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Introduction & Motivation

Cahn–Hilliard, 1958

B Equilibrium behavior of a fluid with two stable phases may be described
by the Gibbs free energy per unit volume

Eε(u) :=

ˆ
Ω

[
W (u) + ε2|∇u|2

]
dx

where ε > 0 is a small parameter and W : R→ [0,+∞) is a double well
potential.

Figure: Example of double well potential W (p) = (p2 − 1)2.
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Introduction & Motivation

Modica–Mortola, 1977

Asymptotic behavior of minimizers to Eε described via Γ-convergence.
Scaling by ε−1 yields

ε−1Eε
Γ−→ E,

E(u) :=

{
cW P (A0; Ω) u ∈ BV (Ω; {a, b})
+∞ u ∈ L1(Ω) \BV (Ω; {a, b})

where

A0 = {u(x) = a}, cW = 2

ˆ b

a

√
W (s)ds.
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Main Results

Periodic Heterogeneity

We consider fluids which exhibit some periodic heterogeneity at small
scales, i.e.

Fε(u) :=

ˆ
Ω

[
1

ε
W

(
x

δ(ε)
, u

)
+ ε|∇u|2

]
dx

where
W (x, p) = 0 ⇐⇒ p ∈ {a, b},

W (·, p) is Q-periodic for every p,

and
δ(ε)→ 0 as ε→ 0.

Goal: Identify Γ-limit Fε.

Ansini, Braides, Piat (2003): W homogeneous, regularization f
(
x
δ ,∇u

)
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Main Results

Scaling regime δ(ε) = ε

Theorem (Cristoferi, Fonseca, H., Popovici)

Let δ(ε) = ε. Then Fε
Γ−→ F,

F (u) :=


ˆ
∂∗A0

σ(ν)dHN−1 u ∈ BV (Ω; {a, b})

+∞ else

where
A0 := {u(x) = a}, ν is the outward normal to A0,

and

σ(ν) := lim
T→∞

inf
u∈Aν,T

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) + |∇u(y)|2

]
dy

}
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Main Results

Cell Problem

σ(ν) = lim
T→∞

inf
u∈Aν,T

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) + |∇u(y)|2

]
dy

}
where

Aν,T :=
{
u ∈ H1(TQν ;Rd) : u(x) = (ρT ∗ u0)(x · ν) on ∂TQν

}
u0(t) :=

{
b if t > 0

a if t < 0

ρT (x) := TNρ(Tx), ρ ∈ C∞c (R) with

ˆ
R
ρ = 1.
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Γ-Limit

Outline of Proof

The Γ-limit Cookbook:

Compactness: Bounded energy → BV structure

Reduction to classical MM technique
Lax growth conditions on W (x, ·)
Only need measurability of W (·, p).

Γ-liminf: ”Lower-semicontinuity” result using blow-up techniques

”Blow up” at points in jump set
De Giorgi’s slicing method → prescribe boundary conditions from σ
Compare with optimal profiles given by σ

Γ-limsup: Recovery sequences

Blow-Up Method
Recovery sequences for polyhedral sets with ν ∈ QN ∩ SN−1

Density result and upper semicontinuity of σ
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Γ-Limit

Compactness

Growth condition: There exists R > 0 such, for a.e. x ∈ Q, |p| > R
implies

W (x, p) ≥ sup
|q|≤R

W (x, q) (1)

Allows for truncation:

w(x) :=


u(x) |u(x)| ≤ R

u(x)
|u(x)|R |u(x)| > R

Since also
|∇w| ≤ |∇u|,

we have
Fε(w) ≤ Fε(u).
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Recovery Sequences

Easy Case: Transition Layer aligned with Principal Axes

If ν ∈ {e1, . . . , eN}, create recovery sequence by tiling optimal profiles
from definition of σ.

Pick Tk ⊂ N and uk s.t.

σ(eN ) = lim
k→∞

1

TN−1
k

ˆ
TkQ

W (y, uk(y))+|∇uk(y)|2dy,

vk(x) := uk(Tkx), extended by Q′-periodicity,

vk,ε,r(x) :=


u0(x) |xN | ≥ εTk

2r

vk

(
rx
εTk

)
|xN | < εTk

2r

uk,ε,r(x) := vk,ε,r

(x
r

)
→ u in L1(rQ)
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Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Blow up:

lim
r→0

F (u; rQ)

rN−1
≤ lim

r→0
lim
ε→0

1

rN−1

ˆ
rQ

[
1

ε
W (x, uk,ε,r) + ε|∇uk,ε,r|2

]
dx

= lim
r→0

lim
ε→0

ˆ
Q′

ˆ εTk/2r

−εTk/2r

[
r

ε
W

(
r

ε
y, vk

(
ry

εTk

))
+

r

εT 2
k

∣∣∣∣∇vk ( ry

εTk

)∣∣∣∣2 ]dy
= lim

r→0
lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk
rz′

εTk
, TkzN , vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz
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Recovery Sequences
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Recovery Sequences
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Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Since W and vk are Q′-periodic and Tk ∈ N, we can use the Riemann
Lebesgue Lemma:

lim
r→0

lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk
rz′

εTk
, TkzN

)
, vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz
= lim

r→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW ((Tky

′, TkzN ), vk(y
′, zN )

+
1

Tk
|∇vk(y′, zN )|2dzN

]
dy′

=
1

TN−1
k

ˆ
TkQ

W (x, uk(x)) + |∇uk(x)|2dx.
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Recovery Sequences
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Recovery Sequences

Other Transition Directions?

(a)
Aligned

(b)
Misaligned

Figure: Since W is Q-periodic, can tile along principal axes. What if the
transition layer is not aligned?
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Recovery Sequences

Q-periodic implies λνQν-periodic

Key observation: Periodic microstructure in principal directions →
periodicity in other directions.

Figure: Integer lattice contains copies of itself, rotated and scaled

B W is λνQν-periodic for ν ∈ QN ∩ SN−1: Dense!
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Recovery Sequences

Orthonormal Bases in QN

Important: Every face of Qν has rational normal.

Need an orthonormal basis using rational vectors:

Theorem (Witt, ’37)

Any isometry between two subspaces F1 and F2 of a finite-dimensional
vector space V defined over a field K of characteristic different from 2 and
provided with a metric structure induced from a nondegenerate symmetric
or skew-symmetric bilinear form B[·, ·] may be extended to a metric
automorphism of the entire space V .

In particular:

V = QN , F1 := spanQ(eN ), F2 := spanQ(ν), B[x, y] := x · y

Then, the mapping eN 7→ ν extends to an isometry!
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Recovery Sequences

Transition Layer aligned with ν ∈ QN ∩ SN−1

Same periodic tiling technique: Use Tk ∈ λνN.

B Blow up method → Recovery sequences for polyhedral sets A0 with
ν ∈ QN ∩ SN−1.
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Recovery Sequences

Recovery sequences for arbitrary u ∈ BV (Ω; {a, b})

For u ∈ BV (Ω; {a, b}), we can find u(n) ∈ BV (Ω; {a, b}) such that

A
(n)
0 are polyhedral,

u(n) → u in L1

|Du(n)|(Ω)→ |Du|(Ω).

Since QN ∩ SN−1 dense, can require ν(n) ∈ QN ∩ SN−1.

Since σ upper-semicontinuous, by a theorem of Reshetnyak,ˆ
∂∗A0

σ(ν)dHn−1 ≤ lim sup
n→∞

ˆ
∂∗A

(n)
0

σ
(
ν(n)

)
dHn−1

Find recovery sequences u
(n)
ε for the u(n) soˆ

∂∗A
(n)
0

σ
(
ν(n)

)
dHn−1 ≤ lim sup

ε→0+

Fε

(
u(n)
ε

)
Diagonalize!
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Conclusion

Future problems

Current direction:

Other scaling regimes δ(ε), forthcoming

Some interesting future directions:

Problem of multiple wells.

More general regularization terms, i.e. |∇u|2 → f(x, u,∇u).

Solid-solid phase transitions: W
(

x
δ(ε) ,∇u(x)

)
Note: Solid-sold phase transitions without homogenization:

W (F ) ≈ |F |p, Conti, Fonseca, Leoni, ’02.

W (F ) ≈ distp(F, SO(N)A ∪ SO(N)B)

only studied for N=2 (Conti–Schweizer, ’06)
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Conclusion

Thank you for your attention!
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