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Boxicity

Interval graph = intersection graph of a family of intervals in R.

Let G be a graph.
box(G ) = minimal k such that G is the intersection of k interval
graphs.

• box(G ) = 1 ⇐⇒ G is an interval graph.
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Boxicity- Example

Let G be the cycle of length 4.

Easy to check- G is not an interval graph (so box(G ) > 1).
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Boxicity- An equivalent definition

box(G ) ≤ k ⇐⇒ G is the intersection graph of a family of
axis-parallel boxes in Rk .

Example
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Boxicity- Roberts’ Theorem

Theorem (Roberts ’69, Witsenhausen ’80)

Let G be a graph on n vertices. Then

box(G ) ≤
⌊n

2

⌋
.

Moreover, box(G ) = n
2 if and only if G is the complete n

2 -partite
graph with sides of size 2.
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Representability

Let F = {F1, . . . ,Fn} be a family of sets.

The nerve N(F) of the family is the following simplicial complex:
• A vertex is assigned to each set of the family.
• Simplices correspond to subfamilies with non-empty intersection.

d-Representable complex = nerve of a family of convex sets in Rd .
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Representability- Important properties

Helly’s Theorem

Let C1, . . . ,Cm be a family of convex sets in Rd .

If any d + 1 sets
have non-empty intersection, then ∩mi=1Ci 6= ∅.

Homology of a d-representable complex:

Let X be d-representable. Then, for any k ≥ d , the k-th homology
group of X vanishes.
This is a consequence of the Nerve Theorem: The homology of
N(F) is the same as that of the union of ∪C∈FC .
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Boxicity in terms of representability

The clique complex X (G )
of graph G = (V ,E ):

Vertex set: V,
Simplices: all cliques of G .
• 1-Representable complex = Nerve of a family of intervals

= Clique complex of an interval graph.
• box(G ) ≤ k if and only if X (G ) can be written as the
intersection of k 1-representable complexes. (Follows from fact
that G = G1 ∩ · · · ∩ Gk iff X (G ) = X (G1) ∩ · · · ∩ X (Gk) ).
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d-Boxicity

Let X be a simplicial complex.

boxd(X ) = minimal k such that X is the intersection of k
d-representable complexes.
• box(G) = box1(X (G )), where X (G ) is the clique complex of G .

Example (d = 2):

H2(X ) = Z 6= 0
=⇒ X is not 2-representable

box2(X ) = 2
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Missing faces

Let X be a simplicial complex on vertex set V .

τ ⊂ V is a missing face of X if τ /∈ X but σ ∈ X for all σ ( τ .
h(X ) = maximum dimension of a missing face.

• X is the clique complex of a graph ⇐⇒ h(X ) = 1 (missing
faces are the edges of the complement graph of G ).
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Missing faces and Helly Theorem

Claim: If X is d-representable, then h(X ) ≤ d .

Proof: Let X = N(F).
Assume for contradiction that there is a missing face τ of
dimension d + 1.
This corresponds to a family of sets F1, . . . ,Fd+2 ∈ F , such that
any d + 1 of them intersect, but ∩d+2

i=1 Fi = ∅. This is a
contradiction to Helly’s Theorem.

Fact : If X = X1 ∩ · · · ∩ Xk , then

h(X ) ≤ max{h(Xi ) : i = 1, . . . , k}.

As a consequence:
If boxd(X ) <∞ then h(X ) ≤ d .
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Steiner Systems

F = family of subsets of size k of a set V of size n.

• If any subset of V of size t is contained in exactly one set of F ,
F is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Any 2 vertices are contained in exactly one triple.

Example: Steiner (1, 2, n)-system

• Keevash (’14): For infinitely many values of n, Steiner
(t, k , n)-systems exist.
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Previously known results

Theorem (Witsenhausen ’80):

Let X be a simplicial complex with n vertices satisfying h(X ) = d .
Then

boxd(X ) ≤
⌊

1

2

(
n

d

)⌋
.

If the missing faces of X form a Steiner triple system, then

box2(X ) ≥ 1

3

(
n

2

)
.
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Main result

Theorem (L. ’20):

Let X be a simplicial complex with n vertices satisfying h(X ) = d .
Then

boxd(X ) ≤
⌊

1

d + 1

(
n

d

)⌋
.

Moreover, boxd(X ) = 1
d+1

(n
d

)
if and only if the missing faces of X

form a Steiner (d , d + 1, n)-system.

Remarks.
• For d = 1, we recover Roberts’ Theorem.
• For d ≥ 2, this improves previous bounds due to Witsenhausen.
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A bound on representability

A main ingredient in the proof of the bound boxd(X ) ≤
⌊

1
d+1

(n
d

)⌋
is the following result:

Theorem (L. ’20):

Let X be a simplicial complex on vertex set V . Let U ⊂ V such
that U /∈ X , and for every missing face τ of X , |τ \ U| ≤ 1. Then,
X is (|U| − 1)-representable.

=⇒ X is 2-representable.
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A bound on representability– Example
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A bound on representability

The construction used in the proof is based on ideas by Wegner.

In
fact, it can be seen as an extension of the following:

Theorem (Wegner ’67):

Let X be a simplicial complex with n vertices. Then X is
(n − 1)-representable.
Moreover, if X is not the boundary of an (n − 1)-dimensional
simplex, then it is (n − 2)-representable.
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The extremal case

Let X be a simplicial complex on vertex set V .

For U ⊂ V , let X [U] = {σ ∈ X : σ ⊂ U} be the subcomplex of X
induced by U.
• Let Hk(X ) be the k-th (reduced) homology group of X with
coefficients in Q.
• If Hk(X [U]) = 0 for all U ⊂ V and all k ≥ d , X is called
d-Leray.
• X is d-representable =⇒ X is d-Leray.
(Since any induced subcomplex of X is also d-representable).

Theorem (L. ’20):

Let X be a simplicial complex whose set of missing faces M forms
a Steiner (d , d + 1, n)-system. Then, X cannot be written as the
intersection of less than 1

d+1

(n
d

)
d-Leray complexes.

=⇒ boxd(X ) = 1
d+1

(n
d

)
.
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The extremal case- Sketch of proof

A tool for computing homology:

Let K be a simplicial complex on vertex set W , and N its set of
missing faces.

Define

Γ(K ) =

{
N ′ ⊂ N :

⋃
τ∈N ′

τ 6= W

}
.

Theorem (Björner, Butler, Matveev ’97):

If K is not the complete complex on W , then for all j ≥ 0

Hj(K ) ∼= H|W |−j−3(Γ(K )).
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The extremal case- Sketch of proof

Theorem (L. ’20):

Let X be a simplicial complex whose set of missing faces M forms
a Steiner (d , d + 1, n)-system.
Then, X cannot be written as the intersection of less than 1

d+1

(n
d

)
d-Leray complexes.

Proof:
Assume for contradiction that X = X1 ∩ · · · ∩ Xk , where the Xi ’s
are d-Leray and k < 1

d+1

(n
d

)
.

Let Mi be the set of missing faces of Xi . Fact: M = ∪ki=1Mi .
Since |M| = 1

d+1

(n
d

)
> k, there is some i such that |Mi | ≥ 2.

Choose i and τ1, τ2 ∈Mi such that |τ1 ∩ τ2| is maximal.
Let Y = Xi [τ1 ∪ τ2]. Since Xi is d-Leray, we must have Hj(Y ) = 0
for all j ≥ d .
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The extremal case- Sketch of proof

Claim: Γ(Y ) is disconnected.

(We omit the proof)
Therefore,

H|τ1∪τ2|−3(Y ) = H0(Γ(Y )) 6= 0.

Since M is a Steiner (d , d + 1, n)-system, |τ1 ∩ τ2| < d .
So,

|τ1∪τ2|−3 = |τ1|+|τ2|−|τ1∩τ2|−3 ≥ (d+1)+(d+1)−(d−1)−3 = d .

A contradiction to Hj(Y ) = 0 for all j ≥ d .
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Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V .

rep(X )= minimal d such that X is d-representable.
Assume |V | = n. How large can rep(X ) be?

• Wegner (’67): rep(X ) ≤ n − 1. (Equality iff X is boundary of
(n − 1)-dimensional simplex).
• Roberts, Witsenhausen: If X is a clique complex (i.e.
h(X ) = 1), then rep(X ) ≤ n

2 . (Equality iff missing faces form a
complete matching).

What is the correct bound if h(X ) ≤ d for some d ≥ 2?
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Representability of complexes without large missing faces

Conjecture:

Let X be a simplicial complex on n vertices, with h(X ) ≤ d . Then

rep(X ) ≤
⌊

dn

d + 1

⌋
.

Moreover, rep(X ) = dn
d+1 if and only if the missing faces of X

consist of n
d+1 pairwise disjoint sets of size d + 1.
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Representability of complexes without large missing faces

A special case:

Let X be a complex whose missing faces form a Steiner
triple system. What is rep(X )?

=⇒ rep(X ) ≤ 5>
⌊
2·7
3

⌋
= 4.

Indeed, using a diferent construction, can show rep(X ) = 4.
=⇒ rep(X ) ≤ 7 > 2·9

3 − 1 = 5
Does rep(X ) ≤ 5 hold?
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Thank you!
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