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Review Problems for Test 3

1. For each improper integral below, determine whether or not it converges. Evaluate (if possible) the
convergent integrals.
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3. Evaluate the following double integrals:
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4. Evaluate the given integrals by converting to polar coordinates:
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5. Find the volume under the paraboloid z = 322 + 32 and above the region bounded by y = x and
2
=y —y.



10.

11.

12.

. Let D be the region in the plane bounded by = = y? and x = 3 —2y%. Let f(x,%) be some continuous

function. Fill in the four blank limits of integration to make the following equation correct:

/D/f(:r,y)dA = f(z,y)dz dy.

. Evaluate the following triple integrals:
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. Find the volume of the solid bounded by the paraboloids z = 322 4 3y? and z = 4 — 2% — y°.

. Use cylindrical coordinates to evaluate the integral
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Fill in the seven boxes below to make the equation correct.

Do NOT compute the integral

Let E be the three dimensional volume bounded below by the surface z = /22 + y2 and above by
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where x = pcos(0)sin(¢), y = psin() sin(¢) and z = pcos(¢).

Fill in the seven boxes below to make the equation correct.

Do NOT compute the integral.
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where z = rcos(), y = rsin(f) (and z = z).

Fill in the six boxes below to make the equation correct.

Do NOT compute the integral.
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Let E be the solid tetrahedron with vertices (0,0,0), (0,2,0), (1,1,0), (2,0,2). This tetrahedron is
bounded by the planes z =0, z =2z, z =2 —y, and z +y = 2.
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From the choices below circle the one which equals
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where FE is the volume bounded by the planes y =0,y =3, z=z,z=0,and z + 2z = 2.
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where FE is the volume bounded below by the cone
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(b)

Evaluate

and above by the sphere

Let E be the solid bounded by the planes y = 3z, v + 2z = 2, y = 0, and z = 0. Fill in the six blank
limits of integration so that

//E/f(:z:,y,z)dvz [ f(z,y, 2)dxdzdy.

The standard deviation for a random variable X with probability density function f and mean p is

defined by
o= ¢ | =) de.

Suppose that f is an exponential density function, i.e.




(a) Find the standard deviation for f.
(b) Find the probability that the random variable lies within one standard deviation of p.

17. According to Big-Ears Real Estate Company, the prices of houses on the market in Toytown are
exponentially distributed with mean £20,000, and the number of houses available for sale is expo-
nentially distributed with mean 20. (Assume that the prices of houses and the number of houses for
sale are independent random variables.)

Noddy wants to buy a house that costs between £10,000 and £25,000. What is the probability of
Noddy finding at least one house within his price range?



