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Abstract

We discuss the nonlinear stability of flow of a Navier-Stokes fluid with temperature-
dependent viscosity through an open parallel-sided channel with constant wall temper-
atures. Using the energy method of Reynolds [10] and Orr [7], we obtain a critical value
for the Reynolds number below which the flow tends to remain stable under arbitrary

disturbances.
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1 Introduction

The present work deals with the stability for flow in a channel with viscosity of the fluid
depending upon temperature. In particular, we propose to determine critical Reynolds
and Peclét numbers, below which the flow in a channel tends to retain its steady, fully
developed form under arbitrary disturbances of the fluid motion and thermal diffusion. This
hydrodynamical stability problem has been addressed previously by Potter & Graber [§],
Schafer & Herwig [13], Wall & Wilson [17] and more recently by Wall & Nagata [18]. For
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a thorough introduction to this problem, the reader is referred to [15], [17] and [18] and
references therein. In [8], the authors consider the linear stability of channel flow using
a particular temperature-dependent viscosity model relevant to water for which viscosity
decreases with temperature. Neglecting any disturbances of the basic-state temperature
distribution, they obtain a modified fourth-order Orr-Sommerfeld equation which is
solved numerically. Their calculation suggests that the critical Reynolds number decreases
monotonically with the temperature difference across the walls. Wall and Wilson [17] discuss
the same linear stability problem for four different viscosity-temperature models but in the
general case where disturbances to the basic state temperature distribution are permitted.
Using particular disturbances to the basic state they derive a sixth order eigenvalue problem
which generalizes the Orr-Sommerfeld equations obtained by Potter & Graber. Their nu-

merical solution to the eigenvalue problem is in agreement with the previous results of [8],[13].

A prolific mathematical contribution to the same class of problems that we are studying,
has been made by Straughan and his coworkers (see [5, 4, 3, 15, 16] and references therein)
where they consider the nonlinear stability problem as opposed to the linear stability case
dealt by the earlier mentioned authors. In fact, these authors are able to obtain sharp
estimates for global stability by resorting to a numerical solution of the corresponding
Euler-Lagrange equation for the relevant energy functional. Yet other works on the subject
of nonlinear stability, of the rest state, for convection problems have been made by Rionero
and co-workers [11, 12] and Capone & Gentile [1, 2] based on the Lyapunov method where
the potential energy is split into a linear and a nonlinear part. Rigorous analysis of the

appropriate potentials yields the required conditions for stability.

Our work essentially follows from these recent papers in an attempt to analyze the stability
problem for the most general class of perturbations for the viscosity model pu = pge %7 [17].
Experimental results confirm that this model is most appropriate for many real fluids [19].
In fact, this is particularly relevant in geophysical applications, when describing the Earth’s
mantle [6]. The energy stability argument employed in this paper is based on the work
of Reynolds [10] and Orr [7] and has been recently revived by Serrin [14]. This technique
provides a very simple method for analyzing the most general problem of nonlinear stability.

The particular advantage of our technique lies in its ability to deal with the nonlinearities
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Figure 1: A schematic of the problem under consideration.

in a more effective and simple way than done previously. To this end, we employ the
maximum principle for the convection-diffusion equation along with some fundamental
inequalities, which permit us to decouple the temperature and velocity perturbations in
a convenient manner. We are able to show that a certain steady solution of interest [17]
remains nonlinearly stable below certain critical parameters, namely the Reynolds and

Peclét numbers.

The paper employs standard mathematical notation. We employ standard indicial notation
and the Einstein’s repeated-index summation convention throughout this paper. We use the
notation 0; to denote the partial derivative %. By Q, we refer to the domain, Rx(—1,1)xR,
which represents the channel with its walls as the boundary, d€2. The function space of

interest is L?(Q2) with the usual norm

Il = ( |u|2)1/2.

The outline of the paper is as follows. In section 2, we discuss the steady state solution
of interest and obtain the perturbation equations and the corresponding energy equation.
In section 3 we provide the proof of the stability theorem and section 4 concludes with an

example where the physical significance of the main theorem is discussed.



2 Problem Formulation

2.1 Governing equations

The physical setting for our problem is as follows. We consider the motion of a viscous fluid
in a channel of infinite length and height 2L (i.e. —L <y < L), with the origin placed at the
centerline of the channel, which is along the = direction. In this subsection, we discuss the
central governing equations for the problem and obtain the steady state solution of interest.
The equations for the problem are given by the well known Navier-Stokes and heat equations,
namely

p(Oyu+u-grad u) = div(r) } )

u(-=L)=u(L) =0

where p is the density and 7 is the well known stress tensor for the Newtonian fluid under

consideration, given by
7= —pl +2u(T)D(u).

Here, p represents the pressure, I the identity tensor and D(u) the symmetric part of the
velocity gradient, i.e. % (grad u + grad Tu). Also note that in our problem, the viscosity is

dependent upon the temperature, 7'. In addition, we have the incompressibility equation,

divu =0 (2)
and the heat equation,
T +u-gradT = KAT )

where K is the thermal diffusivity coefficient, T, 1} are the temperatures at y = L and
y = — L respectively. For sake of convenience, we non-dimensionalize our governing equations

with suitable choice of the variables:

R VA S VA 771 VAN V A s

Substituting these into the equations (1)-(3), we get, upon simplification the non-dimensional

version of the governing equations, namely

Re(Owu + u - grad u) = —grad p + 2div(u(T)D(u)) (4)



divu =0 (5)

1
T +wu-grad T = FAT (6)

e

where we have finally discarded the superscript, *, for sake of convenience. Also, recall
that we define the non-dimensional Reynolds number as Re = LV p/M, the Péclet number
as Pe = ReP, and the Prandtl number as P, = M/pK. The non-dimensional boundary

conditions representing no-slip and fixed temperature at the channel walls are
uly==+1)=0,T(y=-1)=0,T(y=1) =2 (7)

Hence, the governing equations for this problem expressed in non-dimensional form are the

Navier-Stokes and heat equations, given by

Re(Oyu + u - grad u) = —grad p + 2div(u(T)D(u)) (8)
divu =0 (9)
1

where © = p(T'), Re = LVp/M is the Reynolds number and Pe = ReP, is the Péclet
number and P, = M/pk, the Prandtl number. The non-dimensional boundary conditions

representing no-slip and fixed temperature at the channel walls are

u(z,y==+1,2,t) =0, T(z,y = —1,2,t) =0, T'(z,y =1, 2,t) = 2 (11)
In this paper we will consider the stability of a basic state which is of the form

u(z,y, z,t) = (up(y),0,0), p(z,y, 2,t) = po(z), T(z,y, z,t) = Ty (y) (12)

Substituting these into the governing equations (8)-(10) and boundary conditions (11) and
taking u of the form p = e 57 suggests that (see [17]) uo and Ty must be of the form

up(y) = —%(1 + coth K + (y — coth K)ef(1+9)y) (13)
To(y) = 1+ (14)

Since in most liquids, the viscosity drops with the temperature [1, 19], we will require that
K >0.



2.2 Perturbation equations

The perturbation equations can be easily obtained from the governing equations. We begin

with considering perturbations of the forms

U(CE,y,Z,t) = Up + w(m,y,z,t)
T(CL‘,y,Z,t) = TO(y) + Q(m,y,z,t)
p(CL‘,y,Z,t) ZPO(':E) + W(m,y,z,t)

where u = (uy,us,us), up = (uo(y),0,0) and w = (wy, w2, ws) indicate three dimensional
vector fields for the fluid flow. So, as a result D(u) = D(ug) + D(w), where, uy, D(uo), To,
and p, are the velocity, symmetric part of velocity gradient, temperature and pressure of the
basic state, while w, D(w), # and 7 are perturbations to basic state of velocity, symmetric
part of velocity gradient, temperature and pressure, respectively. Note that both basic state
and perturbed state have to satisfy Navier-Stokes and heat equations (8)-(10). Substituting
the perturbed velocity, temperature and pressure to the Navier-Stokes and heat equations

gives us

Re(0(up + w) + (ug + w) - grad (ug + w)) = —grad (po + 7) + 2div(u(Ty + 6) D (up + w))

divw =0
Ou(To + 0) + (uo + w) - grad (Tp + 6) — P%A(To 1 0)
(15)
with boundary conditions
w(x,—1,2,t) = w(z,1,2,t)=0 } (16)
O(z,—1,2,t) = 6(z,1,2,t) =0.

3 The Main Theorem

In this section we shall attempt to employ a universal stability argument to find conditions
for stability of the basic state. First, we state a Maximum/Minimum Principle Lemma for
the equation 10 [9)].

Lemma 1 Let O(x,t) satisfy equation (10). Then, if
@1 S @(X,O) S @0
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for ©g > ©1 for all x € €0, then
@1 S @(X7 t) S @0

for all x € Q) and for all times, t.

Proof:
For proof of this theorem see [9]. O

Remark:

An immediate consequence of this Lemma is that

=0 < T(z,y,2,t) = To(y) +0(z,y,2,t) < 2. (18)

In order to obtain the energy equation, we multiply both sides of equation (15); by w and
equation (15); by 6. Then we integrate over the domain, {2, integrate by parts and upon

using the boundary conditions and simplification, we obtain the energy equation,

dE(t) 2 _ 2 _
it ‘/wawf'af'“‘” B R_/ KOAD Dy (w) Dy (w) — R_/ FT Dy (o) Dig(w)
A
- 06.0 — ST 1
" /Q 0,000 — \ /Q 0,0, Ty (19)
where ) is an arbitrary positive constant and £(¢) = $(||w|]* + A[|6]|?) is the energy of

the flow and thermal perturbations. In the theorem below we shall derive a condition for

universal stability.

Theorem 1 For arbitrary velocity and temperature perturbations w and 6 respectively, sat-

isfying equations (15), (16), there exists a positive constant, €, such that

%S(t) < —€&(t) (20)

where E(t) = (||w||* + A||0]|?). Furthermore, the system (8) — (10) is nonlinearly stable

provided the Reynolds and Peclét numbers respectively satisfy

Re < Re. = mm( 20,7 520[%1(27(1 i 51)661{)

(1+01)c (a1 4 0.57A) A
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and
2)\Re,.

1+ o)l 2 K2R

Pe < Pe, =
where 61, 92, v and A are arbitrary positive constants and a; = maz|grad ug|.

Proof:

The proof follows from finding appropriate estimates on each of the terms in equation (19).
We shall denote the i-th term on the right hand side of this equation by (19;). Therefore
upon suitable application of Holder’s and Young’s inequalities and also using equations (14)
and (18), we obtain

(19;) < max]grad uol||wl|?, (21)
2e 2K
(19) < ——%—llgrad w|” (22)
A
(19) = —5-llerad 0| (23)
1
(195) < Amax|grad To[|0]|[|w]| Sk(gll9ll2+%llwll2) (24)

where in the estimate for equation (195), we employ the Young’s Inequality, with positive

constant .

For the remaining term, we use Holder’s inequality and equations (17) and (18) to obtain

2
(195) < ——max|grad uol|le™™|||| D(w)|

Re
2max|grad ug|c, K e2X
< = L |lgrad 8[| D(w)]|
e
92K d K?c
L 2 magegl"a “0|( 2ﬁp||grad 011> + gllgrad wl[?). (25)

In the final inequality, we use the Poincaré’s inequality, with the corresponding constant c,,
followed by the Young’s inequality with the constant # > 0. Hence, combining terms, we

get



dé(t) s 2077 2, afe*r 2 7 2, A 2
=\ < — L -
2 < aulul - Zllgrad wlP + S lrad wl + Dkl + 5
A , oy K22 ,
- = _— do
o llsrad O]+ X122 grad 6]
_ YA 2 P _ 2e 2K 2 A2
— (e + Bl + (= — 2 llgrad wl + 1)
a K2c2e* )\ )
_ — — do
(o - o llerad o
6_4K 26_4K
h = dugl. H if h i > =——— and (ii
W :e}\al max|gra u01|% X ence, if we choose (i) o g Tto)m and (ii)
__Reds > Pe = eAb e 2% with 6, and &, both positive constants, then it
a1 K2c2e?K (14 09)a1 K2c2
P p
follows that
A 202K A b K2e2E
2O B R e i
dt 2 (1+01)c2Re 2 BRe
S A TR L S DLl T
T2 1+ d1)ciRe Y 2A\Re
< max(e, €)E(t) (26)
where
P2 (14 6)CRe
and
. i 52&%}(2(1 + (51)66K
@@= 27 2A\Re
We define,
Re. = 26,7 2K Rey = G2 K2y(1 + 6;)ef%
T+ d1)c2(ar 4 0.5yA)’ A
and R
e
¢ = mi Pe, = = : 27
Re. = min (Rey, Res) , Pe a +51)a%K2012)66K (27)
Then, Re < Re. and Pe < Pe, suggests that
d&(t
% < —€e€(t), —e=max(ep,€s) (28)

therefore implying nonlinear stability. O



4 Discussion

In this section, we shall attempt to numerically evaluate the critical Reynolds number, Re,
defined in equation (27), below which the steady velocity uq defined in Section 2.1 remains
stable. We provide this critical value for 0 < K < 2. The Poincaré constant for channel
flow is ¢, = 7 [15]. Note that we are left free to choose several parameters, namely A, 7y, d;
and d,. These parameters must be chosen appropriately so as to maximize the critical
value, Re.. Therefore, we first attempt to maximize both Re; and Re, before choosing the

minimum.

It is not difficult to see that in order for these values to be a maximum, (i) A = 1+ d; and

without loss of generality, (ii)y = m and (iii) d, = (1 + 6;)3. As a result we have
2Re,.

Pe, = —ort

¢ of 225K

201

Re, —

“ [ar (1 + 61) + 0.5]c2e2X
Re, = (14 6,)K?a3e™. (29)

Therefore, as §; — oo,

Re; — T Rey — o0
aicie
and hence
2 4
Re.= Re; = ————, Pe,= ———+—.
oqc%e?K’ a{’cf)K?egK

The critical values that we are able to obtain above are very small compared to the estimates
made using a linearized analysis, however they possess the same exponential decay profile as
those of Wall & Wilson [17]. We argue that the results of our theorem must be understood in
the same sense as an existence argument, where smallness of initial data is often a necessary
condition. We are able to establish the stability for the solution wug, for nonzero Reynolds
and Peclét numbers. The variations of Re. and Pe. versus K are indicated in figure 2.
The area below the curves are the regions of stability. Therefore, for sufficiently slow flows

and small thermal disturbances, the steady solution, uy in equation (13) is nonlinearly stable.
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Figure 2: (a) Critical Reynolds number and (b) Critical Peclét number, versus K for 0 <
K <2.
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