Representability and boxicity of simplicial
complexes

Alan Lew
Technion — Israel Institute of Technology

Bar-llan University Combinatorics Seminar
December 2020

1/25



Boxicity

Interval graph = intersection graph of a family of intervals in R.

2/25



Boxicity

Interval graph = intersection graph of a family of intervals in R.

2/25



Boxicity

Interval graph = intersection graph of a family of intervals in R.

_ R

2/25



Boxicity

Interval graph = intersection graph of a family of intervals in R.

2/25



Boxicity

Interval graph = intersection graph of a family of intervals in R.

Let G be a graph.
box(G) = minimal k such that G is the intersection of k interval
graphs.

2/25



Boxicity

Interval graph = intersection graph of a family of intervals in R.

Let G be a graph.
box(G) = minimal k such that G is the intersection of k interval
graphs.

e box(G) =1 <= G is an interval graph.

2/25



Boxicity- Example

Let G be the cycle of length 4.

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (D\‘z

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (13)% (

Easy to check- G is not an interval graph

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (13)% (

Easy to check- G is not an interval graph (so box(G) > 1).

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (13)% (

Easy to check- G is not an interval graph (so box(G) > 1).

-_
-

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (1)

Easy to check- G is not an interval graph (so box(G) > 1).

H-FaN

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (1)

Easy to check- G is not an interval graph (so box(G) > 1).

H-A~N

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (1)

Easy to check- G is not an interval graph (so box(G) > 1).

H-lnN

3/25



Boxicity- Example

Let G be the cycle of length 4.

box (1)

Easy to check- G is not an interval graph (so box(G) > 1).

H-lnN

3/25



Boxicity- An equivalent definition

box(G) < k <= G is the intersection graph of a family of
axis-parallel boxes in RX.

4/25



Boxicity- An equivalent definition

box(G) < k <= G is the intersection graph of a family of
axis-parallel boxes in RX.

Example

4/25



Boxicity- An equivalent definition

box(G) < k <= G is the intersection graph of a family of
axis-parallel boxes in RX.

Example

4/25



Boxicity- An equivalent definition

box(G) < k <= G is the intersection graph of a family of
axis-parallel boxes in RX.

H-~N

lg_

Example

4/25



Boxicity- Roberts’ Theorem

Theorem (Roberts '69, Witsenhausen '80)
Let G be a graph on n vertices. Then

box(G) < [gJ :

5/25



Boxicity- Roberts’ Theorem

Theorem (Roberts '69, Witsenhausen '80)
Let G be a graph on n vertices. Then

box(G) < [gJ .

Moreover, box(G) = 5 if and only if G is the complete J-partite
graph with sides of size 2.

5/25



Boxicity- Roberts’ Theorem

Theorem (Roberts '69, Witsenhausen '80)
Let G be a graph on n vertices. Then

box(G) < [gJ .

Moreover, box(G) = 5 if and only if G is the complete J-partite
graph with sides of size 2.

5/25



Representability

Let F = {Fi1,...,Fn} be a family of sets.

6/25



Representability

Let F = {Fi1,...,Fn} be a family of sets.
The nerve N(F) of the family is the following simplicial complex:

6/25



Representability

Let F = {Fi1,...,Fn} be a family of sets.
The nerve N(F) of the family is the following simplicial complex:
e A vertex is assigned to each set of the family.

6/25



Representability

Let F = {Fi1,...,Fn} be a family of sets.

The nerve N(F) of the family is the following simplicial complex:
e A vertex is assigned to each set of the family.

e Simplices correspond to subfamilies with non-empty intersection.

6/25



Representability

Let F = {Fi,...,Fn} be a family of sets.

The nerve N(F) of the family is the following simplicial complex:
e A vertex is assigned to each set of the family.

e Simplices correspond to subfamilies with non-empty intersection.

72

6/25



Representability

Let F = {Fi,...,Fn} be a family of sets.

The nerve N(F) of the family is the following simplicial complex:
e A vertex is assigned to each set of the family.

e Simplices correspond to subfamilies with non-empty intersection.

7: @d NFze e

6/25



Representability

Let F = {Fi,...,Fn} be a family of sets.

The nerve N(F) of the family is the following simplicial complex:
e A vertex is assigned to each set of the family.

e Simplices correspond to subfamilies with non-empty intersection.

7= N(F):

6/25



Representability

Let F = {Fi,...,Fn} be a family of sets.

The nerve N(F) of the family is the following simplicial complex:
e A vertex is assigned to each set of the family.

e Simplices correspond to subfamilies with non-empty intersection.

7= N(F):

d-Representable complex = nerve of a family of convex sets in RY.
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The clique complex X(G)

of graph G = (V,E):

Vertex set: V, G= X(G) =
Simplices: all cliques of G.

e 1-Representable complex = Nerve of a family of intervals
= Clique complex of an interval graph.

— TP

e box(G) < k if and only if X(G) can be written as the
intersection of k 1-representable complexes. (Follows from fact
that G = Gy N---N Gg IffX(G) :X(Gl)ﬂ”-ﬂX(Gk) )
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d-Boxicity

Let X be a simplicial complex.
box4(X) = minimal k such that X is the intersection of k

d-representable complexes.
o box(G) = box1(X(G)), where X(G) is the clique complex of G.

Example (d = 2):

X
X = =N ||NAN
X
Ho(X) =Z #0 boxa(X) =2

= X is not 2-representable
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Missing faces

Let X be a simplicial complex on vertex set V.
7 C V is a missing face of X if 7 ¢ X but 0 € X forall o C 7.
h(X) = maximum dimension of a missing face.

h(X)=2

e X is the clique complex of a graph <= h(X) =1 (missing
faces are the edges of the complement graph of G).

10/25
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Missing faces and Helly Theorem

Claim: If X is d-representable, then h(X) < d.

Proof: Let X = N(F).

Assume for contradiction that there is a missing face 7 of
dimension d + 1.

This corresponds to a family of sets Fq,..., F412 € F, such that
any d + 1 of them intersect, but ﬂ?ij,- =@. Thisis a
contradiction to Helly's Theorem.

Fact: If X =Xy N---N X, then
h(X) < max{h(X;): i=1,... k}.

As a consequence:
If boxg(X) < oo then h(X) < d.
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Steiner Systems

F = family of subsets of size k of a set V of size n.
e If any subset of V of size t is contained in exactly one set of F,
F is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Any 2 vertices are contained in exactly one triple.

Example: Steiner (1,2, n)-system

[11]

e Keevash ('14): For infinitely many values of n, Steiner
(t, k, n)-systems exist.
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Let X be a simplicial complex with n vertices satisfying h(X) = d.

Then 1
boxa(X) < Lwl (Z)J .

Moreover, box4(X) = %H(Z) if and only if the missing faces of X

form a Steiner (d, d + 1, n)-system.

Remarks.
e For d = 1, we recover Roberts’ Theorem.
e For d > 2, this improves previous bounds due to Witsenhausen.
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A bound on representability

A main ingredient in the proof of the bound box4(X) < Ld%rl (Z)J
is the following result:

Theorem (L. '20):

Let X be a simplicial complex on vertex set V. Let U C V such
that U ¢ X, and for every missing face 7 of X, |7\ U| < 1. Then,
X is (|U| — 1)-representable.

1 Missing faces:
1
5

2

= X is 2-representable.
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A bound on representability

The construction used in the proof is based on ideas by Wegner. In
fact, it can be seen as an extension of the following:

Theorem (Wegner '67):

Let X be a simplicial complex with n vertices. Then X is

(n — 1)-representable.

Moreover, if X is not the boundary of an (n — 1)-dimensional
simplex, then it is (n — 2)-representable.

17/25
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The extremal case- Sketch of proof

A tool for computing homology:

Let K be a simplicial complex on vertex set W, and A its set of

missing faces. Define

F(K):{N’C/\/’: U T;AW}.
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Theorem (Bjorner, Butler, Matveev '97):
If K is not the complete complex on W, then for all j > 0

Hi(K) = Hjw|—j—3(F'(K)).
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Let X be a simplicial complex whose set of missing faces M forms
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Assume for contradiction that X = X; N --- N X, where the Xj's
are d-Leray and k < 72 ().

Let M; be the set of missing faces of X;. Fact: M = Uf-‘zl/\/l,-.
Since |[M| = d%LI(Z) > k, there is some i such that |[M;| > 2.
Choose i and 11, 7 € M; such that |73 N 7| is maximal.

Let Y = Xj[r1 Um)]. Since X; is d-Leray, we must have H;(Y) =0
for all j > d.
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Claim: I'(Y) is disconnected. (We omit the proof)
Therefore,

H|7'1U7'2|—3(Y) = HO(r(Y)) 75 0.

Since M is a Steiner (d, d + 1, n)-system, |71 N | < d.
So,
‘7’1U7’2’—3 = ’7'1|+|7’2‘—‘T1ﬂ7'2‘—3 > (d+l)+(d+1)—(d—1)—3 =d.

A contradiction to H;(Y) =0 for all j > d.
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Assume |V| = n. How large can rep(X) be?

o Wegner ('67): rep(X) < n— 1. (Equality iff X is boundary of
(n — 1)-dimensional simplex).

e Roberts, Witsenhausen: If X is a clique complex (i.e.

h(X) = 1), then rep(X) < 7. (Equality iff missing faces form a
complete matching).

What is the correct bound if h(X) < d for some d > 27

22/25



Representability of complexes without large missing faces

Conjecture:
Let X be a simplicial complex on n vertices, with h(X) < d. Then

w2 [ 20

23/25



Representability of complexes without large missing faces

Conjecture:
Let X be a simplicial complex on n vertices, with h(X) < d. Then

rep(X)<{ dn J

d+1

Moreover, rep(X) = d(ifl if and only if the missing faces of X

consist of 45 pairwise disjoint sets of size d + 1.
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Thank you!




