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Cahn—Hilliard, 1958

> Equilibrium behavior of a fluid with two stable phases may be described
by the Gibbs free energy per unit volume

E.(u) := /Q (W (u) + €2|Vu]2] dx

where € > 0 is a small parameter and W : R — [0, 400) is a double well
potential.

Figure: Example of double well potential W (p) = (p? — 1)2.
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Modica—Mortola, 1977

Asymptotic behavior of minimizers to E. described via ['-convergence.
Scaling by 7! yields

e 5L E,
Blw) = { ew P(Ap;Q) u e BV(Q;{a,b})
+00 ue LY Q) \ BV(; {a, b))
where )
Ag = {u(z) =a}, ew = 2/ VW (s)ds.
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Periodic Heterogeneity

We consider fluids which exhibit some periodic heterogeneity at small

scales, i.e.
oy [ [ (20 ]
5 = oz 5(5)’
where
W(z,p) =0 < pe {a,b},
W (-, p) is Q-periodic for every p,
and

d(e) > 0ase—0.

Goal: Identify I'-limit F.

Ansini, Braides, Piat (2003): W homogeneous, regularization f (%,Vu)
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Scaling regime d(¢) = ¢

Theorem (Cristoferi, Fonseca, H., Popovici)

Let 5(c) =e. Then F. 5 F,

N—-1 {a
. /B*Aoa(u)dH we BV {a,b})

400 else

where
Ap = {u(x) = a}, v is the outward normal to Ay,

and

ow)= im it Lo [ VGt + 190 dy )

v
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Cell Problem

o(v) = lim inf {T]\lf_l/TQ (W (y, u(y)) + [Vu(y)[?] dy}

T—ooucA, r

v

where

Ay = {u € HY(TQ,;RY) : u(x) = (pr * up)(z - v) on 8TQ,,}

@ b oift>0
u =
0 a ift<0

,m@yZTWMT@,peq?@gwml/p:1.
R
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Outline of Proof

The I'-limit Cookbook:

@ Compactness: Bounded energy — BV structure
o Reduction to classical MM technique
o Lax growth conditions on Wz, )
e Only need measurability of W (-, p).
o [-liminf: " Lower-semicontinuity” result using blow-up techniques
e "Blow up" at points in jump set
o De Giorgi's slicing method — prescribe boundary conditions from o
o Compare with optimal profiles given by o
o I'-limsup: Recovery sequences
e Blow-Up Method
o Recovery sequences for polyhedral sets with v € QV N SV—1
o Density result and upper semicontinuity of o
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Compactness

Growth condition: There exists R > 0 such, for a.e. z € Q, |p| > R
implies
W (z,p) > sup W(z,q) (1)
la|<R
Allows for truncation:

w(x)  fu(z)| <R

lu(x)] > R
Since also

|Vw| < |Vul,
we have

F.(w) < F.(u).
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Recovery Sequences

Easy Case: Transition Layer aligned with Principal Axes

If v € {e1,...,en}, create recovery sequence by tiling optimal profiles
from definition of o.

Pick T, C N and uy, s.t.
o(en) = lim — / W (i () + [V () 2y,

vp(7) == ug(Tpx), extended by Q'-periodicity,

uo () jan| > Gk

x .
uk,e,r(x) = Uker (;) —uin L} (TQ)
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Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Blow up:

. P(u; rQ) 1 1 9
-~ 7 <

11ﬂlr% N1 lln%);m[l) oy 1/ LW (z, uk,g,r)+8|Vuk,g,r| dx

) . ETk/QT‘ r Ty
= lim lim Y,V |
r—0e—0 rJ—eTy, /2r 9 6Tk
2
Y
— d
Vo <€Tk> } Y
1/2 rz rz
= lim li T T —,T; —
71"13%);12((1)///1/2[ kW<< k€Tk’ kZN’Uk<€Tk’ZN>>

2
]dz

_‘_7

Adrian Hagerty (CMU) BIRS, May 2018 May 20, 2018 11 /19



Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Blow up:
. F(u;rQ) 1 1 9
i = R g e EW@ k) + eV kel | dv

Ty /27
= lim lim/ /E ! fy,vk Y
r—0e—0 ’ Ty, /2r 9 6Tk
2
Ty
— d
vo ()| Jo
N 1/2 rz rz
:}13%35%/,/1/2 [TkW<<Tk€Tk,TkZN,Uk<€ﬂ,ZN>>

2
]dz

_‘_7
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Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Blow up:

r—0 TN*I r—0e—0 T‘N 1

o ) ETk/27 r ,r.y
= lim lim ~Y, Uk \ —7
r—0e—0 1) —eTy, /2r £ €Tk
1/2 rz rz
= lim li T T, —,T; —
T%E%///ln[ kW<< kng’ kZN’Uk<€Tk,ZN)>

F(u; 1 1
lim M < lim lim / |:€W(:L‘, uk’&;’,ﬂ) + 8|VU1€’5 7’|2:| dx
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Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Blow up:

F(u; 1 1
lim (u:1Q) < lim lim / [EW(JL’, Uk o) + €| Vg r|2:| dx
Q

r—0 TN_l r—0e—0 TN 1

eTy/2r
= lim lim/ / [ <Ty, Vg (ry))
r—0e—0 ’ Ty /27 15 el

2
r ry
— |V — d
i B <5Tk)‘ } Y
N 1/2 rz rz
gt [, [, [ (i e (o))
1 rz’ 2
— |V — d
+Tk vk(ETk,zN> ] z
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Recovery Sequences

Transition Layer aligned with Principal Axes, cont.

Since W and vy, are Q’-periodic and T}, € N, we can use the Riemann
Lebesgue Lemma:

1/2 rz’ rz
lim li T; T,—, T —
T%sl—%///m[ kW(( el kZN>’Uk<€Tk’ZN>>
rz 2
v — d
NEW

1/2
= lim/ / [TkW (Twy', Tizn ), ey, 2v)
r—0 ’ 1/2

L1
Tk,

+ —|Vvk(y’, ZN)|2dzN] dy’
Ty

1
_ TN—I/ W (e, () + Vg (z) Pda.
L T,Q
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1/2 rz' rz'

lim li T; T, UL ,
i [ ] kW(< g T )7
rz 2
Vuk< T N) }dz

1/2
= lim/ / [TkW Tky TrzN), Uk(y/aZN)
r—0 / 1/2

Tk

+ |Vvk (¥, 2N) |2dZN] dy’
T,

1
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Recovery Sequences

Other Transition Directions?

(a) (b)

Aligned Misaligned

Figure: Since W is Q-periodic, can tile along principal axes. What if the
transition layer is not aligned?
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()-periodic implies A\, (), -periodic

Key observation: Periodic microstructure in principal directions —
periodicity in other directions.

Figure: Integer lattice contains copies of itself, rotated and scaled

> W is A\, Q,-periodic for v € QN NSN~1: Densel
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Recovery Sequences

Orthonormal Bases in Q

Important: Every face of @), has rational normal.

Need an orthonormal basis using rational vectors:
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Recovery Sequences

Orthonormal Bases in Q

Important: Every face of @), has rational normal.

Need an orthonormal basis using rational vectors: Gram-Schmidt
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Recovery Sequences

Orthonormal Bases in Q
Important: Every face of @), has rational normal.

Need an orthonormal basis using rational vectors: Gram-Sehmidt
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Recovery Sequences

Orthonormal Bases in QY
Important: Every face of @), has rational normal.

Need an orthonormal basis using rational vectors: Gram-Sehmidt
Theorem (Witt, '37)

Any isometry between two subspaces F and F» of a finite-dimensional
vector space V defined over a field K of characteristic different from 2 and
provided with a metric structure induced from a nondegenerate symmetric
or skew-symmetric bilinear form B|[-,-| may be extended to a metric
automorphism of the entire space V.

In particular:
V=0QV, F:= spang(en), F» = spang(v), Blr,y| =z -y

Then, the mapping ey — v extends to an isometry!
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Transition Layer aligned with v € Q¥ N SV—!

Same periodic tiling technique: Use 7}, € A\ N.

> Blow up method — Recovery sequences for polyhedral sets Ay with
veQVnsh-1,
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Recovery sequences for arbitrary u € BV (€2; {a, b})

e For u € BV(Q;{a,b}), we can find u(™ € BV (£; {a,b}) such that
A{™ are polyhedral,
u™ = uin L
|Dul™|(92) = | Du|(9).

Since QN NSN~! dense, can require (™ € Q¥ NSN-L,
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/ o(v)dH" ! <lim sup/ o (I/(n)) dH™ !
9% Ay n—oo  JorAlM
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@ Diagonalize!
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Conclusion

Future problems

Current direction:

@ Other scaling regimes §(¢), forthcoming
Some interesting future directions:

@ Problem of multiple wells.
e More general regularization terms, i.e. |Vul? — f(x,u, Vu).
@ Solid-solid phase transitions: W <%,Vu(x)>

Note: Solid-sold phase transitions without homogenization:
W (F) =~ |F|P, Conti, Fonseca, Leoni, '02.
W(F) = dist’(F, SO(N)AU SO(N)B)

only studied for N=2 (Conti—Schweizer, '06)
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Conclusion

Thank you for your attention!
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