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0 Introduction

Any claim marked with (***) is meant to be proven as an exercise.

1 Measure Theory

1.1

o-Fields

Let  # 0 be some set (of all possible outcomes).

Definition 1.1. A collection F of subsets of Q is called a o-field provided

1. Qe F

2. Ac F= A°e F
3. Al,AQ,"'EféuzlAin

The pair (Q,F) is called a measurable space and the sets A € F are called
(F-observable) events.

Remark 1.2. If (3) is required for only finite unions, then F is merely called an
algebra (field). Using DeMorgan’s Laws, one can conclude that countable (resp.
finite) intersections stay within a o-field (resp. algebra).

Ezample 1.3. 1. F = P(Q) is a (maximal) o-field. F = {0,Q} is a (trivial)
o-field.

2. Let B be an arbitrary collection of subsets B C P(2). Then



is the o-field generated by B. (The intersection is nonempty since F =
P(Q) is always valid.) It is, indeed, a o-field since an arbitrary intersection
of o-fields is also a o-field (***), and by construction it is the smallest o-
field containing B5.

. Let © be a topological space where 7 is the collection of open sets. Then
o(7) is called the Borel o-field.

. Let Z = (A;)ier be a countable partition of €; i.e. I is countable and
Q= QiEIAi (disjoint union). Then o(Z) is an atomic o-field with atoms
Ay, As,. .., and it can be written as (¥*¥)

o(Z)=J4;:IC1

jeJ
Note: if € is countable then every o-field is of this form.

. Time evolution of a random system with state space (S, &) which is, itself,
a measurable space. Set

Q=85"={w=(wp,wr,...) :wi €8S}
to be the set of all trajectories in S. The map X, :  — S defined by
w — wy, indicates the state of the system at time n. For A € &, write
{(X,eAl={we: X,(w) € A} = X, 1 (4)
as the event that at time n, the system was in A. Then
B, ={{X,€A}: Ac &}

is the collection of “at time n observable events”. In fact, B,, is automat-
ically a o-field. To see why, we show:

(a) Q={X, €S}t eB,
(b) If B € Q then 3A € & such that B = {X,, € A}, but then B® =
{X, € A°} € B, too.

(¢) Similarly, if By,--- € B, then 3A;,--- € & such that B, = {X,, €
Ak} then Ui21 = {Xn € LJz Az} € B,.
We set
Fni=o0 U By
k<n

to be the “up to time n observable events”. Similarly, we set

F =0 UB"

n>0



to be the o-field of all observable events. Note that, a priori, the expres-
sions in the parentheses o () above are not necessarily o-fields themselves.

One can show that (**%*)

Fp = U{ﬁ{Xi € Ai}: 4; € 6}

i=0
and
F=o0o ﬂ{XlEAZ}AlEG
i>0
We also set
Fri=o0 U By,
k>n

to be the o-algebra of “after time n observable events” and

Fr=Fh

n>0

to be the “tail field” or asymptotic field. Is F* trivial? NO!

Ezample 1.4.
{(XneAio}= ) | J{XeecAteF
n>0k>n
where “i.0.” means “infinitely often”. To see why, set

Co=|J{XxeA}eF;

k>n

WWTS ,,~oCn € Ff for each fixed k (and the claim above follows directly).
Notice that C,, 11 C C, so

N=()CueF

n>0 n>k

and we’re done.

1.2 Dynkin Systems
Definition 1.5. A collection D C P(Q2) is called a Dynkin system provided

1. QeD
2. Ae D= A°e€D
8. Aq,As, ... disjoint and A; ED:QiAi eD



Note that these conditions are less restrictive than a o-field.

Remark 1.6. If A C B with A, B € D then B\ A = (B°UA)° € D, as well. If D
is N-closed then D is a o-field. To see why, observe that:

1. If A, B € D then

AUB=(A\(ANB))U(ANB)U(B\ (AN B)) €D
€D €D €D

2. If Ay,--- € D, set B, = Uigk A;. Then

—n>1

i:LJIAi:U (Bp \ By_1) € D

€D

Also, note that if B C P(Q2) then

is a Dynkin System (the smallest DS containing B, by construction).

Theorem 1.7 (Dynkin’s 7-A Theorem). Let B C P(Q) and assume B is N-
closed. Then D(B) is also N-closed and therefore a o-field; furthermore, D(B) =
o(B).

Note: D(B) C o(B) always, but if D(B) is itself a o-field then it cannot
be strictly smaller than o(B), by definition. Thus, it suffices to show D(B) is
M-closed.

Proof. First, let B € B and set
Dp:={AeDB): ANB e DB)}

Observe that Dp is, in fact, a DS (***) containing B and thus D 2 D(B). The
reverse containment is trivial, so we have D = D(B).
Second, let A € D(B) and set

Dy:={CeDB): AnC € D(B)}

Observe that D4 is, in fact, a DS (***) containing B (by the first part of this
proof), and so D4 D D(B). Again, the reverse is trivial, so D4 = D(B). O



1.3 Probability Measures
Let (2, F) be a measurable space.

Definition 1.8. A probability distribution (prob. measure) P is a positive
measure on 0 with total mass 1; that is, P : F — [0,1] with A — P[A] (prob.
of event A) and with the following properties (the Axioms of Kolmogorov):

1. P[Q] =
2. Ay, € F with AyNA; =0 fori # j then

P [0] =30 ria

i=1
This is called being "o -additive”.

Some properties of probability distributions:

1. P[A°] =1 — P[4]

2. A C B = P|A] < P[B] (monotonicity)

3. P[AUB] = P[A] + P[B] — P[An B] < P[A] 4+ P[B] (subadditivity)
4. If A1 C Ay C --- then

lim P[A

n—oo

UA

This is known as monotone continuity. Taking complements, one can show
that if By D By D --- then i

lim P[B

n—oo

ﬂA

To prove the first property, take an ascending collection Ay. Set Ag = 0
and Dk = Ak \ Ak—l- Then

by o-additivity. Since

UAUD,~c

w31 ~E>1
then we have

U 4. iPDk = lim ZPDk = lim P[A,]
k=1

n— o0 n— oo
n>1

k=1



5. For any countable collection (Ag)k>1,

p UAk SZP[AIJ
=1

k>1

This property is known as o-subadditivity. To prove it, notice that the
collection |J,..,, Ak is ascending in n, so

PIUA =l P U A

E>1 k<n

n

< lim inf > PlA] = f: P[A]

k=1 k=1

Lemma 1.9 (Borel-Cantelli I). Assume (Ag)r>1 € F with 3,5, P[Ai] < oo.

Then
Pl U4 =0

n=1k>n
Remark 1.10. Notice that

P m UAk =P [{w: kij(w) = 0o s.t. w e Ay, (o), i > 1]

n=1k>n

= P[oo many of Ay, occur] = P[4, i.0]

Proof. Notice that |J,.,, A is a descending collection in n, so

oo
Pl 4| = lim P || ] Ax| <liminf )" P[A;] =0
n=1k>n e k>n e k>n
by assumption. O

Theorem 1.11 (Uniqueness). Let Py, Py be two probability measures on (Q, F),
and suppose B C F is N-closed. If P [g= P |5, then Pi [553)= P [4(5)-

Proof. Observe that D := {A € F : P;[A] = Py[A]} is, indeed, a Dynkin system
containing B (which is N-closed). Thus, D D D(B) = o(B), by the w-\ Theorem
L7 O

Ezample 1.12. 1. Discrete models. Let F = 0(Z) where Z = (4;)ien is a
countable partition of €. Then every probability measure is determined
by its “weights” on the atoms A;, since

a(Z){UAi:JgN}éP

ieJ

U

icJ

=Y P[A]

icJ




Special case: if © is countable and F' = P(2) then P is determined
by P[{w}] = p(w) the weights on the singletons, since p(w) > 0 and

Zweﬂ p(w) =1
2. Dirac measure. Take (Q, F) with wg € Q. Then

PlA] = 1 ?fwoeA
0 ifwy¢t A

is a measure, callewd the “Dirac mass concentrated at wqg”.

3. Uniform distribution on [0,1] = Q. Take F to be the Borel o-field.
The Lebsgue measure A yields a probability distribution on [0, 1] with
A((a,b]) = b —a for b > a. Note that A is uniquely determined by the
above line since the collection of intervals {(a,b] : a < b € [0, 1]} is N-closed
and generates the Borel o-field.

4. (Discrete) Stochastic process. Let S be countable and & = P(S) and
Q=5 ={(w1,ws,...) :w; € S} and

F=c{{XreA}:k>0,Ac&})
A stochastic process is any measure P on (). It is determined by the values
P[{XOZSO,Xl:Sl,...,Xk;ZSk}] ,k>0,s, €8

since they generate F and are N-closed. The following are special cases of
stochastic processes.

(a) Independent experiments with values in S with distribution pu,
and

P [{XO =50,...,Xp, = Sn}] = ,U(SO) : ,U(SI) T M(Sn)

(b) Markov chain with initial distribution g on S and translation kernel
K(S,5"), and

The existence of P follows from the Theorem below.

Theorem 1.13 (Carathéodory). Let B be an algebra on Q and P a normalized
o-additive set function on B. Then 3! extension of P on o(B) = F.

Remark 1.14. For a proof, see any standard text on measure theory. The unique-
ness follows from the fact that B is N-closed.



1.4 Independence
Let (Q,F, P) be given.

Definition 1.15. A collection (A;)icr of events in F is called independent

provided
ﬂ Al = H P[4

i€J i€l

Definition 1.16. A collection of set systems (B;)icr with B; C F is called
independent provided for every choice of A; € B;, the chosen events (A;)icr are
independent.

VICI,|J <oo=P

Theorem 1.17. Let (B;)icr be an independent collection of N-closed set systems
in F. Then

1. (0(By)),c; is also independent, and
2. if (Jp)kex is a partition of I, then (0 ( U Bi>> is also independent.
€T keK

Note that (1) is a special case of (2), obtained by setting K = I and J;, = {k}
for k e I.

Proof. 1. Pick {i1,...,i,} =1 J C I and A; € o(B;) for j € J. WWTS

Pl 45] =] Pl4)] (1)

JjeJ
Define
D={A€o(Bi): P[AN A, N---NA;] = PA]P[A;,]--- P[A;, ]}
By assumption, B;, C D; also, D is a Dynkin system because
(a) QeD
(b) If A€ D then

PA°N A, N NA;,]=PlA,N-NA;, | —PI[ANA, N N A

= H P[Aik] - P[A] H P[Aik:]
= (1-PlA]) [ ] PlA] = P(A7 ] PlAs]
k=2 k=2

so A¢ € D, as well.



(¢) Observe that

P[(U

Ak>mAl-2m~~mAin] =Y P[ANA;,N-- N4 ]
1

k2 E>1

= PlA]- HP[Ai,.]

E>1

Now, since B;, is N-closed, D D o(B;,) and so Equation [1] holds for the
collection o(B;,), Bi,, - - ., B;, . Iterating the above arguments, we conclude
that o(B;,), -+ ,0(B;,) are also independent, as desired.

2. The set systems

Cy. ;:{ﬂAi:Jng,J|<OO,A,‘€Bi}

icJ

for k € K are N-closed and independent. Thus, for any choices Cy, € Cq,

we have
(g +(0
i€Jy i€y

= (H P[AA) (H P[Ai]>
1€J1 1€Jn

= P[C,] - P[Ch,]

P[Cklﬂ"'ﬂckn}zp

since J; C Ji,. Now, by part (1), we know that (0(Cx)),cx are indepen-
dent. Finally, note that o(Cy) = ¢ (Uz‘eJk B;).
O

Lemma 1.18 (Borel-Cantelli IT). Let (A;);en be independent with ), P[A;] =

oo. Then
P U 4| =1

n>0k>n

Proof. First, notice that the equation above is equivalent to

Pl JA| =1Vn < P|[]4;| =0Vn
k>n k>n

10



But then,

P 4| = 1lm P| [ A4
k>n meee n<k<m

= lim [ (1-PlA)
m—>oon§k§m

< liminf exp ( Z P[Ak]> =0
k=n
since > P[Ag] = co. O

Example 1.19. An “application” of this lemma is Shakespeare and the monkey.

Theorem 1.20 (0-1 Law of Kolmogorov). Let (F;);>1 be a countable collection
of independent o-fields. Set

f*:zﬂa U]:k
1

n> k>n

to be the tail field. Then F* is trivial in the sense that P[A] =0 or P[A] =1
for every A € F*.

Proof. Set
Fo=0c|JF|2F
k>1

WWTS F, and F* are independent. Notice that this completes the proof
because VA € F*, A € F also, so independence implies

P[A] = P[AN A] = (P[A])*> = P[A] =0 or P[A] =1
Now, to prove independence, observe that Fi, Fs, ..., F* are independent since
Fi,Fo ..., Fn,0 ( U fk> are independent Vn
k>n

and we know F* C o (Uk>n Fk). Next, F*, F1,F2,... being independent im-

plies that F* and o (Uk21 Fr ) = F. are independent, as well, and we’re done.

Note we have used Theorem twice. O

Ezample 1.21. Independent Bernoulli variables with parameter p. Take Q =
{0, 13" and Xy (w) = wy, with the o-fields

Fre=0({X,=1}) and F=o (U]-‘k>
k

11



The probability P is determined by
P=P,[Xp, =1,.... X, =1,X;, =0,...,X;, =0] =p/ (1 — p)*

£

Let ¢ € [0,1] and set

A. = {w : limsupl ZXk(w) = c}

n—00 7Lk:1

Then A, € F*, so by Kolmogorov’s Law [1.20} P[A.] = 0 or P[A;] = 1. Let j
be fixed; then

1 n
A, =< limsup —— Xp.=cpy €0 Fo | = F*
= e Y Us)-7

and so A € F7 Vj.

Ezample 1.22. Percolation with parameter p. Take Q = {0, 1}Zd and X, (w) =
w, for z € Z¢, with
Fri=c({X.=1}: ||z = k)

for k > 0, where ||z|| = maxi<i<q|zi|. If X, = 1 then z is open, and closed
otherwise. Set
Pp[Xe ==X, =1, Xy, =+ X, =0 =p*(1—p)

so it uniquely determines a probability. We claim (Fy)k>0 is an independent
family; in fact, this follows from Theorem m part (2).

A set C of sites in Z% is called connected if between any two sites in C' 3 a
sequence of nearest neighbors C C. An (open) cluster is a connected component
of open sites. Set A = {Joo cluster}. We claim

Aer =No| U %

n>0 k>n

To see why, let n be fixed and set B(k) = {2 : [|z|| < k}. The basic observation
is that Vn, w € A <= w € A,, where

A, = {w: Joo cluster in B¢(n)}
which implies that A = A,, ¥n. But notice that
An€J<U ]-'k> = Ae a<U ]—'k> = F*
k<n n k>n

By Kolmogorov’s Law either P,[A] = 0 or P,[A] = 1. In fact, if we set
pe :=1inf{p > 0: P,[A] > 0}, then

p>pe.= P[A] > 0= P,[A] =1
A further fact is that 0 < p. < 1 for d > 2.

12



1.5 Measurable Maps and Induced Measures

Let (Q,F) and (€, F’) be measurable spaces, and let T : Q2 — Q' be any map.
For A’ € 7', we write

(TeA}={w:T(w)e A} =T"A)
Definition 1.23. The collection
o) ={{TeA}:AecF}
1s, indeed, a o-field on 2, and it is called the o-field generated by T.
Definition 1.24. The map T is called measurable with respect to (F,F') if

{TeA}eFvA eF (2)

Remark 1.25. 1. It is sufficient to check the condition in Equation for a
generator B’ with o(B’) = F’, since the collection

{ACQ :{TeA}eF}

is, indeed, a o-field (*** proven on homework) and it contains B’ so it
must also contain o (B’).

2. The composition of measurable maps is also measurable. That is, if we're
given the measurable spaces (Q, F), (', F'), (", F") and the measurable
maps T :Q — Q and S : Q' — Q”, then SoT : Q — Q" is measurable,
as well.

3. If (2, 7) and (', 7") are topological spaces and T : @ — ' is continuous,
then T is measurable with respect to the Borel o-fields o(7) and o (7).
Remark 1.26. We use (R, Bgr) where Bg is the o-field generated by all open
subsets of R, which is equivalent to the o-field generated by (open) intervals
(*** proven on homework).
Also, we use the topological space of the extended reals R = {—oo}U{co}UR
with open sets generated by the neighborhood bases

{N(r,l> ZTER,TL>1}
n

N(oo,i)—{xER:x>k}—(k,oo}

where

and )
N(oo,k) ={zeR:z<—k}=[—00,—k)
Open sets are unions of neighborhood basis elements. We can discuss conver-

gence of sequences by saying x, — x as n — oo provided Vkdn such that
Tm € N(x, 1) Vm > n. Note: we will use (R, B) to indicated (R, B), sometimes!

13



Definition 1.27. Let (0, F) be a measurable space. The map T : Q@ — R or
T : Q — R is called a random variable if it is (F,B) measurable. General
measurable maps are called abstract valued random variables.

Ezample 1.28. 1. Let (2, F) be a measurable space with F = ¢(Z) where Z
is a countable partition of  with atoms A;. Let T : Q — R. Then T is a
random variable <= T is constant on every atom.

2. Tossing a coin. We begin by tossing a (fair) coin. Let © = {0, 1} and
X, (w) = w, with

Fo=0(X,) and F=o||]JF
k>1

Set

T(w) =Y Xe(w)2 ™"

E>1
Note that T : Q — [0, 1] where [0, 1] is equipped with the Borel-field
B:=0({[0,c):0<c<1})

We claim T is (F, B) measurable. To see why, we first recall some facts
about the dyadic representations of numbers. Let

Qo ={w: X, (w)=11i0.}
Then Ve € (0, 1] 3'¢ = (¢1,¢2,C3,...) € Qo such that
c=Y &2 =T()
k>1

That is, we always choose the dyadic representation that uses infinitely
many 1s. Notice that if d < ¢ then Ing > 1 such that dy =7¢1,...,d, =¢,
but d,,+1 = 0 whereas ¢,+1 = 1. Therefore, for ¢ € (0, 1],

(r<ct=J {ﬂ{Xk:ck}ﬂ{ano}}€J< J—'n>:]—'
—nitp=1 k<n n

where n in the first intersection above is the first index such that the digits
of T(w) and ¢ differ. This implies that T71[0,¢) € F for every ¢ > 0 and
since the sets [0, ¢) generate B, we may conclude T is (F, B) measurable.

Lemma 1.29. Let (Q,F), (', F') be measurable spaces. If X is o(¢) measur-
able, then Jp such that X = @ o ¢. This is known as “lifting”.

HAFXX Insert picture FFFF*

14



Definition 1.30. Let T : (Q,F) — (', F') be measurable, and let P be a
probability measure on (Q, F). Then

P'A):=PT A =PoT 1(A)

18, indeed, a probability measure and it is called the induced measure a.k.a. the
image measure of P under T a.k.a. the distribution of T' under P.

Ezample 1.31. Bernoulli variable X with parameter p. Let (Q,F, P) be a
probability space and X : Q@ — {0, 1} such that P[X = 1] =p and P[X =0] =
1 —p. Then P’ = Po T~ ! is determined by

P{0}=1-p , P{I}l=p , PM=0 , PO]=1

Ezample 1.32. Tossing a coin. Let Q = {0, 1}N+. Put a measure on (2, F) by
setting

PlXy=21,Xo=29,...,Xp =x,) =2""VYn,Vay,...,2, € {0,1}

Then P is uniquely determined. (We will see later how to construct such a P.)
What is the image measure on (0, 1] under 77 Observe that

P'[[0,¢)] = PoT *0,¢) = P[T < (]
:P[U {(X1=¢,...,Xn1=C_1,X, =0}

— n:cp=1

= > P{{Xi=¢1,...,Xp 1 =01, X, = 0}]

Cp=1
=Y 2" =T()=c

¢l

which implies that P’ is equivalent to the Lebsgue measure on (0,1]! This is
equivalent to saying T is uniformly distributed with respect to P.

Remark 1.33. The existence of 0-1 variables = the existence of the Lebesgue
measure, and vice versa.

Ezample 1.34. Contraction and Simulation of Probability Distributions
on R (or R). Let A be a uniform distribution (i.e. probability measure) with
respect to the Borel o-field F on [0,1]. If x4 is a probability measure on R, then
F,(z) = p(—o0,z] is called the (cumulative) distribution function of p. Note:
p is uniquely determined by F),! Also, F), has the following properties

1. F, : R —[0,1] with

lim F,=0 , lim F,=1

r— —00 Tr— 00

2. F, /

3. F), is right continuous

15



These properties follow from basic properties of probability measures.

Suppose we have F' that satisfies properties 1,2,3. We now show F' = F}, for
some u € My (R); specifically, given F' we will try to construct u with F' = F),.
Set

G(y) :=inf{c: F(c) > y}

to be the unique right continuous inverse of F. (Proof: ***) It is true that

[0, F(c)) if F is “constant after ¢”
[0, F(c)] otherwise

{ch}:{

so G is measurable from [0,1] — R. Define 1 = A o G~ (the distribution of G
with respect to A). Then

i(l=o0,d) = A({G < ¢}) = F(c) = F = F,

since

i({—oc}) = lim NG <n) = lim F(~n)=0= p({+oc})

n—oo

and thus p ((—o00,00)) = 1 which implies u [g is a probability measure on R
with F, = F.

Lemma 1.35. Let: (Q,F) — R be some measurable map. Let P be a probability
measure on (0, F) such that P is 0-1 on F. Then T is P-a.s. constant; i.e. Ja
such that P[T = a] = 1.

Proof. (*** homework exercise ***) O

1.6 Random Variables and Expectation

Consider a measurable space (Q,F), and R = [~o0, 00] with Borel o-algebra
B=o([-00,c):ceR).

Definition 1.36. We say X : © — R is a random variable if it is (F,B)
measurable.

Remark 1.37. It suffices to check that
{X<cteFVeeR

since the intervals [—oo, ¢) generate B.
If X,Y are RVs, then

(X<vi=J{x<rin{y>rjer
reR

and
X=Y}=({X=Y})={{X>Y}U{X<Y}}eF

and so forth.

16



If X1,...,Xn are RVs and f : R” — R is measurable, then
Y = f(Xy,...,Xn)
is also a RV. Thus,

n n

ZXi , HXZ» , 1I£1iagani X

i=1 i=1
are all RVs, as well.
The class of RVs is closed under “countable operations”. That is,

X1 < X< <X, <o = Y= lim X,,isaRV

n—oo

To see why, notice that

{hm Xngc}: N{X.<c)erF

n—oo
n>1

Also, Y = sup,, X,, is a RV because

sup X, =lim 7Y, where Y,, = max X;
n n 1<i<n

Similarly, ¥ = liminf,, X,, is a RV (and lim sup) because
liminf X,, = lim Y, whereY, = ]igf Xy

n—oo n—oo
which implies

{ lim X, exists} = {hmiann = limsuan}

k—oo n— oo n—oo

Ezample 1.38. e If Aec F, then 14 is a RV.
e If Aj,..., A, € F and ¢; € R (not R), then

X::zn:cilAi eF

=1

is called a step function. Note that WOLOG the A;s can be taken to be
disjoint (since the sum is over a finite index set).

Lemma 1.39. If X >0 is a RV, then 3X,, a monotone increasing sequence of
step functions such that X, /* X as n — oo.

Proof. Define X,, by
n?—1 k +
e kZ_o pi{Esx<ty | Tz

The idea is that as n — 0o, we generate a finer mesh on the interval [0,n]. O

17



Note: this lemma is crucial to be able to define integration!

Theorem 1.40 (Lifting). Let T : Q — Q' be (F,F’') measurable. If X is o(T)
measurable (i.e. “X € o(T)”), then Jp measurable such that X = o T.
*FFFK insert diagram FFFFF

Proof. This proof technique is (sometimes) known as “measure theoretic induc-
tion” or just MTI, for short.

1. Let X =14 for
Aeo(T)={T""(B): Be F'}

so 3B € F' such that A =T~1(B). Thus,
X:].A:]_BOT:>QDZ].B

since

1 ifTeB
1p = .
0 ifT¢RB

2. Let .
X:ZCilAi where A, =T Y(B;) ,i=1,...,n
i=1

where B; € F' are disjoint, so the A; are, as well. Then

" ¢ onl e B;
X == Ci]. . () T =
(; Ai > { 0 otherwise

and T € B; = A;. Thus, we can say

n
P = Z cila,
i=1

3. If X > 0 then 3X,, / X with X,, step functions. But X,, = ¢, o T by
(2), so

X =lim /(¢ oT) = (nlggo /%) oT
and we can set ¢ 1= limy,_, o ©n.
4. f X = X*T — X~ then X7, X~ >0 are o(T) measurable, so then
X=¢ptoT—p oT=(pt—¢p7)oT
so we can set ¢ := ¢ — ™. This completes the proof!
O

Remark 1.41. Special case: Suppose X,Y are RVs and X is o(Y’) measurable.
Then Jp : R — R (or ¢ : R — R) measurable such that X = p(Y)! (ie. X
depends deterministically on Y)

18



1.6.1 Integral (expected value)
Definition 1.42. Let X be a RV on (Q,F, P). We write

E[X] ::/QXdPE/QX(w)P(dw)

(whenever the integral exists) and

E[X; Al ::/XdP:/X~1AdP
A Q

Sketch of the construction:
1. If X =14 then E[X] := P[A].

2. If X =37 | ¢;14, with A;s disjoint then E[X]:=)",

3

CiP[Ai].
3. If X > 0 then find X,, /~ X step functions and set

E[X]:= lim / E[X,]

n—oo
(note: this is < ool)

4. If X = Xt — X~ then E[X]:= E[X*] — E[X~]. Note: the RHS exists
except when E[X 1] = E[X | = oco.

Definition 1.43. If E[X] € [—o0, 0] exists, we say X is semi-integrable. If
E[X] is finite, we say X is integrable. We let &(Q, F, P) denote the class of
semi-integrable functions, and L1(Q, F, P) denote the class of integrable func-
tions.

In measure theory, one verifies the following properties of the integral (i.e.
of E[]):

1. Linearity: E[X + ¢Y]| = E[X] + cE[Y]
2. Monotonicity: X <Y as. = E[X]| < E[Y]

3. Monotone convergence: If X, € £ and Xy < X; <--- a.s., then

E [ lim Xn} — lim / E[X,]
This is a Theorem due to Beppo-Levi.

These 3 properties are the basic ones; all others follow from these!

Remark 1.44. Let P[A] = 0 and X € R measurable. Then E[14 - X] = 0. To
see why, assume X > 0 and observe that

X-1a=lim /(X An) 14

n—oo
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and so
E[X -14]<E[n-14)=n-0=0

Then, by Beppo-Levi, E[X - 14] =1im0 = 0. For general X, notice that
E[XT 14— E[X™-14)=0-0=0

Also, note that in monotone convergence, the assumption that X, € £! is
necessary. As a counterexample, consider ](0,1] and Xo = f(z) = —1. Set

Xn = XO . 1(0’i]
Notice that X,, 0, but

00 = E[X,] #E[lim Xn} =0

n—oo

Theorem 1.45 (Fatou’s Lemma). Suppose (X,)n>1 > Y a.s. and Y € L',
Then
o< E [lim inf Xn] < liminf E[X,] < 400

n—oo n—oo

Proof. Observe that
X, > ]ir>1f X, > Y as.

so we can apply monotone convergence (since Y € El) to write

E { lim (inf Xn)] = lim /~F [égf Xk] < liminf E[X,]

n—00 k> n—oo n— oo

O
By taking minus signs in the proof above, we can show that (X,,) <Y € £!
a.s. implies

E [lim sup Xn} > limsup E[X,]

n—oo n—oo

A (silly but useful) mnemonic to remember the direction of the inequality in
the statement of Fatou’s Lemma above is ILLLI (“the Integral of the Limit is
Less than the Limit of the Integrals”).

Theorem 1.46 (Dominated Convergence). Assume X,, — X a.s. and Y € L!
such that | X, | <Y a.s. ¥n. Then

1. E [nli_{rgo Xn] = lim E[X,], and

2. X, — X inL';ie.

B[IX — Xa]) = [IX = Xali —=0
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Proof. First, notice that
X, — [X|as. = [X|<Yas = E[|X|]<E[Y]<oo = Xec[!
Now, to prove (1), we apply Fatou’s Lemma twice to write

EX]=E [hm inf Xn] < liminf E[X,,]

n—oo n—oo

=<limsup B[X,] < E {limsup Xn] = E[X]

n—oo n—oo

so everything is equal in the line above.
To prove (2), define D, := X — X,,, so that

1Dyl < |1X] + X, | <2Y € £

so that |D,,| < 2Y and |D,,| — 0 a.s. Thus, we can apply the conclusion of part
(1) to write

0=F { lim |Dn|} = lim E[Dy] = lim E[|X — X,,]]
n—oo n—oo n—oo
O

Theorem 1.47 (Chebyshev-Markov Inequality). Let ¢ : R — R with ¢ > 0
and let A be a Borel set. Define cq :=inf4 p. Then for any RV X,

caP[X € Al < Elp(X); X € A] < E[p(X)]
Proof. Note that c414 < pl4 and so
calyxeay =calpgoX <plpoX = o(X)lixecay
Taking E[-] of both sides yields
caPX € A < B[p(X); X € A] < E [p(X)]
since ¢ > 0. O
As an application of this inequality, we show that for X > 0,
EX]<oo = X <ooas.

and
EX]=0 = X=0as.

Observe that, for the first case,

P[X =c0] =P ﬂ{in}] = lim P[X > n]
n=1
N | NP
<liminf —F [p(X)] = liminf —E[X] =0
n—oo N n—oo N
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where we have applied Chebyshev-Markov with A = [n, 00] and ¢ = 1 o - id.
For the second case, we use a similar technique to write

> 1 1
PIX>0=P|J {Xz}] = lim /P{Xz]
n=1 n oo n

<liminf nE[X] =lim0 =0

n—oo
Theorem 1.48. Suppose X € L' and u is convexr. Then
Eu(X)] = u(E[X])

Furthermore, if u is strictly convex then the inequality above is strict and X is
not a.s. constant.

Note: this theorem only holds for probability measures!

kkoskosk KKk kk

Proof. insert diagram If w is convex, then Vz € R there is “support
line” ¢(x) = ax + b such that u(y) > ay + b for every y and £(x) = u(x) (note:
¢ is not unique). Pick zp = F[X] < co. Then

Elu(X)] = E[((X)] = (E[X]) = u(E[X])
where the first equality holds because P is a probability measure, so
ElaX 4+ b] = aE[X] + Eb] = aE[z] + b
The proof of (2) is left as an exercise (***). O
As an application of Jensen’s Inequality, consider the space
Lr = (X : BIX]] < o0}

Then for 1 < p < ¢ < oo, we have | X||, < [|X||4; thus, in particular, £? C LP.
First, we show £? C LP directly:

E[XP)<E[IX|PV1] <E[X[1V1] < E[X]]+1< oo

Next, define p(z) := | X|%/? (which is, indeed, convex). Jensen’s Ineqaulity tells
us
E[(1X1)""] = B (X1

where | X|P € £! since X € £P.s This implies
1Xll, = EIX10Y* > EX P77 = |1X]],

Theorem 1.49 (Transformation Formula). Let T : (Q,F,P) — (V,F', P’
be measurable and take P’ to be the induced measure; i.e. P' = PoT~ 1. Let
X">0beaRVonS. Then

Ep/[X/] = EP[X/ OT]
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Note that if X’ € £1(P’) then the same is true, of course.
Proof. We use Measure Theoretic Induction:

1. If X’ =14 then
Ep[la]=P(A)=PoT  (A)=P[T € Al=Ep[1la0T)]

2. By linearity of E[-], step functions also work.
3. If X' =1lim / X for X, step functions, then

X'oT = lim /(X oT)

n—oo

which implies

EP [X/ OT] = lim EP [X,:L OT] = lim Ep/ [X;L] = Ep/ [X/]

n—oo n—oo
and this completes the proof! O

Corollary 1.50. Let X be a RV with P[X € R| = 1. Then the distribution

pu= Po Xt is concentrated on R and for each measurable function ¢ > 0, we
have

E[p(X)] = / o(z) pu(da)

Additionally, we note that if ¢ : R — R and either E[pT(X)] or E|p~ (X)] is
< 00, then the same equality above holds.

We note a couple of special cases:
1. We have
0o 0
B[X*] = / sp(dy) and  E[X~] = / 12| ju(dz)
0

— 00
and so

Blx) = [ wplan

— 00

whenever E[XT] or E[X ] is < co. Also, we consider the so-called “k-th
moment” defined by

B (X = [ fal* )
and the variance of X (assuming X € £2) defined by

Var(X) = E [(X — E[X])?] = E[X?] — 2E[X]* + E[X)? = E[X?] — E[X]?
— [ utan) ~ ( [ 2utan))
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2. Let (X,Y): (Q,T,P) — R? and u(dz dy) be the induced measure on R?
a.k.a. the product distribution of X,Y. Then we consider the covariance
of X and Y defined by

Cov(X,Y)=E[(X — EX])(Y — E[Y])] = E[XY] - E[X]E[Y]
:/Rz xyuxy(dxdy)—/wa(daf)~/Ryuy(dy)
Note: Cov(X,X) = Var(X).

1.6.2 Convergence of RVs
Assume (2, F, P) is a probability space and (X,,)n>1, X are all R-valued RVs.
Definition 1.51. We say

1. X, — X a.s. provided
PX, /A X]=0

2. X, — X in probability (a.k.a. in measure) provided

lim P[|X, —X|>¢]=0 Ve>0

n—oo

3. X, — X in L' provided

lim E[|X, — X|] =0

n—oo

The following theorem characterizes these 3 types of convergence.
Theorem 1.52. 1. Almost sure convergence = convergence in probability.

2. L' convergence = convergence in probability.
In general, there are no other implications!

Proof. 1. Suppose X,, — X a.s. Then
1
%1 =UN U {ixn - x12 7
L n m>n

is a measure zero set, and so

P ﬂU{|XmX|22} =0 W

n m>n

Thus,

n—oo

1
0= 1l P Xm—X| > - h44
im N\ U{l _g}

m>n
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and since

1 1
U {|Xm—X| > é} > {|Xn—X| > é} ve
m>n

we can conclude that

n—oo

lim P{|Xn—X|22] =0 W

which is precisely convergence in probability.

2. Assume convergence in £'. Then we can apply Chebyshev’s Inequality
to conclude

1
PlIX, = X| 2] € ZE[[ X0 = X[} ——— 0 Ve >0

O

Now, if we add extra assumptions, then the previous theorem becomes more
complicated and admits some implications between modes of convergence, as
summarized in the following diagram

HHHEE Insert diagram (unit 5+ page 3)

These implications will be stated and proven in the following series of lemmas
and theorems.

skokskok ok

Lemma 1.53. Suppose ZEHXn — X|] < 0. Then X,, — X a.s.

n>1
The sum condition above is known as “fast £! convergence”.
Proof. Define
n
S, = Z | Xy — X| and S:= lim /S,
k.:l n—oo

By monotone integrability, we have

E[S] = lim / E[S,] = nlLrI;OZE[|Xk - X|] < o0
k

n— oo
=1

by assumption, so S is finite a.s. Thus, for a.e. w,
Sw) =Y 1 Xi(w) = X(w)| <00 = [Xp(w) = X(w)| =0
k=1

which means X; — X a.s. O

Theorem 1.54. X,, — X in probability <= for each subsequence X, there
is a further subsequence Xy, —which converges to X P-a.s.
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Proof. (<) See measure theory (*¥**)
(=) Suppose
P X, —X|>e] ——0 Ve>0

Choose a subsequence K1 < ky < -+- < k,, < --- such that
1 —-n
Pl X, —X|>—| <2
n

By Borel-Cantelli I[I.9] only finitely many of these events occur simultaneously.
That is, for a.e. w and Vn sufficiently large,

[ X, (w) = X (w)]

IN
S|

But then, this implies X (w) — X(w). (Note that it is sufficient to work with
the original sequence as opposed to a subsequence of a subsequence.) O

Before the next theorem and proof, we need to introduce the notion of uni-
form integrability.

Definition 1.55. A collection H C LY(Q, F, P) of functions is called uniformly
integrable (written u.i., or sometimes called equi-integrable in measure theory)
provided

lim N, sup E[|X|;|X]|>¢]=0

o Xer

Remark 1.56. If X € £! then {X} is wi. If X € £ and H u.i. then {X} UH
is w.i. If H is £'-dominated, i.e.

sup | X,| <Y e !
H

then H is wi. If (X,,)n>1 is wi. then liminf X, limsup X,, € £1.
Theorem 1.57. TFAE:
1. 'H is u.i.

2. 'H is L'-bounded (<= supy E[|X|] < 00) and Ve > 035 > 0 such that

sup E[|X|; A] <e VA with P(A) <
H

3. 39 : RT™ — RT Borel measurable with % — 00 as ¥ — 0o such that

sup Elg(|X])] < oo
H

Ezample 1.58. An example of such a g(z) in (3) above is g(z) = |z|P for p > 1.
If H is £P bounded then H is u.i. (but this is not true for p = 1). Also,
g(z) = zlogz, etc.
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Proof. See textbook. O
Theorem 1.59. Let X,,, X be RVs. Then

X, — X in probability, and

X, —> X inl — .
(Xn)n>1 18 u.i.

Remark 1.60. The first condition implies X,,, — X a.s., and by the previous
theorem this implies {(X,,), X} is u.i., which in turn implies that {|X,, — X|}
is u.i. Also, the theorem statement is about |X,, — X| and therefore, WOLOG
X =0and X,, > 0.

Proof. (=) Observe that

E[|X, —0]] = E[X,] = E[Xp; X, < &] + E [Xn; X > €]

<e always i=(%)

We claim (%) < e for n > N. For a given & > 0, 30 = d(&) such that if P[A] < ¢,
we have
sup E[X,; Al < ¢

by uniform integrability. Also, for § = 6(g), we can choose N = N(d,e) = N(¢)
such that

sup P[X,, >¢] < ¢
n>N

by convergence in probability. This proves the claim.
(<) Assume X,, — 0 in £!. Then X,, — X in probability by Theorem m
To prove the second condition, take € > 0 and write

SupE[Xn§Xn > C] < sup E[Xn;Xn > C] =+ sup E[Xn;Xn > C] =:E + Ey

n<N n>N
Choose N = N(g) such that

E; < sup E[|X, —0]]<e Ve
n>N

since the supremum in F5 is over a quantity guaranteed to be < E[X,]. Then,
for the given N, choose ¢ large enough such that E; < e (noting that the
collection {X1,...,X,} is wi.). These two estimates hold simultaneously for
our choice of N(¢) and ¢ = ¢(IN) = ¢(g). Thus Je¢ = ¢(e) such that

sup E[X; X, > ¢] < 2¢

which implies (X, )nen is u.i. O

This concludes the analysis of modes of convergence.
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1.7 Product Spaces

Let (S;,6;) for i = 1,2 be measurable spaces and set S := S; x S3. Let
X; : S — S; be the coordinate maps (i.e. projections).

Definition 1.61. A stochastic kernel K (x1,dxs) from Sy to Sa is a map
K ZSl X 62 — [0, 1]
(1, A2) = K(x1,A3)

such that K (x,-) is a probability measure on Sy for all x € Sy and K (-, As) is
&1 -measurable for all As € &g

Ezample 1.62. 1. Set K(x,-) = u(-) Vo € S1. Then there is no dependency
on x; i.e. “Xjy is independent of X;” and so X5 ~ p.

2. Set K(x,-) = dp(q)(-) for T : Sy — Sy measurable. That is, “Xy = T'o X"
i.e. X5 depends deterministically on Xj.

3. Countable Markov chain: Let S; = S; =: S be countable and set
S = P(5). Let Ky be a matrix with K,y > 0and 37 K., =1 (ie. a
stochastic matrix). Set

K(z,A) =Y Ky,
yeA

This is known as the transition kernel.

4. Set S; = S2 =R and K(z,-) = N(0,32z%). Question: Does 33 > 0 such
that the Markov Chain converges to 07 What do we mean by “converges”
in this case?

Let P; be a probability measure on (51, &1) and let K be a stochastic kernel
from S to S3. We construct a probability measure P(= P;-K) on Q := 51 x Sy
such that

P[Xl S Al] = Pl(Al) for A1 € 6,

and
“P [XQ € A2|X1 = xl] = K(Z‘l,Ag)” for Ay € 65

Definition 1.63. The product o-algebra is given by
Fi=0(A1 xAy: A; €6))
The sets Ay x As are “rectangles” in the product space.
Definition 1.64. For A € F and 1 € Sy, the set
Ag, ={x2: (x1,22) € A} C Sy

18 called the x1-section of A.
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We will see that A € F = A,, € G2. Note that

1a(w1,22) = 14, (72)

Theorem 1.65. 1. The set function P defined by
P[A] = Pl(dacl)K(a:l,Aml) = / K($1,dx2)1,4($1,a?2) Pl(d.’lﬁl)

is a probability measure on (Q, F).

2. If f € F and f is semi-integrable w.r.t. P, then

AfdP:E[f]:A Pl(d.’El) K(Q?l,d.’lﬁg)f(xl,l‘g)

Sa

Proof. We prove (1); claim (2) follows from (1) by MTI. To check that P is,
indeed, a probability measure, we verify

1. P[] =1 is true

2. If A= QiAi then, applying Monotone Integrability twice, we have

P [UiA,-:| = . P1(dl‘1)/s2 K(x1,dxs) (zl: 1A¢(5U17$2)>
= s, P1(d$1)zi: s K(21,dz2)14, (21, 22)

= ; .. Py (dz) ., K(z1,dze)14, (21, 22)
=2 P4

which is what we want.
This proves the theorem. O

Lemma 1.66. For all x1 € Sy and f € Ft (meaning f > 0 and [ is F-
measurable), we have fy, (-) := f(zx1,-) is € Sa. Furthermore, f € FT implies
that the function ¢ defined by

T — /K(:El,dazg)f(ml,scg) e Rt

is well-defined and ¢ is € &7 .
Proof. (***) homework O
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Note that the first statement implies A,, € G2, and the second statement
implies

/gp(xl)Pl(dm1)=/S Pu(dey) [ K (w1, dws)f(on, 22)

Sa
is well-defined. These conclusions are used in the proof of the theorem above.
A classical case of the theorem above is Fubini’s Theoreml Let K(z,-) :=
P,(+) so there is no z1-dependence. Let P = P; - Py and

P[A} = ; Pl(dl‘l) ; PQ(d.IQ)lA(l‘l,l‘g)

Let’s define P on Q = S1 x So with o-algebra F as follows:

P[A] = ) Py(dzs) ) Py (dzy)1a(zq, 22)

This corresponds to a constant kernel K from Sy to S; given by K (zo,dxq) =
Py (dzy). Then, by MTI, for f € F with f > 0, we have

/Qfdﬁz/sz Pg(dﬂcg)/Sl Pu(dzn) f(z1, 75)

Note, however, that P = P since they agree on rectangles,
P[Al X AQ} = Pl(Al) . PQ(AQ) = p(Al X Ag)

and rectangles are N-closed and generate F. Therefore, the equality holds Vf €
FT, s0

/ Pl(dilil)/ P2(d$2)f(331,.732) = Pg(dl‘g) Pl(dxl)f(xl,xg)
S1 Sz S2 Sl
This equality is Fubini’s Theorem.

Remark 1.67. Fubini is valid for o-finite measures only! Also, the integrand
must be semi-integrable w.r.t P.

Ezxample 1.68. Consider the following application of Fubini’s Theorem. Let
X >0beaRV. Then

BIX] = /OOO PIX > ] A(ds)
Proof. Observe that
/0 P[X > s]ds :/0 (/Q P(dw)l(g’oo](X(w))> ds
= QP(dw)-/O 1(,W’X(w))(3)d8
- /Q X (w)P(dw) = E[X]

since P[X > s] = E [1(5,00)(X)]. O

30


http://en.wikipedia.org/wiki/Fubini%27s_theorem

Remark 1.69. Notice that when () < oo,

/fdu=/0mu(f>0)dc

/If\du > supe- u(lf] > o)

assuming f > 0. Also,

1.7.1 Infinite product spaces

This short section presents the powerful Ionescu-Tulcea Theorem. Consider a
(countable) sequence of measurable spaces (5;, &;);>0 and define

(S, 6") = (HS’ ,0({A1 x Agx - x A, A; € 6}}))

Let po be a normed measure on Sy, and for n > 1 let K,, be a stochastic kernel

from S"~! to S,; i.e. K(xowy...2Tn_1,dr,) with K,(zg...2,,5,) = 1. Set

1 := pg and iteratively define

'un = ’unfl . Kn

to be a measure on &™. That is, for f € (&™)*,
fapr = [y / Koy, don) f (3, 2a)
STL Sn 1
:/ u 1( (g ... Tp_1) / K, (xg...xp_1,dzy) f(zg...2n)
Sn 1
:/ dxo / K1 ,Io,dl‘l) Kg(l'oxl,dzg)"'
Sa
/K v da) [0,

Set

8

X = Si:{x:(mo,xl,...):xie&}
i=1

and define the canonical projections 7; : X — S; by m;(z) = x;. Also, set
Ay =0 (mo,m1,. ., Tn) = {A" X Spg1 X Spaa X -+ A" € "}
and

A=oc(mp,...,Tp,...) =0 UA"

n>0
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Question: Does Ju a probability measure on (X, .4) such that

uo7r{_01 ny = 4" Vno 7

.....

That is, we want to guarantee that p satisfies
(A" X Sppy X Spyg X -0 ) = p"(Ap) (3)

Answer: Yes, and this measure p is unique! This is the conclusion of the
Tonescu-Tulcea Theorem, with the conditions being the discussion in this section
leading up to this sentence.

Proof. First, observe that |J,, A, is an algebra and p is consistently defined on
U,, An by Equation ; that is, for A € A, N A, _1, we can write

A=A"x Sy x - = (A" x 8,) xSpp1 X -+
_A'n.

Il
=
3
|
=
—
U
—~
8
o

Tp-1))

K(xg.. . Zp-1,d2)1gn-1(xg ... 2n_1)1g, (2)
Sn

— Mn—l(An—l) 1

Also, observe that y is additive on J,, Ay, (which implies monotonicity). This
is easy and follows from the additivity of fi,.

We now have to show that p is o-additive; given A,, € |J,, A, with A4,, \, 0,
we need lim,, u(A,) = 0. WOLOG we can take A, € A,. To see why this is
okay, let

Ay, Ay, €| JAn = VB A € A,

Set ny =mq,ny =maV(ny+1),...,np =mgV (ng_1+1),... and so on. Then
ny < mng <ng < --- and A € A, since the collection A, is increasing in n.
Now, define B,,, = A, for £ > 1 and fill the “gaps” in the sequence as follows:

Bl7"'7BTL1—1 =0
Bn17~-~aBn2—l :Al

Bnk,a .. '7B’I’Lk+171 = Ay
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Then By € Ai and By \, 0 and lim u(Ax) = limu(By). Now, using this

assumption, we can write
An = A" x Sn,1 X SnJrQ Xoeee and An+1 = An+1 X Sn+2 X oo

and so A" C A" x S,,. Now, assume by way of contradiction that inf,, u(A,) >
0. Then

p(An) = p (A" x Sgn+1x ) = p™(A")

:/ Mo(dﬂ?o)~ Kl(.ro,dl‘1)'
S 1

0 S
. / Kno(zg...xp_1,dzy)lan(zg. .. 2y)
Sn
= Z'ntso/lo(dl'o)fo’n(l'o)

and notice that fy,(xo) \, in n: by assumption,

inf u(A,) = igf / po(dxo) fo.n(xo) >0
n>1 SO

n>1 >

and by monotone integration,

3% such that inf fo ., (Zo) >0

Thus,
fo’n(l'()) = Kl(.’bo,dxl)"'/ Kn(.’bo...$n,1,d$n)1Awl(x()...xn)
Sl Sn
< Ki(xg,dxy)-
S1
= fo.n—1(x0)
since

1An(.’1,‘0...l‘n) < 1An71><5n(x0...$n) = 1An—1($0...$n>

This shows that fo ., (z¢) \, in n. Similarly, Vk > and Vzg ...z, with n > k we
have

fon(zo.. xp) = Kiv1(xo ...z, drgyq)-
Skt1

. / K, (xo.. . Tp_1,dx,)lan
Sn
< fema(oo.. )

since 14n < 1yn-14g, . This shows fem(zo...xk) \ in n, as well.
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Now, it follows from inf,, f,, 0(Zo) > 0 that 3%; € S7 such that

1nf/ Kz(foi‘l,dxg)' Kg(foi‘1$2,dl’3)'
Sa

n22 S'g

s / Kn(i‘oi‘laﬁg e Tp—1, dl‘n)lAn (jjofl .. l‘n) >0
Sn

That is, inf,, f1 »(Zo,Z1) > 0. Iterating this process shows us that Vk 3z, € Sy,
such that

inf Kk-i—l(jo o T, dmk+1) i / Kn(i‘o TR TR41 - Tp—1, dl‘n)
n>k+1 Sks1 S
-1an (fo SRR %117 YT ,’L‘n) = n;rliﬁ-l fk,n(-fo R ,’f}c) >0

In particular, for u =k + 1,
/ (Eo...ik,d:vkﬂ) 1 pwt1 (io...ik,ka) >0
Kria

since 1.(-) # 0 and since

Ak+1§Akak+1 = (fo,fl,...)EHAk%m
k
This completes the proof. O

2 Laws of Large Numbers

First applications to a classical limit theorem of probability.

Theorem 2.1 (Weak Law of Large Numbers). Let X1, Xs,... be a sequence of
uncorrelated i.i.d. RVs with finite variance o® and mean p. Set

_ 1 1 —
X, =-S5, ==Y 8§

Then

1. X,y — pin L2, ice. E[|X,, — pu|*] — 0, where we think of u as a constant
RV.

2. X,, — p in probability, i.e.

lim P[|X, —p/>e]=0 Ve>0

n—oo
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Proof. To prove (1), observe that

o1
E[X,) =~ E[Xi]=p
k=1
and so
1 n
[1 X5 = pf*] = Var [X,] = — Var ;XK]
0.2

1 n o
D LTS A —
To prove (2), we apply (1) to say that X,, — u in £2 and the appeal to

Lemma [2.2] E below to conclude that X,, — p in probability, as well. O

Lemma 2.2. LP convergence = convergence in probability; i.e. if X — X in
LP for p >0, then for every € > 0, lim,, P[| X, — X| >¢] =0.

Proof. WOLOG X = 0 (just set X/, = X,, — X, say). Then L? convergence says
E[| X, — X|P] —) as n — c0. Let ¢ > 0. Then we apply the Chebyshev-Markov
Inequality with A ={X :|X| > ¢} and ¢ = |X|P and c4 = £P to write

P Xn| > ] <ePE[|Xu|f] ——0

O
Lemma 2.3. Let X > 0bea RV on (, F,P). Let F : [0,00) — R be absolutely

continuous, i.e. F(x fo t)dt for some L' > f > 0 measurable. Then

X)] = /OOO PIX > ff(t)dt = /OOO PIX > {f(t) dt

Proof. Homework exercise (***) O

Lemma 2.4. Let X >0 a.s. Then

Proof. Define ¢(t) and ¥(t) to be the upper and lower step functions, respec-
tively; that is,

pt)=nforte(n—1,n] andy(t)=n—1forte (n—1,n]
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so that (t) <t < p(t) for any t. We now work with the LHS and write

LHS = /(k_m] P[X > o(t)]

k>1

< /(O’OO] PIX > f] dt = B[X]

:/ P[X>t]dt§/ PIX > (1)) dt
(0,0]

(O,M)

=> /(k - PIX > ()] dt = > P[X > k]

k>0 k>0

Remark 2.5. If X > 0 and X € N then LHS=RHS= E[X].

Theorem 2.6 (Strong Law of Large Numbers, Etemardi). Assume X1, Xa,. ..
are pair-wise independent, identically distributed RVs with E[X;] =: p < oo for
alli. Let S, := Y p_, Xi. Then 2= — p, P-a.s.

Proof. We follow 5 steps.
1. WOLOG X; > 0. Write X; = X;r — X, . Then the (Xj)Z are pair-wise

independent (***), identically distributed with F[X;"] < co and X~ > 0.
The same holds for the X, , as well. Moreover,

IS - _
E;Xf S B[XF] = ;(Xj — X)) — E[X] as.

S|

2. Truncation. Let Yy := Xj, - 1x, <k > 0. Then the (Y;); are still inde-
pendent (¥***). Let T,, = > _, Yi. It will be easy to show that % —
a.s., since

> P[Xy >k =) P[X; >k < E[X] < oo

k>1 k>1
by Lemma [2:4] and so
S P > K] :/ PIX: > o(t)] dt g/ PIX) > f]dt = p < o
E>1 0 0

where ¢ is the upper step function we used in the proof of Lemma
Applying Borel-Cantelli we can conclude that for a.e. w, Xp(w) =
Yi(w) for all k > ko(w). But then,

n ko(w)

1
lim =S X (w) = lim { — Xi(w) - Y
nggonk; pw) = lim 7 (Xp(w) - Ye(w)

n—o00
k=1

+3L2Yk(w)}
k=1
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and since the first term is a finite sum, we can conclude that
1< 1<
Jm 5 D Xue) = Jim O3 Vi)

for a.e. w.

. Variance estimates. This part is quite technical. We claim

o0

Var Yk
> % <4E[X)] < 00
k=1

where, really, any constant will do instead of 4. We apply Lemma to
write

o] k
VarlVs] < E[2] = / 2PV > f] dt < / 2UP[Xy > 1] dt
0 0

and thus

since
1 B 1 <
2t (Y 5 Lo (k) | = 2tzﬁ ~2t- <4
k>1 k>t
or some other constant, it doesn’t really matter ...
kn

. Convergence along a subsequence. We claim
n
0o. By Chebyshev-Markov for an arbitrary subsequence,

— pas. asn —

Sp [k Ty, — E[Ty,]| > s] <5 Varlli,]
n=1 n n
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To verify the last equality, we choose o > 1 and set k,, := |a™|. Then

observe that
< Z LanJQ — <4 Z a?n

n:lam™|>m n:an">m
1 1
S4((12n0 +a2(n0+1) +>
<4 1 14 1 n 1 n 4 1
- m?2 a2 ot T m2 1-a2

Now, we have for a > 1 fixed and k,, = |a"],

1 4 1 Var Y,
ZP |:kn Tk, — £ [Tk,] 5} < 2 1_a2 Z m2

n>1 m>1

16
8—2-1_@72,u<oo

IN

Then, by Borel-Cantelli the set

1
A = {k |T%, — E [Tk, ]| > € only finitely many times}

1
{k |y, — E [Tk, ]| < ¢ for all suffic. large n}
satisfies P[A.] = 1. Let A:=[;5; A1/;. Then P[A] =1 and
1
-— |Tk" —F [Tan ——0on A
k"’L n—oo
But E[Y;] / E[X;] = pas k — o0, so by monotone convergence, %T’f] —

. Thus, on A,
Ty, E[Ty, ]
dist 7" 5

since each sequence — p.

. Filling the gap between the subsequence and the full sequence.
For k,, < m < k,, 41, we have

kn, . Tkn _ Tkn Tkn < Ti < TknJrl < Tkn+1 _ Tkn+1 .kn-i-l
knJrl kn knJrl - m T m m - kn knJrl kn
Notice that
knJrl Lan-i-lJ
= (0]

kn, o lam]  n—oo
and so the line above reads, in the limit,
1 T
—u < hmlnf— < limsup —= < o a.s.
m

m—0o0 m—oo

Since o > 1 is arbitrary, lim Tﬁ =pas. (let =1+ L, for instance).
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O

Theorem 2.7 (Strong LLN for semintegrable functions). Let (X;); be i.i.d.
with E[X{] = 400 and E[X; ] < co. Then

Sn
— —— E[X4] = 400 a.s.
n n—oo

Proof. Truncation: Let M € N large be fixed, and let

XMi=MAX; and SY =) xM
k=1

Then (XM); arei.i.d. with finite mean . As M — oo, u™ ' 0o by monotone
integration. Define the sets

SM
Ay = {liminf > ,uM — z}
n—oo n
and note P[Ap] =1, so

A= () Am = P[A]=1

M>1
and on A,
S SM S,
liminf == > liminf =% > ,uM —1VYM = liminf =% >
noon n n n.on
since uM — oo. O

What if the X; are not semi-integrable?
Theorem 2.8. Let (X;); be i.i.d. with E[|X;|] = +occ. Then
e
limsup |—| = 40 a.s.
n—o00 n

In particular,

Sy
P{limsup“ <oo] >0 = X, et
n

n—oo

never mind converging a.s. to some finite RV! Anyway, lim sup |%‘| 15 constant

by Kolmogorov’s 0-1 law[1.20.

This (in some way) shows that the £! condition is necessary for the Strong
LLN
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Proof. Notice

X S
| X0n| = 1S — Sn_1] <|Su| + |Sn-1] = limsup‘"‘ < QIimsup‘n‘
n n

n—oo n—o0

Xn
n

‘Xn| ‘Xl| |X1|
E p|l—> = E P|—— > >FE|—| =
Z [ ” C Z C n C o]

by Lemma Since the X; are independent, then Borel-Cantelli IT says
that infinitely many of the events {% >C } occur a.s. Thus,

This tells us it suffices to show lim sup ‘ =o0. Fix C > 1. Then

R

limsup — > C a.s.
n

n—oo

Since C is arbitrary, we can take intersections and conclude that

X
lim sup M = +00 a.s.
n

n—oo

2.1 Examples and Applications of LLN

1. Renewals: Let (X;); be i.i.d. with 0 < X; < co and set T}, = >_7_; Xk.
We interpret the X; as waiting times and 7}, as the time of the nth oc-
currence. Set

Ny =sup{n: T, <t} = # of occurrences up to time ¢

Theorem 2.9. If E[X;] = u < oo then % — i a.s.

Proof. By Strong LLN Tn i a.s. By the definition of Ny, Ty, <

n

t < Tn,+1, and dividing by N; gives

Ty, < t TN41 N

N, =N, “N,+1 N,
~~ ——

— — —1

and so & — u. Note that we have used the fact that N, — oo as too a.s.

X .. Ty
and so < — p a.s. implies + — f. O

2. Glivenko-Cantelli Theorem: Let (X;); be i.i.d. with arbitrary distri-
bution F. Consider the empirical distribution functions

Fal@) = Fa(,) = - 32 1o (X))
k=1
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Note that Fj,(z,w) is the observed frequency of values < z.
Claim: for all z, F,,(z) —— F(z) a.s.; i.e. F,,(z) is a “good estimator”
n—oo
of F. To prove this claim, let
Yo(w) = Lix, <a)
so that (Y,,) are i.i.d. and
ElY,) = P[X, <z]=F(z)

and so by the Strong LLN [2.6]

1 n

—Y Y, = Fu(z,w) = EY1] = F(x)

"=
Theorem 2.10.

sup |Fp(z,w) — F(z)] —— 0 a.s.

Proof. Let
F(z7):= li/r“n F(y) = P[X; < ]
y,/ T

By setting Z,,(w) = 1{x, <z}, then F,(2z7) — F(27) as. for all z. Fix
1<keN For1<j<k-—1,let

z ;:inf{y:F(y) = ;}

so then F(z; ) — F(zj-1) < +. Also, for a.e. w, IN = N(k,w) such that
Vn > N and V0O < 5 < k, we have

IFula) = Flay)| < 3 > [Falay) - F(z7)

J

Applying these three inequalities and monotone convergence, we can write

Fol) < Fa(e7) < F(a7) + 1 < Flay )+ < F@)+ 1
and
Fal@) 2 Fyn(a; ) 2 Flag 1) - 7 2 Flay) - = > Fla) - 7

which implies that for a.e. w and Vn > N(w, k), we have

sup [ Fp(z,w) = F(z)] <

>N

which proves the claim since k is arbitrary. O

41



3. Monte-Carlo Integration: How can we compute (i.e. approximate) an
integral of the form

[;:/--./ 0 (x1,Z9,...,2y) dx1dze ... dTy
[0,1]"

for a potentially irregular, complicated ¢? The main idea (due to Fermi)
is to use the Transformation Formula and the Strong LLN

Assume (X;);=1.. ., are i.i.d. with X; uniform in [0,1]. Thus, X has the
distribution A,, and so

B[o(X)) = /[ e ) =1

by the Transformation Formula. Accordingly, the integral in question boils
down to finding F [@(f(w))} By the Strong LLN,

%is@ (Xk(w)> —— F [QO(X)} a.s.
k=1

so, we can generate i.i.d. random vectors (with uniform distribution on
[0,1]) X1,...,X),... and use sums of the form LN e (Xk(w)) to
approximate the integral in question.

3 Weak Convergence of Probability Measures

Let (£2, p) be a metric space and F = o(7) where 7 is open sets.

Definition 3.1. Let (fn)n>1, 1t be probability (or finite) measures on (£, F).
Then pi, — u (read: “the , converge weakly to u”) if and only if for all ¢ € C,

(bounded continuous RVs)
/ odpr, —— / pdp
n—oo

1 €Co(Q) = pn — = pn(2) = pu(2) € R = sup p,(Q) = M < oo.

Note that

Definition 3.2. If X,,, X : Q@ — R on some probability space (2, F,P), then
X, % X if and only if px, — ux

Ezample 3.3. Why is this not stronger? i.e. u,(A) — p(A) for example? Let
X ~ F andlet X, := X + % Then X,, \, X a.s., so that X,, — X. BUT,

R =rfreted < r(o1).

n
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Hence lim,, F,(z) = F(z™), so that F,,(x) — F(z) <= =z is a continuity point
of F. Hence, we shouldn’t expect that u,(A) — p(A) VA e F.

Note that if 4 ~ F and Cp = {z | F' is cts. at x}, then Cp is dense (C§, is
countable). Hence, p(F) is uniquely determined by its values at Cp (since it is
right continuous).

Ezample 3.4. Let (X;) be .i.d N'(0,1). Let S, = >°i" | X;. Then S,, ~ N(0,n).

Let ) )
Hn = =Sy ~ N (07 )
n n

Then “obviously” u, —— &g =: p in some sense. BUT,
n—oo

0= pn ({0}) # p({0}) = 1.

Theorem 3.5 (Portmanteau). Let (fn)n, b € Mpnite be such that lim p, () =
w(Q). Then TFAE:

fin =

Vi € Cp () (bounded Lipschitz cts), [ pdp, — [pdu
VG open, liminf, p,(G) > u(G)

VD closed: limsup,, (D) < pu(D)

VA € F such that u(0A) = 0, lim,, p,(A) = u(A)

S G e v~

Vo € Fy such that p(Dy,) = 0, lim,, [ pdp, = [ pdp where Dy, is any set
containing all of the discontinuities of .

Proof. e (1= 2) Trivial.
e (2 = 3) Define dist(y, D) := inf{p(z,y) : « € D}. Then for r > 0, let
fu(r) == (1= kr)*
and
er(z) = fr (dist(z, D))

for some closed set D. Observe that ¢y is clearly Lipschitz with ¢, > 1p
and, in fact, pr \, 1p as k — oco. Thus,

lim sup p,,(0) < lim inf lim sup/<p;C dy, = /Lpdu = u(D)

n— 00 k—oo pooo

=[rdu
e (3=4) Let G = D° open. Then
=n(2)
—_——~
lim inf p,, (G) = iminf (p, () — pp (D)) = lim p, () — limsup p, (D)

> () — p(D) = p(D°) = pu(G)
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e (4 = 3) Analogous to (3 = 4).

e (3=5) or (4 = 5) Observe that

H(A) = p(A°) < liminf i, (A°) < lim inf g, (A)

< limsup pn(A) < limsup py(4) < p(A) = p(A)

n—oo
and so everything in the line above is equal.

e (5 = 6) We apply MTI, but with a careful approximation. First, note
that the distribution of ¢ € F;, (bounded measurable functions) on R can
have (at most) countably many atoms, i.e. the set

A={aeR: ulp =a) >0}

is (at most) countable. This means A¢ is dense and, therefore, ¥n > 1 we
can find points

1
a1 < ag < -+ < ay such that |a; — apq]| < z

and oy < —k < k < ay where k = sup |p| < co. Set

¢ £
Pr = Z ail{ai,1<tp§ai} = Z ailAi
i=1 i=1

Notice that
0A; C{y €{ai—1,0;}} U D,

where D, is any set € F containing all the discontinuity points of ¢. By
the assumptions on D, and the choice of o;, we have

HOA) = 0% = lim pa(A;) = p(Ay)

n—oo

Finally, since ¢ \, ¢ we can apply dominated convergence, and so

‘/@dun—/wdu’S‘/@dun—/wdun +‘/<Pkdﬂn_/90kdﬂ‘
+‘/tpkdu—/<pdu’

Sl:LpUn(Q) + (= 0by (5) )+ %M

<

Ea

)

Specifically, given any € > 0, choose k such that % < 5 and, given k,
choose N big enough such that the middle term is < 5. Then, Ve > 0,3n
st Vn >N, | [ pdu, — [pdu| <e.

O
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Special case: 2 =R or = R Let p,, u € M (R) such that F,(z) — F(z)

as n — oQ.

Theorem 3.6. For all x, if F' is continuous at x then 3(X,)n, X RVs on
((0,1),B,\) such that X,, — X a.s. and X, ~ pin, X ~ .

Remark 3.7. This is a special case of the following: Let (€2, p) be a separable,
complete metric space and let (t,)n, g € MM (R). If g, — p then I(X,), X on
some probability space with X, ~ pu,, such that X,, — X a.s.

Proof. If F is a distribution function (i.e. increasing, right-continous, F'(—o0) =
0 and F'(c0) = 1), then Vz € (0,1) we set

az ==sup{y: F(y) <z} =: F ()

/{y:F(y)>$}

to be the left-continuous inverse and right-continuous inverse, respectively. No-
tice that Va, a, < b, with strict inequality <= F is locally constant in (a,, b;).
Also, z < 2’ = b, < a,r, and 3 (at most) countably many points x such that
az < by.

Given (F,),F we set Y, (z) := F,1(z) and Y(z) = F~}(z) on Q = (0,1)
with B and dx. We claim: Y,, ~ dF,, and Y ~ dF'. To see why, we check

Y<ap={y:Y(y) <z} ={y:ay<a}={y:y < F(a)}

and so A(Y < z) = A ((0, F(z)]) = F(x).

Assume now that Fj,(y) — F(y) whenever F is continuous at y. We will
show that if z is such that a, = b, then F,!(x) — F~!(z) which proves the
theorem (since there are at most countable many such points). We make the
following two claims

by :

liminf £, ' (z) > F~1(x)

n—oo

limsup F, *(z) < F~*(x)

n—oo

To prove the first inequality, let y < F~!(z) and assume F is continuous at y.
Notice F'(y) < x necessarily and so Vn large enough, F,,(y) < z, which implies

sup{z: F,(2) <} =F, (z) >y
Then,since the continuity points of F' are dense we have

liminf £, '(z) > sup{y 1y < F~'(z),F cts at y} = F~'(2)

n—oo

Proving the other claim is similar (see Durrett p. 84). O

Theorem 3.8. On R (or R?),

o —5 = Fy(z) —— F(z) Va:Fisctsatz

n—oo

45



Proof. (=) If F is continuous at x, then

f1(9(=00,2]) = p({x}) =0
= lim Fy(z) = lim g, ((-00,2]) = p((—00,2]) = F(z)

The same argument works in R?: if F' is continuous at #, then
(0 ((—00, 1] x -+ X (=00, z4])) = 0

and so on.

(<) If F,,(x) — F(x) whenever F is continuous at 2 then we can apply (2)
from Theorem [3.5] to say 3X,, ~ dF,, = u, such that X,, - X ~ dF = p a.s.
For ¢ € C,(R), we have, by dominated convergence,

/cpdun = Ep(Xn)] —— Ep(X)] :/sodu

n—oo
Note: a direct proof for R? is given in Durrett p. 165. O

Remark 3.9. If X,, = X and g € C; then liminf F[g(X,,)] > E[g(X)], etc.
(Y, —» Y as. with Y,, ~ X,, and Y ~ X, apply Fatou)

This is related to other notions of convergence, as the next theorem demon-
strates.

Theorem 3.10. X,, — X in probability = X, — X.
Notice that X,, — X a.s. = X,, — X immediately, by the definition.
Proof. Define the sets
Acp ={|Xn - X[ <e} = lim P [AS,] =0Ve
WWTS F,(z) — F(x) if  is a continuity point of F. First, we see that
Fp(z)=P[X, <z] < P{X, <z} NA.,]+P[AS,]
<P[AS,] +P[X <z +¢]
and so

Ve : limsup F,(z) <0+ F(z +¢) = limsup F,(z) < F(z%) = F(z)

n—oo n—0o0

Similarly,

Fo(z)=P[X, <a]>P{X,<z}NA.,]>P[X <xz—e]—P|[AL,]

e,n

and so

Ve :liminf Fy,(z) > F(x —¢e) = liminf F,(z) > F(x™) = F(x)

n—oo n—oo

Combining these, we have liminf F,,(x) > F(z) > limsup F,(z) so it must be
that lim F, (z) = F(x). O
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Theorem 3.11. In R¢,

fin — [ = /wdunﬁ/wduvweCc(R)

where C.(R) denotes functions that are continuous with compact support.
Proof. (=) Exercise (***).
(<) Let G be open and set G = G'N (—k, k)% which is open and bounded. Set
or(z) = 1 A kdist(z, GS) € C(RY)
———
€C(RY)

Note (k) =0 on G and > 0 on Gy, and ¢y /" 1g as k — 00, s0 @), € C.(R?).
Let £ 3 ¢ > ¢ > 0 with ¢, € C, and ¢, — ¢ as k — oco. Then

liminf/(pdun > limsupliminf/(pk dpy, = /cpdu
[ —

n—00 koo N
=/ i du Vk

by assumption and by dominated convergence. So for G open set ¢ = 15 and
define ¢ as before. Then

lim inf 11, (G) = p(G)

n—oo

and by the Portmanteau Theorem this shows i, — f. O

3.1 Fourier Transforms of Probability Measures

Let u € M(R). For instance, X ~ u for some RV on (Q, F, P). For t € R,
define

(t) s = [ explita) n(do) = E fexp(itX (w)

; (1)

= / cos(tx) u(dx) +i/ sin(tz) p(dx)
R

R

This is called the Fourier Transform of p (or of X).

Lemma 3.12. For pn € M;(R), the function ju(t) exists; in fact, |4(t)] < p(R).
Furthermore,

1. i is uniformly continuous

2. sup|f(t)| = u(0) = p(R) and fi(—t) = (D).
3. [i is a positive-definite function, i.e.

Zﬂ(ti - tj)zﬁj >0 VEE R™, Z7eC"
]
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Proof. To show existence of [i, notice that
|E [exp(itX)]| < E[lexp(itX)|] < 1
for finite measures. For uniform continuity, we use the identity
lexp(ia) — exp(ib)| = [1 — exp(i(b — )| [exp(ia)] < || A2
which implies

sup |a(t) — (s)] < sup FElexp(itX) —exp(isX)] < E[6X A2] — 0
[s—t[<8 |s—t| <8 5§—0

Proving the sup and complex conjugate conditions are trivial and left as exercises
(***). To prove positive-definiteness, we use the fact that |z|> = 2z and observe
that

- : 2 . . _
E ‘Zexp(zth) 27| = Z E[exp(it; X) - zj exp(—itp X) - Zi]
Jj=1 Jik

= Z Elexp(i(t; — ty) X 2, 2]
g,k

= Zﬂ(tz — tj)ziék Z 0

jok
since E[-2] > 0. O
Definition 3.13. For f € £L1(dz) we define

flt)= /exp(itx)f(x) dx = p(t)
where dv = f dx is a finite signed measure.
Notice that |f(t)] < [ exp(itz)||f|dz = || f]l1 < oc.
Definition 3.14. Let f,g € L'. Then
frg(o)i= [ £~ v)a)dy
R

18 called the convolution of f and g, whenever the integral exists and is finite
V.

Remark 3.15. Notice fxg = g* f since

/f(w—y)g(y) dy = /fz(y)g(y) dy = /fz(—y)g(—y) dy
——
=fz(y)

- / Fole — v)g(a — ) dy = / f@)alz — ) dy

where shifting by = in the second line does not alter the integral.
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In the future, we will use the Gaussian function

(@) 1 o x?
=——exp|—=
Pell o p 222
which is ~ N(0,&2).

Theorem 3.16 (Fejer). Let f € C.(R) and ¢ as in (5). Then
lim sup [(f * @< )(x) — f(x)] =0
e—02¢cR

Proof. Let Z ~ N(0,1) so eZ ~ N(0,£2) and then

Bl —<2) = [ fo-ve)dy=fp.(a)
R
Note that |f| < M < oo and for a.e. w,

fle—eZ(w)) — f(2)

e—0

Moreover, since f is uniformly continuous, in particular,

<2M
—
sup|f(x —eZ(w) — f(z)| = W(w,€) - 0 for a.e.w
T e—
and therefore
E[f(z—eZ]  E[f(z—02)] <We(w) Vz

— ~ =
sgp\f*aps(x)— fl@) |< sng“f(:cst(w) — f(=) |] <E[W:(w)]—0

by dominated convergence.

Theorem 3.17 (Planchard). 1. Let f € £(dx) and ¢ > 0. Then

22\ .

[ ea@mtan) = 5 [ e (-5 ) iawa

2. Let f € C.(R) and f € £LY(dx). Then

[ rau=5- [ fona
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Proof. 1. Notice that

e / o (- 2’“‘2) F i) e
-/ exp( Qtz) ([ explita)(a)di ) - (expt—itn) )

= o (f(w>/eXp(it(:v—y))eXp (—82;2> dt dz) p(dy)

€T —1 2
vir exp( 7('255) ):2mp5(y71)

- / (f * 02) (@) i dy)
R

2. For all € > 0, we have

[ sewntae) = o [ (<5 d0t) a

Since f.(z) — f(z) uniformly, the LHS — [ f(z) pu(dz) as e — 0. Like-
wise, on the RHS, the exp()iterm — 1, so by dommated convergence, the
whole RHS — L [ 1 f(t)A(t) dt
O
Theorem 3.18 (Uniqueness). If p,v € MMy (R) such that it = 0 (A-a.e.) then
L=v.

Proof. Let f € C.(R) and set f. = f % p.. Apply Planchard’s Theorem

part (1) to write
/ffd/'l‘:/fgdy Ve >0

Since f. — f uniformly as e — 0, then letting ¢ — 0 shows [ fdu = [ fdv.
Since this holds for arbitrary such f, it must be that u = v. Specifically, for any
—00 < a < b < 00, notice that f. \, 1j,4 and so [ fo dp \ pfa,b] and similarly
for va,b], as well. O

Theorem 3.19 (Pleny & Glivenko). Let p, (pin)n € M1 (R). Suppose fi,(t) —
fi(t) for X-a.e. t. Then p, — .

Remark 3.20. Notice that the converse is trivial since exp(itz) € Cp(R), so we
can apply the Transformation Formula and say Elp(X,)] = [¢du, —
[du = E[p(X)]. Also, the same theorem holds on R? (see Theorem 9.4 in
Durrett).

Proof. Let f € C.(R). WWTS [ fdu, — [ fdu. Set

3(e) = [Ife = flloo = IlF % 0 = fll
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so that §(¢) — 0 as e — —0. We first apply the triangle inequality (thrice) and
then Planchard’s Theorem part (1) to write, Ve > 0,

]/fdmf—/fdﬂ

é(e) Vn <é(e)

/m fam+ [T ﬂw+Vﬁmm /ﬁ@‘
[ el () dn (@O

<l fll1 <400 —0 a.e. as n—o0

a finite measure on R Ve>0

This means we can apply Dominated Convergence to say

limsup’/fdun /fdu‘ < 25(5)+0*—0%0
n— oo £
Remark 3.21. Let pi,, p € My (RY). Then

Un — p <= [,(t) = 4(t) vteR

Corollary 3.22 (Cramer-Wold Device). Let (X

n)n>
R, If (T - X)) % (& _') for every t € R?, the n)z

be RVs with values in

Nl Xl

Proof. Since exp(iz) € Cp(R), we know

E |exp(i(f- Xn ))} — F [exp( (t- X))}

n—oo

for every ¢ € R%. But notice that this is just the pointwise convergence of the
Fourier Transforms of X,, — X! O

4 Central Limit Theorems and Poisson Distri-
butions

Theorem 4.1 (CLT in R). Suppose (X,)n are i.i.d. with finite second mo-
ments. Let p = E[X1] and 0 = Var[X1]. Then

Sn— Nl w
ov/n

Proof. WOLOG =0 and o =1, so WWTS 57% — N(0,1). That is, WWTS

lim E |e it Sn e t vt
X — = €ex -
n—oo p \/ﬁ p 2

o1

— N(0,1)



We look at the Taylor expansion for z € R to write

2
1
explic) = 1 +iz — 5+ R@) . |R@)| < ¢lo?] < [of’

for x € R where R(z) is the remainder term. For large x, we will use the
estimate
; a? |z 2
[R@)| < |explia)| +1+ o] + 5 <2+ |al + - <2

for z > 4, and so
|R(z)| < |z Ad|z]? Vo eR

since |z|® < 4|z|? for |z| < 4. Now, we write
()] 1o ()
_ . Xl t2 2 tXl "
- (e [] e e (2( )

(b e ()

and observe that

33X}
lenl < nE =E { - A4t2X%}

() (R ][5

t
=’E [X?’ ANXZ| ——0
\/ﬁ 1 1 n— oo

where convergence in the last line follows by dominated convergence, since |- | <
4X? € L' (note: this shows why only finite second moment needed!) Thus,

2 n 2
ol (o55)] - - ) ()

which is implied by the following claim:

lim (1 — C—">n =exp(—c¢) ifCs¢,—c
n

n—oo

To prove this, we use the complex logarithmic function and write
. Cn Cn 1
RHS = lim exp(n-log(l——))z—f—ko —
n— oo n n n
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using the Taylor power series for log. Then

RHS :nlln;oexp( <—+ (;)))
= lim_exp(—c exp( ( )) = exp(—¢)

For completeness, we also present an alternative (direct) proof that

lim (1 — Z—n)n =¢e°

Zn—/Z n

Set a, = (14 22) and b, = exp(z,/n), and choose |y| > |z|. For large n,
|2n| <7, so % < 1, which implies

0=
n

where the first inequality follows from Lemma AB on page 3 in Unit 11 *¥¥#kx
reference ****** Therefore,
“J-5)
n

-2~

Theorem 4.2 (Lindeberg-Feller). For any n, let X,1,Xn2,..., Xnk, be RVs
on the probability space (Qy,, Fn, Py). Assume that

2 2

zZ
e
n n mn—oo

< (exp(za/m))" " n-

+le*" —e*| = 0

1. For eachn, (Xp k)k=1,. k, ore independent and have 0 mean, with respect
to P,

2. S Var(X,) — 02 € (0,00) as n — o0

3. For every e > 0,
lim 3" By [X2 51X, > €] =0
k=

Then i
Sp =Y Xni > N(0,07)
k=1

i.e. fin := P, oS, N(0,02).

Proof. See Durrett. It is not much more complicated than the proof of the
classical CLT E.11 ]
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Observe that Lindeberg-Feller [1.2] includes the classical CLT Set kn, =n
and X, = % where X are i.i.d. with F[X;] = 0 and F[X?] = 0. Then
assumption (1) is satisfied for all n by definition, assumption (2) holds because
n n 1 2

2 1_ 90N _ 2
S i =3 () Bt=o

k=1 1

and assumption (3) holds because

- 1
2 2
E [Xn,k ) 1{\Xn,kl>eﬂ = ZE l:nXk ) 1{|Xk>a\/ﬁ}:|
k=1

2
_y [Xl : 1{X12>62n}] — 0
n—oo
by dominated convergence, since X% - 1ix25e2) — 0 @as n — o0 as. dy domi-
nated convergence, since X{ € L.

Ezample 4.3 (Cycles in a random permutation). Let €, = {w : {1,...,n} —

{1,...,n} bijective} be the space of permutations of {1,...,n}, where k — wy.

We write II = (w) = (IL1(w),...,I,(w)) = (w1,...,wn). Let P, be the

uniform measure on Q,, i.e. P,[Il =0] = % for any fixed permutation o.
Notation: as an example, consider the permutation

(1a273547576a778) = (2a578747177a3a6) = (017027"'a08) =0

We write o = (125)(3867)(4) = C1C2C3 = c1ca ... cs in its cycle decomposition
form, where the first term is the cycle containing 1, the second term is the cycle
containing the lowest number not in the first cycle, etc. Question: What is
the “typical” number of cycles in the decomposition of a random permutation?

An algorithmic way to “generate” uniformly distributed random permu-
tations is as follows: we generate the cycle decomposition directly beginning
with the cycle containing 1, i.e. C; = (1,¢2,7). Let Up(w) be uniformly dis-
tributed on {1,...,n}. If U; = 1 then C; = (1) (a fixed point) and set cy = 2
and continue. If U; # 1 then ¢o = Uj(w) and continue. Assuming we al-
ready have the first k entries in the form (ciep...)(+-+) ... (¢m ... ck), what is
the next one? Let Ug(w) be independent of Uy,...,Ux_1 and uniformly dis-
tributed on {1,n} \ {¢1,...,Cm—1,Cm+1,---,Ck}, S0 the total number of choices
isn—k+ 1. If Uy = ¢, then close the current cycle and begin the next with
ckr1 = min{{l...n}\ {c1...cx}}. I Uy # cm set cgp1 = Ug(w) and proceed.
Note:

. 1
P[Uk = Cm | given U17...,U]€_1] = m
is the probability that cj is the end of the cycle. We introduce the variables
Xni, for k = 1,...,n, that take the value 1 if ¢, is the last element of a
cycle, and 0 otherwise. For instance, with the length-8 permutation above,
Xs3 = Xg7 = Xgg =1and all others are 0. Note: P[X,, , =1] = n%,m More
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precisely, given the sequence ¢ ...cx_1¢; and the cycles (i.e. the appropriate
brackets), we have

1

P[Xn,k: =1 | Xn,l =T1y--- 7Xn,k—1 = l"k—l] = m

for each x1...2,_1 € {0,1}. That is, the (X, ) are independent!
Now, the # of cycles N can be determined by setting

n
Z Xk =t Sn
k=1

and finding

1

Bl =2 01—

1
= logn + O(1)
k=1 1

and

Define

Then E[Y,, ;] =0 and

1 /1 1 1
= - )=—q 1 1
Var|S,,] logn ; (k kz) logn (logn +0O(1)) —

To prove assumption (3) from Lindeberg-Feller 1.2 holds, observe that

n

S B Yokl > €]

k=1
n 2
1 1
El| Xop———F—— | 3
lognkzz1 [< - n—k—|—1)

Xk ¥| > sx/logn]

Cn—k4+1

<1

=0 if logn>e—2

— 0
n— 00

since eventually n > exp(¢~2). Therefore, by Lindeberg-Feller

1 "1\ w
Viogn (Sn B ; k:) — N(0.1)
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We split this as a sum, to say

Sp—logn logn—>7_1/k w
= N(0,1
Vlogn Vviogn —N(0.1)

—0

4.1 Poisson Convergence

The “Law of small numbers” could be more aptly titled as the “law of rare
events”.

Theorem 4.4. Let A be an array of 0-1 RVs, i.e. A= (Xpm) forn>1 and
1<m<ky. Let P[Xpm =1 = pnm and set S;, = X1+ -+ X, i, . Suppose

1. Xp1,... X0k, are independent Vn

2. i
E[S,] = an,k —— A €[0,00)
et n—oo
and

max — 0
1<k<k, Prk n—o0

Then S, =+ Poi(\).

Example 4.5. Roll two dice n = 36 times. Let X, , = 1 if we get two 6s at
time k and 0O otherwise. Then S, is the count of the number of double 6s, and
E[S,] = 36 - gz = 1. This is a rare event with A = 1 so S, ~ Poi(1). For
particular values of k, we can calculate

k: 0 1 2 3
exact : 0.3678 .3678 .1834 .0613
Poi(1) : 0.3627 .3730 .1865 .0604

so we see that the approximation is good even though n = 36 is rather small.

Proof. Let
onm(t) = Elexp (itXn,m)] = (1 = pnm) + Pn,m exp(it)

Then

E lexp(itSy)] = E

eXp (lt Z Xn,m>‘| = H E [eXp(ltXnvm)]

m=1 m=1

(1 4 pp,m(exp(it) — 1))

n

m
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WWTS, Vt € R,
E [exp(itS,)] —— exp (A(exp(it) — 1)))

n—oo

Note:

lexp (AMexp(it) — 1)) — E [exp(itSy)]|

kn
exp (Alexp(it) — 1)) — exp (Z Prm(exp(it) — 1)) ‘

m=1

<

kn
+ |exp (Z Pn.m (exp(it) — 1)) — Elexp(itSy)]| =: [1 + L1
m=1
Notice Iy —— 0 since Y pp,m — A. Write
kn kn
I, = H exp (pn,m (exp(it) — 1)) — H (1 + pp,m(exp(it) — 1))‘ =: |am — b
m=1 m=1
and note

|am| = exp (Pn.m — R(exp(it) — 1)) <exp(l-0) =1

since |exp(z)| = exp(R(z)) and R(exp(it) — 1) < 0. Also, |[b,| < 1 since
1+ pp(exp(it) — 1) satisfies ***** picture **#+*
Applying Lemma [£.6] below tells us

k

I <> [exp (pm(exp(it) — 1) — (14 ppm(exp(it) — 1)))]
m=1
k"l
< 35 B2 lexplit) — 11
m=1

where the second inequality follows from Lemma4.7|with z = p,, ,, (exp(it) — 1),
and the fact that |z| < 1 when max,, p, m < % Continuing, we have

k

n
IZ S 4. max Pn,m § Pnom ——— 0
1<m<k, n— oo

N s m=1
—0 A

and this completes the proof. O
The following two lemmas are used in the proof above.
Lemma 4.6. Let ay,...,an,b1,...,b, € C such that |a;|,|b;| < 0. Then

n
<"t as — byl
=1

n

e~ 1T

i=1 =1
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Proof. We use induction. The n = 1 case is trivial. Now, assume this holds for
k =n — 1. Then,

n

Hai*ﬁbi <
i=1

i=1

n—1
an H a; — an Hz =1""1p,
i=1

n—1 n—1
+ |an [ b —bn I s
i=1 i=1

S ‘an‘

n—1 n—1
[e- 00+
i=1 i=1

i| - lan
i=1
n—1
= (9”_1 ((Z |ai — bz> + ‘an - bn|>
i=1

where the last line follows by the inductive assumption. O

Lemma 4.7. Ifbe C and |b| <1, then
lexp(b) — (1+b)[ < [bf?

Proof. For |b| < 1, we can write

b2 3

—(Hb) =g gt
|b|2(1+1+1+ )

2 3 4

3
bl 1,1 2
< 1+ -4+ 4+...) =
-2 +2+4+ o

IN

O

Theorem 4.8. Let (X, 1) for 1 < k < K, and N > 1 be N-valued with
P[Xn)k] = pmk (md P[Xn)k Z 2} = En,k- ]f

1. Xna,-..,Xn K, are independent Vn

Ky
2. an,k —— X € [0,00) and maxy p, x —— 0
=1 n—oo n—oo

3. Zsmk — 0 i.e. the expected number of values > 2 — 0

then

98



Proof. Let
XT/%’C =1ix, =1y = Xn - Lix, <1}
and
S;L = Xyll,l + .- +X;L,Kn

By the previous Theorem (P, x = Pn,k) We have S}, “ Poi(\). Assumption
(3) then implies that

K, Kn
k k=1

=1
since {X,,  # X;lk} ={X,r > 2}. Note: Y,, := S, — S}, > 0. We now claim

Y,, — 0 in probability. To prove this claim, observe that

P[Y, >¢] = P[S, ># S, = P[S, # S,] —— 0

n—oo

Since S/, % Poi()\) and Y,, < 0, then S, := S/ + Y, = Poi(\) (as proven, in
general, on homework ***). O

Theorem 4.9 (Characterization of the Poisson process). Intepretation: As-
sume that we have random arrival times (occurrences) T(w) in RY (or R) and
let

Ns 1(w) = #[m(w) N (s, 1|

(For instance, this can represent the replacement times of light bulbs, arrival
times at a bank line, arrival times of a-particles at a Geiger-Muller counter,
etc.) Assume

1. The # of points in disjoint intervals is independent
2. The Ny, distribution depends only ont — s
3. P[Ngy—1]=M+o(t) ast \, 0
4. P[Nsy >2]=o0(t) ast \,0
Then Ny — Ny ~ Poi(At).

Proof. Let
Xnk = N(k_l)i,ﬁ fork=1,...,n
Then
t t
n n
and so

/\-Ez)\t—i— n-o(t/n)
n N——

k=1
—0 as n—oo
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Also

é&n,k :go(;> zn-o<:b) = O(Eft//:)) ~tm0

Then by the previous theorem,

Nt = ZXn’k m POI()\t)
k=1

O

Remark 4.10. Such processes do exist. One way to construct such a process
is to look at Ny as a renewal process with (i.i.d.) lifetime distribution exp(\).
That is, let

Noy=Ny:=inf{k: Ty +--- T <t}

with each T; ~ exp()), and let Ny, := N, — N,. In this case,
T(w) = {11 (w), T1 + To(w),... }
is the set of “replacement times” and
Ny(w) :=|1(w)NA| = # of points in A

Theorem 4.11 (Law of Small Numbers). Assume we have a triangular ar-
ray of 0-1 RVs Xy 1,..., Xy k, forn > 1 where, for all n, X, 1,...,Xnn are
independent and such that py m = P[X, m = 1] satisfies

k

Z Pnm —— A € (0,00)
n—oo
m=1
and
max —0
1§m§k"p"’m n— o0
Set
kr
Skn = Z Xn,m
m=1

so that E[Sy] =, Pnm- Then, Sk, — Poi(\) as n — oo.

Before we prove the theorem, recall that if z ~ Poi(A) then z € N and

/\k
Plz=k] = exp(—)\)g =: m(k)
Also,
)\k
a(t) = /Rexp(itx)wk(dx) = Zexp(itk) exp(—)\)ﬁ = exp(A(exp(it) — 1))

k>0
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Proof. Set = Poi(A) for A > 0, so then j(t) = exp(—A) exp(A(exp(it) — 1)).
(This also works for A = 0.) Then,

kn kn,
E [exp(itSy)] = E lexp(it X k] H (14 pp.k(exp(it) — 1))
k=1 k=1
kn
= L e (tog (1 + puslexp(it) — 1))
k=1
kn,
= epopn}k(exp(z’t) -1)+R,
k=1
Thus,
lim F [exp(itSy)] = exp (A(exp(it) — 1)))
and so by Theorem we have S,, = Poi()). O

5 Conditional Expectations

Let X >0 or X € £! on (Q,F, P). The expectation E[X] can be interpreted
as an a priori prognosis for the value of X. Say we have a subfield 7y C F
such that for every A € Fy, we know whether w € A or not. (For example, if
Fo = o(Y), then we know for each ¢ whether w € {Y < ¢} or not, so we know
exactly Y (w)!) How does this partial information modify our a priori prognosis?
If X € Fo then our prognosis is exact = X (w) = X(w). For X,Y, we observe
S = X +Y and attempt X (w) = S(w) — E[Y] heuristically, but this is actually
wrong. Notationally, we write X (w) = E[X|F] for the conditional expectation.
What exactly should X (w) be?

A partial observation is a collection of events (= observable events). When is
an event A “observable”? Iff we can tell whether A occurred or not, i.e. whether
we€ Aorw¢ A (note: we don’t know w, only whether it is € A).

Ezample 5.1. Q = {people attending a film at the theatre} and A = {more
than 20 people} etc. Let O := {A|Ais observable}. Note O is closed under
arbitrary unions and intersections, so it is a o-algebra. This implies that partial
information is associated with a o-algebra.

Ezample 5.2. Information is often obtained by observing a RV Y (or several
RVs) . Then O = o(Y) since knowing the value of Y (w) (but not w) allows
us to decide whether {Y € B} occurred or not for every Borel set B € &.
Moreover,
oY)={{Y eB:Be&}
Prediction after an observation.

Ezxample 5.3. Observe two events A, B, with
O=0(A,B)={A,B,0,Q,ANB,A\ B,B\ A, (AU B)°}
M e —— ——

::Al 2:A2 2:A3 2:A4
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Notice O is atomic with atoms Ay, A, A, A4. Let X bea RV (on R or R). How
should we refine our prediction (expectation) for X considering the observation
07 ie. E[X|O] =7 Note

E[X|0] = E[X]A;] if A; occurred

and this motivates the definition

E[X|O)(w) =) 1a,(w)E[X|A]]

i=1
This specific formula works for atomic o-algebra, but it represents the general
idea (i.e. a weighted average).

In general, we define

E[X|Fol(w) = Z 14, (w)E[X]A;]
Pl 20

where Fo = 0(Z). Note 14, is a RV and E[X]|A;] is a constant, in the sum.

Ezample 5.4. For an atomic o-algebra Fy = 0(Z) (where Z is countable), the
conditional expectations can be explicitly computed (see above)! We know
which atom happens, meaning w € A; for a certain ¢, and this happens with
> 0 probability if P(A;) > 0. Then

P[-N A
P[-|A;] =
4d = 5]
is the conditional measure and
1
EIX|4;] = /Xdp[’VM = mE[XlAJ

so we define
EX|Folw)= > 1a,(w)E[X|A]
P20

Theorem 5.5. Let X >0 or X € L' and let Fy = 0(Z). Then E[X|F,] has
the following properties:

1. E[X|F] is € Fo.
2. VY, > 0 with Yy € Fo,
ElYy - X] = E[Y - E[X|F]]

In particular,
E[X] = E[E[X|F0]]

using Yo = 1q.
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Proof. (1) is trivial (constant on atoms). For (2), first use Yy = 14,, and so
E[La, - BIX|Fo]) = B Z 14,(w) B[X|4)]

= E[X]Aq] - [1Ai] = E[14,X]

For Yy = ), c;la,, this follows from linearity and monotone integration for
general X > 0. If X € £, separate X+ and X . O

Proposition 5.6. Let Xi,..., X, be independent with p = P[X; = 1] =1 —
P[X; = 0] and fit Fo = o(Sy) where S, = > | X;. Then

1
BX1]8,)() = = 5,(v)
Proof. Notice that

E[X1|o(S)](w) = Y 1(s,=k) P[X1 = 1|S, = k]
k=0

and

! - n— —
1 [X = 1|S k] f] ) (k_1)pk 1(1 p)( 1)—(k—1) B i
1= n — - (n) k(l —p)n—k = *n
k y2

E[X1]S,]( Zl{swk}* =— Z (Sp=k} = %

Thus,

O

Ezample 5.7. Random sums. Let X, X5,... be RVs with E[X;] =m € R for
all i. Let T': Q — N be independent from (X7, Xo,...). Let

Sr(w) = X1(w) + - 4+ Xy (w)
be a random sum. Question: does it follow that
E[St] = E[Xi] - E[T]
Yes, and this is known as Wald’s Identity. Idea: E[St| = E[E[St|o(T)]]!
Notice that

ST|T Z l{T k} ST|T k Z l{T:k}(w) ‘k-m=m- T(w)
k>0 k>0

since
E[St1{r—iy] = E[Sklir=p}] = E[Sk]P[T = k] = kE[X\]

Thus,

E[E[Sp|T](w)] = mE

Z Lir—py ()T (W)

k>0

=mE|[T]
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General conditional expectation:

Definition 5.8. Let X € F* or X € L' on (Q,F,P) with Fo C F. Any RV

e Xy € Fyand

o VAy € Foy, E[X14,] = E[Xo14,]
is called a (version of) the conditional expectation of X given Fy.
Theorem 5.9. X exists and is unique up to zero-measure sets.

Proof. Uniqueness. Let X, X, be RVs with the properties above. Set Aj :=
{XQ > X(/J} € Fo. Then

E[14,X0] = E[14,X] = E[14,X{]

so E[(Xo — X{)14,] = 0 and thus P[Ag] = 0. Similarly, P[X, < X{] = 0, so
P[X, =X} =1

Existence. If X € F' already, define Q[Ag] = E[X1,4,]. This defines a (o-
finite) measure on F; which is absolutely continuous with respect to P [z, =: P,.
By the Radon-Nikodym Theorem, 3X, € F such that

QAo = / 14, X0 dPy = E[Xo14,] = E[X14,]

for every Ag € Fo. But then Q[Ag] = E[1a4,X] = E[X01la,], so Xo is the
conditional expectation.

For general X € £, write X = Xt — X~ with X*, X~ € L' N F*. By the
previous part, (X 1), (X ™)p exist and are on £!. Set Xy := (Xt)o — (X )o
and check that the second condition

E[leX] = E[leXﬂ - E[leX_] = E[le(X+)0] - E[le(X_)O]
= E[le((X+)O - (X_)O)] = E[]'AOXO]

is satisfied.
Finally, if X > 0 but ¢ £, then set X,, := X An so that X,, / X. Set

E[X|Fo] = lim E[X,|F]
which exists a.s. since it is  (***). Then, for Ay € Fo,

E[14,X] =1lim / E[14,X] = lim / E[14, E[Xo|%o]]
= E[14,lim / E[X,| %))
—_———

= B[X|Fo]

and so we have the conditional expectation of X. O
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5.1

1.
2.
3.

Properties and computational tools
E[|Fo] is monotone; ie. X >0 = E[X|Fo] > 0.
E[E[X|F]] = E[X] (use 14, = Q)

Let Yy € Fo and Xy = E[X|Fo). Then
X,Yy > 0as. = E[XYy] = E[XoY]

and
XYy € L' = XY, € £ and E[XYy] = E[XY)]

To prove the first claim, write Yy = lim " Yy, where Yy, are simple
functions € Fy. Then,
EXY)|=FE[X(lm /Y,,)] = lim 7 E[XY),]
= lim [X0Y07n] = E[XO lim Yb,n] = E[X()YO]

n—oo

by monotone integration and linearity. To prove the second claim, assume
WOLOG Yy >0 and let X = X+t — X~ with 0 < X, X+ € L. Then,

E[XY)] = E[X"Y,] — E[X™Yo] = E[(XT)oYo] — E[(X™)oYo]
= E[Yo((X")o — (X 7)o)] = E[YoXo]
using the first claim.
Let Yy € Fy and assume X,Yy € F and X € £! and XY, € £'. Then
E[XYo|Fo] = Yo E[X|Fo] as.

To prove this, we have to check that the RHS is a version of the conditional
expectation of XYy|Fy. First, RHSe Fy. Second, we can apply (3) to say
eFo
—~
E[14, - YE[X|F0])] = E[14,Y0 E[X|Fo]] = E[14,Y0X]
There are two special cases of this property.

(a) If Fy = F (total information) and X € F then E[X|Fy] = X -

E[1|F) = X.
(b) If Fy is trivial (i.e. 0-1) or Fp is independent of X then Xy = E[X]
a.s.

If X,Y € F* or X,Y, XYy, YXo € £, then
EIXE[Y| R = E[E(X|Fo)Y] = BIELX| R B[ | 7]
To prove this, set Yy = E[Y|Fy] € Fo and apply (4):
E[XYy] = E[XoYo] = E[XY]

where the second equality is by symmetry.
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6. Projectivity: Let Fo CF; C Fand X € FT or X € L. Then
E[E[X|F1]|Fo] = E[X|Fo]
N—— N——
::Xl Z:XO

To prove this, we show that X is the conditional expectation of X7|Fp.
For Ay € Fy, we apply the second property in the definition of conditional
expectation twice to write

E[14,X1] = E[14,X] = E[14,X0]
which implies X is a conditional expectation of X|Fy.

Further properties of conditional expectation.
Theorem 5.10. Let Y, X € F* or L' on (Q,F, P) with Fo C F. Then

1. Linearity: E[X + Y|Fo] = E[X|Fo] + E[Y|Fo] a.s. and E[cX|Fo] =
cE[X|F).

2. Monotonicity: if X > Y and X or' Y € F+ or L' then E[X|Fy] >
E[Y|Fo].

3. “Monotone continuity” (Beppo-Levi) If L' 5 Y < X; < Xp < -+ a.s.
then
E|lim / X,|Fo| = lim E[X,|F] a.s.
n—oo n—oo

Sk ok sk ok sk ok skok >k sk sk ok sk sk ok skook skoskoskok sk okoskokoskoskoskoskskoskokkok

5.2 Conditional Expectation and Product Measures

Let (Q,F, P) be a probabiltiy space and let X; : Q — (S5;,8;) for i = 0,1.
Assume that the joint distribution of (Zy,Z;) (on Sy x S; with the product
o-algebra &y x &1) is of the form Py ® K(-,) for some stochastic kernel K,
where P, is the distribution of Zj.

Question: Given f € (& x G1)T, what is

E[f(Zo, Z1)|Zo) (w) =2

Ezample 5.11. Let Ty, T1 be independent exp(«) distributed RVs and define
f(X,Y) =min{X,Y}. Then

Elmin{To, T1 }|To] =7 = ¢(To)
for some measurable function .

Theorem 5.12.

E[f(Zo, Z1)| Z0] () = g f(Zo(w), 5)K(Zo(w), ds) a.s.
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Proof. Omitted for now. (***) O

Corollary 5.13. If Zy, Zy are independent (<— K(Zy,-) = Pi(-) where Py is
the distribution of Z1 on S1), then

Ef(Zo, 21)|20] (w) = g f(Zo(w), s)Pi(ds) = E[f(Zo(w), Z1)]

Sometimes the following extension is useful.

Corollary 5.14. Let Zy € Fo C F and assume Z; is independent from Fy (i.e.
o0(Z1),Fo are independent). Note: this is stronger than assuming Zo,Z1 are
independent. Then

E[f(Zo, Z1)|Fo] (w) = E [f(Zo(w), Z1)]
1s still valid.

Proof. Apply Corollary to Zo :=id : (Q, F) — (€, o). Then Vg : (Q, F) x
S; — RT, Corollary tells us

B |9(Z0, 21)| 0| () = Elg(w, 20)]

noting that Foy = O'(Zo). Set g to be the particular function given by g(w, s) =
f(Zp(w), s). Then

Elg(Zo, Z1)|Fol(w) = E[f(Z0(Z0), Z1)| Fo
and note that the LHS is
Elg(w, Z1)] = E[f(Zo(w), Z1)]

and the RHS is
E[f(Zy, Z1)|Fo)(w)

O
Ezample 5.15. Let Ty, T1 be independent exp(«) distributed with o > 0. Then
E[min{Ty, T }|To)(w) = Emin{Ty(w), T1}]

= /min{To(w),T1) Pl(ds)

= /Ooo(Tg(w) A s) - aexp(—as)ds

To(w) o]
/ saexp(—as) ds—l—To(w)/ aexp(—as)ds
0 To(w)

= —To(w) exp(—aTp(w)) + 0 — é exp(—aTp)

+ é + (Th exp(—aTp(w)))

é (1 — exp(—aTy))
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5.2.1 Conditional Densities

Let X; for i = 0,1 be RVs on (S;, ;) with joint distribution on Sy x S; given
by
(Xo, X1) ~p @(w0, 21)po(dwo) 1 (dz1)

where p; are o-finite measures; i.e. (Xo,X1) has a joint density ¢ > 0 with
respect to the product measure po ® w1 (which is also o-finite). In this case, we
can write the joint distribution p of (X, X1) as Py ® K, where

Py(dr) = ¢o(wo)po(dzo)
is a measure on Sy and where
eo(zo) 1= / o(zo, x1)pa (dxr)
S1
is the density of xg with respect to pg, and

K (2o, day) = Pa |z (€0, 1) if ¢o(z0) >0
’ any (fixed) prob. dist. if ¢g(z9) =0

where we recall that

p(z0,21) e(z,y)
z1 |20\ L0, L1) = =
N E TRy e ey
Check K on rectangles! (***)

Now, we return to the question of what E[f(Xo, X1)|Xo](w) should be. We
can write

E[f(Xo, X1)|Xo](w) = g f(Xo(w), 1) - K(Xo(w),dzy)

= /s J(Xo(w), 1) @g, |z (Xo(w), 1) p1 (d)

Remark 5.16. If f(Xo, X1) = f(X1) then notice that
E[f(X1)[Xo)(w) = g f(@1)ex,)x,(Xo(w), z1)pa (dz1)

and compare this to

E[f(X1)] = g f(x1) - p(z1)pa(dzy)

The difference is in the o1 versus x| x, term, where the first one is the marginal
distribution of X; and the second one is the conditional distribution of X; given
Xo (W)

Remark 5.17. If Xy, X, are independent, then ¢x,|x,(Xo, X1) = ¢1(X1) and
then

E[f(X1)|Xo)(w) = g f(@1)e1(z1)pa(der) = E[f(X1)]
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6 Martingales

Let (92, F, P) be a probability space and let Ag C A; C --- C F be a sequence
of o-algebras; we call such a sequence a filtration and refer to (Q, F, (Ax), P) as
a filtered probability space. Let (X,)n>0 be a stochastic process.

Definition 6.1. We say X is adapted on (Ay) if X € Ag for all k > 0. We
say (Yx)r>1 is previsible (with respect to (Ax)) if Yi € Ak—1 for all k > 1.
We say (Zy) is innovative if Z € L' and satisfies the martingale property (see
below).

Definition 6.2. We say X is a martingale with respect to A if
1. X is adapted and Xy, € L for all k, and
2. X satisfies the martingale property
ElAn 1 X[An] == E[(Xn41 — X5)[An] = 0 as. (6)
which is equivalent to

E[Xp+1]An] = X, as.

Remark 6.3. For all n,k > 0,

n+k
> AgX|An]

l=n+1
n+k
= Y E[AX|A,]=0as.
{=n+1
= E[E[AX|Ar—1] | An]
—— —
=0 a.s.

where the last line follows by projectivity. In particular, for n = 0 fixed, then
for every k > 0,
E[XH.A()] =Xy = E[Xk} = E[Xo]

Ezample 6.4. Let Y1,Ys,... be independent £!' RVs. Set A, := o(Y1,...,Y})
for n > 1 and Ay = {0, Q}. Then

n

X,:=Y (Yi—E[Y]) , Xo=0

i=1
is a martingale with respect to A. In general, partial sums of independent,
centered £! RVs form a martingale (with respect to their own filtration). Note,
as well, that A, = o(Y1,...,Y,) =o(X1,..., Xn).
Example 6.5 (Successive prognosis). Let X € £!(F) and A be given. Then

X, := E[X|A,]
is a martingale. To see why, notice that

E[Xn1|An] = E[E[X[An1]|An] = E[X[AL] = X,
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6.1 Gambling Systems and Stopping Times

Let (X,,) be a martingale with respect to A and let (V},),>1 be previsible such
that V,, (A, X) = Vo (X, — Xp_1) € L. Set

(VX)n=Xo+ > Vi- ApX
k=1

This is called a “gambling system” (or a martingale transform or a discrete
stochastic integral).

Ezample 6.6. 1. Let X,, be SSRW (i.e. Xg = z9,A, X are i.i.d. %1, cen-
tered), let V,, =1 and (A,) = o(X1,...,X,). Since V,, is previsible (¥**
why?) then (V.X) is a gambling system.

Interpretation Since A, X = +1 with probability %, you bet on 1 each
time with $1. You start with $z¢ and continue betting. Then (V.X),, is
your balance after the nth bet.

Theorem 6.7. If (V.X) is a gambling system then V.X is a martingale
(with respect to A, = 0(X1,...,X,)).

Proof. To show (V.X) is adapted, observe that
V- Xn= Vu '(Xn_Xn—l) E-An
—~ —
€AL_1 €A,
and is € £! (by assumption). To show the martingale property, note that

o
E[(VX)n — (VX)nt|Anoa] = B[ Vi -AnX|Ap_1]
=V, - E[A,X|A,_1] =0 as.
—_———

=0 a.s.

In particular,
E[(V.X)n] = E[(V.X)o] = E[Xo] = z0o
so there is nothing to gain (on average).

2. Let Xo = x¢ and set Ay X = +1 with probability % (independent) and let
A, =0c(Xy,...,X,). Let

Vo= J1 (VX )k < o
"To it (VX)lt > o

Note
Vi € o((VX)g-1) Co(Xa,..., Xpo1) = A1
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since

and therefore Vj, is previsible, so (V- X) is a gambling system. Note: since
RV oscillates between +oo (*** later) we a.s. win $1 but, unfortunately,
the expected time to win = +oo! (Also, expected loss before winning is
+00. Yikes!)

3. (A version with shorter waiting time) Take the same SRW as X and set

{2’“ FALX =AgX == Ap 1 X = —1
Vi =

0 otherwise

Clearly, Vi is 0(X1, ..., Xk—1) measurable and thus predictable. In gen-
eral, (V.X), = xo+1 after we’ve won. If T'(w) is the time we win (the first
time), then T' ~ geom(1/2), and in practice E[T] < co. However, (V.X),
is not uniformly integrable; there may be big losses before making even

$1!
Definition 6.8 (Stopping time). A RV T : Q — N such that {T =n} € A, for
everyn =0,1,... is called a stopping time.

Remark 6.9. The property in the definition above is equivalent to saying {T <
n} € A, for all n. Notice that
{T<n}={T=0u{T=1}U---U{T =n} e A,

——  —— —

€ACA, €AICA, €A,
and

{T=n}={T<n}\{T>n-1} € A,
—_——— — ——
€A, €An 1

So an interpretation of a stopping time is that at time n, we know whether
T(w) <norT >n. (What we can’t tell, in general, is whether T' > n + 1, for
instance, and other similar things.)

Ezample 6.10. 1. Let A € Bg, and let (X,,) be adapted on A4,. The first
entrance (or hitting) time of A is given by

Ty(w) =inf{n > 0| X, (wv) € A}(< +0)

and it is a stopping time. To see why, observe that

{TAgn}:O{XkeA}eAn

k=0 ca,cA,
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2. Let (X,) be a SRW and set A,, := o(Xo,...,Xpn). A run of length r is a
segment of the walk consisting of successive upwards steps. Let r > 1 be
fixed. Then

T(w) =T, =inf{n|(n —r,n—r+1,...,n) is a run}

represents the first time that a run of length r has been completed, and it
1s a stopping time. To see why, let k£ > r and set

R ={As X =01 X = =8p_p 1 X =+1}
Note that Ry € Aj. Then

{T' <n}= U Ry € A,

r<k<n
Ezample 6.11. Here are two examples that are not stopping times:
1. Ly =sup{n > 0|X,, € A}, i.e. the “last visit” in A
2. the beginning of the first run of length r
Definition 6.12. If X is a process and T is a random time, then
1. XT is a “stopped process”. For all n, let XTI (w) := XonT(w)(W).
2. The “process at (time) T is defined by Xr(w) := Xpw)(w) (a RV).
Note: after T' (i.e. n > T(w)), X1 (w) = X7 (w).

Theorem 6.13. Let X be a martingale and T a stopping time with respect to
(A). Then (XT) is a martingale with respect to (A).

Proof. Let V,, := 1{p>p), so V. is previsible. Then

Vi (Xp—X,_1) € LY = (V.X) is a martingale
~ ———

bdd ert

But (V.X) = XT. This proves the claim. To see why (V.X) = X7T observe that

n TAn
(VX)n=Xo+ > Lrswy - MeX = Xo+ Y AX = X[
k=1 k=1

O

Theorem 6.14 (Optional Stopping). Let X. be a A-martingale and T be a
stopping time. Then

1. XT is a martingale and E[X1r,] = E[Xo)
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2. If T is bounded (i.e. T < N a.s.) then

E[X7] = E[X1n] = E[X§] = E[X0]

3. IfT < o0 a.s. and (XT),>o0 is uniformly integrable, then E[Xt] = E[Xo).

Proof. We only prove (3). Apply uniform integrability and a.s. convergence to
write
E[Xr]=E [ lim XTM} = lim E[Xrrn] = E[Xo]

n—oo

O

Ezample 6.15. Application: classical ruin problem (gambling fairly to
make (b — x9)$ with credit level a). Let X, = x + . | Y; where the (Y;)
are i.i.d. 1 with probability p and —1 with probability 1 — p. Define

T(w) = min{n > 0| X, (w) ¢ (a,b)}
which is a stopping time. By Borel-Cantelli, T' < oo a.s. (***). Define
r(z) := P[Xt = d]

to be the “ruin probability”.

1.p= % Then X. is a martingale and (X,A7) is bounded and therefore

uniformly integrable. Thus,
=1—P[Xr=d]

© = E[Xy] = E[X7] =b- P[X7 =b] +aP[X1 = d]

and so
b—=x

r=0b0(1—-r))+ar(z) = r(z)= —

2. p# 5. Let h(z) := (1—71,)”“ Then h(X,,) is a martingale (*** HW), and

E[h(Xo)] = h(z) = E[M(X7)] = [(X)]r = h(b)(1 = r(z)) + h(a)r(z)

W) —nwy 1 (35)

“@:h@—mw‘l_(py“

1-p

b—x
3. p< 3. Thenr(z) >1- (1’%})) and this bound doesn’t depend on a!

For instance, if p = 42 then b — x = 128 is sufficient to have r(z) > 0.999!
That is, before winning 128, you are ruined no matter how much reserves
you have (assuming finite reserves, of course).
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Ezxample 6.16. Application: How long do you have to wait for the occurrence
of a fixed binary text [a1,...,an] in a random binary sequence (with p = 1/2)?

Let (Yi)k>1 be iid. £1 with p = % and set Ay, = o(Y1,...,Y%). Let the
stopping time be

T(w) =inf{n > 1|Y,-nt1(w) = a1,...,Yn(w) = an
By Borel-Cantelli, T' < oo a.s. What is E[T]? We estimate

T
NS T' :=inf{k : [a1,...,an] occurs in the k-th block}

so T" is a geometric RV with parameter 2=V . Thus, E[T"] = 52 = 2" and so
E[T] < N2V < c0.

At each (fixed) time k with 0 < k < T — 1, start a game (i.e. gambling
system) with the martingale X,, = >"}'_, ¥} as follows:

1. We bet 1 on seeing a; next. If we lose, we lost 1 and the entire game is
over. If we win, we get back 2 and we continue.

2. We bet 2 on seeing as next. If we lose, we lost 2 and the game is finished.
If we win, we get 4 and continue.

3. We bet 4 on seeing ag next, .. ..

N We bet 2V~ on seeing ax next. If we lose, finish the game with overall
loss 1. If we win we get back 2V and finish, with a net win of 2% — 1.

Note: up to time k, there are k games. Fach game consists of a random number
(at least one, at most N) of bets, and each game is self-financing after paying
the initial $1. The balance of each finished game is either 0 — 1 if we lost or
2N — 1 if we won. For an unfinished game with k winning bets, the balance is
2% — 1. What is our balance at time T'? (i.e. the first time we win an entire
game) We have

(V.X)r = price of all T games + amount won

= —T + amount won in the last N games + 0
N
=-T+) 2V Wi(w)
k=1
where

Wk(w) =

1 if T — N + k-th game is won at time T'(w)
0 otherwise

Note: Wi (w) is deterministic! This is because we know the end of the sequence

Yr_niy1,--,Yp! In particular, k =1 = Wy = 1. In general Wy, = 1 <=
HARAIIAAAE nsert picture FIEHRRHIK
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Note again that if W}, = 1 then the final payoff is 2V ~**1 and so
N
(VX)T — (T) T ZQN_k+1 . Wk;
k=1

since Wy, depends only on [y, ...,ay] (i.e. it is deterministic). We will that
(V.X)rpn is uniformly integrable, specifically

T < (VX < oN+1
=~ (V )T/\n =

eLt eLt
so then
E[(VX)r] = lim E[(V.X)ra,] =0
n—oo T

and finally

N N

0=—E[T]+Y 2V 1w, = BT =" 2N 1w,

k=1 k=1

The RHS is larger the more “repetitive” the text [a1,...,an] is. For instance,

[ala"'aaN] ‘ E[T]
000000 126
001100 70
011111 64

Finally, we show the estimate works:
(V.X)pan > —(T An) > -T € L!

and

N
(VX)T/\n < Z 2k _ 2N+1
k=1

since only in the last N games can we win.

6.2 Martingale Convergence

Let (2, F, P) be a probability space, A. a filtration, and X. a martingale. For
a <band N € N fixed, we define

Upy(w) = # of upcrossings of [a,b] during time [0, N]
More precisely, set Sp = Ty = 0 and

Sk(w) = inf{n > Ty_1(w) : X, (w) < a} = beginning of k-th upcrossing
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and
Ti(w) = inf{n > Si(w) : X,,(w) > b} = end of k-th upcrossing
and then define
Ué\fb(w) =max{k > 0: Tx(w) < N} = # of upcrossings during [0, N]
Lemma 6.17 (Upcrossing inequality).

ElXy —a)7]

E[UN] <
[a,b]— b—a

and this implies, in particular,

1
! oo <
[ (l,b] — b

sup E[(Xy —a)7]
N

Proof. Since Sk, T}, are stopping times (they are only defined in terms of in-
formation before them), then the Stopping Theorem implies E[Zx] = 0,
where

N
N = Z(XTkAN — X5, AN)
k=1
On the other hand,
UN
ZN:Z(XTk: - Xs)+( Xy _XN/\SUN-H)
—
k=1 =NAT, N,

> U(i\,fb' (b—a)+ (Xn _XN/\SUN+1)

=%

and since

O lf SUN+1 Z N

*=¢>Xy—a if Syvyy <N > —(Xy—a)”
——
<0

we can say

Zn > Uy (b—a)+ —(Xy —a)”
SO

E[Zy) =02 E[Ug}]- (b—a) - E[(Xy —a)7]
O

Theorem 6.18 (Martingale convergence). Let X. be an L1-bounded martingale.
Then
Xoo(w) = lim X, (w) exists a.s., and Xoo € L1

n—oo

Remark 6.19. If X. is a martingale (X € M), then TFAE
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1. X is £L'-bounded (sup,, E[| X,|] < o0)
2. sup,, E[X}] < o
3. sup,, F[X, ] <

To see why, note that

E[|X,]] = E[X;] + B[X}] = (B[X;] - E[X,]) + E[X;] = 2E[X]] — E[X]
—E[Xo]

and take sups ...

Proof. Observe that

{lim inf X,, < limsuan} C U {Ugp = o0}

n—o00 n—00 .00

a<b

where U, p =: limy o0 Ué\fb. This implies

P[X,,(-) doesn’t converge] < Z P[U,p = o0

a,beQ
a<b

and we know P[U,;, = oo] = 0 provided E[U, ;] < co. But this is the case since

S‘Xn_al
—_——— 1
sup E[(X,, —a)”] < i

1
E[Ua,b] S b

sup E[| X, | + Jal] < o0

which is finite since X. is £'-bounded. Therefore, X, exists a.s. Next,

E[|Xs|] < liminf E[|X,|] < sup E[|X,.]] < 00

by Fatou’s Lemma Note: this does not imply that X,, — X, in £!! O

Example 6.20. Random walk >k skok ok ok sk skook ok skok sk okoskokok kok

Ezample 6.21. Dirichlet problem / harmonic functions. *¥¥iiiiie

6.3 Uniformly Integrable Martingales

Theorem 6.22. Let X. be a stochastic process on (2, F, Ay, P) and set A :=
o(UpsoAn). Then

1. (X, is an Ay,-martingale and X, is uniformly integrable) <= 3IX €
LY(F) such that X, = E[X|A,] a.s.

2. In the case that the above (equivalent) conditions hold, then X, — X
a.s. (and in L); moreover, X = E[X|Awx] a.s.
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Proof. We prove (1 =) first. Suppose (X,,)n>0 is uniformly integrable = (X,,)
is £'-bounded, so by the Martingale Convergence Theorem lim X, = X
exists a.s. and X, — X in £'. WWTS X,, = E[X|A4,] a.s.

Let A, € A, (for n fixed). Then

E[]'An Xoo] =F l:lA" . khm X]{l =F [khm (1An Xk):l
= lim B[14, X;] = lim B[B[1a, Xx|An]
— 00 de el N——
:1A71,XTL

= E[lAan]

and so X,, = F[X|Ax].
Next, we prove (1 <). Let X € £L1(F) and set X,, := E[X|A,]. Then (X,,)
is a martingale; WWTS (X,,) is unif. int. Observe

[ Xn| < |E[X]AL]] < E[X[|AL] as.
which implies

E[| X0 ;[ Xn| = ¢ < E[E[|X||An); | Xn| > ] = E[|X]; [Xn| > ]
————
€A,
= B[ X[;|Xn] = ¢,|X]| = a] + E[|X[; | Xn| > ¢, |X] < q]
< BIIX1X] 2 o] + a Pl|X,| >
—_————
<E[Xn|l-¢
a e €
S E[X[|X| za +-E[X[[ <5+
c 2 2
for a large enough and then for ¢ large enough (given fixed a). This all implies
(|IXn])n>o0 is unif. int.
Next, we prove (2). WWTS X, = FE[X|Ax] a.s. This is true <=
E[14X] = E[14X] for all A € A. To show this, let Ay € Aj. Then

E[X14,] = E[E[X[A,]14,] = E[Xn14,]
which implies

E[XlAk] = lim E[anA;J = E[XoolAk]
since (X,14, )n>0 is unif. int. Next, set

D={A€ Ay : E[X14] = E[Xoo14]}

Notice D is a Dynkin system, | J,, Ar € D and N-closed, so D = o(|J,, Ax) = Ax-
Thus, E[X|Ax] = X a.s. O

Corollary 6.23 (0-1 Law of Levy). Let A € Ay. Then

lim P[A|A,] =14 a.s.

n—oo
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Proof. Set X =14 and X,, = E[X|A,]. THen (X,,) is a uniformly integrable
martingale, so X, — X a.s. with X € Awo, and E[X|Ax] = Xo. Thus,
14, =X, as., since X € A. O

Remark 6.24. The 0-1 Law of Kolmogorov follows! Let Bi,Bs,... be in-
dependent o-fields and

Ae ﬂ o U B | =17 (tail field)

n>0 k>n

Then P[A] =0 or P[A] = 1. To see why, set
A, =0 <U Bk>
k=1

lim P[A|A,] =14 as.
——

n—oo

Then A € 7 C A,,. Thus,

—P[A]
But since A € o (UanH Bk) (which is independent of Bi,...,B,) we have
P[A] = 14(w) with P[A] constant! This is only possible if P[A] =0 or 1.

Theorem 6.25. 1. If (X,,) is LP-bounded for p > 1 then (X,,) is unif. int
and X exists a.s. and X,, — X in LP.

2. Also, if X € LP(F) then X, := E[X|A,] is a LP-bounded martingale.
Proof. (1) is in the text. (2) is proven by Jensen. O
6.4 Further Applications of Martingale Convergence

6.4.1 Martingales with £!-dominated increments

Theorem 6.26. Let X be a martingale such that

sup |A,X| <Y e !

Set
C:={w: X, (w) converges to a real #}
0 := {w s liminf X, (w) = —oo, limsup X, (w) = +oo}

={w: inf X, (w) = —o0,sup X,,(w) = 400} (for discrete time)

Then P[CUO] = 1.
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Proof. Let a € Z and set T, = inf{n > 0: X,, < a}. Then

X() on {Xo < a}
Xroan=19X,>a on {Xg >a,n<T,}
X1, > a—supy |AsX]| on {Xo>a,n>T,}
> Xo A (a—sup|A,X]|) e £}

———
eLt

and so X7, r, is an L£'-bounded martingale; therefore, X1« — finite limit a.s.
O

Claim:
{i%an > foo} CC as.

WWTS
{ir}lf X, > a} C C as. Va

which implies
o ij {ingn > —k} - {12an > —oo}

If inf,, X)n(w) > @ then T,(w) = 400, s0

X1, an(w) = Xp(w) —— Xoo(w) € R for ae. w

n—00

so w € C (for a.e. w). Similarly,

{suan < oo} CC as.

which implies
Ce C {iann = —oo} N {suan = +oo}

6.4.2 Generalized Borel-Cantelli IT
This is a more general statement than Lemma [1.18

Lemma 6.27. Suppose A is a filtration with A, € A,. Define

Ay = ﬂ UAk: w:ZlAk(w):+oo

n>1k>n k>1

to be the event that co-many of the Ags occur. Set

Al ={w: PlAg| Ag—1] (w) = 0
T =E[1a,[Ak-1]

Then As = Al a.s.
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Note: no independence is required!

Remark 6.28. If Ay independent of Ag_; for all k, then P[Ag|Ar_1] =0 or 1
(constant), so then
A=A =Qor () as.

By the original Borel-Cantelli Lemmas, P[A.] = 1 if > P[Ax] = oo and
P[As] =0if > P[Ag] < co. (Typically, A, = o(1a,,...,14,))-

Proof. Let Xg =0 and Ay = (0, ). Define

Xn=) (la, — E[14,]|Ax-1])
k=1

This is a martingale with respect to A., since
E[AnX‘.Anfl] = E[]-An — E[lAn|An71] |An,1} =0
—_———
E€EAn_1

Since X has bounded increments (—1 < A, X < 1) then P[CUO] =1. WWTS
that Ay and AL agree a.s. on C and on O.

e On C, we have

Z]'A’“ =00 < ZP[Ak|Ak—1] =00
k k

since otherwise X,, /- € R. Thus, CN A, =CN A as.

e On O, we have ), 14, (w) = oo (since otherwise sup X}, # co) and simi-
larly >, P[Ag|Ar—1] = oo (otherwise inf X} # —o0). Thus, O C A, and
OCA _soONAx=0=0nA.

Since CUO = Q a.s., then A, = A a.s. O
Ezample 6.29. James’ example revisited. Set Xg = X3 =1 and X =0 or 1
and Sy = ¢ | X, with

P[Xk+1 :1|0’(X0,...7X]€)}(u)) VkZO

_ 1
— Si(w)

Recall: this is an example of a sequence such that X; — 0 in probability but
not a.s. (X = 1 for co-many k a.s.) We showed this by explicit calculations
(by using a discrete process with geometric waiting times . ..).

Now, we let

A ={Xr =1}; and As = {X = 1: for co-many k}
and
Al =S w: ZP[Xk =1 Ap1](w) =0 p = Ax

k>0
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Observe that

1
Pl X, =1|Ar1|(w) = ——+—
[k? |k1]() Sk—l(w)
and so -
P[X,=1|A =1+ =
>~ Pl = e ZSM
zl/k

Thus, AL =Q = A, a.s. Thus, X; =1 for co-many k a.s.

6.4.3 Branching processes

Model: Let Y, , € N (k,n =1,2,...) beindependent RVs on (2, F, P), all i.i.d.
with distribution g (with p # 0y for £k =0,1,2,...) Assume co >m =Y, kuy,
to be the finite mean. Set Xy =1 and

n—1

Xn = n,1+Yn,2+"'+Yn)X

We think of X, as the number of individuals in the nth generation, where Y, j,
is the number of children that the kth individual in the previous generation
produced, and that all individuals die when the next generation is produced.
Set

Ap=0p:1<l<nk=12,...)

and note that this is bigger than just knowing the n children.

Lemma 6.30. M, m” is a martingale with M, >0, so M,, — My, a finite
limit P-a.s.

Proof. Assuming M,, € L', then

X
n+1 1 =
E [anM } (w) = WE ZYnH,kMk] (w)
k=1
Xn(w)
= mn+1 Z }/”+1 k| &8
1 Xn
= X)) = 229 )

mn+1

so M. is indeed a martingale.
Why is M,, € £'? This happens <= X,, € £!, and for n > 1

Xn—1
Z You| =m: E[Xp1]

by Wald’s Identity since the Y's are independent from X,,_;. Thus, E[X,,]

m”.

O

82



Definition 6.31. Let
T(w) =min{n > 0: X, (w) =0}
be the “time of extinction”.
Using this definition, we have

E[S7] = E[E[ST|o(T)]]
= E[E]

6.5 Sub and supermartingales

Let (X,,) be an A,-adapted £! process. Set ApX = X}, — Xj_1 so then X,, =
Xo+ > g ApX.

Lemma 6.32. (M,,) given by

n

M, = Xo + Z(AkX — F[ARX|Ak_1])
k=1

AkM
18 a martingale.
Proof. Notice My = Xy € L61 and E[A M| Ak-1] =0 a.s. O

Theorem 6.33 (Doob decomposition). Let X,, be adapted and L'. Then 3!
decomposition X,, = M, + A, where M. is a martingale and A. is previsible
with Ag = 0.

Proof. First, existence. Using M from the previous lemma:

M, = Xo + Z ALX — Z E[ALX | Ag_1]
k=1 k=1

=X, =:A,

and one can check that A, is indeed previsible. Note: A,A = E A, X|An—1].
Second, uniqueness. Suppose X, = M,, + A,. Then

E[AkXLAk_ﬂ = E[AkM|.Ak_1] + E[AkA|Ak_1]

=0 =ALA

which implies ALA = E[ApX|Ak_1]. Thus, we have no choice for A! Then
M = X — A is also uniquely determined. O

Definition 6.34. Let (X,,) be a stochastic process. It is called a sub (resp.
super) martingale if Xy € L' and adapted, and

Xn € E[Xpi1|An] a.s. <= 0< E[A,11X|AL] a.s.

(resp. >).
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Note: the inequality condition is equivalent to
0<A; <Ay <.--< A, in Doob decomposition

for submartingale (> for super).

Ezample 6.35. e (X)) is both a sub and supermartingale <= it’s a mar-
tingale.

e (X,) is a submartingale <= (—X,,) is a supermartingale.

e If X, is a martingale and w is convex (resp. concave) then u(X,,) is a sub
(resp. super) martingale. To see why, observe that

Elu(Xni1)An] 2 u(E[Xp11]|An]) = u(Xy) as
by Jenesen.

e Let (X,,) be an adapted process. If I\ € R with exp(AXo) € £! and
Elexp(AARX)|Ak—1] < 1 for every k, then exp(AX,,) is a supermartingale.
Additionally, if X,, is a martingale then exp(AX,,) is a martingale. To
prove the first claim, observe that

Elexp(AX,11]An] = exp(AX,) Elexp(AA 11 X) |A,] < exp(AX,)
— —
<1

To prove the second claim, just notice that exp(AX,) would also be a
submartingale since exp(At) is convex.

Theorem 6.36 (Supermartingale convergence). Let (X,,) be a supermartingale
with sup E[X,] < co. Then lim X,, =: X, ezists a.s. and X, € L.

Proof. Let X,, = M,, — A,, (where 0 = Ay < A; < Ay < ---). Then M, =
Xn + A, implies M,, > X,, so M, < X, and thus sup,, E[M,] < oo. This
implies M,, — M., € L' a.s.
Next, A, = M,, — X,, <M, + X, so
E[A,] < E[Mo) + E[X,] = Ellim / A,] < E[Xo] +liminf E[X,] € £!
— <

by Fatou. Thus, X 1= Mo, — A € L. O

More on stopping times: If S, T are stopping times, then SAT,SVT, TN
n, S + T are all stopping times (with respect to the same filtration).

Definition 6.37. Let T be a stopping time with respect to F.. Then
Fr={AeF:An{T -k} € F Vk > 0}

1s the collection of “up to time T observable events”.
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Note: A € Fr < Vk, AN{T <k} € Fj. Interpretation: AN{T <k} €
Fi Vk if Yk that part of the event A where the stopping time occurred before
time k is € Fy, (i.e.is observable at time k).

Lemma 6.38. Fsar = Fs N Fr. X. adapted = Xt is Fr-measurable.
Proof. (***) homework. O

Theorem 6.39 (Stopping time for unif. int. martingales). Let S < T be
stopping times and X. a martingale.

1. If X. is unif. int. then XT is unif. int. and E[Xo] = E[X7].
2. If X is unif. int. with E[X|F,] = X, a.s. ¥n, then E[X|Fr] = X1 a.s.
3. If X7 is unif. int. and S < T then X° is unif. int.

Proof. 1. Assume (X,,) is unif. int. = 3X € F,X € L' such that X,, =
E[X|F,] as. WWTS (XT),, = Xran = E[X|Fran) a.s. which implies
XT is also a unif. int. (by successive prognosis) martingale (with respect
to another filtration (Fran)n>0) and that, in particular, it is unif. int. To
show this, it suffices to prove (2) and then apply it to the stopping time
T An (instead of T').

2. Let A€ Fpr. WWTS E[X14] = E[X114]. To see why, notice that

NE

E[X14] = E| 1{T=k-}1A X]
—_—

“TAN{T =k}
N————’

€Fy

el
I
o

E[1 gnqr=ky E[X|F}]]
——

=X}

Me 10

Elp_py(1aXy)]

=lir—p}laXr

=
Il
o

o

E[lir—ry(1aX7)] = E[14X7]

el
Il
o

3. Y := X7 is unif. int. = Y is unif. int. by (1), so
(Ys)n =Ysnn = XT/\(S/\n) = X(T/\S)/\n = Xsan = (Xs)n
O

Theorem 6.40 (Optional Stopping Theorem). Let (X,) = M, — A, be a
supermartingale and T, S be stopping times with T < S.
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1. If (T, S bounded) OR (S < oca.s. and M*°, MT are unif. int.) then

E[Xo] > E[X7] > E[Xs]

2. If X, >Y € L' for alln and T is any stopping time then E[Xo] > E[X7]
(where X7 := Xoo on {T = o0}).

Proof. Write X,, = M,, — A,, (with A,, > 0). Then E[My] = E[M,] = E[Ms]
implies
E[X7] = E[Mr] — E[Ar] > E[Mg] + E[As]
Next,
E[X7] = Ellim Xrpn] < liminf  E[Xran] < E[Xo]
———
=E[Mran—E[ATAn]

O

Ezample 6.41 (Applications to microeconomics). Following a game g(z) given.

A random walk starts at T € (a,b) NZ and will be stopped at the boundary a, b.
Write X,, :=2+ Y1 +---+ Y, as the random walk and set

S=min{n >0: X, € {a,b}}

Our process is X := Xga, which is a martingale. We are looking for a stopping
time 7' such that E[g(X7)] is maximal.

The solution is to let h be the concave envelope of g (i.e. the smallest concave
majorant of g). Then h(X5) is a supermartingale which implies

h(z) = h(Xg) > E[M(X7)] > Elg(X7)]

for each stopping time 7', so h(Z) is an upper bound on the expected gain with
any strategy 7.
Claim: if we set

T* =min{n >0: X, € {g=h}}

then E[g(X7.)] = h(Z). (The optimal solution!) To prove this, if h = g then
we stop at ¢t = 0 and we have h(Z) deterministically. So let h(Z) > ¢(Z). Then
3z € [¢,d] C [a,b] such that h(y) > g(y) on y € (¢,d) and h(c) = g(c) and
h(d) = g(d). Thus, T* is an exit time from (c¢,d). Now h is linear (convex and
concave) on [c,d] and

Aiq“*/\n = X7+ An

is a martingale, so h(X2. ,,) is a martingale so
h(z) = E[M( X1+ an)] = E[0(X7+)] = Elg(X7+)]

kokoskokoskok kR ok kok ok
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6.6 Maximal inequalities
Lemma 6.42. If X; > 0 is a supermartingale then

1
P [sup >0X,, > c] < —E[Xy]
n C

If Xi > 0 is a submartingale then
1 1
P [maxXk > c] < ZF [XN;maxXk > c} < —-F[Xy]
k<N C k<N C

Proof. Assume X}, is a supermartingale. We know X,, — X, a.s. and X, >0
and £!. Let
T, :=min{n >0: X, > c}

Then
E[Xo] > E[X1,] > E[X1,;T. < 0] > cP[T, < ]

and 50
E[Xo] > (c— ;) PT, s <] (n— o)

> cP[({T._1 < oo}]
n N—
D{sup,, Xp>c}

> c¢P[sup X,, > (]

Next, assume X} is a submartingale. Then

cP {ﬂaﬁXk > c} =cP[T. < N]| = E[¢;T. < N]

SEXp;T.<Nl=> B[ Xi :T.=k
~~
k=0 <B[Xn|A4] as.

NE

<> E[EXN|Ag] - 1{7.—1}]

x>~
Il

0

I
M=

E[Xn:T. = k] = E[Xn;T. < N]

b
Il

0
= E[X,; I]g%a&(Xk > (]

Corollary 6.43. Let (M,,) be a martingale with M,, € LP for p > 1. Then

1
P [maX|Mk| > C:| < —E[|My|P]Ve >0
E<N cP
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Proof. |M,|P is a submartingale (by Jensen), so
P {maxﬂw;~C > c} =P {max|Mk|p > cp}
k<N k<N

etc. O

Ezxample 6.44. Application for insurances. How expensive should an insurance
policy be? Let xg be the starting capital of the company (deterministic), ¢, be
the deterministic income, Y, (w) be the stochastic loss, and

Xn(w)=Xpno1(w) + ¢ — Yo (w)
=:A, X (w)

be the balance of the company. Let R(w) be the time of ruin. Then P[R <
oo] <?
Let ¢, be big enough such that for some A > 0,

Elexp(A(Yy, —cn))|An-1] <1
Is this realistic? If Y, is independent of A,,_1 then
Elexp(A(Yy, — ¢n))|An—1] = Elexp(A(Yn — ¢n))]

and so the condition above means Elexp(AY,,)] < exp(Acy,).
With the condition above, then (exp(—AX,)) is a supermartingale. To see
why, notice that

Elexp(—AX,,)|An—1] = exp(=AA, X ) E[exp(—AX,—1)[An—1]
<1-exp(—AXp-1)

Note that X,, =0 <= exp(—AX,) = 1. Then
PR < o0] = P[Th < o0] < P |supexp(—AX,) >1

<

= =

Elexp(—XXo)] = exp(—=AXo)

by the maximal inequality so choosing A large enough (or Xy) will make
P[R < o] small.

Theorem 6.45. Let (X,,) be an LP-bounded martingale for p > 1 and let X* =
sup,, | X,|. Then

[R G|

p
1 sup HXnHP
n
If X,, is a martingale with bounded entropy, i.e.

sup E[|X,.|log | X,[] < o0

then X* € £,
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Before the proof we have a lemma.

Lemma 6 46. LetX Y >0. IfVe >0, c[PY > | < E[X;Y >c|, thenVf >0
with F(y fo x)dx, we have

Y
1
B < B - [ 2f(0)dd
Proof. Observe that

E[F(Y)] = E| / T Lo (€) f(0) de

=1liy>c}(w)
= /OO P[Y > (| f(e) de
/ FOZE[X:Y > dde

:E[X'/O Ef(c)dc]

In particular, for F(y) = y?, we have f(c) = pcP~! for p > 1, and so

E[Y?] < X/ 7pcp dc] = X/ pcP =2 dc]

- B[XYy?! pl]—i1 E[yP1X]
p—1" p-—

p _
< EL Xy

by Holder, where ¢ = -L5. Notice [[YP~![|, = E[Y?)"%, so we can divide
through by this factor and obtain

p
1Yl = BT < 11X

Now we’re ready to prove the theorem above.

Proof. First, notice Z,, = |X,,| is a submartingale (> 0) so

cPlmax | X | > c] < E[|Xn|; maXXk > (]
k<N ——

X %/—’
Y>c

and thus

‘ k<N

max | Xg|

<qllXnl,
p
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Then,

1/p

p1/p
=F [lim <max |Xk|>
N \k<N |

p1/p
=limF {<max|Xk|>
N k<N |

< gsup ||XNHp
N

6.7 Backwards martingales
Let (A,) / forn <0 (!) on (Q,F, P), i.e.
CA L CALCACTF
Then X, is a martingale provided
E[X k| An] = X <= X, = E[Xo|A,]
Theorem 6.47. Set A_., = ﬂnZO A,. Then X,, — X_oo a8 N — —00 a.S.
and in L and X _o = E[Xo|A_o]-

Proof. For N < 0,
o] _ El(Xo—a)7]
BlUn"] < =5
SO
B . oo _ 0] o ElXo—a)7]
ElU.p) = E {th Ugs ] = Jim E [Ua,b } N .

——00

< 0

by monotone integrability and since Xo € £!'. Thus, P[U,;, < o] = 1 so
X, — X_ a.s. By Fatou,

E[|X_wl) < liminf B[|X,,[] < B[ Xo]

and so X ., € L', But also, (X,,) is unif. int. so X,, — X_, in £!. Moreover,
for Ae A,
E[X_OolA] = lim E[X_.,L]_A] = E[XolA]

n—oo

and so X_ o, = E[Xo|A_o] a.s. O

Corollary 6.48 (Law of large numbers). Let Yi,Ys, - € L1 be i.i.d. and set
Sp=>1,Y;. Then 1S, — E[V1] a.s.

90



Proof. By symmetry E[Y;|S,] = E[Y;|S,], so 25, = E[Y1|0(S,)]. Also,

1
ESn - E[Y1|U(Sn,yn+17 ey )] = E[Y1| O'(Sn,sn+1, e )]
—_—— ——
=A_,

Then A_,, \, as n . Therefore,
1
X_n:=EMWi|A_,] = gSn

16, = X_. exists a.s. and is in £1.

is a martingale, which implies lim,, . 3

Thus,
. 1
nlglgo ﬁSn =X _ o €7= m o U o(Y1)
n>1 k>n
so by Kolmogorov’s 0-1 law X_o is constant a.s. = X_, = F[X_o]| =
E[X;] by uniform integrability. O

Ezample 6.49. Next application: Hewitt-Savage 0-1 Law. If X, X5 are i.i.d.
and A € & then P[A] = 0 or 1 where £ is the exchangeable o-field (****
definition)

6.8 Concentration inequalities: the Martingale method

Let X be a £' RV on some filtered probability space and assume X,, € F,,. Set
Xy := E[X|Fg], an F. martingale. Assume that V&, [|[ArX||c =: ¢k < 00, i.e.
the martingale has bounded increments. Then

2
P|(X,, — E[X]) > 1] < exp (szk) ™)

This inequality also holds for P[(X — E[X]) < —t]. This is known as |Azuma’s
Inequality.

Proof. Set Fo = {0,Q} so Xg = F[X] and Dy, := AxX. Then
<N Elexp(ADn) | Frn—1]lloo

Elexp(AX)] = Elexp(AX,—1) Elexp(ADy)|Fn-1] ]
< |Elexp(ADy)|Fr—1]lloc - Elexp(AXn-1)]

<

b

[ E[exp(ADy)|Fr—1]lloo - Elexp(AXo)]
k

Dividing both sides by E[exp(AXo)] = Elexp(AE[X])] tells us

1

Elexp(\(X — E[X])] < [] IBlexp(ADx)| Fie]lloo
k=1
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Now, if || Dgllco < 00, then
A2 9
IBlexpD0) Bt < e (51D

(proof of this claim given below) and so

Elexp(A\(X — E[X)))] < exp (2 > ||Dk||zo>
k=1

By Chebyshev and optimal choice of A\, we get Azuma’s inequality.

Here, we prove the claim from a few lines above. Note that —¢; < Dy (w) <
¢k a.8. where ¢ = ||Dglloc < 00. Write Di(w) as a convex combination of
—cg, ¢ (and now we drop the index k): D(w) = p(w)(—c) + (1 — p(w))e, so
p=2—L2and1-p=1+ L Since exp(\(")) is convez, then exp(AD) <
pexp(—Ac) + (1 — p) exp(Ae), so

Elexp(AD)|Fi-1]
< exp(—Ac)E[p|Fy—1] + exp(Ac) E[1 — p|Fj—1]

1 1 1 1
= exp(—Ac) (2 ~ 5 E[D|.7:k2]> + exp(Ac) (2 + % E[D|fk2])
-0 =0

)\2 2
= cosh(Ac) < exp < 20 )

The claim follows.
Now, we prove the step using Chebyshev and optimizing A\. We have

P[(X — E[X]) > ] < exp(=\t)E[exp(A(X — E[X]))] < exp (—)\t + %2 Zn: ci)
k=1

where the first inequality is by Chebyshev with ¢(t) = exp(AT) and both in-
equalities hold for all A\. To find the optimal A\, we set

!
A&
(—)\t—i—z;ci) Yo

which implies A\ = Zt >. Then
€k

2 2 2
P[(X — E[X]) > t] <exp <_ZISC]2€ + @(Z&)) = exp (_t2 . 21012)
O

The inequality in the proof involving cosh follows from the expansion of cosh:

2k 2k

T 1z
coshza = Z@ < ZEQT = exp(2?/2)
k>0 k>0

92



6.8.1 Applications
Definition 6.50. A function ¢(x1,...,2,) is called discrete-Lipschitz provided
Yk

Sup sup |o(T1, -« Tho1,Thy -+ -, Tn) — @(T1, oy Th—1, Y, Thot 1y - -+ s T
iy

=icp <0
Note: it is “Lipschitz” with respect to discrete metrics.

Theorem 6.51. LetY := Y3, Ys,...,Y, be independent RVs and (1, ., Tp)
be discrete-Lipschitz. Then

v 1 2
Plo(Yi,....Ya) — Elp(Y)] > | < exp (_>
J=eo(~35g
The inequality also holds for < —t.

Remark 6.52. The above theorem gives a concentration inequality around the
mean. ***** something about arbitrary ¢, ¢,... *¥¥H¥*

Definition 6.53. Let Yi,...,Y,, b RVs on (Q,F,P) and ¢ : R™ — R measur-
able. We say that ¢(Y1,...,Yy) has bounded variation in every argument a.s.
provided 3Q € F with P[Q] = 1 such that Vw,w' € Q, Vk =1,...,n, we have

sup o (21, ..., Th—1, Y (W), Tpg1y- -5 Tn)
FERn

—@(x1, 1, Y (W), Tpa1y - Tn) | =1 e < 00

Ezample 6.54. For Y arbitrary and ¢ discrete Lipschitz, the condition holds. If
Y} is bounded a.s. for every k and ¢ is continuous, the condition holds.

Theorem 6.55. If p(Y1,...,Y,) satisfies the condition (i.e. has bounded vari-
ation in every argument a.s.) and Yi,...,Y, are independent, then

P p(¥) ~ Elp(Y)] = t] < exp (—222210]%)

Also true for P[- < —t].

Proof. Set Fr, = o(Y1,...,Y:) and Fy = (0,Q) and let our martingale be X}, :=
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Elp(Y1,...,Yn)|Fir]. WWTS it has bounded increments. Fix w € Q. Then

[ X5 (w) = Xp—1(w)]
= [Blp(Y1, . Vo)l Fi) (@) = Blp(Y)|Fia](@)|
(for a.e. w)
= [Elp(V1(w), -, Vi (W), Yia (), -, Ya ()]
- E[‘)D(Yl(w)’ s 7Yk—1(w)’ Yk(')7 s 7Yn())]‘
(cond. on Fiiq)

— B [Blp(Yi (@), ., Ye@), Yis, - Y | Fe 1] )]

— B [Elp(Yi(@), .., Yiea (), Vi Y, >|fk+11<w'>n
— B (B [p(Vi(@)s -, Vi), Vit (@), - Yo (@))]]

- BB [p(Yi(@), .., Yiea (), Yi(w >Yk+1<w'>, Y@
< B [Bur[lp(i), ., V@), Yir (@), ., Y ()

- @(Yl(w% s va—l(w)a Yk(w”)’ Yk-‘rl( )7 SR Yn( /))”]
< ¢ for ae. w

The theorem follows by Azuma @ O

Ezample 6.56 (Directed first passage percolation). Take I" a directed path from
A to B. For every edge e, Y, is a UJ0, 1] distributed RV representing the time
we need to pass through edge e. Let

p(Y(w) = b pihin {Z }2}
ecl

be the passage time from A — B. Questions: Expected value E[p(Y)]? Con-
centration? Variance? Large dev.? CLT?

6.9 Large Deviations: Cramer’s Theorem

Let (Xk)r>1 be an i.i.d. sequence of RVs with Xj, ~ u. The logarithmic moment
generating function is defined to be

A(X) :=log Elexp(AX)] € (—o0, 0]
and its Legendre transform is
A*(z) .= sup{iz — A(\)}
A
Let
1 B
_ g—1 _ -
m=res=re(13n)
k=1
be the distribution of the average (< n) of the X;s.
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Theorem 6.57 (Cramer’s Thm). Let A C R be Borel. Then

1 1 _
—inf A* < liminf — log u,, (A°) < limsup — log p1, (A) < —inf A*
Ao n n A

n—0o0 n—oo
Note: pn(A) = P[S, € A], A° is interior of A, A is closure of A. Also,

1 _
lim sup -~ log pin(A) < — i%f N =

n—oo

Ve >0 pn(A) <exp (—ninf A — 5) Vn > ng(e)
A

Note: if m = exp(—nA) for some A, then %logm = —A (rate of exponential
decay).
Properties of A, A*:

1. A, A* are both convex and lower semi-continuous
2. Ax(=A\)=A_x(N) for A\ >0
3. A(0) =0, A*(xz) >0

To prove these, notice

A= lim logElexp(A(X Ac¢))] = Ls.c.

and
AlpAMi + (1 —p)Ao) =log E [exp()\lX)p exp()\gX)lfp]
<log (E[exp()\lX)]pE[exp()\gX)]1_p)
=pA(A1) + (1 = p)A(A2)

by Holder, which implues A is convex. Then A* is convex and ls.c. as a
pointwise supremum of linear functions.

From now on, we assume “Cramer’s condition”, i.e. that X has some expo-
nential moment:

IAg > 0 such that Elexp(io|X])] < oo
which implies that A(X) < oo for |A| < Ag. Set
Dy={XeR:A()) < oo}

6.9.1 Further properties under Cramer’s condition

1. E[X] =: T is finite and A*(Z) = 0.
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2. Vax > I,

- A*(@) = sup {Az = AV}

and for x < Z, the sup is over A < 0.
3. A*is / on [Z,00) and \, on (—o0, Z].
Proof of (1): VA,
A(X) = log Elexp(AX)] > Eflogexp(AX)] = Az
by Jensen, so
sup AT — AAN) =A"(Z) <0 = A (z)=0
A S—

<0

Proof of (2): for x >z, VA > 0,

Az — A(N) < A7 — A(X) < A*(Z) =0

Proof of (3): let # < x <y, so then

A (z) =sup Az — A(N\) <supy — A(N) = A*(y)
A>0 N———
SAy—A()
etc.
Lemma 6.58. A is differentiable in D3 with

1

M= Blepir)]

E[X exp(AX)]
(finite) and

AN(xo) =q = A (q) = rog — A(Xo)
(i.e. Ao is the optimizer for A*(q)).

Proof. First statement is straightforward application of dominated convergence.
To prove the second statement, let g(y) := Ay—A(X). Since ¢'(Ag) = y—A'(Ng) =
0 and g(-) is concave, we have that )\ is a global max; that is,

Aoy — A(Xo) = g(Ao) = Sup g(\) = sup Ay — A(N) = A*(y)

Now we’re ready to prove Cramer’s Theorem

Proof. Upper bound: Let x > Z (proof for < Z is analogous). Then

P[S, € [x,00)] = E[1[;,c) (S, <FE [exp(—n)\x) exp(n)\gn)] = ()
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by Chebyshev and the fact that A > 0 = 1[; o)(-) < exp(—nAz)exp(nA(-)).
Continuing, we have

(x) = exp(—nAz) H Elexp(AX)] = exp(—n\x)Elexp(AX)]"
k=1
= exp (—n(Az — A(})))

< inf exp(-n(--) = exp (ngg(m -a0)

— exp(—nA*())

Then, to get
1 _
lim sup — log P[S,, € F] < —iI};fA*
n

n—oo

we notice that if Z € F' then infp A* = 0 (since A*(Z) = 0) so there’s nothing
to show. Let & ¢ F' with F' closed. Then

P[S, e F]< P[S,>z"] + P[S, <z7]

Sexp(—nA*(zt))  <exp(—nA*(z7))

Note
: * . *( 4 *( -
1%fA =min {A*(z"),A*(z7)}

since A* is /" on [Z,00) and \, on (—o00,Z]. WOLOG A*(z*) is the minimum,
S0
exp(—na) = exp(—nA*(z7)) > exp(—nA*(z7)) = exp(—nb)

Then,
1 - 1 _nb
limsup ~ log P[S,, € F] < limsup ~ log (exp(m) (1 + exp(">>>
n—oo N n—oo M exp(—na)

< limsup l(—na) +0=—-A*"(z")=— ir;f A*

n—oo

since log (exp(—na) (1 + M)) < —na + log 2.

exp(—na)
Lower bound: we will show that V§ > 0, u(~ X) (with Cramer’s condi-
tion), the following (*) holds:

1
lim inf — log ., ((—9,6)) > —A*(0)
n—oo n N————

=P[|Sn|<9]

This will, in turn, imply that

1
lim inf ﬁ,un((q —0,q+0)) > —A*(q);Vq

n—oo
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after a shift Y := X — ¢q. Morevoer, if G C R is open and ¢ € GG then 3§ > 0
such that (¢ — d,¢+d) C G, so

1
lim inf —log 1in (¢ — 6, ¢ + 0)) = sup(—A*(q)) = — inf A*(q)
n—oo N qeqG qeG

Now, WWTS (%). Assume, first, that u(—o0,0) > 0 and u(0,00) > 0 and X is
bounded (p has compact support). From these assumptions, we have

lim A(A) = 400 and A(\) < oo VA €R

[A[—o0

Then D3 = R and A is differentiable, which implies 3 a global min Ay where
A'(XNp) = 0 (which implies A*(0) = Ao - 0 — A(Ng) = —A(Xg)). We use Ay to
define a new probability measure i on R by
f(dx) := exp(Aox — A(XNo))p(dx)
Note that
/[l(dx) = exp(—A(Ng)) /exp()\ox),u(dx) =1
R %/_/

=1/E[exp(AoX)]

=FE[exp(AoX)]

Moreover, [, xfi(dx) = 0 since

[ wiitdr) = [wespOaatan) - 5

exp(Aox)]
_ E[Xexp(MX)] B
= Hoppex)] R0 =0

by the previous lemma. Let fi,, be the joint distribution of S, where X; ~ fi
are i.i.d. Then

(6.8 = [ 1313 5 (@) pldan) . (d)
R™ ~——

= [ Ly exp(=da 3 ) explnh)lden) .. i)
> exp(—nd) exp(nA(\)) fin (~5.)

—1

since under fi,,, S, — 0 weakly. Thus,
1
liminf — log pn (—6,9) > —d + A(Xo) = —6 — A*(0)
n—oo mn

and let § — 0. O
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