Algebra I Fall 2011

Prof. Rami Grossberg notes by Brendan W. Sullivan

September 1, 2011

1 Groups

Definition 1.1. A semigroup is a nonempty set S with a binary operation \cdot that is associative; *i.e.*

$$\forall x, y, z \in S \ [x \cdot (y \cdot z) = (x \cdot y) \cdot z]$$

Definition 1.2. A monoid is a semigroup (S, \cdot) with a two-sided identity; i.e.

 $\exists e \in S. \forall x \in S \ [x \cdot e = e \cdot x = x]$

Definition 1.3. A group is a monoid (G, \cdot) with two-sided inverses; i.e.

$$\forall x \in G. \exists y \in G \ [x \cdot y = y \cdot x = e]$$

Remark 1.4. In a group (G, \cdot) , inverses are unique, because

$$x \cdot y_1 = y_1 \cdot x = x \cdot y_2 = y_2 \cdot x = e \Rightarrow y_1 = (y_2 x)y_1 = y_2$$

Definition 1.5. A group (G, \cdot) is abelian (equivalently, commutative) $\iff \forall x, y \in G[x \cdot y = y \cdot x].$

Definition 1.6. A field $(F, +, \cdot, 0, 1)$ is a nonempty set F with elemens $0 \neq 1 \in F$ such that (F, +, 0) is an abelian group and $(F - \{0\}, \cdot, 1)$ is an abelian group (sometimes denoted F^* , or called the multiplicative group of F) and the distributive property holds:

$$\forall x, y, z \in F[x \cdot (y+z) = x \cdot y + x \cdot z]$$