
Hedging of Credit Derivatives in Models

with Totally Unexpected Default

T. Bielecki, M. Jeanblanc and M. Rutkowski

Carnegie Mellon University

Pittsburgh, 6 February 2006

1



Based on

• N. Vaillant (2001) A Beginner’s Guide to Credit Derivatives. Working

paper, Nomura International.

• T.R. Bielecki, M. Jeanblanc and M. Rutkowski: Hedging of Defaultable

Claims. In: Paris-Princeton Lectures on Mathematical Finance 2003.

R. Carmona et al., eds. Springer-Verlag, 2004, 1-132.

• T.R. Bielecki, M. Jeanblanc and M. Rutkowski: Hedging of Credit

Derivatives in Models with Totally Unexpected Default. Forthcoming in

Proceedings of Ritsumeikan Conference, 2005.

• Bielecki, T., Jeanblanc, M. and Rutkowski, M.: Completeness of a General

Semimartingale Market under Constrained Trading. In: Stochastic

Finance, M. do Rosário Grossinho et al., eds. Springer-Verlag, 2006,

83-106.

2



Other related papers

• T.R. Bielecki, M. Jeanblanc and M. Rutkowski: PDE Approach to

Valuation and Hedging of Credit Derivatives. Quantitative Finance 5

(2005), 1–14.

• T. Bielecki, M. Jeanblanc and M. Rutkowski (2004) Completeness of a

Reduced-form Credit Risk Model with Discontinuous Asset Prices.

Working paper.

• T. Bielecki, M. Jeanblanc and M. Rutkowski (2005) Pricing and Trading

Credit Default Swaps. Working paper.
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Terminology

• A defaultable claim is any financial contract with features related to the

credit risk of some entity, e.g., a corporate bond, a vulnerable option, a

defaultable swap, etc.

• A credit derivative is a special device that is tailored to transfer (buy or

sell) the credit risk of a reference name.

• Plain vanilla credit derivatives: credit default swaps on a single name and

related options (credit default swaptions).

• Multi-name (structured) credit derivatives: CDOs (collateralized debt

obligations), basket swaps, index swaps.

• The term default time refers to the time of occurrence of some credit

event.
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Main issues

• How to hedge a defaultable claim within the framework of a given

intensity-based model of credit risk?

• How to construct a model for given a set of liquid credit risk sensitive

assets and given “practically acceptable” hedging strategies for credit

derivatives?
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Objectives

• To analyze unconstrained and constrained trading strategies with

default-free and defaultable assets.

• To examine the arbitrage-free property and completeness of a model via

the existence and uniqueness of a martingale measure.

• To study replicating strategies for a generic defaultable claim in terms of

traded default-free and defaultable assets.

• To derive of explicit formulae for prices and replicating strategies of credit

derivatives.

• To derive PDE approach to valuation and hedging of credit derivatives in

a Markovian setup.
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Risk-Neutral Valuation of Defaultable Claims
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1 Risk-Neutral Valuation of Defaultable Claims

We adopt throughout the framework of the intensity-based approach.

1.1 Defaultable claims

A generic defaultable claim (X,Z, τ) consists of:

• The promised contingent claim X representing the payoff received by the

owner of the claim at time T, if there was no default prior to or at

maturity date T .

• The recovery process Z representing the recovery payoff at time of

default, if default occurs prior to or at maturity date T .

• The default time τ . The name default time is merely a convention.
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1.2 Default time within the intensity-based approach

The default time τ is a non-negative random variable on (Ω,G,Q).

The default process equals Ht = 1{τ≤t} and the filtration generated by this

process is denoted by H.

We set G = F ∨H, so that Gt = Ft ∨ Ht, where F = (Ft) is a reference

filtration. The choice of F depends on a problem at hand.

Define the risk-neutral survival process Gt as

Gt = 1 − Ft = Q{τ > t | Ft}, Ft = Q{τ ≤ t | Ft}.

Then the risk-neutral hazard process Γ equals

Γt = − ln(1 − Ft) = − lnGt.
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1.3 Dividend process

The dividend process D represents all cash flows associated with a defaultable

claim (X,Z, τ).

Formally, the dividend process Dt, t ∈ [0, T ], is defined through the formula

Dt = X1{τ>T}1{t=T} +

∫

]0,t]

Zu dHu

where the integral is the (stochastic) Stieltjes integral.

Recall that the filtration G models the full information, that is, the

observations of the default-free market and the default event.
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1.4 Ex-dividend price

The ex-dividend price process U of a defaultable claim (X,Z, τ) that settles at

time T is given as

Ut = Bt EQ

(∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
, ∀ t ∈ [0, T [,

where Q is the spot martingale measure (also known as the risk-neutral

probability) and B is the savings account.

In addition, at maturity date T we set

UT = UT (X) + UT (Z) = X1{τ>T} + ZT1{τ=T}.
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1.5 Pre-default values

1.5.1 Valuation of a survival claim (X, 0, τ)

For an FT -measurable r.v. X and any t ≤ T the value Ut(X) equals

Ut(X) = Bt EQ(1{τ>T}B
−1
T X | Gt) = 1{τ>t}Bt EQ(eΓt−ΓTB−1

T X | Ft).

1.5.2 Valuation of a recovery process (0, Z, τ)

For an F-predictable process Z and any t ≤ T the value Ut(Z) equals

Ut(Z) = Bt EQ(B−1
τ Zτ1{t<τ≤T}|Gt) = 1{τ>t}Bt e

Γt EQ

(∫ T

t

B−1
u Zu dFu

∣∣∣Ft

)
.

Note that Ut(X) = 1{τ>t} Ũt(X) and Ut(Z) = 1{τ>t} Ũt(Z) for some

F-predictable processes Ũ(X) and Ũ(Z).
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1.6 Comments

• The process Ũ(X) is called the pre-default value of a survival claim

(X, 0, τ).

• The process Ũ(Z) is termed the pre-default value of a recovery process

(0, Z, τ).

• Valuation results for defaultable claims presented in this section were not

supported by replication arguments. It was assumed, somewhat arbitrarily,

that Q is the pricing measure (risk-neutral probability).

• In what follows, we shall examine separately on replication of (X, 0, τ) and

(0, Z, τ).

• Replication will hold on the closed random interval [[0, τ ∧ T ]], where τ ∧ T

represents the effective maturity of a defaultable claim.
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Trading Strategies: Default-Free Assets
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2 Trading Strategies: Default-Free Assets

• First, we shall recall the properties of the wealth process of a standard

self-financing trading strategy without and with constraints.

• In this section, we concentrate on trading in default-free assets.

• Let Y 1
t , Y

2
t , . . . , Y

k
t represent the cash values at time t of k traded assets.

We postulate that Y 1, Y 2, . . . , Y k are (possibly discontinuous)

semimartingales with respect to a filtration F. Usually F = FY .

• We recall the properties of the wealth process of self-financing strategies

without and with constraints in a semimartingale set-up.
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2.1 Self-financing strategies

Definition. The wealth process V (φ) of a trading strategy

φ = (φ1, φ2, . . . , φk) equals

Vt(φ) =
k∑

i=1

φi
tY

i
t .

A process φ is in Φ, i.e. is a self-financing strategy if for every t ∈ [0, T ]

Vt(φ) = V0(φ) +
k∑

i=1

∫ t

0

φi
u dY

i
u.

Remark. Let Y 1 be strictly positive. The last two formulae yield

dVt(φ) =
(
Vt(φ) −

k∑

i=2

φi
tY

i
t

)
(Y 1

t )−1 dY 1
t +

k∑

i=2

φi
t dY

i
t .
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2.2 Discounted wealth

The last representation of V (φ) shows that the wealth process depends only

on k − 1 components of the process φ.

Let us choose Y 1 as a numeraire asset. Then, writing

V 1
t (φ) = Vt(φ)/Y 1

t , Y i,1
t = Y i

t /Y
1
t ,

we get the following well-known result.

Lemma. Let φ = (φ1, φ2, . . . , φk) be a self-financing strategy. Then

V 1
t (φ) = V 1

0 (φ) +

k∑

i=2

∫ t

0

φi
u dY

i,1
u , ∀ t ∈ [0, T ].

19



2.3 Replication

Proposition. Let X be an FT -measurable random variable. Assume that there

exists x ∈ R and F-predictable processes φi, i = 2, 3, . . . , k such that

X

Y 1
T

= x+
k∑

i=2

∫ T

0

φi
t dY

i,1
t .

Then there exists a F-predictable process φ1 such that the strategy

φ = (φ1, φ2, . . . , φk) is self-financing and replicates X . Moreover

πt(X)

Y 1
t

= x+
k∑

i=2

∫ t

0

φi
u dY

i,1
u

where πt(X) is the arbitrage price (cost of replication) of X .
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2.4 Constrained trading strategies

• By definition, a constrained strategy φ satisfies

k∑

i=ℓ+1

φi
tY

i
t− = Zt

where Z is a predetermined F-predictable process.

• The constraint above is referred to as the balance condition and the class

of all constrained self-financing strategies is denoted by Φl(Z).

• For any φ ∈ Φl(Z) we have, for every t ∈ [0, T ],

Vt−(φ) =

k∑

i=1

φi
tY

i
t− =

ℓ∑

i=1

φi
tY

i
t− + Zt.
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2.5 Dynamics of a relative wealth

Lemma. The relative wealth V 1
t (φ) = Vt(φ)(Y 1

t )−1 of any strategy φ ∈ Φl(Z)

satisfies

V 1
t (φ) = V 1

0 (φ) +
l∑

i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑

i=l+1

∫ t

0

φi
u dY

i,k,1
u +

∫ t

0

Z1
u

Y k,1
u−

dY k,1
u

where we denote Z1
t = Zt/Y

1
t and

Y i,k,1
t =

∫ t

0

(
dY i,1

u −
Y i,1

u−

Y k,1
u−

dY k,1
u

)
.
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2.6 Replication under balance condition

Let X be a FT -measurable random variable.

Proposition. Assume that there exist F-predictable processes

φi, i = 2, 3, . . . , k − 1 such that

X

Y 1
T

= x+
l∑

i=2

∫ T

0

φi
t dY

i,1
t +

k−1∑

i=l+1

∫ T

0

φi
t dY

i,k,1
t +

∫ T

0

Z1
t

Y k,1
t−

dY k,1
t .

Then there exist the F-predictable processes φ1 and φk such that the strategy

φ = (φ1, φ2, . . . , φk) ∈ Φl(Z) replicates X . Moreover

V 1
t (φ) = x+

l∑

i=2

∫ t

0

φi
u dY

i,1
u +

k−1∑

i=l+1

∫ t

0

φi
u dY

i,k,1
u +

∫ t

0

Z1
u

Y k,1
u−

dY k,1
u .
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2.7 Synthetic assets

• Processes Y i,k,1 given by

Y i,k,1
t =

∫ t

0

(
dY i,1

u −
Y i,1

u−

Y k,1
u−

dY k,1
u

)

represent relative prices of synthetic assets.

• More specifically, for any i = l + 1, l + 2, . . . , k − 1 the process

Ȳ i,k,1 = Y 1Y i,k,1 is the cash price of the ith synthetic asset. We write

briefly Ȳ i = Ȳ i,k,1.

• The ith synthetic asset Ȳ i can be obtained by continuous trading in

primary assets Y 1, Y i and Y k.
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2.8 Case of continuous semimartingales

Lemma. Assume that the prices Y 1, Y i and Y k follow strictly positive

continuous semimartingales. Then we have

Y i,k,1
t =

∫ t

0

(Y 1,k
u )−1eαi,k,1

u dŶ i,k,1
u

where

Ŷ i,k,1
t = Y i,k

t e−α
i,k,1
t

and

αi,k,1
t = 〈lnY i,k, lnY 1,k〉t =

∫ t

0

(Y i,k
u )−1(Y 1,k

u )−1 d〈Y i,k, Y 1,k〉u.
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2.9 Further properties

• Each primary asset Y i, i = l + 1, . . . , k − 1 can be obtained by trading in

primary assets Y 1, Y k and a synthetic asset Ȳ i.

• Constrained market models

Ml(Z) = (Y 1, Y 2, . . . , Y k; Φl(Z))

M̄k−1(Z) = (Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k; Φk−1(Z))

are equivalent. Note that φ ∈ Φk−1(Z) if φk
t Y

k
t = Zt.

• Instead of using primary assets Y 1, Y 2, . . . , Y k, it is more convenient to

replicate a contingent claim using the assets

Y 1, Y 2, . . . , Y l, Ȳ l+1, . . . , Ȳ k−1, Y k.
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2.10 Remarks

• In the case of a single constraint, the wealth V (φ) of a self-financing

trading strategy φ = (φ1, φ2, . . . , φk) is completely specified by the

k − 2 components φ2, . . . , φk−1 of φ.

• The coefficients αi,k,1
t represent the correlations between relative prices

Y i,k and Y 1,k (in so-called volatility-based models they are given as

integrals of products of the respective volatilities).

• The concept of a self-financing constrained strategy allows us to deal with

the recovery process Z. For a survival claim (X, 0, τ) we set Z = 0.

• It remains to specify the behavior of defaultable tradeable assets at the

time of default (recovery rule).
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Trading Strategies: Defaultable Assets
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Standing assumptions

• Zero recovery scheme for all defaultable assets.

• Pre-default values of all defaultable assets follow continuous processes.

• All defaultable assets have a common default time.

• Prices of default-free assets follow continuous processes.

These assumptions are not realistic and too restrictive, but each of them can

be subsequently relaxed.
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3 Trading Strategies: Defaultable Assets

• Let Y i, i = 1, . . . ,m be prices of defaultable assets traded in the market.

A random time τ is the common default time for all defaultable assets.

• If Y i is subject to zero recovery then

Y i
t = 1{τ>t}Ỹ

i
t ,

where the process Ỹ i, representing the pre-default value of Y i, is adapted

to the reference filtration F.

• We assume that the pre-default price processes Ỹ i
t , t ∈ [0, T ], are

continuous semimartingales and Ỹ 1 is strictly positive.
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3.1 Self-financing strategies

Let Y 1, . . . , Y m be prices of m defaultable assets, and let Y m+1, . . . , Y k

represent prices of k −m default-free assets. Processes Y m+1, . . . , Y k are

continuous semimartingales and Y k is strictly positive.

We postulate here that the processes φ1, . . . , φk are G-predictable.

Definition. The wealth Vt(φ) of a trading strategy φ = (φ1, φ2, . . . , φk) equals

Vt(φ) =
∑k

i=1 φ
i
tY

i
t for every t ∈ [0, T ]. A strategy φ is said to be

self-financing if

Vt(φ) = V0(φ) +

m∑

i=1

∫ t

0

φi
u dY

i
u +

k∑

i=m+1

∫ t

0

φi
u dY

i
u, ∀ t ∈ [0, T ].
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3.2 Pre-default wealth

Definition. The pre-default wealth Ṽ (φ) of a trading strategy

φ = (φ1, φ2, . . . , φk) equals

Ṽt(φ) =
m∑

i=1

φi
tỸ

i
t +

k∑

i=m+1

φi
tY

i
t , ∀ t ∈ [0, T ].

A strategy φ is said to be self-financing prior to default if

Ṽt(φ) = Ṽ0(φ) +
m∑

i=1

∫ t

0

φi
u dỸ

i
u +

k∑

i=m+1

∫ t

0

φi
u dY

i
u, ∀ t ∈ [0, T ].

Comments:

• If a trading strategy is self-financing on [[0, τ ∧ T [[ then it is also

self-financing on [[0, τ ∧ T ]].

• We may and do assume that the processes φ1, . . . , φk are F-predictable.
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Replication of a Generic Defaultable Claim
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4 Replication of a Generic Defaultable Claim

Recall that Ũt(X) and Ũt(Z) stand for pre-default values of defaultable claims

(X, 0, τ) and (0, Z, τ), respectively.

Definition. A self-financing trading strategy φ is a replicating strategy for a

defaultable claim (X,Z, τ) if and only if the following hold:

• Vt(φ) = Ũt(X) + Ũt(Z) on the random interval [[0, τ ∧ T [[,

• Vτ (φ) = Zτ on the set {τ ≤ T},

• VT (φ) = X on the set {τ > T}.

We say that a defaultable claim is attainable if it admits at least one

replicating strategy.
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4.1 Replication of a survival claim

It is enough to deal with the pre-default wealth process Ṽ (φ).

Proposition. Let a constant Ṽ 1
0 and F-predictable processes ψi for

i = 2, . . . ,m and ψ̃i,k,1 for i = m+ 1, . . . , k − 1 be such that

Ỹ 1
T

(
Ṽ 1

0 +
m∑

i=2

∫ T

0

ψi
u dỸ

i,1
u +

k−1∑

i=m+1

∫ T

0

ψ̃i,k,1
u dŶ i,k,1

u

)
= X.

Let Ṽt = Ỹ 1
t Ṽ

1
t where

Ṽ 1
t = Ṽ 1

0 +
m∑

i=2

∫ t

0

ψi
u dỸ

i,1
u +

k−1∑

i=m+1

∫ t

0

ψ̃i,k,1
u dŶ i,k,1

u .
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Proposition (continued).

Then the trading strategy φ = (φ1, φ2, . . . , φk) defined by

φ1
t =

(
Ṽt −

m∑

i=2

φi
tỸ

i
t

)
(Ỹ 1

t )−1,

φi
t = ψi

t, i = 2, . . . ,m,

φi
t = ψ̃i,k,1

t Ỹ 1,k
t e−eαi,k,1

t , i = m+ 1, . . . , k − 1,

φk
t = −

k−1∑

i=m+1

φi
tY

i
t (Y k

t )−1,

is self-financing and it replicates (X, 0, τ). We have Ṽt(φ) = Ṽt = Ũt(X), that

is, the process Ṽ represents the pre-default value of a survival claim.
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4.2 Remarks

• To completely specify a strategy φ it suffices to specify (in fact, to find if

we wish to replicate a given defaultable claim) k − 2 components only,

namely, the components φ2, . . . , φk−1.

• The coefficients α̃i,k,1
t are correlations between the relative asset prices

Y i,k = Y i/Y k and Ỹ 1,k = Ỹ 1/Y k and, typically, they equal to integrals

of products of the respective volatilities.

• The volatility of Ỹ 1,k = Ỹ 1/Y k will depend on the properly defined

volatility β(t, T ) of the hazard process (if Γ is deterministic then β(t, T )

vanishes).
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4.3 Replication of a recovery payoff

Proposition. Let a constant Ṽ 1
0 and F-predictable processes ψi for

i = 2, . . . ,m and ψ̃i,k,1 for i = m+ 1, . . . , k − 1 be such that

Ṽ 1
0 +

m∑

i=2

∫ T

0

ψi
u dỸ

i,1
u +

k−1∑

i=m+1

∫ T

0

ψ̃i,k,1
u dŶ i,k,1

u

+

∫ T

0

Zu(Y k
u )−1 d(Ỹ 1,k

u )−1 = 0.

Let Ṽt = Ỹ 1
t Ṽ

1
t where

Ṽ 1
t = Ṽ 1

0 +
m∑

i=2

∫ t

0

ψi
u dỸ

i,1
u +

k−1∑

i=m+1

∫ t

0

ψ̃i,k,1
u dŶ i,k,1

u

+

∫ t

0

Zu(Y k
u )−1 d(Ỹ 1,k

u )−1.
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Proposition (continued).

The replicating strategy φ = (φ1, φ2, . . . , φk) for a recovery process Z is given

by the following expressions

φ1
t =

(
Ṽt − Zt −

m∑

i=2

φi
tỸ

i
t

)
(Ỹ 1

t )−1,

φi
t = ψi

t, i = 2, . . . ,m,

φi
t = ψ̃i,k,1

t Ỹ 1,k
t e−eαi,k,1

t , i = m+ 1, . . . , k − 1,

φk
t =

(
Zt −

k−1∑

i=m+1

φi
tY

i
t

)
(Y k

t )−1.

Moreover, Ṽt(φ) = Ṽt = Ũt(Z), that is, the process Ṽ represents the

pre-default value of a recovery payoff.
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Examples of Replication
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5 Examples of Replication

5.1 Standing assumptions

• We are given an arbitrage-free term structure model driven by a Brownian

motion W . The reference filtration F is the Brownian filtration: F = FW .

• We are given the F-hazard process Γ of default time τ .

• Default-free discount bonds B(t, T ) and defaultable bonds with zero

recovery D0(t, T ) are traded assets. For a fixed T > 0, we define

D0(t, T ) = Bt EQ(B−1
T 1{τ>T} | Gt) = 1{τ>t}D̃

0(t, T ),

where D̃0(t, T ) stands for the pre-default value of the defaultable bond.
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5.2 Forward martingale measure

Let QT stand for the forward martingale measure on (Ω,GT )

dQT

dQ
=

1

BTB(0, T )
Q-a.s.

so that the process W T
t = Wt −

∫ t

0
b(u, T ) du is a Brownian motion under QT .

Denote by F (t, U, T ) = B(t, U)(B(t, T ))−1 the forward price of U -maturity

bond, so that

dF (t, U, T ) = F (t, U, T )
(
b(t, U) − b(t, T )

)
dW T

t

where W T is a Brownian motion under QT .

Since the savings account Bt and the bond price B(t, T ) are F-adapted, it can

be shown that Γ is also the F-hazard process of τ under QT

QT {t < τ ≤ T | Gt} = 1{τ>t}EQT
(eΓt−ΓT | Ft).
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5.3 Volatility process β(t, T )

Observe that

D0(t, T ) = 1{τ>t}D̃
0(t, T ) = 1{τ>t}B(t, T ) EQT

(eΓt−ΓT | Ft).

We set

Γ(t, T ) = D̃0(t, T )(B(t, T ))−1 = EQT
(eΓt−ΓT | Ft).

Lemma. Assume that the F-hazard process Γ is continuous. The process

Γ(t, T ), t ∈ [0, T ], is a continuous F-submartingale and

dΓ(t, T ) = Γ(t, T )
(
dΓt + β(t, T ) dW T

t

)

for some F-predictable process β(t, T ). The process Γ(t, T ) is of finite

variation if and only if the hazard process Γ is deterministic. In this case,

we have that Γ(t, T ) = eΓt−ΓT .
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5.4 Example 1: Vulnerable option on a default-free bond

For a fixed U > T , we assume that the U -maturity default-free bond is also

traded, and we consider a vulnerable European call option with the terminal

payoff

ĈT = 1{τ>T}(B(T, U) −K)+.

We thus deal with a survival claim (X, 0, τ) with the promised payoff

X = (B(T, U) −K)+.

We take Y 1
t = D0(t, T ), Y 2

t = B(t, U) and Y 3
t = B(t, T ) as traded assets.

Let us denote

f(t) = β(t, T )(b(t, U) − b(t, T )), ∀ t ∈ [0, T ],

and let us assume that f is a deterministic function.
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5.5 Replication of a vulnerable option

Proposition. Let us set F (t, U, T ) = B(t, U)/B(t, T ). The pre-default price C̃t

of a vulnerable call option written on a default-free zero-coupon bond equals

C̃t = D̃0(t, T )
(
F (t, U, T )e

R
T

t
f(u) duN

(
h+(t, U, T )

)
−KN

(
h−(t, U, T )

))

where

h±(t, U, T ) =
lnF (t, U, T ) − logK +

∫ T

t
f(u) du± 1

2v
2(t, T )

v(t, T )

and v2(t, T ) =
∫ T

t
|b(u, U) − b(u, T )|2 du. The replicating strategy satisfies

φ1
t =

C̃t

D̃0(t, T )
, φ2

t = eeα2,3,1

T
−eα2,3,1

t Γ(t, T )N
(
h+(t, U, T )

)
, φ3

t = −φ2
tF (t, U, T ).
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5.6 Remarks

• The pricing formula is structurally similar to the pricing formula for a bond

futures option in the Gaussian HJM setup.

• The promised payoff is attainable in a non-defaultable market with traded

assets B(t, T ) and B(t, U).

• To replicate the option we assume, in addition, that a defaultable bond

D0(t, T ) is traded.

• If Γ is deterministic then the price C̃t = Γ(t, T )Ct, where Ct is the price

of an equivalent non-defaultable option. Moreover

φ1
t = CtB(t, T )−1, φ2

t = Γ(t, T )N
(
h+(t, U, T )

)
, φ3

t = −φ2
tF (t, U, T ).

• The method is quite general and thus it applies to other claims as well.
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5.7 Example 2: Vulnerable option on a default-free asset

We shall now analyze a vulnerable call option with the payoff

Cd
T = 1{T<τ}(Y

2
T −K)+.

Our goal is to find a replicating strategy for this claim, interpreted as a

survival claim (X, 0, τ) with the promised payoff X = CT = (Y 2
T −K)+,

where CT is the payoff of an equivalent non-vulnerable option.

Method presented below is quite general, however, so that it can be applied to

any survival claim with the promised payoff X = G(Y 2
T ) for some function

G : R → R satisfying the usual integrability assumptions.

We assume that Y 1
t = B(t, T ), Y 3

t = D(t, T ), and the price of a default-free

asset Y 2 is governed by

dY 2
t = Y 2

t

(
µt dt+ σt dWt

)

with F-predictable coefficients µ and σ.
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5.8 Credit-risk-adjusted forward price: definition

Definition. Let Y be a GT -measurable claim. An Ft-measurable random

variable K is called the credit-risk-adjusted forward price of Y if the

pre-default value at time t of the vulnerable forward contract represented by

the claim 1{T<τ}(Y −K) equals 0.

Then we have the following result.

Lemma. The credit-risk-adjusted forward price F̂Y (t, T ) of an attainable

survival claim (X, 0, τ), represented by a GT -measurable claim Y = X1{T<τ},

equals π̃t(X, 0, τ)(D̃(t, T ))−1, where π̃t(X, 0, τ) is the pre-default price of

(X, 0, τ).
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5.9 Credit-risk-adjusted forward price: computation

Let us now focus on default-free assets. Manifestly, the credit-risk-adjusted

forward price of the bond B(t, T ) equals 1. To find the credit-risk-adjusted

forward price of Y 2, let us denote

F̂Y 2(t, T ) := FY 2(t, T ) eαT −αt = Y 2,1
t eαT −αt ,

where αt := 〈lnY 2,1, lnY 3,1〉t satisfies

αt =

∫ t

0

(
σu − b(u, T )

)
β(u, T ) du =

∫ t

0

(
σu − b(u, T )

)(
d̃(u, T )− b(u, T )

)
du.

Lemma. Assume that αt, t ∈ [0, T ], is a deterministic function. Then the

credit-risk-adjusted forward price of Y 2 equals F̂Y 2(t, T ) for every t ∈ [0, T ].
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5.10 Replication of a vulnerable option

Proposition. Suppose that the volatilities σ, b and β are deterministic. Then

the credit-risk-adjusted forward price of a vulnerable call option written on a

default-free asset Y 2 equals

F̂Cd(t, T ) = F̂Y 2(t, T )N(d+(F̂Y 2(t, T ), t, T )) −KN(d−(F̂Y 2(t, T ), t, T ))

where

d±(f̂ , t, T ) =
ln f̂ − lnK ± 1

2v
2(t, T )

v(t, T )

and

v2(t, T ) =

∫ T

t

(σu − b(u, T ))2 du.

The replicating strategy φ in the spot market satisfies, on the set {t < τ},

φ1
tB(t, T ) = −φ2

tY
2
t , φ

2
t = D̃(t, T )(B(t, T ))−1N(d+(t, T ))eαT −αt

and φ3
t D̃(t, T ) = C̃d

t , where d+(t, T ) = d+(F̂Y 2(t, T ), t, T ).
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5.11 Example 3: Option on a defaultable bond

Consider a (non-vulnerable) call option on a defaultable bond with maturity

date U and zero recovery. Let T be the expiration date and let K > 0 stand

for the strike. The terminal payoff equals

C̄T = (D0(T, U) −K)+.

Note that

C̄T =
(
1{τ>T}D̃

0(T, U) −K
)+

= 1{τ>T}

(
D̃0(T, U) −K

)+
= 1{τ>T}X

where X = (D̃0(T, U) −K)+, so that we deal again with a survival claim

(X, 0, τ). Since the underlying asset is defaultable here, the replicating

strategy will have different features. We now postulate that defaultable bonds

of maturities U and T are the only tradeable assets.
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5.12 Replication of an option on a defaultable bond

Proposition. Let β(t, U) + b(t, U) − b(t, T ) be deterministic. Then the

pre-default price C̃t of a call option written on a U -maturity defaultable bond

equals

C̃t = D̃0(t, U)N
(
k+(t, U, T )

)
−KD̃0(t, T )N

(
k−(t, U, T )

)

where

k±(t, U, T ) =
ln D̃0(t, U) − ln D̃0(t, T ) − logK ± 1

2 ṽ
2(t, T )

ṽ(t, T )

and ṽ2(t, T ) =
∫ T

t
|β(u, U) + b(u, U) − b(u, T )|2 du. The replicating strategy

φ = (φ1, φ2) is given by

φ1
t = (C̃t − φ2

t D̃
0(t, U))(D̃0(t, T ))−1, φ2

t = N
(
k+(t, U, T )

)
.
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5.13 Remarks

• The payoff is attainable in a defaultable market with traded assets

D0(t, T ) and D0(t, U). Default-free assets are not used for replication.

• If Γ is deterministic then

C̃t = eΓt−ΓUB(t, U)N
(
k+(t, U, T )

)
−KeΓt−ΓTB(t, T )N

(
k−(t, U, T )

)

where

k±(t, U, T ) =
lnB(t, U) − lnB(t, T ) − logK − ΓT + ΓU ± 1

2v
2(t, T )

v(t, T )

and v2(t, T ) =
∫ T

t
|b(u, U) − b(u, T )|2 du.

• This corresponds to credit-risk-adjusted interest rate r̂t = rt + γ(t).
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Two Defaultable Assets with Total Default
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6 Two Defaultable Assets with Total Default

We shall now assume that we have only two assets, and both are defaultable

assets with total default. This special case is also examined in a recent work

by P. Carr (2005) Dynamic replication of a digital default claim.

We postulate that under the statistical probability Q we have, for i = 1, 2,

dY i
t = Y i

t−

(
µi,t dt+ σi,t dWt − dMt

)

where W is a d-dimensional Brownian motion, so that

Y 1
t = 1{t<τ}Ỹ

1
t , Y 2

t = 1{t<τ}Ỹ
2
t .
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6.1 Pre-default values

The pre-default values are governed by the SDEs

dỸ i
t = Ỹ i

t

(
(µi,t + γt) dt+ σi,t dWt

)
.

The wealth process V (φ) associated with the self-financing trading strategy

(φ1, φ2) satisfies, for every t ∈ [0, T ],

Vt(φ) = Y 1
t

(
V 1

0 (φ) +

∫ t

0

φ2
u dỸ

2,1
u

)

where Ỹ 2,1
t = Ỹ 2

t /Ỹ
1
t . Since both primary traded assets are subject to total

default, it is clear that the present model is incomplete, in the sense, that not

all defaultable claims can be replicated.
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6.2 Completeness

• We shall check that, under the assumption that the driving Brownian

motion W is one-dimensional, all survival claims satisfying natural

technical conditions are hedgeable, however.

• In the more realistic case of a two-dimensional noise, we will still be able

to hedge a large class of survival claims, including options on a defaultable

asset and options to exchange defaultable assets.

• We shall argue that in a model with two defaultable assets governed,

replication of a survival claim (X, 0, τ) is in fact equivalent to replication

of the promised payoff X using the pre-default processes.
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6.3 Replication with pre-default values

Lemma. If a strategy φi, i = 1, 2, based on pre-default values Ỹ i, i = 1, 2, is a

replicating strategy for an FT -measurable claim X , that is, if φ is such that

the process Ṽt(φ) = φ1
t Ỹ

1
t + φ2

t Ỹ
2
t satisfies, for every t ∈ [0, T ],

dṼt(φ) = φ1
t dỸ

1
t + φ2

t dỸ
2
t , ṼT (φ) = X,

then for the process Vt(φ) = φ1
tY

1
t + φ2

tY
2
t we have, for t ∈ [0, T ],

dVt(φ) = φ1
t dY

1
t + φ2

t dY
2
t , VT (φ) = X1{T<τ}.

This means that a strategy φ replicates a survival claim (X, 0, τ).
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6.4 Replication of a survival claim

We conclude that a strategy (φ1, φ2) replicates a survival claim (X, 0, τ)

whenever

Ỹ 1
T

(
x+

∫ T

0

φ2
t dỸ

2,1
t

)
= X

for some constant x and some F-predictable process φ2.

Note that

dỸ 2,1
t = Ỹ 2,1

t

((
µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)

)
dt+ (σ2,t − σ1,t) dWt

)

and introduce a probability measure Q̃, equivalent to Q on (Ω,GT ), and such

that Ỹ 2,1 is an F-martingale under Q̃.
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6.5 Complete case: one-dimensional noise

We argue that a survival claim is attainable if the random variable X(Ỹ 1
T )−1 is

Q̃-integrable. The pre-default value Ṽt of a survival claim equals

Ṽt = Ỹ 1
t EeQ

(
X(Ỹ 1

T )−1 | Ft

)

and from the predictable representation theorem, we deduce that there exists a

process φ2 such that

EeQ
(
X(Ỹ 1

T )−1 | Ft

)
= EeQ

(
X(Ỹ 1

T )−1
)

+

∫ t

0

φ2
u dỸ

2,1
u .

The component φ1 of the self-financing strategy φ = (φ1, φ2) is chosen in

such a way that φ1
t Ỹ

1
t + φ2

t Ỹ
2
t = Ṽt for t ∈ [0, T ].
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6.6 Incomplete case: multi-dimensional noise

We work here with the two correlated one-dimensional Brownian motions, so

that

dY i
t = Y i

t−

(
µi,t dt+ σi,t dW

i
t − dMt

)
, i = 1, 2,

where d〈W 1,W 2〉t = ρt dt for some correlation coefficient ρ.

The model is incomplete, but the exchange option (Y 2
T −KY 1

T )+

is attainable and the option pricing formula in terms of pre-default values is

exactly the same as the standard formula for an option to exchange

non-defaultable assets.

It is remarkable that in the next result we make no assumption about the

behavior of stochastic default intensity.
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6.7 Example 4: option to exchange defaultable assets

Proposition. Let the volatilities σ1, σ2 and the correlation coefficient ρ be

deterministic. Then the pre-default price of the exchange option equals

C̃t = Ỹ 2
t N

(
d+(Ỹ 2,1

t , t, T )
)
−KỸ 1

t N
(
d−(Ỹ 2,1

t , t, T )
)
,

where

d±(ỹ, t, T ) =
ln ỹ − lnK ± 1

2v
2(t, T )

v(t, T )

and

v2(t, T ) =

∫ T

t

(
σ2

1,u + σ2
2,u − 2ρuσ1,uσ2,u

)
du.

The replicating strategy φ satisfies for t ∈ [0, T ], on {t < τ},

φ1
t = −KN

(
d−(Ỹ 2,1

t , t, T )
)
, φ2

t = N
(
d+(Ỹ 2,1

t , t, T )
)
.
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6.8 Conclusions

• Pricing and hedging of any attainable survival claim with the promised

payoff X = g(Ỹ 1
T , Ỹ

2
T ) depends on the choice of a default intensity only

through the pre-default prices Ỹ 1
t and Ỹ 2

t .

• The model considered here is incomplete, even if the notion of

completeness is reduced to survival claims. Basically, a survival claim can

be hedged if its promised payoff can be represents as X = Ỹ 1
T h(Ỹ

2,1
T ).

• The number of traded (default-free and defaultable) assets

Y 1, Y 2, . . . , Y k is arbitrary.
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7 Open Problems

• Explicit necessary and sufficient conditions for the completeness of a

model in terms of tradeable assets.

• Selection of tradeable assets for a given class of credit derivatives. The

choice should be motivated by practical considerations (liquidity).

• The case of discontinuous prices of default-free and defaultable assets.

• The case of a general recovery scheme for defaultable assets.
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8 Related Works

• In “PDE approach to valuation and hedging of credit derivatives” we

develop the PDE approach in a Markovian set-up.

• In “Pricing and trading credit default swaps” we examine, in particular,

hedging strategies for basket credit derivatives based on single name CDSs.

• In “Hedging of convertible bonds in the default intensity set-up” we

study the valuation and hedging of convertible bonds with credit risk.
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