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Abstract

For strong solutions of the incompressible Navier-Stokes equations in bounded do-

mains with velocity specified at the boundary, we establish the unconditional stability

and convergence of discretization schemes that decouple the updates of pressure and

velocity through explicit time-stepping for pressure. These schemes require no solu-

tion of stationary Stokes systems, nor any compatibility between velocity and pressure

spaces to ensure an inf-sup condition, and are representative of a class of highly ef-

ficient computational methods that have recently emerged. The proofs are simple,

based upon a new, sharp estimate for the commutator of the Laplacian and Helmholtz

projection operators. This allows us to treat an unconstrained formulation of the

Navier-Stokes equations as a perturbed diffusion equation.

1 Introduction

The Navier-Stokes equations for incompressible fluid flow in a domain Ω in RN

(N ≥ 2) with specified velocity on the boundary Γ take the form

∂tu + u·∇u +∇p = ν∆u + f in Ω,(1)
∇ · u = 0 in Ω,(2)

u = g on Γ.(3)

Here u is the fluid velocity, p is the pressure, and ν is the kinematic viscosity
coefficient, which we assume to be a fixed positive constant. We assume Ω is
bounded and connected and Γ = ∂Ω is C3.
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The pressure has long been a main source of trouble for understanding and
computing solutions to these equations. Pressure plays a role like a Lagrange
multiplier to enforce the incompressibility constraint. This leads to compu-
tational difficulties, typically related to the lack of an evolution equation for
updating the pressure dynamically, and a lack of useful boundary conditions for
determining the pressure by solving boundary-value problems.

These issues are particularly important in domains with boundary. Much
of the scientific and technological impact of the Navier-Stokes equations derives
from the effect of no-slip boundary conditions in creating physical phenomena
such as lift, drag, boundary-layer separation and vortex shedding, for which the
behavior of the pressure near boundaries is of great significance. Consequently,
computing with high accuracy and stability near boundaries is a major goal.

Yet most existing computational methods able to handle the difficulties are
sophisticated and lack the robustness and flexibility that would be useful to
address more complex problems. For example, many finite element methods
require the solution of Stokes equations that couple velocity and pressure, and
great care is required to arrange that the approximation spaces for these vari-
ables are compatible in the sense that an inf-sup condition holds that ensures
stability [GR, FB]. Stabilized finite element methods have been developed that
allow one to circumvent such compatibility conditions, but at the cost of addi-
tional complexity [BBGS]. Projection methods, pioneered by Chorin [Ch1, Ch2]
and Temam [Te2], achieved a separation between updates of velocity and pres-
sure through a splitting strategy. It has proved difficult, however, to achieve
high-order accuracy for pressure near boundaries [OID]—uniform second-order
accuracy was attained only a few years ago [Ti, BCM].

Recently, a number of workers have developed efficient and accurate numer-
ical methods that separate velocity and pressure updates without generating
numerical boundary layers, in ways that turn out to be closely related. The
main objective of this paper is to develop, for a representative class of such
schemes, a theory of stability and convergence to strong solutions, with the
regularity

u ∈ L2(0, T ;H2(Ω,RN )) ∩H1(0, T ;L2(Ω,RN )),

∇p ∈ L2(0, T ;L2(Ω,RN )).

In particular we establish unconditional stability and convergence for a class of
fully discrete finite element methods which need not satisfy any compatibility
requirement related to an inf-sup condition, for the case of no-slip boundary
conditions. Our theory is based on a new, sharp estimate in L2-norm for the
commutator of the Laplacian and Helmholtz projection operators. A side benefit
of the theory is a particularly simple proof of local existence and uniqueness for
strong solutions in bounded domains.

For simplicity, at first we consider no-slip boundary conditions, taking g = 0.
Below, we let 〈f, g〉Ω =

∫
Ω
fg denote the L2 inner product of functions f and

g in Ω, and let ‖ · ‖Ω denote the corresponding norm in L2(Ω). We drop the
subscript on the inner product and norm when the domain of integration is
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understood in context.
The schemes that we study are based on the following time-discretization

scheme, implicit only in the viscosity term and explicit in the pressure and non-
linear terms. Given an approximation un to the velocity at time n∆t, determine
∇pn from a weak-form pressure Poisson equation, requiring

(4) 〈∇pn,∇φ〉 = 〈fn − un · ∇un + ν∆un − ν∇∇ · un,∇φ〉 ∀φ ∈ H1(Ω),

then determine un+1 from the elliptic boundary-value problem

un+1 − un

∆t
− ν∆un+1 = fn − un · ∇un −∇pn,(5)

un+1
∣∣
Γ

= 0.(6)

Ultimately we will consider corresponding fully discrete finite-element methods
that use C1 elements for the velocity field and C0 elements for the pressure.

The discretization scheme above is a prototype for a class of highly efficient
numerical methods for incompressible flow obtained using different kinds of spa-
tial discretization and higher-order time differencing [Ti, HP, Pe, GuS, JL]. The
computation of velocity updates is completely divorced from the computation
of pressure from the kinematic pressure Poisson equation. No stationary Stokes
solver is necessary to handle implicitly differenced pressure terms. The compu-
tation of incompressible Navier-Stokes dynamics in a general domain is thereby
reduced to solving a heat equation and a Poisson equation at each time step.

This decoupling of velocity and pressure updates is also characteristic of
projection methods, which are closely related. But a distinguishing aspect of
the new schemes is the consistent way the boundary condition is implemented,
and their improved accuracy and flexibility. We refer to Brown et al. [BCM]
for a study of second-order accuracy near the boundary for several modern im-
provements of the projection method. We will discuss the connections between
the scheme (4)–(6) above, recent improvements of the projection method, and
the gauge method [EL], in some detail in section 2.

The presence of the grad-div term in the pressure Poisson equation (4) is a
key feature that allows us to prove the stability of the schemes we consider. To
begin to explain the usefulness of this term, we next describe an unconstrained
formulation of the Navier-Stokes equations that underlies the scheme (4)–(6).

Recall that a standard way to analyze the Navier-Stokes equations uses the
Helmholtz-Hodge decomposition. We let P denote the Helmholtz projection op-
erator onto divergence-free fields, defined as follows. Given any a ∈ L2(Ω,RN ),
there is a unique q ∈ H1(Ω) with

∫
Ω
q = 0 such that Pa := a +∇q satisfies

(7) 0 = 〈Pa,∇φ〉 = 〈a +∇q,∇φ〉 ∀φ ∈ H1(Ω).

The pressure p in (1) can be regarded as determined by taking a = u·∇u− f −
ν∆u. Then (1) is rewritten as

(8) ∂tu + P(u·∇u− f − ν∆u) = 0.
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In this formulation, solutions formally satisfy ∂t(∇ · u) = 0. Consequently the
zero-divergence condition (2) needs to be imposed only on initial data. Never-
theless, the pressure is determined from (8) in principle even for velocity fields
that do not respect the incompressibility constraint. But then the dissipation
in (8) appears degenerate due to the fact that P annihilates gradients. Thus,
the analysis of (8) is usually restricted to spaces of divergence-free fields.

It is possible to determine the pressure differently when the velocity field
has non-zero divergence. Instead of (8), we consider

(9) ∂tu + P(u·∇u− f − ν∆u) = ν∇(∇ · u).

Of course there is no difference as long as ∇ · u = 0. But the incompressibility
constraint is enforced in a more robust way, because the divergence of velocity
satisfies a weak form of the diffusion equation with no-flux (Neumann) boundary
conditions — Due to (7), for all appropriate test functions φ we have

(10) 〈∂tu,∇φ〉 = 〈ν∇(∇ · u),∇φ〉.

Due to the fact that
∫
Ω
∇ · u = 0, the divergence of velocity is smoothed and

decays exponentially in L2 norm. Naturally, if ∇ · u = 0 initially, this remains
true for all later time, and one has a solution of the standard Navier-Stokes
equations (1)–(3).

The unconstrained formulation (9) can be recast in the form (1). Taking
a = u·∇u− f −ν∆u+ν∇∇·u, and noting P∇∇·u = 0, we find the projection
term in (9) has the form Pa = a +∇p with the pressure determined as in (7).
Thus, with no-slip boundary conditions, (9) is equivalent to

∂tu + u·∇u +∇p = ν∆u + f in Ω,(11)

〈∇p,∇φ〉 = 〈f − u·∇u + ν∆u− ν∇∇ · u,∇φ〉 ∀φ ∈ H1(Ω),(12)
u = 0 on Γ.(13)

The scheme (4)–(6) comes directly from discretization of this system.
An alternative form of (9) proves illuminating. First, notice the following.

Lemma 1 Let Ω ⊂ RN be a bounded domain, and let u be a vector field in
L2(Ω,RN ). Then in the sense of distributions, one has

∇∇ · u = ∆(I − P)u.

Proof: We have (I − P)u = ∇q where q ∈ H1(Ω) and ∆q = ∇ · u. Then
∇∇ · u = ∇∆q = ∆∇q and the result follows. �

Using this result, we see that (9) takes the equivalent form

(14) ∂tu + P(u·∇u− f) + ν[∆,P]u = ν∆u,

where [∆,P] = ∆P − P∆ is the commutator of the Laplacian and Helmholtz
projection operators. One may expect this commutator to be “small” in some
sense. Indeed, it vanishes in the case when the domain is a box with periodic
boundary conditions. With no-slip boundary conditions, it turns out that the
commutator is a second-order operator bounded by the following sharp estimate.
This estimate is the key to our stability theory.
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Theorem 1 Let Ω ⊂ RN (N ≥ 2) be a connected bounded domain with C3

boundary. Then for any ε > 0, there exists C ≥ 0 such that for all vector fields
u ∈ H2 ∩H1

0 (Ω,RN ),

(15)
∫

Ω

|(∆P − P∆)u|2 ≤
(

1
2

+ ε

)∫
Ω

|∆u|2 + C

∫
Ω

|∇u|2.

The coefficient 1
2 + ε is essentially sharp—we show in Appendix A using Fourier

analysis that when Ω = RN
+ is the half-space where xN > 0, then

(16)
∫

Ω

|(∆P − P∆)u|2 ≤ 1
2

∫
Ω

|∆u|2

for all u ∈ H2 ∩H1
0 (Ω,RN ), and equality holds for some u.

Notice that by Lemma 1, [∆,P]u is a gradient:

(17) (∆P − P∆)u = (I − P)∆u−∇∇ · u = (I − P)(∆−∇∇·)u.

Thus the pressure in (11)–(12) is determined by

(18) ∇p = (I − P)(f − u·∇u) + ν(∆P − P∆)u.

The first part of this pressure gradient is nonlinear but involves only derivatives
up to first order. The second part is controlled by Theorem 1, in a way that
significantly sharpens the standard bound ‖[∆,P]u‖ ≤ ‖∆u‖ valid when ∇·u =
0 by L2-orthogonality. Because we can take 1

2 + ε < 1, for stability analysis the
whole pressure gradient can be strictly controlled by the viscosity term, modulo
lower-order terms. This explains why one can discretize the pressure explicitly.
Thus, due to the estimate in Theorem 1, we can regard (14) or equivalently
(9) or (11)–(12) as a controlled perturbation of the vector diffusion equation
∂tu = ν∆u, in contrast to the usual approach that regards the Navier-Stokes
equations as a perturbation of the Stokes system ∂tu +∇p = ν∆u, ∇ · u = 0.

We will prove Theorem 1 in section 3. Based on the estimate (15), we
establish unconditional stability of the time-discretization scheme (4)–(6) in
section 4. A straightforward compactness argument, given in section 5, yields
convergence to the unique local strong solution to the unconstrained system
(11)–(13) with initial values u(·, 0) = uin ∈ H1(Ω,RN ). When ∇ · uin = 0 this
is the local strong solution of the standard Navier-Stokes equations (1)–(3).

The analysis of the time-discrete scheme easily adapts to proving uncondi-
tional stability and convergence for corresponding fully discrete finite-element
methods with C1 elements for velocity and C0 elements for pressure as men-
tioned above. We carry out this analysis in section 6. It is important to note that
the finite-element spaces for velocity and pressure need not satisfy any compat-
ibility requirement to enforce an inf-sup condition. The inf-sup condition (also
known as the Ladyzhenskaya-Babuška-Brezzi condition in the context of the
Stokes equation) has long been a central foundation for finite-element methods
for all saddle-point problems. Its beautiful theory is a masterpiece documented
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in many finite-element books. In the usual approach, the inf-sup condition
ensures the stability of the approximation, but this imposes a compatibility re-
striction on the finite-element spaces for velocity and pressure which is violated
by many natural choices—piecewise polynomials of the same order, for exam-
ple. Here, however, due to the fully dissipative nature of the unconstrained
formulation (9), which follows as a consequence of Theorem 1, as far as our
stability analysis in section 6 is concerned, the finite-element spaces for velocity
and pressure can be completely unrelated.

We deal with nonhomogenous boundary conditions (g nonzero in (3)) in
section 7, and provide an estimate on divergence for the time-discrete scheme
in section 8. We conclude with three appendices. In particular, in Appendix
A we prove (16), and in Appendix B we study the range of the commutator
[∆,P] acting on H2(Ω,RN ). This operator accounts for the contribution to the
pressure gradient by the viscosity term in bounded domains. In three dimensions
it turns out that its range is the space of square-integrable vector fields that are
simultaneously gradients and curls (see Theorem 9).

2 Related formulations and schemes

2.1 Stokes pressure and curl curl

In order to discuss the connections between the schemes that we treat and
related ones in the literature, we first need to make some points regarding the
commutator ∆P − P∆.

The commutator term in (18) supplies the part of the pressure due to the
viscosity term. This is the entire pressure when one neglects nonlinear and
forcing terms, as in the linear Stokes equation. Hence we call this part of the
pressure the Stokes pressure associated with the vector field u ∈ H2(Ω,RN ).
The Stokes pressure pS is defined from

(19) ∇pS = (∆P − P∆)u.

According to (17) and (7), pS is determined as the mean-zero solution of

(20)
∫

Ω

∇pS · ∇φ =
∫

Ω

(∆u−∇∇ · u) · ∇φ ∀φ ∈ H1(Ω).

We observe that the Stokes pressure is a harmonic function determined by
a meaningful boundary value problem. Formal integration by parts in (20)
suggests that pS is determined as the solution of the Neumann boundary-value
problem

(21) ∆pS = 0 in Ω, n · ∇pS = n · (∆−∇∇·)u on Γ.

Indeed, this is true for any u ∈ H2(Ω,RN ): In the sense of distributions, the
vector field Au := ∆u−∇∇ ·u has zero divergence, hence ∆pS = 0. Moreover,
Au and ∇pS belong to L2(Ω,RN ), so both lie in the space H(div; Ω) consisting
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of vector fields in L2(Ω,RN ) with divergence in L2(Ω). By a well-known trace
theorem (see [GR], theorem 2.5), the normal components of Au and ∇pS belong
to the Sobolev space H−1/2(Γ), and (20) implies

(22) 0 =
∫

Γ

φn · (∇pS −∆u +∇∇ · u), ∀φ ∈ H1(Ω).

From this we infer that the boundary condition in (21) holds in H−1/2(Γ).
In two and three dimensions, the Stokes pressure is generated by the tan-

gential part of vorticity at the boundary. To see this, start with the identity

(23) ∆u−∇∇ · u = −∇×∇× u,

whence ∇pS = −(I − P)(∇×∇× u). Green’s formula yields

(24)
∫

Γ

n · (∇×∇× u)φ =
∫

Ω

(∇×∇× u) · ∇φ = −
∫

Γ

(∇× u) · (n×∇φ)

and therefore from (20), pS is also determined by the condition [JL]

(25)
∫

Ω

∇pS · ∇φ =
∫

Γ

(∇× u) · (n×∇φ) ∀φ ∈ H1(Ω).

Note that ∇ × u ∈ H1/2(Γ,RN ), and n × ∇φ ∈ H−1/2(Γ,RN ) by a standard
trace theorem [GR, Theorem 2.11], since ∇φ lies in H(curl; Ω), the space of
vector fields in L2(Ω,RN ) with curl in L2.

The unconstrained formulation of the Navier-Stokes equations in (11)–(12)
now can be seen to be equivalent to a formulation analyzed by Grubb and
Solonnikov in [GS1, GS2]. For Dirichlet-type boundary conditions, these authors
obtain the contribution to pressure from viscosity by solving the boundary value
problem (21). But they did not describe the connection between (21) and the
commutator ∆P − P∆. Grubb and Solonnikov performed an analysis of their
formulation based on a general theory of parabolic pseudodifferential initial-
boundary value problems, and they argued that this formulation is parabolic in a
nondegenerate sense. They also showed that for strong solutions, the divergence
of velocity satisfies a diffusion equation with Neumann boundary conditions.

2.2 Related schemes that damp divergence

Recently a number of workers have independently developed splitting schemes
that can be obtained directly from the time-discrete scheme in (4)–(6) through
spatial discretization and including higher-order time differencing. In particular
we mention works of Henshaw and Petersson [HP], Guermond and Shen [GuS],
and Johnston and Liu [JL]. The common ingredient is that the pressure is
determined from a Poisson equation using the curl-curl boundary condition as
in (21). The first related use of this curl-curl boundary condition appears to
be by Orszag et al. [OID], who used it as a way of enforcing consistency for a
Neumann problem in the context of the projection method.
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In the introduction, we motivated the scheme (4)–(6) through adding a grad-
div term that produces a diffusive damping of the divergence of velocity in the
time-continuous formulation (9). In addition, or alternatively, one can add a
term to produce linear damping of the divergence of velocity. Petersson em-
ployed this procedure in [Pe] (also see [HP]) as a way of further suppressing
divergence errors. With constant divergence damping, his procedure is equiva-
lent to adding λ(I − P)u on the left-hand side of (9).

Upon discretization, this produces several schemes close to ones that have
figured significantly in the recent literature related to the projection method.
In the first-order scheme as suggested by Petersson, the discretized momentum
equation may be written in the form

(26)
un+1 − un

∆t
+ λ(I − P)un + P(un · ∇un − fn) + ν∇pn

S = ν∆un+1,

with ∇pn
S determined from un as in (21); that is, ∇pn

S = (∆P − P∆)un is the
Stokes pressure determined by un.

Taking λ = 1/∆t in (26) and replacing un by Pun in the convection term
results in the following method close to a first-order version of the projection
method introduced by Timmermans et al. [Ti]: Given Un = Pun and pn, find
un+1 with un+1 = 0 on Γ and determine φn+1 so that ∆t∇φn+1 = (I−P)un+1

by solving

un+1 −Un

∆t
+ P(Un · ∇Un − fn) +∇pn = ν∆un+1 in Ω,(27)

∆φn+1 = ∇ · un+1/∆t in Ω, n ·∇φn+1 = 0 on Γ,(28)

and set Un+1 = un+1 −∆t∇φn+1 = Pun+1 and

pn+1 = pn − ν∇ · un+1 + φn+1.(29)

This differs from the approach of [Ti] only in the presence of the projection
applied to the convection/forcing term. To see that this scheme is like (26) with
λ = 1/∆t, apply I − P to (27) and use Lemma 1, obtaining

∇(φn+1 + pn) = ν∆(I − P)un+1 + ν(∆P − P∆)un+1

= ν∇∇ · un+1 + ν∇pn+1
S .

Using (29) we find pn+1 = νpn+1
S .

This same scheme is also equivalent to the following scheme close to a first-
order version of a scheme proposed in the much-cited work of Kim and Moin
[KM] and examined in the study of numerical boundary layers by Brown et
al. [BCM]: Given Un = Pun and φn, find un+1 with un+1 = ∆t∇φn on Γ, and
determine φn+1 so that ∆t∇φn+1 = (I − P)un+1, by solving

un+1 −Un

∆t
+ P(Un · ∇Un − fn) = ν∆un+1 in Ω,(30)

∆φn+1 = ∇ · un+1/∆t in Ω, n ·∇φn+1 = 0 on Γ,(31)
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and set Un+1 = un+1 −∆t∇φn+1 = Pun+1. To compare with (26), let

vn+1 = un+1 − (I − P)un = un+1 −∆t∇φn,(32)
pn = φn − ν∆t∆φn = φn − ν∇ · un.(33)

Then Pvn = Pun = Un and using Lemma 1 one finds

vn+1 −Un

∆t
+ P(Un · ∇Un − fn) +∇pn = ν∆vn+1,(34)

with vn+1 = 0 on Γ. Applying I − P to (30) and using (33) we find

∇pn =
1

∆t
(I − P)un − ν∆(I − P)un = ν(∆P − P∆)un = ν∇pn

S .

The fact that the scheme of Kim and Moin can be transformed into that of
Timmerman et al. has been observed in [GMS].

Finally, if one starts from (26) and retains the linear damping term with
λ = 1/∆t but omits the term ∇pn

S that produces diffusive damping of the diver-
gence at the continuous level, one arrives at Chorin’s original projection method
from [Ch1]. Including linear damping with general λ and without ∇pn

S results
in a divergence damping strategy related to Baumgarte’s method of relaxing
constraints in constrained systems of ordinary differential equations [Bm]—for
an approach to incompressible Navier-Stokes flow that combines Baumgarte’s
stabilization method with a modified penalty regularization, see [Li].

2.3 Equivalence with a gauge method

The scheme (4)–(6) is also related, in a less obvious way, to the gauge method
proposed and studied by E and Liu [EL] and by Wang and Liu [WL]. The gauge
method is motivated by the goal of splitting the pressure and velocity updates,
but its form is superficially very different from (4)–(6). At the time-continuous
level, the idea is to represent the velocity in the form

(35) u = a +∇φ

and impose sufficient equations and boundary conditions on a and φ to make
u the Navier-Stokes solution. If (35) is the Helmholtz decomposition of a, so
that ∇φ = (P − I)a, then u is divergence-free. However, we can recover the
unconstrained formulation (14), for which ∇ · u is not necessarily zero, with a
different choice of the gauge variable φ. Namely, we require

∂ta + P(u·∇u− f) = ν∆a in Ω,(36)
a +∇φ = 0 on Γ,(37)

∂tφ+ νpS = ν∆φ in Ω,(38)
n ·∇φ = 0 on Γ,(39)

where pS is the Stokes pressure determined from u via (21). We recover (14) by
adding the gradient of (38) to (36).
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Upon time discretization, one obtains a scheme that can be written in the
following form. (See Appendix C for further details.) Given an at time tn = n∆t
such that n · an = 0 on Γ, find un and φn so that

un = Pan + ν∆t(I − P)∆an,(40)
∆φn = −∇ · an in Ω, n · ∇φn = 0 on Γ,(41)

then determine an+1 by solving

an+1 − an

∆t
+ P(un · ∇un − fn) = ν∆an+1 in Ω,(42)

an+1 +∇φn = 0 on Γ.(43)

The method in [EL, WL] differs only in that un in (42) is replaced by Pun. For
a closer comparison, we note that ∇φn = (P − I)an and hence

(44) un+1 = an+1 +∇φn.

Proposition 1 The scheme (4)–(6) is equivalent to the gauge method (40)–
(43).

For the proof we refer to Appendix C, where we establish equivalence in
the general case with nonhomogeneous boundary conditions and a nontrivial
divergence constraint.

2.4 Previous stability and convergence analysis

We briefly review what has been proven regarding the stability and convergence
of schemes related to (4)-(6) that achieve efficiency through a decoupling of
the updates of pressure and velocity. In many cases, stability has been studied
through normal mode analysis for the linear Stokes equations in periodic strip
domains or a half space. Orszag et al. [OID] were perhaps the first to perform
such an analysis of a projection method. The works [HP, Pe, JL] treat schemes
corresponding to (4)–(6) by this approach, and the gauge method was dealt
with in [EL]. As pointed out by Petersson [Pe], showing that the norm of the
amplification factor is less than 1 in normal mode analysis establishes only a
necessary conditon for stability.

Error estimates that establish a rate of convergence of the scheme have
been established for sufficiently smooth solutions of the Stokes or Navier-Stokes
equations in a number of cases. We refer to [GMS] for a recent review of
results concerning projection methods for Stokes equations in sufficiently smooth
domains, related to the methods of Timmermans et al. and Kim and Moin, as
well as the schemes of [HP, Pe, GuS, JL]. An analysis of the gauge method was
performed by Wang and Liu [WL], who established unconditional stability for
the Stokes problem and error estimates for fully discrete Navier-Stokes equations
on a staggered grid in a periodic strip.

By comparison, the primary novelty of the present paper concerns stabil-
ity analysis for approximating strong solutions of the Navier-Stokes equations
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in general smooth (C3) domains, with the spatially continuous scheme (4)-(6)
and with fully discrete finite element methods not requiring any compatibility
between velocity and pressure spaces related to an inf-sup condition. We estab-
lish convergence to local strong solutions by standard compactness arguments.
Rate-of-convergence studies are left for future work.

3 Estimate on the commutator ∆P − P∆

The purpose of this section is to prove Theorem 1. The proof is rather ele-
mentary, based upon (i) an energy partitioning lemma for harmonic functions,
that controls the difference between normal and tangential parts of the Dirichlet
integral near the boundary (see Lemma 2), and (ii) an orthogonality identity
for the Stokes pressure in terms of a part of velocity near and parallel to the
boundary.

3.1 Preliminaries

Let Ω ⊂ RN be a bounded domain with C3 boundary Γ. For any x ∈ Ω we let

Φ(x) = dist(x,Γ)

denote the distance from x to Γ. For any s > 0 we denote the set of points in
Ω within distance s from Γ by

(45) Ωs = {x ∈ Ω | Φ(x) < s},

and set Ωc
s = Ω\Ωs and Γs = {x ∈ Ω | Φ(x) = s}. Since Γ is C3 and compact,

there exists s0 > 0 such that Φ is C3 in Ωs0 and its gradient is a unit vector,
with |∇Φ(x)| = 1 for every x ∈ Ωs0 . We let

(46) n(x) = −∇Φ(x),

then n(x) is the outward unit normal to Γs = ∂Ωc
s for s = Φ(x), and n ∈

C2(Ω̄s0 ,RN ).
It suffices to establish the estimate (15) for all u ∈ C2(Ω̄,RN ) with u =

0 on Γ, since the space of such functions is dense in H2 ∩H1
0 (Ω,RN ). This

fact is a consequence of C2,α elliptic regularity theory [GT], but we indicate
a more elementary argument in keeping with the nature of the rest of this
section: Let B(0, r) = {x ∈ RN | |x| < r} and RN

+ = {x | xN > 0}. By a
standard argument using partition of unity and C2 boundary-flattening maps,
the problem is reduced to one of local approximation for locally flat boundary.
It suffices to show that if r0 > r1 > 0 and B(0, r0)∩Ω = B(0, r0)∩RN

+ , then any
u ∈ H2∩H1

0 (Ω) that is supported in B(0, r1) can be approximated by functions
uk ∈ C2(RN ) that vanish when xN = 0 and when |x| > r0. Fix a smooth radial
function ξ on RN with ξ(x) = 1 for |x| < r1, ξ(x) = 0 for |x| > r0. Given u as
described, then f = (I−∆)u ∈ L2(Ω) and f = 0 outside B(0, r1). Approximate
f in L2 norm by smooth fk compactly supported in B(0, r1) ∩ RN

+ and extend
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fk to RN as odd in xN and zero for |x| > r1. Now uk = ξ(I−∆)−1fk is smooth
in RN and vanishes when |x| > r0, is odd in xN so vanishes when xN = 0, and
converges to u = ξ(I −∆)−1f in H2(Ω). �

3.2 Energy partitioning lemma

Our proof of Theorem 1 crucially involves a comparison between the normal and
tangential parts of the Dirichlet integral for harmonic functions in the tubular
domains Ωs for small s > 0.

Lemma 2 Let Ω be a bounded domain with C2 boundary and suppose Φ is C2

in Ωs0 , s0 > 0. Then there exists C0 ≥ 0 such that whenever p is a harmonic
function in Ωs0 and 0 < s < s0 we have∣∣∣∣∫

Ωs

(
|n ·∇p|2 − |(I − nnT )∇p|2

)∣∣∣∣ ≤ C0s

∫
Ωs0

|∇p|2.

Proof: We let

Q0 = |n ·∇p|2 − |(I − nnT )∇p|2 = 2|n ·∇p|2 − |∇p|2,

and note that due to n = −∇Φ and |n|2 = 1 we have

Q0 = ∇Φ · v, v = 2∇p(∇Φ · ∇p)−∇Φ|∇p|2.

Following a technique used by Sanni on p. 13 of [Sa], we integrate by parts for
0 < s < s0 to obtain

(47)
∫

Ωs

Q0 =
∫

Γs

Φ(−n · v)−
∫

Ωs

Φ∇ · v = s

∫
Γs

Q0 +
∫

Ωs

ΦQ1,

where, since ∆p = 0 (and with summation on repeated indices implied),

Q1 = −∇ · v = −2∇2Φ : (∇p⊗∇p) + (∆Φ)|∇p|2

= −2(∂i∂jΦ)(∂ip)(∂jp) + (∂2
i Φ)(∂jp)2.

We have |Q0| ≤ |∇p|2 and |Q1| ≤ C1|∇p|2 where C1 depends only upon Ω and
s0. We divide (47) by s2 and integrate in s to obtain

1
s

∫
Ωs

Q0 −
1
s0

∫
Ωs0

Q0 =
∫ s0

s

1
r2

(∫
Ωr

ΦQ1

)
dr

=
1
s

∫
Ωs

ΦQ1 −
1
s0

∫
Ωs0

ΦQ1 +
∫

Ωs0\Ωs

Q1.

Since |Φ(x)| ≤ r in Ωr, it follows directly that∣∣∣∣∫
Ωs

Q0

∣∣∣∣ ≤ s

∫
Ωs0

(
s−1
0 |Q0|+ 2|Q1|

)
≤ C0s

∫
Ωs0

|∇p|2

with C0 = s−1
0 + 2C1. �
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3.3 Boundary identities

As a consequence of the no-slip boundary condition u = 0 on Γ, we obtain two
key identities that involve the parts of u parallel and normal to the boundary.

Lemma 3 Let Ω ⊂ RN be a bounded domain with boundary Γ of class C2. Let
u ∈ C1(Ω̄,RN ) and suppose that

u‖ = (I − nnT )u, u⊥ = nnT u

in some neighborhood of Γ. Then the following are valid:

(i) If u = 0 on Γ then ∇ · u‖ = 0 on Γ.

(ii) If n · u = 0 on Γ then ∇u⊥ −∇u⊥T = 0 on Γ.
(In particular, ∇× u⊥ = 0 on Γ if N = 2 or 3.)

Proof: To begin, recall n = −∇Φ. Equality of mixed partial derivatives yields
∂jni = ∂inj for all i, j = 1, . . . , N . Together with the fact nini = 1, we infer
that for small s > 0, throughout Ωs we have

(48) ni∂jni = 0 and ni∂inj = 0.

(i) First, for any f ∈ C1(Ω̄), if f = 0 on Γ then ∇f ‖ n on Γ, which means

(49) (I − nnT )∇f = 0, or (∂k − nknj∂j)f = 0 for k = 1, . . . , N.

Now suppose u ∈ C2(Ω̄,RN ) with u = 0 on Γ. Then, after taking derivatives
in Ωs for some s > 0 and then taking the trace on Γ, using (49) we get

∇ ·
(
(I − nnT )u

)
= ∂j

(
uj − njnkuk

)
= ∂juj − njnk∂juk = ∂juj − ∂kuk = 0.

(ii) Let f = n · u so that u⊥ = nf . Using ∂jni = ∂inj and (49) we find that

∂j(nif)− ∂i(njf) = ninjnk∂kf − njnink∂kf = 0.

This proves (ii). If N = 2 or 3 this just means ∇× (nf) = n×∇f = 0 on Γ. �

3.4 Orthogonality identity

Let u ∈ C2(Ω̄,RN ). As indicated in (25), in two and three dimensions the
Stokes pressure vanishes if the vorticity tangential to the boundary vanishes. In
any dimension N ≥ 2, the Stokes pressure pS from (20) is determined by∫

Ω

∇pS · ∇φ =
∫

Ω

(∂2
j ui − ∂i∂juj)∂iφ =

∫
Γ

nj(∂jui − ∂iuj)∂iφ(50)

=
∫

Γ

n · (∇u−∇uT )∇φ ∀φ ∈ H1(Ω).

Thus, pS is not affected by any part of the velocity field that contributes nothing
to n · (∇u−∇uT ). This means the Stokes pressure is not affected by the part of
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the velocity field in the interior of Ω, nor is it affected by the normal component
of velocity near the boundary if n · u|Γ = 0, by Lemma 3 (ii).

This motivates us to focus on the part of velocity near and parallel to the
boundary. We make the decomposition

(51) u = u⊥ + u‖,

(52) u⊥ = ξnnT u + (1− ξ)u, u‖ = ξ(I − nnT )u,

where ξ is a cutoff function satisfying ξ(x) = 1 when Φ(x) < 1
2s and ξ(x) = 0

when Φ(x) ≥ s. We can define ξ as follows. Let ρ : [0,∞) → [0, 1] be a smooth
decreasing function with ρ(t) = 1 for t < 1

2 and ρ(t) = 0 for t ≥ 1. With
ξ(x) = ρ(Φ(x)/s), ξ is C3 for small s > 0 and has the desired properties.

Suppose that u = 0 on Γ. Since then u⊥ ∈ C2(Ω̄,RN ) with u⊥ = 0 and
n · (∇u⊥ −∇u⊥T ) = 0 on Γ, we have that the Stokes pressure for u⊥ vanishes
— replacing u by u⊥ in (19) and (20) and (50) we get

(53) (∆P − P∆)u⊥ = (I − P)(∆−∇∇·)u⊥ = 0.

With (51), this proves

(54) ∇pS = (∆P − P∆)u = (∆P − P∆)u‖ = (I − P)(∆−∇∇·)u‖.

Lemma 4 Let Ω ⊂ RN be a bounded domain with C3 boundary, and let u ∈
H2 ∩H1

0 (Ω,RN ). Let pS and u‖ be defined via (19) and (52) respectively. Then
for any q ∈ H1(Ω) that satisfies ∆q = 0 in the sense of distributions,

(55) 〈∆u‖ −∇pS,∇q〉 = 0.

In particular we can let q = pS, so 〈∆u‖ −∇pS,∇pS〉 = 0 and

(56) ‖∆u‖‖2 = ‖∆u‖ −∇pS‖2 + ‖∇pS‖2.

Proof: It suffices to suppose u ∈ C2(Ω̄,RN ) with u = 0 on Γ by the density
remark in section 3.1. By Lemma 3(i),

(57) ∇ · u‖|Γ = 0,

so ∇ · u‖ ∈ H1
0 (Ω), thus 〈∇∇ · u‖,∇q〉 = −〈∇ · u‖,∆q〉 = 0. Now (54) entails

(58) 〈∇pS,∇q〉 = 〈∆u‖,∇q〉.

This proves (55). Then (56) follows by L2-orthogonality. �

3.5 Proof of Theorem 1

Let ε > 0 and β = 1
2 + ε. Fix β1 < 1 such that 1 + ε0 := β(1 + β1) > 1, and

fix s, ε1, ε2 > 0 small so that 2ε1 < ε0 and 1 − ε2 − 2C0s > β1 with C0 as in
Lemma 2.
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Let u ∈ H2 ∩H1
0 (Ω,RN ), define the Stokes pressure ∇pS = (∆P − P∆)u,

and make the decomposition u = u⊥ + u‖ as in the previous subsection. Then
by Lemma 4 we have

(59) ‖∆u‖2 = ‖∆u⊥‖2 + 2〈∆u⊥,∆u‖〉+ ‖∆u‖ −∇pS‖2 + ‖∇pS‖2.

We will establish the Theorem with the help of two further estimates.
Claim 1: There exists a constant C1 > 0 independent of u such that

(60) 〈∆u⊥,∆u‖〉 ≥ −ε1‖∆u‖2 − C1‖∇u‖2.

Claim 2: There exists a constant C2 independent of u such that

(61) ‖∆u‖ −∇pS‖2 ≥ β1‖∇pS‖2 − C2‖∇u‖2.

Combining the two claims with (59), we get

(62) (1 + 2ε1)‖∆u‖2 ≥ (1 + β1) ‖∇pS‖2 − (C2 + 2C1)‖∇u‖2.

Multiplying by β and using β(1 + β1) = 1 + ε0 > 1 + 2ε1 yields (15).
Proof of claim 1: From the definitions in (52), we have

(63) ∆u⊥ = ξnnT ∆u + (1− ξ)∆u +R1, ∆u‖ = ξ(I − nnT )∆u +R2,

where ‖R1‖ + ‖R2‖ ≤ C‖∇u‖ with C independent of u. Since I − nnT =
(I − nnT )2,(
ξnnT ∆u + (1− ξ)∆u

)
·
(
ξ(I − nnT )∆u

)
= 0 + ξ(1− ξ)|(I − nnT )∆u|2 ≥ 0.

This means the leading term of 〈∆u⊥,∆u‖〉 is non-negative. Using the inequal-
ity |〈a, b〉| ≤ (ε1/C)‖a‖2+(C/ε1)‖b‖2 and the bounds on R1 and R2 to estimate
the remaining terms, it is easy to obtain (60).
Proof of claim 2: Let a = ∇pS and b = ∆u‖, and put

(64) a‖ = (I − nnT )a, a⊥ = (nnT )a, b‖ = (I − nnT )b, b⊥ = (nnT )b.

Recall u‖ is supported in Ωs = {x ∈ Ω | Φ(x) < s}. Due to (63), we have

(65)
∫

Ωs

|b⊥|2 =
∫

Ωs

|n ·∆u‖|2 =
∫

Ωs

|n ·R2|2 ≤ C

∫
Ω

|∇u|2

Since b = 0 in Ωc
s = {x ∈ Ω | Φ(x) ≥ s}, we have

(66) ‖∆u‖−∇pS‖2 =
∫

Ω

|a−b|2 =
∫

Ωc
s

|a|2 +
∫

Ωs

|a⊥−b⊥|2 +
∫

Ωs

|a‖−b‖|2.

We estimate the terms in (66) as follows. First,

(67)
∫

Ωs

|a⊥−b⊥|2 ≥
∫

Ωs

(|a⊥|2−2a⊥ ·b⊥) ≥ (1−ε2)
∫

Ωs

|a⊥|2−
1
ε2

∫
Ωs

|b⊥|2.
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Due to the orthogonality in Lemma 4, we have 〈a,a− b〉 = 0, hence

(68) 0 =
∫

Ω

a · (a− b) =
∫

Ωc
s

|a|2 +
∫

Ωs

a⊥ · (a⊥ − b⊥) +
∫

Ωs

a‖ · (a‖ − b‖).

For a sharp estimate we need to treat b‖ carefully. Using (68) we obtain∫
Ωs

|a‖ − b‖|2 + |a‖|2 ≥ −2
∫

Ωs

a‖ · (a‖ − b‖)

= 2
∫

Ωc
s

|a|2 + 2
∫

Ωs

a⊥ · (a⊥ − b⊥)

≥ 2
∫

Ωc
s

|a|2 + (2− ε2)
∫

Ωs

|a⊥|2 −
1
ε2

∫
Ωs

|b⊥|2,

hence

(69)
∫

Ωs

|a‖−b‖|2 ≥ (1−ε2)
∫

Ωs

|a‖|2+(2−ε2)
∫

Ωs

(|a⊥|2−|a‖|2)−
1
ε2

∫
Ωs

|b⊥|2.

Using (67) and (69) in (66) yields

(70)
∫

Ω

|a− b|2 ≥ (1− ε2)
∫

Ω

|a|2 + (2− ε2)
∫

Ωs

(|a⊥|2 − |a‖|2)−
2
ε2

∫
Ωs

|b⊥|2.

Finally, using Lemma 2 and the estimate (65) we infer

(71)
∫

Ω

|∇pS −∆u‖|2 ≥ (1− ε2 − 2C0s)
∫

Ω

|∇pS|2 − C

∫
Ω

|∇u|2.

This establishes Claim 2, and finishes the proof of Theorem 1. �
Note that estimate (15) also holds with

∫
Ω
|∇u|2 replaced by

∫
Ω
|u|2, due to

a simple interpolation estimate.

4 Unconditional stability of time discretization
with pressure explicit

In this section we exploit Theorem 1 to establish the unconditional stability
of the simple time discretization scheme (4)-(6) for the initial-boundary-value
problem for (11)–(13), our unconstrained formulation of the Navier-Stokes equa-
tions with no-slip boundary conditions, with initial conditions

(72) u = uin in Ω for t = 0.

We focus here on the case of two and three dimensions.
We assume uin ∈ H1

0 (Ω,RN ) and f ∈ L2(0, T0;L2(Ω,RN )) for some given
T0 > 0. We consider the time-discrete scheme (4)-(6) with

(73) fn =
1

∆t

∫ (n+1)∆t

n∆t

f(t) dt,
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and take u0 ∈ H2 ∩H1
0 (Ω,RN ) to approximate uin in H1

0 (Ω,RN ).
Let us begin making estimates — our main result is stated as Theorem 2

below. Let ∇pn
S = (∆P−P∆)un be the Stokes pressure for un, so that by (20),

(74)
∫

Ω

∇pn
S · ∇φ =

∫
Ω

(∆un −∇∇ · un) · ∇φ ∀φ ∈ H1(Ω).

Combining this with (4) and taking φ = pn, we obtain the estimate

(75) ‖∇pn‖ ≤ ‖fn − un · ∇un‖+ ν‖∇pn
S ‖.

Now dot (5) with −∆un+1 to obtain

1
2∆t

(
‖∇un+1‖2 − ‖∇un‖2 + ‖∇un+1 −∇un‖2

)
+ ν‖∆un+1‖2(76)

≤ ‖∆un+1‖
(
2‖fn − un · ∇un‖+ ν‖∇pn

S ‖
)

≤ ε1
2
‖∆un+1‖2 +

2
ε1
‖fn − un · ∇un‖2 +

ν

2
(
‖∆un+1‖2 + ‖∇pn

S ‖2
)

for any ε1 > 0. This gives

1
∆t

(
‖∇un+1‖2 − ‖∇un‖2

)
+ (ν − ε1)‖∆un+1‖2(77)

≤ 8
ε1

(
‖fn‖2 + ‖un · ∇un‖2

)
+ ν‖∇pn

S ‖2.

Fix any β with 1
2 < β < 1. By Theorem 1 one has

(78) ν‖∇pn
S ‖2 ≤ νβ‖∆un‖2 + νCβ‖∇un‖2.

Using this in (77), one obtains

1
∆t

(
‖∇un+1‖2−‖∇un‖2

)
+ (ν − ε1)

(
‖∆un+1‖2 − ‖∆un‖2

)
(79)

+ (ν − ε1 − νβ)‖∆un‖2

≤ 8
ε1

(
‖fn‖2 + ‖un · ∇un‖2

)
+ νCβ‖∇un‖2.

At this point there are no remaining difficulties with controlling the pres-
sure. It remains only to use the viscosity to control the nonlinear term. We
focus on the physically most interesting cases N = 2 and 3. We make use of
Ladyzhenskaya’s inequalities [La]∫

RN

g4 ≤ 2
(∫

RN

g2

)(∫
RN

|∇g|2
)

(N = 2),(80) ∫
RN

g4 ≤ 4
(∫

RN

g2

)1/2(∫
RN

|∇g|2
)3/2

(N = 3),(81)
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valid for g ∈ H1(RN ) with N = 2 and 3 respectively, together with the fact that
the standard bounded extension operator H1(Ω) → H1(RN ) is also bounded in
L2 norm, to infer that for all g ∈ H1(Ω),

‖g‖2L4 ≤ C‖g‖L2‖g‖H1 (N = 2),(82)

‖g‖2L3 ≤ ‖g‖2/3
L2 ‖g‖4/3

L4 ≤ C‖g‖L2‖g‖H1 (N = 3).(83)

Using thatH1(Ω) embeds into L4 and L6, these inequalities lead to the estimates

∫
Ω

|un · ∇un|2 ≤

{
‖un‖2L4‖∇un‖2L4 ≤ C‖u‖L2‖∇un‖2L2‖∇un‖H1 (N = 2),

‖un‖2L6‖∇un‖2L3 ≤ C‖∇un‖3L2‖∇un‖H1 (N = 3).

(84)

By the elliptic regularity estimate ‖∇u‖H1 ≤ ‖u‖H2 ≤ C‖∆u‖, we conclude

‖un · ∇un‖2 ≤

{
ε2‖∆un‖2 + 4Cε−1

2 ‖un‖2‖∇un‖4 (N = 2),

ε2‖∆un‖2 + 4Cε−1
2 ‖∇un‖6 (N = 2 or 3).

(85)

for any ε2 > 0. Plug this into (79) and take ε1, ε2 > 0 satisfying ν− ε1 > 0 and
ε := ν − ε1 − νβ − 8ε2/ε1 > 0. We get

1
∆t
(
‖∇un+1‖2 − ‖∇un‖2

)
+ (ν − ε1)

(
‖∆un+1‖2 − ‖∆un‖2

)
+ ε‖∆un‖2

(86)

≤ 8
ε1
‖fn‖2 +

32C
ε1ε2

‖∇un‖6 + νCβ‖∇un‖2.

A simple discrete Gronwall-type argument leads to our main stability result:

Theorem 2 Let Ω be a bounded domain in RN (N = 2 or 3) with C3 boundary,
and let ν, M0 > 0. Then there exist positive constants T∗ and C3 such that, if
f ∈ L2(0, T0;L2(Ω,RN )) for some T0 > 0 and u0 ∈ H1

0 ∩H2(Ω,RN ) with

‖∇u0‖2 + ν∆t‖∆u0‖2 +
∫ T0

0

‖f‖2 ≤M0,

then whenever 0 < n∆t ≤ T = min(T∗, T0), the solution to the time-discrete
scheme (4)-(6) and (73) satisfies

sup
0≤k≤n

‖∇uk‖2 +
n∑

k=0

‖∆uk‖2∆t ≤ C3,(87)

n−1∑
k=0

(∥∥∥∥uk+1 − uk

∆t

∥∥∥∥2

+ ‖uk · ∇uk‖2
)

∆t ≤ C3.(88)
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Proof: Put

(89) zn = ‖∇un‖2 + (ν − ε1)∆t‖∆un‖2, wn = ε‖∆un‖2, bn = ‖fn‖2,

and note that from (73) we have that as long as n∆t ≤ T ,

(90)
n−1∑
k=0

‖fk‖2∆t ≤
∫ T

0

|f(t)|2 dt,

by the Cauchy-Schwarz inequality. Then by (86),

(91) zn+1 + wn∆t ≤ zn + C∆t(bn + zn + z3
n),

where we have replaced max{8/ε1, 32C/(ε1ε2), νCβ} by C. Summing from 0 to
n− 1 and using (90) yields

(92) zn +
n−1∑
k=0

wk∆t ≤ CM0 + C∆t
n−1∑
k=0

(zk + z3
k) =: yn.

The quantities yn so defined increase with n and satisfy

(93) yn+1 − yn = C∆t(zn + z3
n) ≤ C∆t(yn + y3

n).

Now set F (y) = ln(y/
√

1 + y2) so that F ′(y) = (y + y3)−1. Then on (0,∞), F
is negative, increasing and concave, and we have

(94) F (yn+1)− F (yn) ≤ F ′(yn)(yn+1 − yn) =
yn+1 − yn

yn + y3
n

≤ C∆t,

whence

(95) F (yn) ≤ F (y0) + Cn∆t = F (CM0) + Cn∆t.

Choosing any T∗ > 0 so that C∗ := F (CM0) + CT∗ < 0, we infer that as long
as n∆t ≤ T∗ we have yn ≤ F−1(C∗), and this together with (92) yields the
stability estimate (87).

Now, using (85) and elliptic regularity, we get from (87) that

n∑
k=0

‖uk · ∇uk‖2∆t ≤ C

n∑
k=0

‖∇uk‖2L2‖∇uk‖2H1∆t ≤ C

n∑
k=0

‖∆uk‖2∆t ≤ C.

Then the difference equation (5) yields

(96)
n−1∑
k=0

∥∥∥∥uk+1 − uk

∆t

∥∥∥∥2

∆t ≤ C.

This yields (88) and finishes the proof of the Theorem. �
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5 Existence, uniqueness, convergence

The stability estimates in Theorem 2 lead in classic fashion to a short proof of
existence and uniqueness for strong solutions of the unconstrained formulation
(9) of the Navier-Stokes equations. Convergence of the time-discrete scheme
follows as a consequence. Regarding the constrained Navier-Stokes equations
there are of course many previous works; see [Am1] for a recent comprehensive
treatment. For unconstrained formulations of the Navier-Stokes equations with
a variety of boundary conditions including the one considered in the present
paper, Grubb and Solonnikov [GS1, GS2] lay out a general existence theory in
anisotropic Sobolev spaces using a theory of pseudodifferential initial-boundary-
value problems developed by Grubb.

Theorem 3 Let Ω be a bounded domain in R3 with boundary Γ of class C3, and
let ν, M1 > 0. Then, there exists T∗ > 0 such that if f ∈ L2(0, T0;L2(Ω,RN ))
for some T0 > 0 and uin ∈ H1

0 (Ω,RN ) with ‖∇uin‖2 +
∫ T0

0
‖f‖2 ≤ M1, then

a unique strong solution of (11)-(13) exists on [0, T ], T = min(T∗, T0), that
satisfies (72) and

u ∈ L2(0, T ;H2(Ω,RN )) ∩H1(0, T ;L2(Ω,RN )),

∇p ∈ L2(0, T ;L2(Ω,RN )),

Moreover, u ∈ C([0, T ],H1(Ω,RN )), and ∇ · u ∈ C∞((0, T ], C∞(Ω)) is a clas-
sical solution of the heat equation with no-flux boundary conditions. The map
t 7→ ‖∇ · u‖2 is smooth for t > 0 and we have the dissipation identity

(97)
d

dt

1
2
‖∇ · u‖2 + ν‖∇(∇ · u)‖2 = 0.

Proof of existence: We shall give a simple proof of existence based on the
finite difference scheme considered in section 4, using a classical compactness
argument [Tar, Te1, LM]. In contrast to similar arguments in other sources, for
example by Temam [Te1] for a time-discrete scheme with implicit differencing
of pressure terms, we do not make any use of regularity theory for stationary
Stokes systems.

First we smooth the initial data. Given uin ∈ H1
0 (Ω,RN ) and ∆t > 0,

determine u0 in H1
0 ∩ H2(Ω,RN ) by solving (I − ∆t∆)u0 = uin. An energy

estimate yields

‖∇u0‖2 + ∆t‖∆u0‖2 ≤ ‖∇uin‖‖∇u0‖ ≤ ‖∇uin‖2.

Then ‖∆t∆u0‖2 = O(∆t) as ∆t → 0, so u0 → uin strongly in L2 and weakly
in H1. Note the stability constant C3 in Theorem 2 is independent of ∆t.

We define the discretized solution un by (4)–(6), and note

(98)
un+1 − un

∆t
+ P(un · ∇un − fn − ν∆un) = ν∆(un+1 − un) + ν∇∇ · un.
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With tn = n∆t, we put u∆t(tn) = U∆t(tn) = un for n = 0, 1, 2, . . ., and
define u∆t(t) and U∆t(t) on each subinterval [tn, tn + ∆t) through linear inter-
polation and as piecewise constant respectively:

u∆t(tn + s) = un + s

(
un+1 − un

∆t

)
, s ∈ [0,∆t),(99)

U∆t(tn + s) = un, s ∈ [0,∆t).(100)

Then (98) means that whenever t > 0 with t 6= tn,
(101)
∂tu∆t +P(U∆t ·∇U∆t− f∆t−ν∆U∆t) = ν∆(U∆t(·+∆t)−U∆t)+ν∇∇·U∆t,

where f∆t(t) = fn for t ∈ [tn, tn + ∆t).
We will use the simplified notation X(Y ) to denote a function space of the

form X([0, T ], Y (Ω,RN )), and we let Q = Ω × [0, T ] where T = min(T0, T∗)
with T∗ as given by Theorem 2. The estimates in Theorem 2 say that u∆t is
bounded in the Hilbert space

(102) V0 := L2(H2 ∩H1
0 ) ∩H1(L2),

and also that U∆t is bounded in L2(H2), uniformly for ∆t > 0. Moreover,
estimate (87) says u∆t is bounded in C(H1). This is also a consequence of the
embedding V0 ↪→ C(H1), see [Tar, p. 42] or [Ev, p. 288].

Along some subsequence ∆tj → 0, then, we have that u∆t converges weakly
in V0 to some u ∈ V0, and U∆t and U∆t(· + ∆t) converge weakly in L2(H2)
to some U1 and U2 respectively. Since clearly V0 ↪→ H1(Q), and since the
embedding H1(Q) ↪→ L2(Q) is compact, we have that u∆t → u strongly in
L2(Q). Note that by estimate (88),
(103)

‖u∆t−U∆t‖2L2(Q) ≤ ‖U∆t(·+∆t)−U∆t‖2L2(Q) =
n−1∑
k=0

‖un+1−un‖2∆t ≤ C∆t2.

Therefore U∆t(·+ ∆t) and U∆t converge to u strongly in L2(Q) also, so U1 =
U2 = u.

We want to show u is a strong solution of (11) by passing to the limit in
(101). From the definition of fn in (73) and estimate (90), it is a standard result
which can be proved by using the density of C(Q) in L2(Q) that

(104) ‖f − f∆t‖2L2(Q) → 0 as ∆t→ 0.

We are now justified in passing to the limit weakly in L2(Q) in all terms in
(101) except the nonlinear term, which (therefore) converges weakly to some
w ∈ L2(Q). But since ∇U∆t converges to ∇u weakly and U∆t to u strongly
in L2(Q), we can conclude U∆t · ∇U∆t converges to u · ∇u in the sense of
distributions on Q. So w = u · ∇u, and upon taking limits in (101) it follows
that

(105) ∂tu + P (u · ∇u− f − ν∆u) = ν∇∇ · u.
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That is, u is indeed a strong solution of (11). That u(0) = uin is a consequence
of the continuity of the map u → u(0) from V0 through C(H1) to H1(Ω,RN ).

It remains to study ∇ · u. Dot (105) with ∇φ, φ ∈ H1(Ω). We get

(106)
∫

Ω

∂tu · ∇φ = ν

∫
Ω

∇(∇ · u) · ∇φ.

This says that w = ∇ ·u is a weak solution of the heat equation with Neumann
boundary conditions:

(107) ∂tw = ν∆w in Ω, n ·∇w = 0 on Γ.

Indeed, the operator A := ν∆ defined on L2(Ω) with domain

(108) D(A) = {w ∈ H2(Ω) | n · ∇w = 0 on Γ}

is self-adjoint and non-positive, so generates an analytic semigroup. For any
φ ∈ D(A) we have that t 7→ 〈w(t), φ〉 = −〈u(t),∇φ〉 is absolutely continuous,
and using (106) we get (d/dt)〈w(t), φ〉 = 〈w(t), Aφ〉 for a. e. t. By Ball’s charac-
terization of weak solutions of abstract evolution equations [Ba], w(t) = eAtw(0)
for all t ∈ [0, T ]. It follows w ∈ C([0, T ], L2(Ω)), and w(t) ∈ D(Am) for every
m > 0 [Pa, theorem 6.13]. Since Amw(t) = eA(t−τ)Amw(τ) if 0 < τ < t we infer
that for 0 < t ≤ T , w(t) is analytic in t with values in D(Am). Using interior
estimates for elliptic equations, we find w ∈ C∞((0, T ], C∞(Ω)) as desired. The
dissipation identity follows by dotting with w.

This finishes the proof of existence. �
Proof of uniqueness: Suppose u1 and u2 are both solutions of (11)–(13) and
(72) belonging to V0. Put u = u1 − u2 and ∇pS = (I − P)(∆ −∇∇·)u. Then
u(0) = 0 and

(109) ∂tu + P(u1 · ∇u + u · ∇u2) = ν∆u− ν∇pS.

Dot with −∆u and use Theorem 1 to get

(110) 〈ν∆u−ν∇pS,−∆u〉 ≤ −ν
2
‖∆u‖2 +

ν

2
‖∇pS‖2 ≤ −νβ

2
‖∆u‖2 +C‖∇u‖2.

with β = 1
2 − ε > 0. Next, use the Cauchy-Schwarz inequality for the nonlinear

terms, estimating them as follows in a manner similar to (82)-(84), using that
u1 and u2 are a priori bounded in H1 norm:

‖u1 · ∇u‖ ‖∆u‖ ≤ C‖∇u1‖‖∇u‖1/2‖∆u‖3/2 ≤ ε‖∆u‖2 + C‖∇u‖2,
(111)

‖u · ∇u2‖ ‖∆u‖ ≤ C‖∇u‖‖∇u2‖H1‖∆u‖ ≤ ε‖∆u‖2 + C‖∆u2‖2‖∇u‖2.
(112)

Lastly, since u ∈ V0 we infer that 〈∂tu,−∆u〉 ∈ L1(0, T ) and t 7→ ‖∇u‖2 is
absolutely continuous with

(113) 〈∂tu,−∆u〉 =
1
2
d

dt
‖∇u‖2.
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This can be shown by using the density of smooth functions in V0; see [Ev, p.
287] for a detailed proof of a similar result.

Through this quite standard-style approach, we get

(114)
d

dt
‖∇u‖2 + α‖∆u‖2 ≤ C(1 + ‖∆u2‖2)‖∇u‖2

for some positive constants α and C. Because ‖∆u2‖2 ∈ L1(0, T ), by Gronwall’s
inequality we get ‖∇u‖ ≡ 0. This proves the uniqueness. �

Since the interval of existence [0, T ] depends only upon M1, in standard
fashion we may extend the unique strong solution to a maximal interval of time,
and infer that the approximations considered above converge to this solution up
to the maximal time.

Corollary 1 Given the assumptions of Theorem 3, system (11)–(13) with (72)
admits a unique strong solution u on a maximal interval [0, Tmax) with the
property that if Tmax < T0 then

(115) ‖u(t)‖H1 →∞ as t→ Tmax.

For every T̂ ∈ [0, Tmax), the approximations u∆t constructed in (99) converge
to u weakly in

L2([0, T̂ ],H2 ∩H1
0 (Ω,RN )) ∩H1([0, T̂ ], L2(Ω,RN ))

and strongly in L2([0, T̂ ]× Ω,RN ).

6 Finite element methods without compatibil-
ity conditions for velocity and pressure

The simplicity of the stability proof for the time-discrete scheme in section 4
allows us to easily establish unconditional stability locally in time, and con-
vergence up to the maximal time of existence for the strong solution, for cor-
responding fully discrete finite-element methods that use C1 elements for the
velocity field and C0 elements for pressure.

We suppose that for some sequence of positive values of h approaching zero,
Xh ⊂ H2 ∩H1

0 (Ω,RN ) is a finite-dimensional space containing the approximate
velocity field, and suppose Yh ⊂ H1(Ω)/R is a finite-dimensional space contain-
ing approximate pressures. We assume these spaces have the approximation
property that

∀v ∈ H2 ∩H1
0 (Ω,RN ) ∀h ∃vh ∈ Xh, ‖∆(v − vh)‖ → 0 as h→ 0,(116)

∀φ ∈ H1(Ω)/R ∀h ∃φh ∈ Yh, ‖∇(φ− φh)‖ → 0 as h→ 0.(117)

As we have emphasized in the introduction to this paper, we impose no com-
patibility condition between the spaces Xh and Yh in order to ensure an inf-sup
condition.
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The finite element scheme that we consider was derived in [JL] and is equiv-
alent to a space discretization of the scheme in (4)–(6). Given the approximate
velocity un

h at the n-th time step, we determine pn
h ∈ Yh and un+1

h ∈ Xh by
requiring

〈∇pn
h,∇φh〉 = 〈fn − un

h ·∇un
h + ν∆un

h − ν∇∇ · un
h,∇φh〉 ∀φh ∈ Yh,(118)

〈
∇un+1

h −∇un
h

∆t
,∇vh

〉
+ 〈ν∆un+1

h ,∆vh〉 = 〈∇pn
h + un

h ·∇un
h − fn,∆vh〉

(119)

∀vh ∈ Xh.

We remark that in general, practical finite element methods usually use
spaces defined on domains that approximate the given Ω. For simplicity here
we suppose Ω can be kept fixed, such that finite-element spacesXh and Yh can be
found as described with C1 elements for velocity and C0 elements for pressure.
In principle this should be possible whenever Ω has a piecewise polynomial C3

boundary.
Stability. We are to show the scheme in (118)–(119) is unconditionally

stable. First, we take φh = pn
h in (118). Due to the fact that

〈P(∆−∇∇·)un
h,∇pn

h〉 = 0,

we directly deduce from the Cauchy-Schwarz inequality that

(120) ‖∇pn
h‖ ≤ ‖ν∇pS(un

h)‖+ ‖un
h ·∇un

h − fn‖

where

(121) ∇pS(un
h) = (∆P − P∆)un

h = (I − P)(∆−∇∇·)un
h

is the Stokes pressure associated with un
h. (Note ∇pS(un

h) need not lie in the
space Yh.) Now, taking vh = un+1

h in (119) and arguing just as in (76), we
obtain an exact analog of (77), namely

1
∆t

(
‖∇un+1

h ‖2 − ‖∇un
h‖2
)

+ (ν − ε1)‖∆un+1
h ‖2(122)

≤ 8
ε1

(
‖fn‖2 + ‖un

h · ∇un
h‖2
)

+ ν‖∇pS(un
h)‖2.

Proceeding now exactly as in section 4 leads to the following unconditional
stability result.

Theorem 4 Let Ω be a bounded domain in RN (N = 2 or 3) with C3 boundary,
and let ν, M0 > 0. Then there exist positive constants T∗ and C4 with the
following property. Suppose Xh ⊂ H2 ∩H1

0 (Ω,RN ), Yh ⊂ H1(Ω)/R satisfy
(116)–(117). Assume f ∈ L2(0, T0;L2(Ω,RN )) for some T0 > 0, u0

h ∈ Xh and

‖∇u0
h‖2 + ν∆t‖∆u0

h‖2 +
∫ T0

0

‖f‖2 ≤M0.
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Then whenever 0 < n∆t ≤ T = min(T∗, T0), the solution to the finite-element
scheme (118)-(119) satisfies

sup
0≤k≤n

‖∇uk
h‖2 +

n∑
k=0

‖∆uk
h‖2∆t ≤ C4,(123)

n−1∑
k=0

∥∥∥∥∥uk+1
h − uk

h

∆t

∥∥∥∥∥
2

+ ‖uk
h · ∇uk

h‖2
∆t ≤ C4.(124)

Convergence. We prove the convergence of the finite-element scheme de-
scribed above by taking h→ 0 to obtain the solution of the time-discrete scheme
studied in section 4, then ∆t → 0 as before. Because of the uniqueness of the
solution of the time-discrete scheme and of the strong solution of the PDE, it
suffices to prove convergence for some subsequence of any given sequence of val-
ues of h tending toward 0. The bounds obtained in Theorem 4 make this rather
straightforward.

Fix ∆t > 0. The bounds in Theorem 4 and in (120) imply that for all positive
integers n < T∗/∆t, the un

h are bounded in H2 ∩H1
0 (Ω,RN ) and the ∇pn

h are
bounded in L2(Ω,RN ) uniformly in h. So from any sequence of h approaching
zero, we may extract a subsequence along which we have weak limits

(125) un
h ⇀ un in H2(Ω,RN ), ∇pn

h ⇀ ∇pn, un
h · ∇un

h ⇀ wn in L2(Ω,RN )

for all n. Then un
h → un strongly in H1

0 (Ω,RN ) and so wn = un · ∇un since
the nonlinear term converges strongly in L1.

Now, for any v ∈ H2 ∩H1
0 (Ω,RN ) and φ ∈ H1(Ω), by assumption there

exist vh ∈ Xh, φh ∈ H1(Ω) such that vh → v strongly in H2(Ω,RN ) and
∇φh → ∇φ strongly in L2(Ω,RN ). Applying these convergence properties in
(118)–(119) yields that the weak limits in (125) satisfy

〈∇pn + ν∇∇ · un − ν∆un + un ·∇un − fn,∇φ〉 = 0,(126) 〈
un+1 − un

∆t
− ν∆un+1 +∇pn + un ·∇un − fn,∆v

〉
= 0.(127)

But this means exactly that un satisfies (4)-(6). So in the limit h → 0 we
obtain the solution of the time-discrete scheme studied in section 4. Then the
limit ∆t → 0 yields the unique strong solution on a maximal time interval as
established in section 5.

7 Non-homogeneous side conditions

We consider the Navier-Stokes equations with non-homogeneous boundary con-
ditions and extended to include a divergence constraint (such as may be used
to model a distributed source or sink of fluid at constant density, with an ad-
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justment of the body force f to account for bulk viscosity):

∂tu + u ·∇u +∇p− ν∆u = f in Ω for t > 0,(128)
∇ · u = h in Ω for t ≥ 0,(129)

u = g on Γ for t ≥ 0,(130)
u = uin in Ω for t = 0.(131)

Our aim in this section is to prove stability, and convergence to strong solutions,
for a time-discretization of an appropriate unconstrained formulation of this
problem. In a subsequent work we will study error estimates for fully discrete
finite element methods, with greater regularity assumptions on the data.

7.1 An unconstrained formulation

We can write an unconstrained formulation for (128) similar to (9), but including
another gradient term to account for the inhomogeneous side conditions:

(132) ∂tu + P(u·∇u− f − ν∆u) +∇pgh = ν∇(∇ · u).

We obtain an equation that determines the inhomogeneous pressure pgh by
imposing the requirement that the divergence residual w := ∇ ·u−h should be
a weak solution of the heat equation with no-flux boundary conditions:

(133) ∂tw = ν∆w in Ω, n ·∇w = 0 on Γ,

and with initial condition w = ∇·uin−h
∣∣
t=0

. Then the divergence constraint will
be enforced through exponential diffusive decay as before. (See (174) below.) By
formal integration by parts using the side conditions, we find that an appropriate
weak formulation of (133) is to require

(134) 〈∂tu,∇φ〉 − 〈∂t(n · g), φ〉Γ + 〈∂th, φ〉 = 〈ν∇(∇ · u− h),∇φ〉

for all φ ∈ H1(Ω). To obtain this from (132), we should require

(135) 〈∇pgh,∇φ〉 = −〈∂t(n · g), φ〉Γ + 〈∂th, φ〉+ 〈ν∇h,∇φ〉 ∀φ ∈ H1(Ω).

See Lemma 5 below regarding the existence of pgh satisfying (135) for data g
and h in an appropriate class.

As with (14), by using Lemma 1 and the definition ∇pS = (∆P −P∆)u, we
find that (132) is equivalent to

(136) ∂tu + P(u·∇u− f) +∇pgh + ν∇pS = ν∆u.

Our unconstrained formulation of (128)-(131) then takes the form (135)–(136)
together with (130)–(131).
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7.2 Regularity assumptions

We assume Ω ⊂ RN (N = 2 or 3) is a connected bounded domain with boundary
Γ of class C3 as before. Let

V (0, T ) := L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),(137)

W (0, T ) := L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′).(138)

Here (H1)′ is the space dual to H1.
Our theory of convergence to strong solutions comes in two similar flavors,

depending on the regularity assumed on the data. The two flavors correspond
to solutions having either the regularity

(139) u ∈ Vdiv(0, T ) := V (0, T )N ∩ {u | ∇ · u ∈ V (0, T )},

or the somewhat weaker regularity

(140) u ∈Wdiv(0, T ) := V (0, T )N ∩ {u | ∇ · u ∈W (0, T )},

for some T > 0. In the first case, ∇ · u is more regular (∇ · u = 0 is usual),
but we need to assume ∇ · uin ∈ H1(Ω) due to the embedding V (0, T ) ↪→
C([0, T ],H1(Ω)). The condition (140) means that u ∈ V (0, T )N and ∇ · u has
vector-valued distributional derivative ∂t(∇·u) in L2(0, T ;H1(Ω)′), the dual of
L2(0, T ;H1(Ω)).

It will be a consequence of our theory that an arbitrary pair (u, p) with

(141) u ∈ Vdiv(0, T ) or Wdiv(0, T ), p ∈ L2(0, T ;H1(Ω)/R),

is a strong solution of the constrained system (128)-(131) for appropriate data.
For the linear problem without convection term, this yields an isomorphism
between the solution space from (141) for the constrained Stokes problem and
the corresponding space of data that satisfy the requirements below together
with the extra compatibility condition

(142) ∇ · uin = h in Ω for t = 0.

Corresponding to the regularity in (140), our precise assumptions on the
data are that for some T > 0 we have

f ∈ Hf := L2(0, T ;L2(Ω,RN )),(143)

g ∈ Hg := H3/4(0, T ;L2(Γ,RN )) ∩ L2(0, T ;H3/2(Γ,RN ))(144)

∩ {g | ∂t(n · g) ∈ L2(0, T ;H−1/2(Γ))},
h ∈ Hh := W (0, T ),(145)

uin ∈ Hin := H1(Ω,RN ).(146)

We also impose the compatibility conditions∫
Γ

n · g =
∫

Ω

h for t > 0,(147)

g = uin on Γ for t = 0.(148)
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Corresponding to the regularity in (139), we will assume additionally that h ∈
V (0, T ) and ∇ · uin ∈ H1(Ω).

With these assumptions, we get the existence of pgh as follows.

Lemma 5 Assume (144), (145) and (147). Then there exists pgh ∈ L2(H1(Ω))
with zero mean, satisfying (135) and

‖pgh‖L2(H1(Ω)) ≤ C
(
‖∂t(n · g)‖L2(H−1/2(Γ)) + ‖h‖W (0,T )

)
.(149)

Proof: One applies the Lax-Milgram lemma for a.e. t to (135) in the space of
functions in H1(Ω) with zero average. We omit the standard details. �

To explain the regularity of g, and eventually reduce the analysis to a prob-
lem with homogeneous boundary conditions, we make the following point. From
the theory of Lions and Magenes [LM] (see Theorems 2.3 and 4.3 in vol. II),
taking the trace on the parabolic boundary of Ω × (0, T ), defined for smooth
enough functions by u 7→ (u(0, ·), u|Γ), extends to yield a bounded map

V (0, T ) → H1(Ω)× (H3/4(0, T ;L2(Γ)) ∩ L2(0, T ;H3/2(Γ)))(150)
∩ {(u, g) | u = g on Γ for t = 0},

and this map admits a bounded right inverse. By consequence, given (uin,g)
satisfying our assumptions above, there exists ũ such that

(151) ũ ∈ V (0, T )N , ũ(0) = uin, ũ|Γ = g,

and the norm of ũ in V (0, T )N is bounded in terms of the norm of (uin,g) in
Hin ×Hg. One can regard ũ as given data, instead of the pair (uin,g).

To relate the regularity in (140) with (144), we note the following.

Lemma 6 Wdiv(0, T ) = V (0, T )N ∩ {u | ∂t(n · u|Γ) ∈ L2(0, T ;H−1/2(Γ))}.

Proof: Let u ∈ V (0, t)N . Given any φ ∈ C∞
0 ((0, T ),H1(Ω)) we have

(152)
∫ T

0

〈∇ · u, ∂tφ〉 dt =
∫ T

0

〈n · u, ∂tφ〉Γ dt+
∫ T

0

〈∂tu,∇φ〉 dt.

The last term is bounded by a constant times the norm of φ in L2(0, T ;H1(Ω)).
Using that the trace map H1(Ω) → H1/2(Γ) is onto with bounded right inverse,
we get the left-hand side bounded by the same estimate if and only if the
boundary term is bounded by the norm of φ|Γ in L2(0, T ;H1/2(Γ)). This means
∂t(∇ · u) ∈ L2(0, T ;H1(Ω)′) if and only if ∂t(n · u|Γ) ∈ L2(0, T ;H−1/2(Γ)). �

At this point we can give our “converse existence” result.

Proposition 2 Suppose that (u, p) is an arbitrary pair that satisfies (141), and
let f , g, h and uin be computed from (128)-(131). Then the conditions (143)–
(148) all hold, and u satisfies (135)–(136). Additionally, if u ∈ Vdiv(0, T ) then
h ∈ V (0, T ) and ∇ · uin ∈ H1(Ω).
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Proof: One easily checks (143)–(148) using (85) and (150) and Lemma 6. Addi-
tionally, if u ∈ Vdiv(0, T ), clearly h ∈ V (0, T ) and∇·uin ∈ H1(Ω). Furthermore,
for any φ ∈ C∞

0 ((0, T ),H1(Ω)), from (152) we find

−
∫ T

0

〈∂th, φ〉 dt = −
∫ T

0

〈∂t(n · g), φ〉Γ dt+
∫ T

0

〈∂tu,∇φ〉 dt.

Hence (134) holds in L1(0, T ). If we define ∇pS = (∆P − P∆)u and ∇pE =
(P − I)(u·∇u− f), and set pgh = p− pE − νpS, it follows that (136) and (135)
hold by combining (128) with Lemma 1 and (134). �

We remark that most of the literature on nonhomogeneous Navier-Stokes
problems [La, Sol, Gr, GS1, GS2] treats the constrained case with h = 0 in
Ω and imposes the condition n · g = 0 on Γ. One treatment with h = 0 but
imposing only

∫
Γ
n ·g = 0 is that of Fursikov et al. [Fu], who study the problem

in a scale of spaces that in one case exactly corresponds to what we consider
here but with zero divergence constraint. Amann recently studied very weak
solutions without imposing n · g = 0 on Γ, but only in spaces of very low
regularity that exclude the present case [Am2].

7.3 Discretization scheme

We consider the following time-discrete scheme: Given u0, find un+1 (n ≥ 0)
such that

un+1 − un

∆t
+ P (un · ∇un − fn) + ν∇pn

S +∇pgh
n = ν∆un+1 in Ω,(153)

un+1 = gn+1 on Γ,(154)

where ∇pn
S = (∆P − P∆)un, and pgh

n with zero mean is determined from
(155)

〈∇pgh
n,∇φ〉 = −

〈
n · (gn+1 − gn)

∆t
, φ

〉
Γ

+
〈
hn+1 − hn

∆t
, φ

〉
+ ν〈∇hn+1,∇φ〉.

Here

gn =
1

∆t

∫ (n+1)∆t

n∆t

g(t) dt, hn =
1

∆t

∫ (n+1)∆t

n∆t

h(t) dt,

and fn is determined in the same way from f as in (73). (This scheme is
equivalent to a first-order gauge method—See Appendix C for the proof.)

7.4 Stability

We assume the data satisfy (143)–(148) for some given T > 0. To prove the
stability and convergence of the discretiztion scheme, we use ũ which satisfies
(151) and is bounded in terms of (uin,g). We define

(156) ũn =
1

∆t

∫ (n+1)∆t

n∆t

ũ(t) dt, vn = un − ũn,
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and we assume that u0 = ũ0. Then v0 = 0 in Ω and vn = 0 on Γ. We can
rewrite (153) as an equation for vn:

vn+1 − vn

∆t
+ P(vn ·∇vn − fn) + P(vn ·∇ũn + ũn · ∇vn)(157)

+ ν(∆P − P∆)vn = ν∆vn+1 − f̃n,

where

(158) f̃n :=
ũn+1 − ũn

∆t
+ ν(∆P −P∆)ũn +∇pgh

n − ν∆ũn+1 +P(ũn · ∇ũn).

We claim there exists C > 0 depending only upon the data such that

(159)
n−1∑
k=0

‖f̃k‖2∆t ≤ C,

provided (n+ 1)∆t ≤ T . Because ũ ∈ V (0, T )N ↪→ C([0, T ],H1(Ω,RN )) and

(160)
ũn+1 − ũn

∆t
=
∫ tn+1

tn

∫ ∆t

0

∂tũ(t+ s)
ds

∆t
dt

∆t
=
∫ 2

0

∂tũ(tn + τ∆t)Λ(τ) dτ

where Λ(τ) = 1− |1− τ |, due to the Cauchy-Schwarz inequality we have

(161) sup
0≤k≤n

‖∇ũk‖2 +
n∑

k=0

‖ũk‖2H2∆t+
n−1∑
k=1

∥∥∥∥ ũn+1 − ũn

∆t

∥∥∥∥2

∆t ≤ C.

Using this with (85) bounds the nonlinear term in (158). To bound ∇pgh
n, we

use Lemma 5 and estimate the time differences in (155) as in (160)-(161) using
the Cauchy-Schwarz inequality. Note that the compatibility condition (147) is
used to ensure solvability for pgh

n. Thus we obtain the bound (159).
Following the approach of section 4, we obtain an analog of Theorem 2.

Theorem 5 Let Ω be a bounded domain in RN (N = 2 or 3) with C3 boundary,
and assume (143)–(148) for some given T > 0. Consider the time-discrete
scheme (153)–(155) with u0 = ũ0 from (156) and (151). Then there exist
positive constants T∗ and C3, such that whenever n∆t ≤ T∗, we have

sup
0≤k≤n

‖∇uk‖2 +
n∑

k=0

‖uk‖2H2∆t ≤ C3,(162)

n−1∑
k=0

(∥∥∥∥uk+1 − uk

∆t

∥∥∥∥2

+ ‖uk · ∇uk‖2
)

∆t ≤ C3.(163)

Inequalities (162)-(163) are also true with uk replaced by vk.
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Proof: We first write (153) as (157). Using (159) and comparing with the proof
of Theorem 2, which establishes the stability of the scheme

wn+1 −wn

∆t
+P(wn ·∇wn − fn) + ν(∆P −P∆)wn = ν∆wn+1, wn+1|Γ = 0,

we see that the only difference is that in (157) we have some extra linear terms
of the form

(164) P(ũ ·∇v + v ·∇ũ).

Similar to (85), we get

‖P(ũ ·∇v)‖2 ≤ ε‖∆v‖2 +
C

ε
‖ũ‖4H1‖∇v‖2.(165)

We estimate the other term in (164) by using Gagliardo-Nirenberg inequalities
[Fr, Thm. 10.1] and the Sobolev embeddings of H1 into L3 and L6:

(166) ‖v‖L∞ ≤

C‖∆v‖1/2

L3/2‖v‖
1/2
L3 ≤ C‖∆v‖1/2‖∇v‖1/2 (N = 2),

C‖∆v‖1/2‖v‖1/2
L6 ≤ C‖∆v‖1/2‖∇v‖1/2 (N = 3).

Then for N = 2 and 3 we have

‖P(v ·∇ũ)‖2 ≤ ‖v‖2L∞‖∇ũ‖2 ≤ ε‖∆v‖2 +
C

ε
‖ũ‖4H1‖∇v‖2.(167)

With these estimates, the rest of the proof of the stability of vn is essentially
the same as that of Theorem 2 and therefore we omit the details. The stability
of vn leads to that of un, using (161), (165) and (167).

7.5 Convergence

First, we define u∆t and U∆t exactly as before by (99) and (100), and define

(168) pgh∆t(t) = pgh
n for t ∈ [tn, tn+1), n = 0, 1, . . . .

Then, (153) can be written as

∂tu∆t+P(U∆t · ∇U∆t − f∆t − ν∆U∆t) +∇pgh∆t(169)
= ν∆(U∆t(·+ ∆t)−U∆t) + ν∇∇ ·U∆t,

Comparing with (101), we see that exactly as before in the proof of Theorem 3,
we are justified to pass to the limit along some subsequence ∆tj → 0, in all the
linear terms except ∇pgh∆t.

In fact we claim that with Q = Ω× (0, T ),

(170) ‖∇pgh∆t −∇pgh‖L2(Q) → 0 as ∆t→ 0.
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The proof is straightforward using Lemma 5. First, let h∆t(t) = hn+1 for
t ∈ [tn, tn+1), n = 0, 1, . . .. As in (104) we have ∇h∆t → ∇h strongly in L2(Q).

Next, suppose generally that X is a Banach space and ψ ∈ L2(0, T ;X). Let

(171) ψ∆t(t) =
∫ 2

0

ψ(tn + τ∆t)Λ(τ) dτ, t ∈ [tn, tn+1), n = 0, 1, . . . ,

as in (160). (Extend ψ by zero for t > T .) The map ψ → ψ∆t is bounded
on L2(0, T ;X) by the Cauchy-Schwarz inequality, and ψ∆t → ψ strongly as
∆t→ 0, since this is true for ψ in C([0, T ], X), a dense set.

Applying this result with ψ = ∂th, X = (H1)′, and with ψ = ∂t(n · g),
X = H−1/2(Γ), comparing with (160) and using Lemma 5, we get the strong
convergence asserted in (170).

As before in the proof of Theorem 3, we can now pass to the limit in all
terms of (169) and find that

(172) u∆t → u weakly in V (0, T∗)N ,

where u satisfies (132), which is equivalent to (136) of our unconstrained for-
mulation. It remains to verify the boundary and initial conditions, and study
the regularity of ∇ · u.

Recall u∆t = v∆t + ũ∆t with v∆t and ũ∆t defined as in (99) by linear
interpolation. From Theorem 5, we know v∆t is uniformly bounded in

Vb := V (0, T∗)N ∩ {w | w(t = 0) = 0, w|Γ = 0},

which is a Hilbert space carrying zero boundary and initial conditions. Conse-
quently v∆tj → v weakly in Vb, and v = 0 at t = 0 and on Γ. Next we note
that

(173) ‖ũ∆t − ũ‖L2(Q) → 0 as ∆t→ 0.

This follows because ũ∆t is bounded in V (0, T )N ↪→ H1(Q)N by (161), and the
embedding H1(Q) ↪→ L2(Q) is compact. We already know ũ ∈ V (0, T )N with
ũ|Γ = g and ũ(t = 0) = uin. Hence we have u = v + ũ and it satisfies the
correct boundary and initial conditions. By Lemma 6 we have u ∈Wdiv(0, T∗).

As a by-product of this convergence analysis for the scheme (153)-(154), we
get the following existence and uniqueness theorem. Convergence of u∆t to u
along any subsequence follows from the uniqueness.

Theorem 6 Let Ω be a bounded, connected domain in RN (N = 2 or 3) and
assume (143)-(148). Then there exists T∗ > 0 so that a unique strong solution of
(135)–(136) and (130)–(131) exists on [0, T∗], with u ∈Wdiv(0, T∗). Moreover,
∇ · u − h ∈ W (0, T ) is a smooth solution of the heat equation for t > 0 with
no-flux boundary conditions. The map t 7→ ‖∇ ·u−h‖2 is smooth for t > 0 and
we have the dissipation identity

(174)
d

dt

1
2
‖∇ · u− h‖2 + ν‖∇(∇ · u− h)‖2 = 0.
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If we further assume h ∈ V (0, T ) and ∇ · uin ∈ H1(Ω), then u ∈ Vdiv(0, T∗).
The approximations u∆t constructed above converge to u weakly in V (0, T∗)N

and strongly in L2([0, T∗]× Ω,RN ).

Proof: The existence of u ∈Wdiv(0, T∗) has been proved, and we can prove the
uniqueness by the same method as in Theorem 3. We study w = ∇ · u− h in a
manner similar to the proof of Theorem 3. Combining (136) with (135), we get
(134) for any φ ∈ H1(Ω). With w = ∇ · u− h, taking φ ∈ D(A) as in (108) we
have

(175) 〈w, φ〉 = 〈n · g, φ〉Γ − 〈u,∇φ〉 − 〈h, φ〉.

Therefore t 7→ 〈w, φ〉 is absolutely continuous, and (134) yields (d/dt)〈w, φ〉 =
〈w,Aφ〉 for a.e. t. This means w is a weak solution in the sense of Ball [Ba], and
the rest of the proof that w is a smooth solution of the heat equation satisfying
(174) goes as before, using (147) to get

∫
Ω
w = 0.

If we further assume h ∈ V (0, T ) and ∇ · uin ∈ H1(Ω), then w(0) ∈ H1(Ω).
We claim

(176) H1(Ω) = D((−A)1/2).

Then semigroup theory yields w ∈ C([0, T∗], D((−A)1/2)), so since

(177) 0 = 〈−∆w, ∂tw − ν∆w〉 =
d

dt

1
2
‖∇w‖2 + ν‖∆w‖2

for t > 0, we deduce w ∈ V (0, T∗), and ∇ · u is in the same space.
To prove (176), note X := D((−A)1/2) is the closure of D(A) from (108) in

the norm given by

‖w‖2X = ‖w‖2 + ‖(−A)1/2w‖2 = 〈(I − ν∆)w,w〉 =
∫

Ω

|w|2 + ν|∇w|2.

Clearly X ⊂ H1(Ω). For the other direction, let w ∈ H1(Ω) be arbitrary.
We may suppose w ∈ C∞(Ω̄) since this space is dense in H1(Ω). Now we
only need to construct a sequence of C2 functions wn → 0 in H1 norm with
n ·∇wn = n ·∇w on Γ. This is easily accomplished using functions of the form
wn(x) = ξn(dist(x,Γ))n ·∇w(x), where ξn(s) = ξ(ns)/n with ξ smooth and
satisfying ξ(0) = 0, ξ′(0) = 1 and ξ(s) = 0 for s > 1. This proves (176). �
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8 Estimate on the divergence

We can provide an estimate on ∇ · un − hn for the time-discrete scheme in
section 7. For this we prove another estimate on Stokes pressure, showing
that its L2 norm is controlled by the tangential components of vorticity on the
boundary.

Lemma 7 (L2 estimate for Stokes pressure) Let Ω ⊂ RN (N ≥ 2) be a bounded
connected domain with C2 boundary. Then there is a constant C > 0 so that
for any u ∈ H2(Ω,RN ), the associated Stokes pressure pS ∈ H1(Ω) defined by
∇pS = (∆P − P∆)u with zero mean satisfies

(178) ‖pS‖ ≤ C‖n · (∇u−∇uT )‖L2(Γ) ≤ C2‖u‖1/4‖u‖3/4
H2(Ω).

Proof: For any φ ∈ L2(Ω), define ψ with mean zero by

(179) ∆ψ = φ− φ̄, n · ∇ψ
∣∣
Γ

= 0,

where φ̄ is the mean value of φ over Ω. Then, since pS has mean zero, we have

(180) 〈pS, φ〉 = 〈pS, φ− φ̄〉 = 〈pS,∆ψ〉 = −〈∇pS,∇ψ〉.

From (50), we get

(181) |〈pS, φ〉| ≤ c0‖n · (∇u−∇uT )‖L2(Γ)‖∇ψ‖L2(Γ)

By elliptic regularity theory for (179),

(182) ‖∇ψ‖L2(Γ) ≤ c1‖ψ‖H3/2(Ω) ≤ c2‖φ− φ̄‖ ≤ c2‖φ‖.

Taking φ = pS in (181) gives the first inequality in the Lemma, and the second
follows by standard trace and interpolation theorems. �

Proposition 3 Make the same assumptions as in Theorem 5, and let

wn = ∇ · un − hn, n = 0, 1, . . .

Then there exists C > 0 such that as long as n∆t ≤ T∗ we have

sup
0≤k≤n

‖wk‖2H1(Ω)′ +
n∑

k=1

‖wk‖2∆t ≤ C(‖w0‖2H1(Ω)′ + ∆t1/2).

Proof: For φ ∈ H1(Ω) with mean zero, we compute from (153)–(155) that

(183)
〈
wn+1 − wn

∆t
, φ

〉
+ ν〈∇(wn+1 + pn+1

S − pn
S ),∇φ〉 = 0.

Here we used Lemma 1 to say (I −P)∆un+1 = ∇∇ · un+1 + (∆P −P∆)un+1.
Next, note that

∫
Ω
wn = 0 by the compatibility condition (147). We let qn be

the mean-zero solution of

(184) −∆qn = wn, n ·∇qn = 0 on Γ.
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Note that ‖∇qn‖ is equivalent to ‖wn‖H1(Ω)′ . Taking φ = qn+1 in (183), we
find 〈

∇qn+1 −∇qn

∆t
,∇qn+1

〉
+ ν〈wn+1 + pn+1

S − pn
S , w

n+1〉 = 0,

whence

‖∇qn+1‖2 − ‖∇qn‖2

∆t
+ 2ν‖wn+1‖2 ≤ ν(‖wn+1‖2 + ‖pn+1

S − pn
S ‖2),

and

(185) ‖∇qn‖2 + ν

n−1∑
k=0

‖wk+1‖2∆t ≤ ‖∇q0‖2 + ν

n−1∑
k=0

‖pk+1
S − pk

S‖2∆t.

Since ∇(pn+1
S − pn

S ) = (∆P − P∆)(un+1 − un), we use Lemma 7 to infer

(186) ‖pn+1
S − pn

S ‖2 ≤ C‖un+1 − un‖1/2‖un+1 − un‖3/2
H2 .

Then by Hölder’s inequality and Theorem 5,

n−1∑
k=0

‖pk+1
S − pk

S‖2∆t ≤ C

[
n−1∑
k=0

‖uk+1 − uk‖2∆t

] 1
4
[

n−1∑
k=0

‖uk+1 − uk‖2H2∆t

] 3
4

≤ C
√

∆t. �
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A Optimal commutator estimate in a half space

Consider Ω to be the half space RN
+ where xN > 0. In this case, one must

take care to define the Helmholtz projection, since ∇H1(Ω) is now not closed in
L2(Ω,RN ) (cf. [Soh]). Let B ⊂ Ω be a fixed bounded domain and let Y be the
space of functions q ∈ L2

loc(Ω) such that
∫

B
q = 0 and ∇q ∈ L2(Ω,RN ). Then

Y is a Hilbert space with norm ‖q‖2Y =
∫
Ω
|∇q|2 and ∇Y is a closed subspace

of L2(Ω,RN ). The Helmholtz projection P may be defined as in (7) with q ∈ Y
instead of H1(Ω).

We note that smooth q ∈ C∞(Ω) with bounded support are dense in Y . The
proof is similar to that in the case Ω = RN as given in [Soh, Lemma 2.5.4] —
approximate by functions with bounded support via cutoff, then mollify. Here
one should shift slightly before mollifying, replacing q(x) by q(x − εeN ), as in
standard proofs of the density of smooth functions in Sobolev spaces (cf. [Ev]).

If the estimate (15) holds for some ε > 0, C ≥ 0 independent of u, then a
simple scaling argument shows that it holds with C = 0. We claim that in fact
estimate (15) holds with ε = 0 and C = 0, and is sharp in general.

Theorem 7 Let Ω = RN
+ with N ≥ 2. Then∫
Ω

|(∆P − P∆)u|2 ≤ 1
2

∫
Ω

|∆u|2

for all u ∈ H2 ∩H1
0 (Ω,RN ), and equality holds for some u.

Proof: It suffices to study u in a dense subset of H2 ∩H1
0 (Ω,RN ), so we take u

smooth in RN
+ with bounded support. First we obtain an explicit expression for

the Fourier transform of ∇pS = (∆P−P∆)u using the boundary value problem
(21) for p = pS. Since u = 0 for xN = 0 and n = eN = (0, . . . , 0,−1), we have
n · (∆u−∇∇·u) = ∂N∇·u‖ on Γ, where u‖ = (u1, . . . , uN−1). Formally taking
the Fourier transform in tangential variables, for k ∈ RN−1 and s = xN we need

(187) (∂2
s − |k|2)p̂(k, s) = 0, ∂sp̂(k, 0) = −ik · ∂sû‖(k, 0).

Since p̂ should not grow exponentially in s > 0, for k 6= 0 we get the formula

(188) p̂(k, s) = a(k)e−|k|s where a(k) = ik̂ · ∂sû‖(k, 0), k̂ = k/|k|.

Since a(k) is rapidly decreasing, inversion yields a smooth p on RN
+ with

(189) ∇̂p(k, s) = (ik,−|k|)a(k)e−|k|s,

(190)
∫

Ω

|∇p|2 =
∫

RN−1

∫ ∞

0

(|k|2|p̂|2+|∂sp̂|2) ds dk =
∫

RN−1
|k||a(k)|2 dk <∞.

Hence (188) determines a harmonic function p ∈ Y (adjusting by a constant
if necessary). Fourier inversion of the last component of (189) shows that the
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boundary condition in (21) holds, whence (20) holds for all smooth φ ∈ Y with
bounded support. Hence (188) indeed determines the Stokes pressure.

Now,

(191)
∫

Ω

|∆u|2 =
∫

Ω

|∆uN |2 +
∫

RN−1

∫ ∞

0

|(∂2
s − |k|2)û‖|2 ds dk.

Let v(s) = k̂ · û‖(k, s), w(s) = e−|k|s. Then since v(0) = 0, w(0) = 1 and
w′′ = |k|2w, by Green’s identity and Cauchy-Schwarz we find

|a(k)|2 = |v′(0)|2 =
∣∣∣∣∫ ∞

0

(wv′′ − w′′v) ds
∣∣∣∣2

≤
∫ ∞

0

w(s)2 ds
∫ ∞

0

|(∂2
s − |k|2)v|2 ds =

1
2|k|

∫ ∞

0

|(∂2
s − |k|2)v|2 ds.

Together with (191) and (190) this implies

(192)
∫

Ω

|∇p|2 ≤ 1
2

∫
Ω

|∆u|2.

To see that equality is possible, choose a(k) smooth with compact support and
zero near k = 0, and determine u ∈ H2 ∩H1

0 (Ω,RN ) so uN = 0 and

û‖(k, s) = se−|k|s(−ik̂)a(k).

One computes then that |(∂2
s − k2)û‖| = e−|k|s, and equality holds in (192),

while (187) and (188) hold. �

B Range of the commutator ∆P − P∆

According to (19) the range of the commutator [∆,P] acting on H2(Ω,RN ) can
be characterized as the space of gradients of Stokes pressures. By (20), the
space of Stokes pressures is given by

(193) Sp := {p ∈ H1(Ω)/R | ∆p = 0 in Ω and n ·∇p|Γ ∈ SΓ},

where SΓ is the subspace of H−1/2(Γ) given by

(194) SΓ := {f = n · (∆−∇∇·)u|Γ | u ∈ H2(Ω,RN )}.

The Stokes pressure p with zero average is determined uniquely by f = n·∇p|Γ ∈
SΓ, with ‖p‖H1(Ω) ≤ C‖f‖H−1/2(Γ) by the Lax-Milgram lemma.

The space SΓ may be characterized as follows.

Theorem 8 Assume Ω ⊂ RN is a bounded, connected domain and its boundary
Γ is of class C3. Denote the connected components of Γ by Γi, i = 1, . . . ,m.
Then

SΓ = {f ∈ H−1/2(Γ) |
∫

Γi

f = 0 for i = 1, . . . ,m}

= {f = n · (∆−∇∇·)u|Γ | u ∈ H2 ∩H1
0 (Ω,RN )},
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and moreover, the map u 7→ n · (∆ − ∇∇·)u|Γ from H2 ∩H1
0 (Ω,RN ) to SΓ

admits a bounded right inverse.

Proof: First we check that if f = n · (∆ − ∇∇·)u|Γ with u ∈ H2(Ω,RN ),
then

∫
Γi
f = 0 for i = 1, ...,m. For each Γi, there is an si > 0 small enough

and a smooth cut-off function ρi defined in Ω which satisfies ρi(x) = 1 when
dist(x,Γi) < si and ρi(x) = 0 when dist(x,Γj) < si for all j 6= i. Let a =
(∆−∇∇·)(ρiu). Then a ∈ L2(Ω,RN ) and ∇ · a = 0, so

(195)
∫

Γi

f =
∫

Γ

n · a =
∫

Ω

∇ · a = 0.

Next, let f ∈ H−1/2(Γ) with
∫
Γi
f = 0 for all i. We will show that we can

find some u ∈ H2 ∩H1
0 (Ω,RN ) so that f = n · (∆ − ∇∇·)u|Γ. First, treating

each boundary component separately, we can solve the problem

(196) ∆Γψ = −f on Γ,
∫

Γi

ψ = 0 for i = 1, . . . ,m,

where ∆Γ is the (positive) Laplace-Beltrami operator on Γ. Denote the mapping
f 7→ ψ by T . Then T : H−1(Γ) → H1(Γ) is bounded ([Au, theorem 1.71, theo-
rem 4.7], [Tay, p. 306, Proposition 1.6]). Also T : L2(Γ) → H2(Γ) is bounded,
by elliptic regularity theory [Tay, p. 306, Proposition 1.6]. So, interpolation
implies (see [LM, vol I, p. 37, Remark 7.6])

(197) ‖ψ‖H3/2(Γ) ≤ C‖f‖H−1/2(Γ).

Now by an inverse trace theorem [RR, Theorem 6.109], there exists a map
ψ 7→ q ∈ H3(Ω) with

(198) q = 0 and n ·∇q = ψ on Γ, ‖q‖H3(Ω) ≤ C‖ψ‖H3/2(Γ).

We may assume q is supported in a small neighborhood of Γ. Define

(199) u = (I − nnT )∇q.

Then f 7→ u is bounded from SΓ to H2 ∩H1
0 (Ω,RN ). We claim

(200) n · (∆−∇∇·)u = f on Γ.

The proof of this claim amounts to showing that the derivative along the
normal n ·∇ and normal projection nnT commute on the boundary with the
tangential gradient and divergence operators (I −nnT )∇ and ∇ · (I −nnT ) for
the functions involved.

First, since n · u = 0, by expanding ∆(n · u) we get

(201) n ·∆u = −(∆n) · u− 2∇n : ∇u = 0 on Γ,
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since for each i, ∇ni is tangential and ∇ui is normal to Γ — indeed, using
∂jni = ∂inj and (48) and (49), we have that

(202) ∇n : ∇u = (∂jni)(∂jui) = (∂inj)(njnk∂kui) = 0 on Γ.

Next we calculate in Ω that

(203) n ·∇∇ · u = ∇ · (n ·∇u)−∇n : ∇u.

Note that n ·∇(nnT ) = 0 by (48), so n ·∇ commutes with I − nnT in Ω. Then
since u = (I − nnT )u from (199) we get

(204) n ·∇u = (I − nnT )(n ·∇)u = (I − nnT )(n ·∇)∇q.

Now

(205) (n ·∇)∇q = ∇(n ·∇q)− a

where

(206) ai = (∂inj)(∂jq) = (∂jni)(∂jq)

This quantity lies in H2(Ω) and vanishes on Γ since ∇q = (nnT )∇q on Γ. (This
can be proved by approximation.) Using part (i) of Lemma 3, we have that
∇ · (I − nnT )a = 0 on Γ. Combining (201)–(205) we conclude that

(207) n · (∆−∇∇·)u = −∇ · (I − nnT )∇(n ·∇q) on Γ.

But it is well known that at any point x where Φ(x) = r ∈ (0, s), for any smooth
function φ on Ωs,

(208) ∇ · (I − nnT )∇φ = ∆φ− (∇ · n)(n ·∇φ)− (n ·∇)2φ = −∆Γr (φ|Γr ).

where ∆Γr is the Laplace-Beltrami operator on Γr. So taking r → 0 we see that
the right hand side of (207) is exactly −∆Γ(n ·∇q|Γ). So by (196) and (198) we
have established the claim in (200). This finishes the proof. �

Remark 3. Given a velocity field u ∈ H2 ∩H1
0 (Ω,R3), the associated Stokes

pressure is determined by the normal component at the boundary of the curl
of the vorticity ω = ∇ × u, which is a vector field in H1(Ω,R3). A question
related to Theorem 8 is whether the space SΓ of such boundary values n ·∇×ω
is constrained in any way, as compared to the space of boundary values n ·∇×v
where v ∈ H1(Ω,R3) is arbitrary.

The answer is no. In [Te1, Appendix I, Proposition 1.3], Temam proves

(209) ∇×H1(Ω,R3) = {g ∈ L2(Ω,R3) | ∇ · g = 0,
∫

Γi

n · g = 0 ∀i}.

Clearly SΓ ⊂ n · ∇ × H1(Ω,R3) by (194). For the other direction, let v ∈
H1(Ω,R3) be arbitrary, and let f = n · ∇ × v|Γ. By (209) or otherwise, f ∈
H−1/2(Γ) and

∫
Γi
f = 0 for all i, hence f ∈ SΓ. This shows that for N = 3,

(210) SΓ = n · ∇ ×H1(Ω,R3).
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A related point is that for N = 3, the space of Stokes pressure gradients ∇Sp

(range of [∆,P]) can be characterized as the space of simultaneous gradients and
curls.

Theorem 9 Assume Ω ⊂ R3 is a bounded, connected domain and its boundary
Γ is of class C3. Then

(211) [∆,P]H2(Ω,R3) = ∇Sp = ∇H1(Ω) ∩∇×H1(Ω,R3).

Proof: Indeed, ∇Sp ⊂ ∇×H1 by (209) and Theorem 8. On the other hand, if
g = ∇×v = ∇p then ∆p = ∇·g = 0 and n ·∇p|Γ ∈ SΓ by (209) and Theorem 8,
so ∇p ∈ ∇Sp. �

Remark 4. In the book [Te1] (see Theorem 1.5) Temam establishes the or-
thogonal decomposition L2(Ω,RN ) = H ⊕H1 ⊕H2, which means that for any
g ∈ L2(Ω,RN ),

(212) g = Pg +∇q +∇∆−1∇ · g,

where q satisfies ∆q = 0 and n · ∇q|Γ = n · (g −∇∆−1∇ · g). By contrast, we
have shown

(213) g = Pg +∇p+∇∇ ·∆−1g

where p satisfies ∆p = 0 and n ·∇p|Γ = n · (g−∇∇·∆−1g), i.e., p is the Stokes
pressure associated with ∆−1g. Thus the map g 7→ ∇p−∇q is the commutator
∇∆−1∇ · −∇∇ · ∆−1. The decomposition (212) is orthogonal, and q satisfies∫
Γ
n·∇q = 0. In our decomposition (213), the gradient terms are not orthogonal,

but the Stokes pressure term enjoys the bounds stated in Theorem 1, and if Γ
is not connected, it has the extra property that

∫
Γi

n · ∇p = 0 for every i.

C Equivalence with a gauge method

In this appendix we show that the scheme (153)–(155) from Section 7 is equiva-
lent to a first-order gauge method essentially the same as studied in [EL, WL].
A similar observation is made in [GMS] for the linear case with smooth solutions
and homogeneous boundary conditions.

At the time-continuous level, the idea is to reformulate the unconstrained
formulation (135)-(136) using the representation

(214) u = a +∇Φ,

for an appropriate gauge Φ. We require

∂ta + P(u·∇u− f) = ν∆a in Ω,(215)
a +∇Φ = g on Γ,(216)

∂tΦ + νpS + pgh = ν∆Φ− νh̄ in Ω,(217)
n ·∇Φ = n · g on Γ.(218)
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Here pgh is determined via (135), pS is the Stokes pressure satisfying ∇pS =
(∆P − P∆)u, and h̄ is the average value of h. Adding the gradient of (217) to
(215) produces (136).

When initial data satisfy ∇ · a + ∆Φ = h at t = 0, (217) can be replaced by

(219) ∇ · a + ∆Φ = h in Ω.

This has advantages for computational purposes and is used in the discretization
below. If we define ψ by solving

(220) ∆ψ = h in Ω, n · ∇ψ = n · g on Γ,

then (219) implies ∇(Φ− ψ) = (P − I)a and hence u = a +∇Φ = Pa +∇ψ.
Time discretization of the gauge formulation above yields a scheme that can

be written in the following form, convenient for our analysis. First, determine
ψn for all n ≥ 0 as the mean-zero solution of

(221) ∆ψn = hn in Ω, n · ∇ψn = n · gn on Γ.

Then 〈∇ψn,∇φ〉 = 〈n · gn, φ〉Γ − 〈hn, φ〉 for all φ ∈ H1(Ω). Assuming the data
are as in section 7.2 we have hn ∈ H1(Ω), gn ∈ H3/2(Γ) and hence ψn ∈ H3(Ω).
Using (155) one can determine that

(222)
ψn+1 − ψn

∆t
− ν∆ψn+1 = −pgh

n − νh̄n+1,

where h̄n+1 is the average value of hn+1.
Now we write a gauge method as follows. Given an at time tn = n∆t such

that n · an = 0 on Γ, find un and φn so that

un = Pan + ν∆t(I − P)∆an +∇ψn,(223)
∆φn = −∇ · an in Ω, n · ∇φn = 0 on Γ,(224)

then determine an+1 by solving

an+1 − an

∆t
+ P(un · ∇un − fn) = ν∆an+1 in Ω,(225)

an+1 +∇φn +∇ψn+1 = gn+1 on Γ.(226)

Since (224) means ∇φn = (P − I)an, from (223) and (225) we have

(227) un+1 = an+1 +∇φn +∇ψn+1

for n ≥ 0. For computational purposes, one would update the velocity using
this equation, and compute φn + ψn+1 from a single boundary-value problem.
We need (223) here for initialization, but note that in general this equation
determines an from un as well as vice-versa—see below.

One can compare (225)–(227) with (214)–(216) taking Φ = φ + ψ. To see
the connection with (217)–(218), see (221)–(222) and (232) below.
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Proposition 4 The scheme (153)–(155) is equivalent to the gauge method (223)–
(226).

Proof: First suppose that we have a solution of the gauge method (223)–(226),
with an ∈ H2(Ω,RN ) and (hence) φn ∈ H3(Ω). We need to assume in addition
that (I − P)∆a0 ∈ H2(Ω,RN ), so that u0 ∈ H2(Ω,RN ). Observe that

(228) Pun = Pan and P∆un = P∆an,

which follows since un−an is the gradient of an H3 function, by (227) for n > 0.
Next, we can write (I − P)un = ∇qn where qn ∈ H3(Ω) has mean zero. Since

(229) (I − P)∆an = ∆(I − P)an + (∆P − P∆)an = ∇(−∆φn + pn
S ),

applying (I − P) to (223) we find qn is determined from φn (or vice versa) by

(230) ν∆φn − νpn
S =

ψn − qn

∆t
in Ω, n ·∇φn = 0 on Γ.

Applying P and (P − I) respectively to (225), we get

Pun+1 − Pun

∆t
+ P(un · ∇un − fn) = νP∆un+1,(231)

φn+1 − φn

∆t
= ν∆φn+1 − νpn+1

S(232)

Using (230) it follows φn+1 − φn = ψn+1 − qn+1 and so

(233) ν∆qn+1 = ν∆(ψn+1 + φn − φn+1).

By combining these equations with (222), we find

(234)
qn+1 − qn

∆t
− ν∆qn+1 = −pgh

n − νh̄n+1 + νpn+1
S − νpn

S .

Taking the gradient, and using ∆∇qn+1 +∇pn+1
S = (I − P)∆un+1, we get

(235) (I − P)
(

un+1 − un

∆t

)
+∇pgh

n + ν∇pn
S = ν(I − P)∆un+1.

Together with (231) and (227) this yields the scheme (153)–(155).
Next we argue in the other direction. Suppose that we have a solution of

(153)–(155) with un ∈ H2(Ω,RN ) for n ≥ 0. Then we can determine an from
un so that (223) holds by setting

an = Pun −∇φn,

where φn is obtained by solving (230) with ∇pn
S = (∆P−P∆)un. Then ∇φn =

(P − I)an and (224) holds, and since φn ∈ H3(Ω) we get also (228) and (229).
Applying P to (153) yields (231). Applying (I − P) to (153) we obtain (235)



Stability of efficient Navier-Stokes solvers 43

and hence (234). Using this together with (222) and (230) leads to (233). Since
all quantities in (232) have mean zero and n · ∇qn+1 = n · un+1 = n · gn+1 =
n · ∇ψn+1 on Γ, we infer that (232) holds. This ensures

(236) (I − P)
(

an+1 − an

∆t

)
= ν∇(−∆φn+1 + pn+1

S ) = ν(I − P)∆an+1.

Combining this with (231) and (228) gives (225), and (227) and (226) follow.
This concludes the proof. �
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