in Lin™. Then,

J(F+5J)—/015'(P):P+/(JES'(F+tJ):Jdt—o(F)—k/OESm(F—i—tJ)dt

Then 96 1 /e
o . - &

since 5'() is continuous and the quantity inside the limit is just the average

value of Sio on [F, F + &J]. O
Recall
d |2 N .
7/ prﬁ—k S(F):F:/ fz+ Sn,. - &
dt Jp, " 2 P, . oP,
which we write as
d £|2
yrl A % + o(F) Y= [ f-i+ Sn, - i
P, ~—~— P P

kinetic energy stored elastic energy

In particular, if f = 0 and either & = 0 on P, or Sn,. = 0 on JP,, then

[
Pry- + o(Vpx) = const.

(o

3.3 Independence of Observer
Recall S(QF) = QS(F) for Q € Orth™. Then

9 do O(QF);

aFuy O(QF) - 8F(j[3 (éQTZjJﬂ = DU(QF)JBQJI(Saﬁ = QTDO'<QF)
so Dpo(QF) = QT (Do)(QF) <= QDpo(QF) = (Do)(QF). Given Q =",
let Q(T) = e, so Q = WQ. Then

7(@F) o) = [ ZoQWF) = [ D@ @0F)

1

- [ woer):war = [ woeri@rw

1
- / SQOF)QUF)T : W

if BAM holds

Now, SFT = (SFT)T and W = —WT is skew, so S(QF)(QF)T : W = sym :
skew = 0, and thus o(QF) = o(F).
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Lemma 3.13. The response function of a hyperelastic material is independent
of observer <= o(QF) = o(F) for every Q € Orth™.

Writing C = FTF, then
7(QTCQ) =5((FQT)(FQ)) = 6(FQ)

and material symmetry under @ (i.e. @ is in the symmetric group of the mate-
rial) implies that
5(QTCQ) = 5(FQ) =6(F) =5(C)

Write
S =2F6(FTF) = 2F(0,D,,(C) + 02D,,(C) + 03D,,(C))

where

op(t1,te,t3) = W&(Ll,bz,bg) forp=1,2,3
p

Now, we calculate these derivatives:

1. v1(C) =tr(C),s0 D, (C) =1.
2. 13(C) = L(tr(C)? — tx(C?)) = tr(C)? — |C|? since C = C7, s0 D,,(C) =
tr(C)I - C.
3. 13(C) = det(C), so D,,(C) = cof (C) = det(C)C~!
Thus,
S =2F (011 4 02(tr(C)I — C) + o5 det(C)C™ )
and

S(F) =2 ((o1 + 02| F|*)F — 0o FFTF + o3 det(F)2F~T)
Let T = —1—~SFT. Then, using FFT = B, we have

det(F)
1
T=—— + oatr(B))B — 03B 4+ o3 det(B)I
) ((01 oatr(B)) o9 o3 det( ))

Note: Jo = Jg. Thus, we think of o, = 0,(Jp) when computing T' and
op = 0p(Jc) when computing S. Or, notice

u(C) = tr(C) = |F[?
15(C) = % (6e(C)? — tr(C?)) = % (1FI* — |FTFP)
15(C) = det(F)?
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FEzxample 3.14. Let

5(F) = 5 (a(|[F]? = |I]*) — B1n[det(F)?)

N |

Then S(F) = D&(F) = aF — BF~T. So then

1 T 1 T
7= ta@ " = da ©FE - 8D
1
= i B

Frequently in applications, o = (3, so that T vanishes when B = I, otherwise
there is a “residual” stress. Also,

—
Q

—~
o+
—

(C) = tr(I)) — BIn(det(C)))

N — N —

(a(m — 1)+ a(m — 1)+ a(rs — 1) = Bln(m ) — Bln(m) — Bln(nws))

a(m —1) = BIn(A)

I
-]

which is a convex function of the As, and where \; = X;(C).

3.4 Linear Elasticity
If S(F) = S(p, F), then

S(F)=S(I)+ DSU)(F —1)+O(|F — 1)

where

. 9Sia (I
DS(I)(F = I)|ia = an( )(F_I)jﬁ =Y Ciajo(F =13
iB b B

Define C : Lin — Lin by C(H) = DS(I)(H). Note C(H)io = CinjsHjs (sum
on j3, using Einstein notation).

Remark 3.15. e C is called the elasticity tensor (at p).
S (I) is called the “residual” stress.

Lemma 3.16. For an elastic material, T = T(F) Then

DT(I)(H) = S(I) (—tr(H)I + H") + C(H)
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Proof. Recall T(F) = 2
then

(F), and Ddet(F)(H) = det(F)(F~T : H), so

Remark 3.17. 1. S(QF) = Qg(F), frame indifference, Cjqjg = Ciag;-
2. S(F) = D6 (F), 2nd law for hyperelastic materials, Ciajs = Cjgia-
3. (1) and (2) = Oiajﬂ = Coﬂ']ﬂ.
To prove (2), notice that
A 06(F) 0%6
S(F i — = Cux = —
(F) OF o B OFa0F;s

(I) = Cipia

To prove (1), note that S(QF) = S(F) = S(Q) = S(I) for any Q € Orth™. Set
Q(t) = exp(tW). Then

S =5Q(M) = 0= %S’(Q(t)) = DS(Q(1))(Q(t))
= DS(Q(t)(WQ(1))

and evaluating at ¢t = 0 tells us 0 = DS(I)(W), so C(W) = 0 for all W € Skw.
Thus, 0 = C;q;sW;g for all W € Skw. If Ciqjs # Ciqjp for some j3, then select
W such that ng =—-1= 7Wg]‘ to get 0= Oioz = Uiajp — Ciaﬂj~ Thus,
C(H) = C(Hsym + Hoew) = C(Hsym) + C(Haw) = C(H) = C(Hyym)
=0

Recall: The function C' : Lin — Lin is invariant under ¢ € Orth if

C(QTHQ) = QTC(H)Q.

Lemma 3.18. If a material is (hyper)elastic at p € B,., then the elasticity
tensor is invariant under the symmetry group at p, i.e.

C(QTHQ)=QTC(H)Q for Q€ G, < Orth"
where G, denotes the symmetry group of the material, which is a subgroup (<)

of Orth™.
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Proof. Note S(FQ) = S(F)Q for Q € G,. Set F — QTF to get
S(QTFQ) =5Q"F)Q = Q"S(F)Q
by frame indifference. Then
DS(QTFQ)Q"HQ) = Q"DS(F)(H)Q
Evaluating at F' = I tells us C(QTHQ) = QTC(H)Q. O

Corollary 3.19. If an elastic material is isotropic at p, then C(E) = Mtr(E)I+
2uE for all E € Sym, for some scalars A = A(p) and p = u(p).
Define (-, )¢ : Lin x Lin — R by
(G,H)c=C(G): H=G: C(H)

where the equivalence follows because C(G) : H = Ciaj3GinHjg, and we know
we can swap the indices. Thus, (G, H)¢ = (H,G)¢ and

(G + BG2, H) = oGy, H) + §(G2, H)
and (G,W)¢c =0 for all W € Skw.

Recall: T = detl(F)S'(F)FT and T =TT, so S(I) = T(I), so S(I) is sym-

metric. Then

T(I+H)=SI)(HT —tr(H)I)+ C(H) 4 o(H)

Symmetries: S;, = 88% (always), and then

0S; 9o

Ciajp = @ [F=1= M(I)

50 Cinjs = Cigia- If S(I) = 0, then DT(I) = C(H) and T € Sym gives
Ciajp + Caijp, and hence
Ciajs = Ciapj
l 7
Cjsia = Cpjia
For isotropic materials with S(I) = 0, then
C(E) = Mr(E) +2pF
where H=F — I and E = 1(H + H”). Assume S(I) = 0. Define
(,)o : Lin x Lin — R
by (G,H)c =C(G): H=G:C(H)=C(H) : G = (H,G)¢. Also, notice that
(aG1+ Gy, H)c = a(Gr, H)c + B(G2, H)c
Thus, if C(H) : H > 0 for all H, then (-,-)¢ is a semi-inner product.
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Lemma 3.20. Let C(E) = Atr(E) 4+ 2uE. Then C(E) : E > 0 for all non-zero
symmetric matrices <= p >0 and 2p + 3\ > 0.

Proof. Consider the more general case on R¥*¢, Given E € Lin, write E =
Ltr(E)I + Ey, so that tr(Eg) = 0. Then,

2

1
|E?=E:E = Etr(E)I + | Eo|?
1 .
= ﬁtr(E)zm2 + |Eo|? (since I : Ey = 0)
1
= ﬁtr(E)Q + |Eol?
Then,
C(E): E= Mr(BE)+E): E=Mr(E)? +2u|E?
2
= ()\ + C’;) tr(E)? + 2u|Eol* > 0
forall E#0 <= p>0and A+ 24> 0. O

Ezample 3.21. Let 6(F) = 2(|F|?> — |I]?) — 2 In(det(F)?). Then

5 _ Oo o 1 —7y
Sia = OF, = alFy, IBdet(F) det(F)(F )za
and so .
$(F) = aF - B(FT)
and then 1 1
- _ & T _ T
T(F) = det(F)S(F)F = 7det(F) («FF BI)

Note S(I) =0 <= a = 3. We need to compute

Ci _8Sia(1) _ 620(1)
I8 T T9F,s  OFia0Fs

First,
0

Fia = 51 '504

and second,

FTFT =T1= F TFT + FT6FT =0=0F T = —F T6FTF T

SO
(0F )ia = —(F 1)igbFig(F ") ja = —(F )ip(F)abFjs
1.e.
8(F_T)ia
OF;ga
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and o T)
F-TY.
AL Jia S8
9F,; [F=r1 80
Then,
Ciajﬁ = Oé5ij5ag + /55iﬁ5ja
or
C(H)ia = CiajpHjp = aHio + BHai
so C(H) = aH + BHT. Thus, if a = 3 then C(H) = 2aHgym,.

Cauchy Stress:

1

T(F) = det(F)
1

S(FYFT

" det(I+ H) ST+ H)(I +HT)

1

= G S + CU) +o(HN)(I + H)

Now, det(I + H) = 1+ tr(H) + o(|H|) so W—*-H) =1—tr(H)+ o(|H|). Then,

Tr(1—tr(H)) ((«—B)I+aH+BH")(I+H")
) [(@— B)I + (o — B)HT +aH + FHT]
) [(a =B +a(H+HT)]
1 —tr(H))(a— B) +a(H + H") + o(|H|)
Notation: Given a motion, write x = X'(¢,p) and
e the displacement is u(t,p) = x(¢,p) — p
e Vu=Voe—-I=F—-I1=H
e the “infinitesimal” strain is E = 3(H + HT).
Note:

e FTF =1+ H)'I+H)=1+(H+H")+O(H?) and so FITF -1 =
2E 4+ O(Vu?)

e If S(I) = 0 then
S(F)=C(F —1I)+o(|F — I|?) = C(E) + o(|Vul|?)

where E = (Vu)sym and C(E) = C(Vu).
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Recall: for an elastic material
pri — div(S(F)) = b
u=X(t,p)—p , U=42a
F=Ve=Vu—-1
prii — div(C(Vu)) = b+ O(|Dul?)
The last line above is the equation of linear elasticity. Note: if
C(Vu) = Mr(Vau) + u(Vu + Vul)
then
= (Mupbij + puij + i),
= Mg, k05 + s 55 + P i
= (A + p)Vdiv(u) + pAu),
One often sees the equations of isotropic, linear elasticity (with zero residual
stress) written as
i— A+ p)Vdiv(u) — pAu =5
3.4.1 Stability
prit — div(C'(Vu)) = b
Take the dot product with v and integrate by parts to get

/ pril'erC’(Vu):Vv:/ b-v+/ C(Vu)n -v
B, B, 0B,

Typically, we have 9B, = [oUT'; with u [, = uy is specified (like a displacement)
and C(Vu)n [p,= § (the “traction” boundary condition).

Ezxample 3.22. Consider the unit square in R2. Let I'y be the z-axis and I'; be
the remaining 3 sides. Specify u [p,= 0 and § = T'€; on the top side and § =0
on the other two sides. Then

/pril+C’(Vu):Vv:/ b-v+/ §-v
B B Iy

T r

for all v with v |r,= 0.

3.4.2 Uniqueness

Theorem 3.23. Suppose u; and us satisfy the same elasticity equation with
the same boundary conditions and the initial conditions uq(0,p) = uz(0,p) and
41(0,p) = u2(0,p). Then uy(t, z) = ua(t,z) for all (t,z) € (0,T) x B,.
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Proof. Note v = ug — uy satisfies p,ii — div(C(Vu)) = 0 with v [p,= 0 and
C(Vu) [r,= 0. Thus,

/ prii-v+C(Vu) : Vo=0  Vust vlp,=0
B,

i (i) = (g0

Set v = 4. Then

and .
1
C(Vu) : Vi = (2|Vu2c>
since
d1 1, . 1 . . .
3 (Vu, Vu) = §(Vu, Vu)o + §(Vu, Vi) = (Vu,Vi)e = C(Vu) : Vi
Also, p, = p-(p) is independent of ¢, as is B,.. Then
1d
S 7. p,.|1'1,‘2 + ‘Vu|20 =0
2dt B, S—~— ——
kinetic energy  elastic energy
and so

</ prli]® + |Vu|20> lt=0= / prltf® + |Vulg Ti=o=0

B B,
since u; = u — 2 and u; = us when t = 0. Since p, > 0 on B, then u = 0 so
u(t,p) = u(0,p) = 0. 0
3.5 Elastostatics
Consider —div(C(Vu)) = b with u [r,= uo and C(Vu)n [p,= 5. Then

/C(Vu):Vv:/ b-v+/ §-v Yv st v [p,=0
B, B, I

Suppose u1,us are solutions with the same b and boundary conditions. Then
ug — uy satisfies — div(C(Vu)) =0 and u [p,= 0. Thus,

/ C(Vu):Vo=0  VYust. vp,=0
Br
so select v = u to get

/ VulZ, =0 = |[Vulz =0o0n B, = (Vt)sym =0

r

Recall Vu =0 <= u(z) = uo € R? is constant.
Exercise 1: If Q C R? is a connected domain and u :  — R? is smooth, then

(V)sym =0 <= u(p) =uo + Wp for some ug € R, W € Skw
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Exercise 2: If 91 is Lipschitz and I' C 92 has nonzero measure and u [r= 0,

then v = 0.
/ C(Vu) : Vo = /
B, B

sk kKRR
Given two solutions u1,us of the same elastostatic problem, the difference u =
ug — uq satisfies

b~v+/ 5-v Yulp,=0
ry

(s

/C(Vu):Vv:O Yo Jr,=0

/ Vul? =0
B,

Recall (G, H)c = C(G) : H= G : H(C). Note that this integral condition does
not necessarily imply Vu = 0.

If we assume (G, H)¢ is an inner product on Sym (e.g. > 0 and 2A+3u > 0
in isotropic case), then (Vu)gym = 0.

We're thinking of u = [u,v]T, so

and setting v = u gives

Uy + Vg
ue uy | uy ’T
Vu= |:U.r J = (Vu)sym = [O o }

By Exercise 1 above, it follows that w(t,p) = us — u1 = up + Wp. Thus, if
u [p,= u2 —u1 [r,= 0 is “sufficient” to eliminate rigid body motions, then

u(p) = 0.
Pure Traction Problem: (I'y = 0) We want C(Vu)n = § on B,.

/ (Vu,Vv)C:/ b~v:/ §-v Vv smooth
B, B, o8B,

Set v = vy € R? constant, so then

(L= oL

Next, set v = Wp, so that (Vu, Vv)e = Vu : C(W) = 0, and then

0:/ b-Wp+/ §-Wp
B, OB,

If W = W(w) has axial vector w € RY, then

b-W(w)p=b-(wxp)=w-(pxb)

Ow«</p><b+/ p><§>
B, OB,
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for all w, and thus

/ pxb—l—/ px§=0
B, 0B,

These are necessary and sufficient conditions for existence of a solution to the
pure traction elastostatics problem. Solutions may be found by minimizing

1
I(u):/ f\Vu|é—b~u—/ 5-u
B'r2 oB

r

over the set
ueld :={ue H (B,)" 1 ulr,=uo}

3.6 Wave Propagation
Consider isotropic elasticity C(H) = Atr(H)I + u(H + HT),
pott — A+ p)Vdivu — pAu =0
We seek a solution of the form
u(t,x) = dexp(i(wt — k - )

2

so we do some calculus! Notice 4 = —w“u and

Vu=—i(a®k)exp(i(wt —k-2)) = —iu®k

and
divu = tr(Vu) = —ia - kexp(i(wt — k - x))
Then
Au = —|k|*u = —|k[Paexp(i(wt — k - x))
and
Vdivu = —(a- k)kexp(i(wt — k - x))
0

(—pow?l + (A + )k ® k + plk|*I) aexp(i(wt — k- z)) =0
1

2

Divide by |k|? and write ¢? = rez and k= m] to get

A+ 1) (k@ k)a = (poc® — p)a

Thus, a must be an eigenvector of (A + u)ff @ k with eigenvalue pc? — pu. The
eigenpairs are

I

A+2 .
At u and a € {k*} with ¢ = &=
Po

Po

a =k with ¢2 =
where {k1} is a 2-D null space.
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The solution R .
u(xz,t) = Cexplic(t — k- x))k

A2u

o and

is a longitudinal wave with speed

u(t,z) = Cexplic(t — k- x))l for £ € k*

is a transverse wave with speed , /p%'

4 Thermomechanics

1. Statistical mechanics: for an ideal gas,

. # molecules
density : p= ————
volume

2
v
temperature : § = average of < > > >0

force
pressure : p = ——————
unit wall area

~ change in momentum of molecules bouncing off walls
and % = R for some constant R.

2. Theory of heat engines: important concepts are heat in ¢ and work
out W

Ezxample 4.1. Ideal gas in a cylinder. W = “force x distance”, but really

To V2
W = / p Adx = / pdV
X1 v Vl
dVolume

and Q «x T0 (T = temperature).

First Law. For a cyclic process, Q@ =0 = W =).
Reversibility: using an ideal gas, we can construct a reversible machine,
with W in and JQ@Q out.

Lemma 4.2 (Joule’s relation). Let J be the constant for the ideal gas. Then
Q = JW for all cyclic processes.

Proof. Suppose otherwise, so W = (1 + «)JQ for some process. Contradicts
First Law. ***** ingert picture ***** O

Second law‘ Skokoskoskokokskokok sk

“Zeroth law”. If two bodies are in contact, heat flows from one to another
<= the one is hotter than the other.

So in our concept of “temperature”, we just need an “order” of hotness.

92



Reversible machine. Using an ideal gas, one can construct a reversible
machine for which heat is added at a constant temperature 6;, and heat is

removed at a constant temperature 0, and 6;, > 0, when W > 0.
K Jjagram FREE

With this cycle (J = 1),

ein — Vou
W = Qin - Qout = <9t> an
— in
1st Law

efficiency

Lemma 4.3. No cyclic process operating between temperatures 61 and 05 can
be “more efficient” than the Carnot cycle constructed with an ideal gas.

Proof. Suppose W = Qin — Qout = nQin for some device with n > 79"‘_‘90“
HHASASIS (qoram FHREHEE in

O

If we assume work W and heat @ are “basic” or “fundamental” then the 1st
law gives f dW —d@Q = 0. We can then define

W.Q)

W.Q=cot [ aw-dq
(Wo,Qo)
and this is well-defined. The 2nd law gives an inequality; if we knew ¢ v(z)-da <

0 for closed loops, then 3 “lower potential” n(x) such that

r <
/ v~dm****§*****n(m)fn(:vo)

0 >
Coleman-Noll procedure (= 1960s)

e Kinematics: z = X(t,p), v =d, F = Vz etc.

pr

e Balance of mass: p; + div(pv) =0orp= dot F

e Balance of momentum: pi—divT = b, T = TT where b is known /specified
and T is constitutive

e Balance of energy: pé 4+ divg = r + T : Vv where r = heat source is
known/specified and e, q are constitutive (and 6 = temperature, in the
background)

e Clausius Duhem inequality:

q-
’P(t) /7>(t)9 /dP(t) 0

for all parts P(t) = X (¢, P,) with P, C B,., and where § = temperature is
fundamental and 1 = specific entropy is constitutive.
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http://en.wikipedia.org/wiki/Carnot_cycle
http://www.mechanics.rutgers.edu/BDC.html
http://www.math.cmu.edu/~wn0g/noll/

Using the Reynolds transport theorem [1fand the divergence theorem gives

Loz i (59)
piy > ——div( =q
P(t) P(t) ¥ 0

and localizing gives

pn + div (;q> > g = pnf +divg > r+%q~V0

Ingredients: (T,e,q,n,X,0,b,7)
Given (T, e, ¢,n) functions of (X, ) then given any motion X and 6 > 0 we can
construct a process with motion X’ and temperature 6 by selecting b, r to be the
RHS of the momentum and energy equations, respectively.

That is, T, e, q,n are constitutive (functions of X, ), we assume X, can be
specified arbitrarily, and these specifications give us b, r.

Second Law: A constitutive law (T, e, ¢,n) = F(X, 0) satisfies the Clausius
Duhem inequality for all admissible motions X and 6 > 0.

Helmholz Free Energy: First, recall p¢ = r — divg + 7T : Vv so the
Clausius Duhem inequality becomes

1 1 1
Pﬁngé—gT:Vv+67q-V9

and so

1
plé—0i) =T : Yo+ 5V <0

Note: this eliminates r. Define ) = e — 07, so p=é— 977 — 617. Thus,
p(¢+n9)—T:Vu+%q-V¢9§0
Elastic Material with Linear Viscosity
T =1T.(F,0) + T,(F,0)(Vo)

where TU(F, 6) : LinT — Sym is linear, and e = elastic and v = viscous. We
assume e = é(F,0,V0) and q = ¢(F,0,V0) and n = 7(F, 0, V). We often write
g = V0. Then ¢ = é — 07 is a derived quantity.

b =Dpth: F+hef+Vgp- VO  (F=V,F)
so then
p(o + 70+ p(DppFT —T.) : Vo — T,y (Vv) : Vot
1 R .
éq-V0+pVg1/1~V0§O
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Entropy Relation. z = X(t,p) = Fy(p — 0), for Fy € Lin™ and v = 0 etc.;
0(t, z) = 0y + at for 6y > 0 and ¢ small, VO = 0 etc.

p(@g (Fo,00,90) + N(Fo,00,90)) @« <0 evaluate at t =0

Since o may take arbitrary sign, then 7 = —%’. This equation is the entropy

relation. This removes the first term in the inequality above, so we have

N . N 1 N .
(DpypFT —T.) : Vo — T,,(Vv) : Vo + g1 VO+ V- V0 <0

for this class of materials.
Next, set = X (¢,p) = Fo(p — 0), so

O(t,x) =6y +go-x+tgs -z for |x|+ ¢ small

where 6(0,0) = 6y and VA(0,0) = gy and 00(0,0) = g;. Then

1. R
5q(Fo,90,go) “ 9o + Vb (Fo,00,90) - 91 <0
Selecting g; arbitrarily gives
Vglﬁ(Fm 00,90) =0

Thus, ¥ = z/}(F, 0). Now, the last term in the inequality above vanishes, as well,
and all that remains is

R . . 1
(DpYFT —T,) : Vo —Ty(Vv) : Vo + iR Vo <0

Now, since ¢ = e — 01, then e = é(F, 0), as well.

Stress Relation and Dissipation Principle. = = X(t,p) = (Fo +
atLg)(p—0) for Fy € Lin® and Lg € Lin; 6(t, ) = 6y € R;.. Then F(0,0) = F,
and F/(0,0) = aLg, so

a(DpFT —T,): Ly — a®Ty(Lo) : Lo <0 Vo
Since we can have « small with arbitrary sign, then

Te(F79) = pDF’([}(Fve)FT
—_———
Piola stress

is called the stress relation, and
T,(F,0)(Vv) : Vo >0

is called the dissipation relation.

99



Summary of information on elastic materials with linear viscosity: (7', e, q,n)
are constitutive, z = X(¢,p) and (¢, z) are specified; balance of mass, momen-
tum (linear & angular) can be satisfied by setting

__pr
P~ det F
b=po—divT
T=T1T

r=pé+divg—T:Vv
T =T.(F,0) + T,(F,0)(Vo)
e,q,n~ (F,0,V0)
It’s convenient to introduce ¥ = e — 01, so then
p(Ug + )0+ pV b - VO + p(DppFT —1T.) : Vo — T, (Vo) : Vo < 0
For the entropy relation, write
O(t,x) =6 +at+go-x

for |t| 4 |z| << 1, with § = & and V6 = go. Then for any o € R,

R 1
p(Ye + 1) [(Fy,00,90) @ + %Q(Foﬁo,go) g0 <0

and so p(tﬁg + 1) = 0; thus 7 = —1.&9 is the entropy relation.
Also, set V0(0,0) = gop and V6@ = g1, so then

1

0 d(F07807gO) - 9o S 0
0

pvg/lﬁ(FOa 90790) g1 +

for all g1, and so by the same argument ng; = 0. We also get that - V8 < 0.
Thus,

¢ = ¥(F, ) independent of V6
n= 1/;9 independent of V6
1) = e — On with e independent of V@

1[),’)77ew (F79>
q=q(F,0,V0)

Evaluating the dissipation inequality at ¢ = 0 gives

a [pDFySFT —T0) Terooe) —To(Fo,00)(L) : L] <0Va

and thus 7, = pDpy)(F,0)FT and T,(F,0)(L) : L > 0.
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Heat conductivity: since $¢(F,0,V0)-V6 < 0, we define f(q) = q(F.,0,g)-
g. Then f(0) = 01is a maz and V f(0) = 0 implies Dq(F,0,0)-0+4(F,d,0) = 0.
Thus, ¢(F,0,0) = 0; i.e. no temperature gradient = no heat flow.

Fourier heat conductor

G(F,0,V0) =0 — K(F,0)V6 + o(|VI|?)

Then
G-VO=-VOTK(F,0)VH <0

so the conductivity matrix is positive-definite (but not necessarily symmetric)!

HAHHEE missed class Wed Apr 21

Recall

I'Ot(T)i = 5ijkaj

So, e.g. I'Ot(T)l = T32 — T23.

We write

p(Jw) —div(C) = m + rot(T)
and
pe+div(ig) =r+T:Vo+C: Vw —rot(T) - w

Rod-like molecules (Ericksen). J = 7#*(I —d®d) with |d| = 1 and d = Qe

and @ = W(w)Q. Then

d=Qe=Ww)Qe=W(w)d=w xd
and .
dxd=w—(d-w)d=I—-d®d)w
S0 )
Jo=rI-d®dw="7rdxd
and

(Jw) =7d xd

To guarantee that ¢ = Cn L d we assume Cn = Cn for any n, so

Cijnj = 5ipqdp0anj Vn <— Cij = 5ipqdp0qj

Now,
div(C); = Cyj,5 = <Eipqdp0qj> = €ipq dp,jCqj +dp Cqjj
2 ——— ——
(éVdT)qp div(C‘)q
SO

div C = rot(CVdT) + d x div(C)

Then we have

d x (pf%'l - div(é)> = d x 10 + rot (T + OVdT)
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This equation can only be satisfied if rot(T + CVd) L d, i.e. rot(T + CVdT) =
—d x g for some g. Then we must have

pitd — div(C) + g+ 0d=m |d =1
Observe
C:Vw= Cijwi,j = Eipqdpéqui,j
= Eipg|( dpwi ),j — dp»jwi]éqj
——
(wxd)q
= (wx d)q,jéqj + Eipqwi(OVdT)qp
=V(wxd):C+w-rot(CVdT)
=V(d): C+w-rot(CVdT)

Thus,
pé+div(q) =r+T:Vo+C:Vd+w-rot(CVd +T)

Recall d x g = —rot(T + CVdT), so
—w-rot(T+CVdY) =w-(dx g)=(wxd)-g=d-g
and then R ) .
pe+div(q)=r+T:Vo+C:Vd—g-d

4.1 Invariance Principles

Definition 4.4. Given a reference body B,., a thermodynamic process is a tuple

W(t,p) = {prvXvera5’7',67'7@7'7777'357'77‘7'} (t,p)

where
prs Oy €y e (0,7) x B — R
X,b:(0,T) x B, — R?
5. :(0,T) x B, x 8§ = R?
Gr: (0,T) x B, x 8* = R heat fluz
for which

1. Balance of Energy

d 1
G Loo(eagnl)= [ oo [ gm+stn o
dt Jp@ 2 0) oP(t)

2. and Clausius-Duhem inequality

d < / T / q(n)
@ o> r an)
dt Jp) piy 0 Jorwy 0
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hold for all parts P(t) = X(t,P,), Pr C B,.
Note: in this case, e(t,z(t,p)) = e.(t,p) etc. and p(t,z(t,p)) = #((’?p))

where F(t,p) = [%—iﬂ is the Jacobian. For example,

i o)

- pn=— [ pr(@)n-(t,p)dp
at Jp at Jp, ()1 (t, p)
etc.

Given a thermodynamics process 7(t, p) consider
ﬂ')\(t7p) = {pT‘7 X)\v 97 $,€,71, b)\v T)\}T (t7p)

where
XMt p) = X(t,p) +t-\ for A€ R3

Write 2% = o + M, v* = v+ A\, pM(t) = X*¢,p,) = p(t) + M etc. Then we
compute, using det(F*) = det F,

1 1 1
Ao A2 . 2
= = [ plert i+ AP—ar ) d
/7>A(t)p (e +2|U |> /ﬂp (e +2|x+ | detU”)) P
1
:/ p<e+|v+)\|2) dx
() 2

1
-/ pG+|W+Aw+uﬁ
P(t) 2

Also,
/ T‘A-‘rb/\'v)‘:/ 0 (04 N)
PA(t) P(t)
and
[Nt = [ s o)
OPX(t) 9P(t)
Then,

d 1
— p (e)‘+v’\2> —/ ?"’\—H)’\-v/\—/ P*(n*) + 2 () -0
dt Jpae) 2 PA(t) aP(t)

d 1
:7/ p<e+v2+v-)\+|>\|2>—/ (r4+b-v+A-b)
dt Jp() 2 P(®)

7/ zj(n)+s(n)~v+/\~s(n)+/ (r—1) + (b—0b") -0
aP(t)

P(t)

Lemma 4.5. If 7(t,p) is a thermodynamic process and 7 (t,p) is also a ther-
modynamic process for all X € R when b* = b and r* = r, then

a4 pvz/ b+/ s(n)
dt Jp) P(t) aP(t)

for all parts P(t) = X (t,p,) with P. C B,.
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Proof. Since we have a thermodynamic process, the balance of energy is satisfied

d

- ‘UA‘ _

dt 7 073
d

- p(%—i—v )\+|)\\ (e4+b-TF\ - b)

dt Jpq P(t)

—/ cj(n)+s(n)-v+)\~s(n)+/ (r—1) + (b—0b") -0
aP(t)

P(t)

>kskookok koK sk ok sk sk okokok ok which lmphes

i Lo Lt v
— pU — b— s|-A+ A= p=0 VYA P()
<dt P(t) Py Jorw ) dt Jp

Note: J y

o p:f/ pr(p)dp =0

dt P(t) dt Pr
implies

i o= o

— pv = s

dt Jp(t) P(t) oP(t)
ok kKRR K K 0

Consider a process 7*(t, p) where
X*(t,p) = X(t,p+ Q(t)(z — 0)
b*(t,p) = Qb(t,p) + 2Qv + Q(z — 0)

and 0* = 6, all others the same. We know the balance of linear momentum
would hold.

Also, (i)
d * * 1 *2>
— p e +<v
dt Jp < 21"l
= — e+ -|Q(z —0) + Qu
iy P (e 2106+l
d 1, 5 9
= plet 5" +2Qu-Qx—0) + [Q(z —0)]
d 1, - 9
= — ple+ =" +2v-(wx (z—0))+ |wx (z—0)]

where we've used QTQ = W(w) and v* = Q(z — 0) + Q0.
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Also, (ii)
/ pr(rt 0" vY)
P (t)
. p (r +QT(Qb+2Qu + Q(z — 5)))
pr+ (b+207Qu+ Q70w 1)) - (v+Q7Q —0))]
:/ plrabvtb (s (@=-0)+QQa-0)-v
P(t)
+2(w x v) - (wx (x — ))+Q($—6)Q(x_6)}
Also, (iii)
[ esanw
OP*(t)
_ / §(n) + Qs(n) - (Q(z — 0) + Qu)
aP(t)
:/ q(n) +s(n) v+ s(n) - (wx (x—0))
aP(t)
Combining these 3 equations, we have

(1) — (1) — (4i%) = (Energy Equation)* = (Energy Equation)+

pw-(x—@)xv—/ w-(x—@)pr—/ w- (x—0) x s(n)
dt Jp) P(t) oP(t)
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