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Abstract

The long-time asymptotics for p-Laplacian type equations p; = App™ =
div(|Vp™|P~2Vp™) in R", is studied for p > 1 and m > Z(_p{%- The non-negative
solutions of the equations are shown to behave asymptotically, as ¢t — oo, like
Barenblatt-type solutions, and the explicit rates of decay are established for the
convergence of the relative energy, the convergence with respect to the Wasser-
stein distances and the convergence with respect to the L'-norm. The rates are
proved to be optimal for p = 2. The method used is based on mass transportation

inequalities.
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1 Introduction

The present paper deals with the asymptotic behavior, as t — 0o, of the doubly nonlinear
parabolic equations

0
a_i = Ap™ = div([Vp"P2Vp™) in R" x (0, 00) (1)

p(t=0)=po in R (2)
where 0 < py € L'(IR™) and n > 1. Our purpose in this work is to estimate the rates at
which solutions to equations (1)-(2) converge to equilibrium.
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The existence of weak solutions to the Cauchy problem (1)-(2) is well-studied in the
literature under some mild conditions on the initial datum py and the parameters m and
p. We refer to Agueh [3] for existence results in a bounded domain of R™, and to Ishige
[18], Del Pino-Dolbeault-Gentil [15] and references therein, for the existence of weak
solutions in the entire IR™. Furthermore, for a non-negative initial datum py € L'(IR"),
and under suitable conditions on the parameters m and p, it is well-known that the

solutions to equations (1)-(2) remain non-negative in time, and moreover, they share the
same mass as the initial datum py. This is in particular the case when m > ( 1), p>1

and 0 < po € LY(R") with HF (py) < oo, where HY is defined by (19) and (6)-(7).

In the sequel, we assume existence of non-negative mass-preserving solutions to the
Cauchy problem (1)-(2) (see [16, 18, 15, 31] for more details and further references), and
we propose to estimate the rates at which these solutions converge to some equilibrium
solution, when the parameters m and p satisfy the conditions

n—p+1
m> £t~
~ n(p-1)

For p = 2, where equation (1) reads as the heat equation (i.e. m = 1), the porous-
medium equation (i.e. m > 1) and the fast diffusion equation (i.e. 0 < m < 1), the
asymptotic behavior for these equations has been studied by several authors, and the
rates of convergence have been entirely described in the regime (3) under consideration.
Indeed, Friedmann-Kamin [17] proved that, if m > 1 — 2, then the solutions to the
equations converge to some fundamental solution whose initial value is the Dirac mass
at the origin (up to the multiplicative constant [g. podz). This solution is known as
the Barenblatt-Prattle solution [4, 26] if m # 1, and the Gaussian if m = 1. Rates
of convergence to the fundamental solutions were computed by Carrillo-Toscani [5] for
m > 1, and independently by Del Pino - Dolbeault [12] and Otto [24] for m > 1 — L.
For more details on these developments, we refer to [8, 6, 7] and the survey paper of
Vézquez [30] and the references therein.

But for p # 2, where equation (1) reads as the p-Laplacian equation (i.e. m = 1),
the rates of convergence to equilibrium still remain unknown for certain values of p.
Indeed, Kamin-Vézquez [20] proved existence and uniqueness of a fundamental solution
to the p-Laplacian equation when p > 2% Furthermore, they derived an L! and L*®
convergence of the non-negative solutlons to the fundamental solution, with no rates.
Rates of convergence were obtained by Del Pino - Dolbeault [13, 14] for 25l < p < n,
and more recently by Agueh [1] for all p > 2"“ For the range f—fl < p < 2:;?, the
rates of convergence are still unknown.

The main purpose of this paper is to provide detailed proofs of these convergence
results presented in our previous paper [1], then extend them to more general equations
of the form (1), and to other types of convergence.

From now on, we assume that the initial datum pq is a probability density function
on R"™. Therefore, for m and p satisfying condition (3), the solutions to equations (1)-(2)
are probability densities as well. For convenience and to achieve maximum generality
in our results, we rewrite equations (1)-(2) in the form

and p> 1. (3)




(?9_ _dlv{ch [V (F'(p ]} in R" x (0,00) (4)
p(t=0)=py in R" (5)

—_ =

where ¢*(z) is the Legendre transform of the convex function

|z[¢ 1 1
c(x) < p + . 1, (6)
and the energy density function F : [0,00) — IR is defined by
p%la: Inz if m= p%l
F(z) = (7)
,y(";—mjl), 7=m+ g%f it m# ﬁ

Note that 7 > 1 —1 > 0 because of condition (3). To equation (4) is associated the free
energy functional

H(p)= [ F(p@)) do ®)
which reads as

e the entropy functional H? (p) = [g. pln pdz, if equation (4) is the heat equation,

e HF(p) = [pn £ dz, if (4) is the porous medium or the fast diffusion equations,
and
e Hf (p) = [ R 5 1) —L—~dx, v = 22=2 if (4) is the parabolic p-Laplacian equation.

The fundamental solution p.(t, ) - that is, the solution whose initial value is the
Dirac mass at the origin - which determines the long-time asymptotics of equation (4),
exists whenever m > "o=Es, and it is unique [20]. Furthermore, there exists a time
dependent scaling R(t) satisfying R(0) = 1, such that

polt) = = () 9

where p., is the unique stationary solution of the convection-diffusion equation

9p

5 = div{pVe' [V (F'(p)] +py} in R x (0,00) (10)

p(r=0)=py in R" (11)

which is simply equations (4)-(5) rescaled in time and space as follows:

p(ry) = R()"p(t,z), 7=IR({), y= R® (12)



and

R(t)= 1+ 6%, 6,=(p—1)(nm+1)+1—n. (13)

In fact po, is the unique probability density function that satisfies on its support

V (F'(poo) +¢) = 0. (14)
It is explicitly given by

L exp (—’%1|y|q) if m= ﬁ
Poo(y) = (15)
(1 =22 le) " i m A L
mq + p—1
where vy =m + ;;%f, Il) + % =1, and o, K are the unique constants such that
Jrn Po(y)dy = 1. Tt is easily checked that p(t,z) solves (4)-(5) if and only if p(7,y)
solves (10)-(11). Therefore, the asymptotic behavior of solutions p(7,y) of the rescaled
equations (10)-(11) to the stationary solution ju.(y), gives the long-time asymptotics of
solutions p(t,z) of the original equations (1)-(2) to the fundamental solution p(t, ).
It is then sufficient to study the long-time behavior for the rescaled equations (10)-
(11). For this purpose, we establish some mass transportation inequalities, from which
different types of convergence (convergence of the relative energy, convergence w.r.t.
the Wasserstein distances, and convergence w.r.t. the L!'-norm) are derived. Two in-
gredients are essentially used in our analysis. The first one is the superb notion of
displacement convezity introduced by McCann [22], which leads to an energy inequality
relating the energy H¥ (5(7)) at every time 7, to the energy H¥ (p.,) at equilibrium [3].
This notion expresses the convexity of the energy functional H*(j) along geodesics in
the space of probability densities equipped with the Wasserstein metric. The second
ingredient is the Young’s inequality
a-bﬁmﬁ—m, Va,b € R", where 1+1:1. (16)
p q P q
Combining these two ingredients, we are able to establish rates of decay to equilibrium
for the solutions of equations (10)-(11), from which we derive the decay rates to the
fundamental solution pe(t,z) of equations (1)-(2).

The outline of the paper is as follows. In section 2, we prove the convergence of the
free energy HY (p(7)) to H (po), as 7 — o0o. In section 3, we study the convergence
of the g-Wasserstein distance W, (4(7), o) (defined by (18)), and section 4 concludes
with the convergence of the L-norms ||5(7) — po||zt and ||p(t) — pool|zt, as 7 — oo and
t — oo respectively. Finally, in section 5, we apply the results obtained in the previ-
ous sections 2-4 to some concrete examples of equations of the form (1)-(2), namely,
the heat equation, the porous medium and fast diffusion equations, the parabolic p-
Laplacian equation, and some doubly degenerate parabolic equations.



Throughout this paper, P,(IR™) denotes the set of probability densities over R", i.e.,
Po(R") = {p: R* — [0,00), p > 0 and [g. p(x)dz = 1}, and supp (p) stands for the
support of p € P,(IR™), that is, the closure of {z € R" : p(x) # 0}. For py, p1 € P.(R"),
HF(polp1) = HF (po) — HF (p1) denotes the relative free energy of py with respect to py,
where H.(p) = [pn c(z)p(z) dz is the potential energy, H* (p) = [p. F (p(z)) dz is the
internal energy, and HI (p) = HF(p) + H.(p) = [z« (F(p) + cp) dz is the total free
energy associated with p € P,(IR™). The c-Wasserstein work from py € P,(R") to
p1 € P,(IR") is defined as

We(po, p1) Hlf o € (z — ) dz, Typo = pl} (17)

where Typy = p; means that pi(B) = po (T (B)) for all Borel sets B ¢ R™. If
c(x) = |z| , then W, = 1Wg, where

) 1/q
Wy(po, p1) = mf{/Rn |z — T'(x)|?dz, Typo = pl}] (18)

is called the g-Wasserstein distance (see Villani [32] for more details on this topics). In
order to state general results, we will often use in place of F', the function G : [0,00) — IR
which satisfies the hypotheses

(H): G € C[0,00) N C?(0,00) is convex, G(0) = 0 and (0,00) > z — z"G(z™") is

convex and non-increasing.

The last two conditions in (H) implies the displacement convexity of the energy
functional H defined by (8) [22]. We point out here that, under condition (3), the
function F' defined by (7) satisfies (H).

2 Convergence of the relative energy

In this section, we estimate the rate at which the relative energy HZ (5(7)|po) between a
solution §(7) of the rescaled equations (10)-(11) and the equilibrium solution j., (defined
by (15)) converges to 0. To equation (10) is associated the free energy

HE(u) = [ (F(u(y) + e(u)uly)) dy, u € Po(R") (19)

which is the sum of the internal energy H(u) = [r. F (u(y)) dy and the potential
energy H.(u) = [gpn c(y)u(y) dy. Here and after, we shall assume that the initial proba-
bility density py € P,(IR™) satisfies HY (py) < 0o. Below, we will use the entropy method
to prove the convergence in relative entropy - or relative energy - of the solutions to
equations (10)-(11). This method consists of establishing a logarithmic Sobolev type
inequality, which essentially compares the relative energy between solutions of equa-
tions (10)-(11) at times 7 and 7 — oo, with the dissipation of the relative energy.
Displacement convexity [22] will play an important role in this inequality. For the sake



of illustration, we consider the following ODE, which can be viewed as a toy model for
2
equations (10)-(11) when c(z) = %,
zy=—=Vf(z(t) in R"™x(0,00)
(20)
z(0) = xg in IR™

where f : R® — IR is a uniformly convex function such that D*>f > AI, A > 0. Equation
(20) is a gradient flow whose unique equilibrium solution is the critical point z,, € R"
of f, that is, Vf(zx) = 0. We will show that the rates of convergence of the solution
z(t) of equation (20), to the equilibrium solution z, can be derived from the following
basic uniform convezity inequality for f, which is obtained from the second order Taylor
expansion combined with the uniform convexity property of f, that is, D*f > A\I. For
20,21 € IR™,

A
f(z1) = f(20) > Vf(20) - (21 — 20) + §|Zl — zo|%. (21)
Here are the main steps leading to the rates of convergence to equilibrium for equation
(20).
Step 1: The Lyapunov function.
From equation (20), we have that

d 2
g (@) =-IVf ()] (22)

which shows that f is decreasing along the solution z(t) of (20), and exactly at the
equilibrium solution ., 4 f (z(t)) = 0. Therefore, f is a Lyapunov function for (20).
Equation (22) is known as the dissipation of the Lyapunov function f.

Step 2: A toy model of the logarithmic Sobolev inequality.
The basic uniform convexity inequality (21), combined with the Young’s inequality

V() (20— 21) S Sl = ol + 5 V()

gives the toy model logarithmic Sobolev inequality

1
f(20) = f(21) < ﬁlVf(Z(])F- (23)
Step 3: The convergence to equilibrium for the Lyapunov function.
Using 2o = z(t) and z; = T in (23), and combining this inequality with (22), we obtain

d

7 [ @) = feeo)] < =22 [f (2(1)) = f(2o0)]

f(2(t) = flzeo) < € [f(z0) = flzso)], (24)
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which shows the exponential decay to equilibrium of the Lyapunov function f (z(t)), at
the the rate 2.

Step 4: A toy model of the Talagrand’s inequality.
The basic uniform convexity inequality (21) applied with 2 = z, and z; = z(t) gives
the toy model Talagrand’s inequality

[2(t) = ol < 3 [f (2(0)) ~ fl0)] (25)

Step 5: The convergence to equilibrium for the Fuclidean distance.
Combining (24) and (25), we obtain

1/2

2(6) = el < e [ (£(00) = F(20)

that is, the exponential decay to equilibrium of the Euclidean distance at the rate .
For the quadratic cost c(z) = %, equation (10) is a gradient flow of the entropy
functional H with respect to the Wasserstein metric W, [19]. Therefore, one obtains an
exponential decay to equilibrium in relative entropy and in the Wasserstein distance by
following the Steps 1-5 above, while identifying the set IR™ to the set of probability den-
sities P,(IR"™), the Euclidean distance |zg — 21| to the Wasserstein distance Wa(po, p1),
the Lyapunov function f to the free energy functional HF [23, 27], and the uniform
convexity of f to the uniform displacement convexity of H (see [25, 24, 6, 7] and the
references therein for further details). But for a general cost c¢(x) = %, g > 1, this
method does not apply directly because equation (10) is not known to be a gradient flow
when ¢ # 2. Here, we use instead some argument from [10, 2] to establish logarithmic
Sobolev type inequalities appropriate to equation (10). These inequalities will lead to
an exponential decay in relative entropy of the solutions to equation (10) for all ¢ > 1.
In particular when g = 2, we recover the optimal rates obtained by the previous authors.
On the other hand, when ¢ < 2, that is p > 2, % + % = 1, the rate obtained here for
the convergence of the relative energy for the p-Laplacian equation is sharper than the
rate of Del Pino-Dolbeault [14], but this is not true when p < 2. Therefore, the opti-
mal rate for the convergence to equilibrium for the p-Laplacian equation is still unknown.

The next lemma states the energy inequality needed for the proof of the main theorem
of this section. This inequality is the analogue of the basic convexity inequality (21)
in the space of probability densities when A = 0, in the sense that it follows from the
displacement convezity of the internal energy HF', that is, the convexity of H¥ along
the geodesic connecting two probability densities ug and u; in P,(IR™) equipped with
the Wasserstein metric W [22]. For a complete proof of this inequality, we refer to [3].
Here, we just sketch the proof.

Lemma 2.1 Let Q C R™ be open, convex and bounded, G : [0,00) — R satisfy G €
C[0,00) N C?(0,00), and ug,u; € P,(Q) be such that 0 < ug € WH*(Q). Let T be the



_ L=

optimal map that pushes ug forward to uy in (17), with the quadratic cost c(x) -
If G(0) =0 and z — z"G(z ") is conver and non-increasing, then the following energy
inequality holds:

HS (u1) — HC (ug) > /Q woV (G (ug)) - (T — 1) dy. (26)

Remark. The energy inequality (26) holds for more general costs, e.g. c¢(x) = %,
q > 1 (see [3], Theorem 2.8). It also holds when 2 = R? provided that the assumptions
on ug and u,; are replaced by ug, u; € Po(IR?), ug € Wh*°(IR?%) and ug, u; have compact

supports (see [9], Proposition 4.1).

Sketch of Proof of Lemma 2.1. For ¢t € [0, 1], define T3 = (1 —¢)I + tT. Then
the path [0,1] 5 ¢ — u; = (T3)xuo is a minimal geodesic connecting uy and u; in
(Pa(2), Wa), that is, Wa(ug,u1) = Wa(ug, us) + Wa(ug, u1), and for any other path @,
connecting ug and uy, we have Wa(ug,u1) < Wa(ug,U;) + Wa(ty, u1) (see [32] for the
details). Moreover, if G(0) = 0 and z — z"G(z ") is convex and non-increasing, then
[0,1] > t — H%(u,) is convex [22] (we say that H® is displacement convex). Therefore,

HO )~ HOw) 2 | GO

t=0

-/ G’(uo)é;;t\t_o dy

S /Q G (ug) div (uo(T = 1)) dy
- /Q woV (G'(uo)) - (T — I)dy.
Here is the main theorem of this section.

Theorem 2.2 Let c(z) = 2 ¢ > 1, and assume that G : [0,00) — R satisfies (H).

q )

Then, for all ug,u; € P,(IR™) such that uy € C(IR™), we have
HE (ugluy) < He(ug) + /Rn upV (G'(ug)) -y dy + /Rn upc* (—V (G'(w))) dy (27)
with equality if ug = Uy = Uy satisfies on its support

V (G'(us) +¢) = 0. (28)

Therefore, the following generalizations of the logarithmic Sobolev inequality hold: If
q = 2, then

HE (uohn) < o Ta(uo), (29)

and it is sharp, in the sense that equality occurs if ug = U1 = Us. If @ # 2, then



H (uolur) < I (uo), (30)

where

Ia(uo) = /Rn UV (G'(uo) + ¢) - [Ve™ (V(G'(wo))) + 9] dy. (31)

Furthermore, if G = F is defined by (7) with m > Z(_pp_% and Il] —1—% =1, and

if the initial density po € P,(IR") is such that HF (py) < oo, then any solution p(T) of

equations (10)-(11) with finite energy HE (p(7)) < oo, satisfies the decay rates: If ¢ = 2,
then

H; (p(7)|poo) < € *"H, (polboo) , (32)
and the rate is optimal. If ¢ # 2, then

Hf (ﬁ(T)lﬁOO) < e_THf (polﬁm)a (33)
where poo is the unique equilibrium solution of equations (10)-(11), defined by (15).

Proof. First, we prove (27)-(30). The proof will be done in two steps. In Step 1, we
assume that ug and u; have compact supports, and in Step 2 we approximate ug and uq
by compactly supported functions {u;}; and {u;;}; with equal mass, and we obtained
(27)-(30) in the limit as j — oo.

Step 1. We assume that suppug, suppu; C Q, ug € C(2), where Q C R"™ is open,
convex and bounded, and [, uo(y)dy = [ ui1(y)dy. Then, the energy inequality (26)
holds, that is,

HE (uolus) < /Q w0V (G'(uo)) - y dy — /Q woV (G (uo)) - T(y) dy. (34)

Applying Young’s inequality with the convex function ¢, that is,

—V(G'(w)) - T(y) < c(T(y)) + ¢ (=V (G'(w0))), (35)

we have that
HS (wolwr) < [ w0V ('(uo)) -y + [ uoe” (<7 (&' (wn))) dy + [ uac(T(v)) dy.

Then we use that Tyug = ug, to conclude (27). Next, set ug = u; in (34). We have that
T = I and equality holds in (34), where all the integrals can be taken over the support
of ug = u;. Therefore, equality holds in (27) if equality holds in the Young’s inequality
(35). This occurs if ug = u; = us, satisfies (28) on its support.

Now, we use that ¢(z) = %, to rewrite (27) and (31) as

G 1 u 1 U, u
H_ (uglur) < ph( 0) + qu( 0) + I3(uo) (36)

and



where

I(w) = [wlV (G Py Tauo) = [uolyl*dy
I3(ug) = /UOV (G'(w0)) -ydy and Iy(uo) = /UOVC* [V (G'(u0))] - Ve(y) dy,

and %—i—% = 1. If ¢ = 2, then I3(ug) = I4(ug). Therefore, (36)-(37) give (29), with
equality if ug = uy = u., satisfies (28) on supp(ue). If ¢ # 2, we use again Young’s
inequality with the convex function ¢, that is,

=V [V (G'(w))] - Ve(y) < ¢ (Ve(y)) +¢(VeV (G'(w))) = |3;|q 4 TG w) |P,

to have that

1 1
—14(’110) S 511(’U0) + EIZ(UO) (38)

Then, we combine (36)-(38) to conclude that

HCG(U0|U1) S Il(UO) + IQ(’LL()) + Ig(UO) - (i]l(uo) + 11)12(’&0)> S Ig(UO).

Step 2. Assume that ug and u; satisfy the assumptions in Theorem 2.2. It suffices to
prove (27)-(28), then (29) and (30) will follow as in Step 1. For simplicity, we will assume
that either G > 0 or G < 0. This assumption is not restrictive because it is satisfied
by the function F' defined by (7). In fact, if m = zﬁ’ then F(z) = Iﬁmlnm > ;e__ll
can be replaced by F(z) + ;%11 and (27) still holds. Without loss of generality, we
assume that [p. upc* (=VG'(uwp)) dy < oo and H.(up) < oo, otherwise (27) is trivial.
Let ; C R™ be open, convex and bounded, such that Q; C ;;; and U2, = R™
Set u1; = uiXq,, where xq,; denotes the characteristic function of ;. By Lemma 6.1
[9], we can approximate ug by a sequence {uo;}, of positive functions in L'(2;) NC(;)
with support in €2;, such that

./Q U, j dy = /Q U1, dy , Ug,; = Up ON Qj \ Ql, Ug,j — U in Ll(Rn),
j J

J

Up,; — Ug in Wl’oo(ﬂl) and HS(UO,]') — HCG(U(]) (39)

From Step 1, we have that

HE (u jlus,g) < Hc(uo,j)+/9_uo,jv (G'(uo,j))'yder/Q_Uo,jC* (=V (G'(uo;))) dy (40)
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with equality if up; = u1 ; satisfies

V (G'(u14) +¢) =0 on Q; Nsupp(uy,;). (41)

As j — oo, the equality ug; = u;; obviously gives that ug = u;. And since u; ; = u; on
Q; and U2, = IR", then (41) reads as (28). Next, we study the limit, as j — oo, of
the terms in (40) to prove (27). Since ug; = up in ; \ Q;, we have that

H(ug;) — He(ug) = /Q (uo; —up)cdy — /Rn\Q ugcdy.
1 J

We let j — oo in the subsequent inequality, and we use that H.(ug) < 00, ug; — ug in
L'(R™), and the dominated convergence theorem, to obtain that

lim HC(UO,]') = HC(U(]). (42)

j—oo

Similarly, using that u;; = uixq, and G(0) = 0, we have that

H(uy ;) = /Rn G(ui)xe;dy and H.(uy;) :/Rn cuixq; dy.

We use that ¢ > 0, G > 0 or G < 0, and the monotone convergence theorem, to have
that HC(u; ;) — H%(w1) and H,(u1;) = H.(u1). Then we deduce, using (39) that

lim HE (uo,5|u ) = H (uolwr). (43)

Furthermore, using again that ug; = uo on ; \ 4, we have that
| wose” (=¥ (G'(uo,)) dy — [ uoe” (~V (' (o)) dy

= /91 [uoj¢” (=V (G'(uo0;))) — uoc™ (=V (G'(u0)))] dy

e, upc* (—V (G'(up))) dy.

We let j — oo in the above equality, and we use (39) and the fact that
Jawoc* (—V (G'(up))) dy < oo, to obtain that

lim [ et (~V (' (uo)) dy = [

Jj—o0 JQ; R

i uoc* (—V (G'(up))) dy. (44)

Finally, we note that [g. |uoV (G'(up)) - y|dy < oo, because of the Young’s inequality
+V (G'(ug)) -y < ¢* (—VG'(up)) +c(z) and the fact that [ uoc* (—V (G'(up))) dy < 0o
and H.(ugp) < co. Then we proceed as in (44) to have that

lim | wo;V (G (uo;))-ydy = /R" uoV (G'(up)) - y dy. (45)

j—o0 JQ,

We combine (40) and (42)-(45) to conclude (27).

11



Now we prove (32) and (33). Here also, we split the proof into two parts. In Part 1,
we assume that pp is a positive, smooth function with finite mass, defined on a bounded
domain of R" In Part 2, we approximate py € P,(IR") by a sequence {p§’}x; of
functions satisfying the assumptions in Part 1, and we obtained (32) and (33) in the
limit as (k, j) — (00, 00).

Part 1. Let 2 C IR™ be open, convex and bounded with a smooth boundary 0.
Assume that py € L'(Q2) N C>(Q2) and N < py < M, for some positive constants N and
M. Then the equation

9 :dlv{ch [V (F'(p)) +py} in Qx(0,00)
PV [V(E'(P)]+y)-v=0 on 002x(0,00) (46)
p(t=10) = po in Q

has a unique weak solution g € L2, (2 x (0,00)) that satisfies [ p(7) dy = [ po dy for
all 7 > 0, and 0 < N(T) < p(1) < M(T) for all 7 € (0,T), where 0 < T < oo [3, 16].
Moreover, since po € C*®(2) and 0 < N(T) < p(r) < M(T) for all 7 € (0,T), then
the regularity theory for quasilinear equations gives that p € Cpo% (Q x (0,T)) for some

a € (0,1) and for all 0 < T' < oo [16]. Therefore, we can compute the energy dissipation
equation by a direct differentiation:

WG [ (7 (3r)) + ) div{ () (Ve (VF () +3] } dy
= — [ Bn)V (P(a(r)) ) {Ve [VF (5(r)) + 9] } dy
— —Ir (3(r)) (47)
If ¢ = 2, then (29) and (47) give that
We OOIee) < omE (p(r)p) ie. (B (3(lpe)] <O (49

We integrate (48) over (0,7) to conclude (32). Note that the rate in (32) is optimal
because inequality (29) is sharp. if ¢ # 2, then we combine (30) and (47) to conclude
(33).

Part 2. Assume that p, € P,(IR") satisfies HF (py) < oo. For simplicity, we assume
that F' > 0. This assumption includes the functions F' in (7), when v > 1 and m = ﬁ,
because for m = zﬁ’ F(z) = Iﬁx Inz > ;‘3__11 can be replaced by F(z) + —11 >0
without altering inequalities (32) and (33). Remark that under the assumption F' > 0,
F has a superlinear growth. For the case v < 1, i.e. F' <0, we refer to [8] where (32)
and (33) were established when ¢ = 2. Now, for k£ € IV, set Q = {y € R", |y| <
k}. We can approximate py € P,(IR") by a sequence {pg” }x; of positive functions in

LY(Q) N C*°(Q) such that

pei = po in LR, / Py’ dy—>/ pody =1, H(pg”) = H.(po). (49)

12



Indeed, one can obtain pg’j by simply mollifying the function

poxe, if 5 < poxe, <J
J if poxe, > J-

Consider the solution p*7 of the equation

35’;”’ = div{p*IVe [V (F'(p49))] + "y} in @ x (0,00)
(Vc [V ( (p ))] + y) v=20 on 0 x (0,00) (50)
Pk’J (1 =0) = pp” in O

From Part 1, we have for ¢ = 2,

H (9 (n)5) < e B (o7 16k (51)

where p%7 is the unique equilibrium solution of (50), defined by
V (F'(#%9) +c) =0 in O Nsupp(pty), and p dy—/ po’dy.  (52)

Next, we let (k, j) — (00, 00) in (51) to show (32). To proceed, we will assume that for
all 7 > 0, the sequence {p*(7)}x; of solutions of (50) converges a.e. to the solution
p(T) of equations (10)-(11). Actually, this assumption is true for ¢ = 2 (see [8, 24]). For
q # 2, we intend to give the details in a forthcoming paper where we investigate the
existence of solutions to equations (10)-(11) in the entire domain R" x (0, 00). Since F’
and c are non-negative, then Fatou’s lemma gives that

HF (p(1)) < liminf HF (p (7')) . (53)

k,j—o00

It is now sufficient to show that

lim HY (p59) = H (puo) (54)

k,j—o0 ¢

to conclude (32), via (49), (51), (53) and (54). First, we show that p*J and p, are the
unique minimizers of H(p) on €, and IR" respectively, that is,

HF (p5) = inf{HF (p) : : Q% — [0,00), /Q pdy = /Q po’} (55)
k k

and
H{ (poo) = inf{H] (p), p € Pa(R")}. (56)

It is easy to check that (55) and (56) follow from the (total) energy inequality (71)
established in the next section. Indeed, by (71) and (52), we have that
A
H (p) = HY () = W,y (5,0%7) > 0,

13



which shows (55). Furthermore, if p¥J is another minimizer of HX in (55), then
A
0= HE () — HE() > 22, (5. ) 2 0,

that is, W, (p’;g : ,ooo) =0 or p&J = p&J. For the proof of (56), we use (28) in place of
(52).

Since F' and c are non-negative, and F' has a superlinear growth, the arguments used in
[24] yield that HF (p%9) < HF (pso) and p%7 — po, in L'(IR™). Then we use that ¢ > 0
and the weak lower semicontinuity of H¥ (which holds because F' > 0 is convex) to
conclude that

H; (poo) < liminf H(p57) < limsup H; (p5)) < H (poo)-

C
k,]—)OO k,j —00

This proves (54) and then concludes the proof of (32). The proof of (33) is similar.

3 Convergence w.r.t. the Wasserstein distances

Here we estimate the rates at which the ¢-Wasserstein distance W,(4(7), poo) between
a solution p(7) of the rescaled equations (10)-(11) and the equilibrium solution P
converges to 0. We start by recalling the notion of uniform c-convezity introduced in
[9]. This notion will be used to generalize the Talagrand’s inequality [28] (which is an
estimate of the 2-Wasserstein distance in terms of the relative entropy), from which the
convergence to equilibrium in the g-Wasserstein distance for equations (10)-(11) will be
derived. A function V : R® — IR is uniformly c-displacement convex with Hess.V > AI
for some A € R, if for all a,b € IR", we have

V(b) — V(a) > VV(a) - (b—a) + Ae(b — a). (57)

The following lemma expresses the uniform c-convexity of ¢(x) = |m| ,q> 1.

Lemma 3.1 Letc(z) = %, g > 1. Then, there exists X\ > 0 such that, for all a,b € R",
we have

c(b) — c(a) > Ve(a) - (b—a) + Ae(b — a). (58)
Furthermore, the optimal constant A = X\, in (58) satisfies:
(1). If1<q<2, then A\, =0.
(it). If =2, then A\, = 1.

(111). If g > 2, then A\, = #, where r > 0 uniquely solves the equation
rit —(¢g—1)r—(¢g—2)=0.

14



Example. If ¢ = 4, then 7 = 2 is the unique positive solution of 73 — 3r — 2 = 0,

and therefore s = 3.

Proof of Lemma 3.1. Since c¢(z) = ETH, g > 1, is convex, then inequality (58)

holds for A = 0. Therefore, the optimal constant \, in (58) satisfies
A > 0. (59)
If a = 0, inequality (58) gives that c(b) > A,c(b), and then

Ay < 1. (60)
If a # 0, dividing (58) by c(a), we have that

' =2y (=) ¥l
So, it is sufficient to prove that, Va,b € R such that |a| = 1,

6] =1 2> qa- (b—a)+ Agb—al,
that is,

rl— 1> qrz — 1) + A(1 + 7% — 2rz)?/? 61
q

where 7 = |b| > 0 and z = cosf € [—1, 1], with # being the angle between the vectors a
and b.

(ii). If ¢ = 2, then c is twice continuously differentiable, and Hess ¢ = I. Hence
Ay =1

(i). If 1 < ¢ < 2, setting r = 1 in (61), we have that

q(1—z)'~9
Aq < Y7 R (62)
We let z — 1 in (62), and we use (59) to conclude that A\, = 0.
(iii). If ¢ > 2, inequality (61) gives that
41 —grz—1
Ag = min |[f(r,z):= r alre — 1) (63)

(r,z)eD (]_ + T2 — 27’1’)‘1/2

where D = {(r,z): r>0,-1<z <1}.
In the interior (r,z) € (0,00) X (—1,1) of D, there is no critical points, because
(fr(r,z), fo(r, 2)) = (0,0) gives that

{(rq1—x)(1+r2—2rm)—(r—x)(rq—l—q(rx—l)) =0
—(147?=2rz)+ (r*—1—q(rz — 1)) =0

ie. r=1and 2(1 — z) = ¢(1 — z), which leads to the contradiction g = 2.
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On the boundary (r,z) € [0,00) x {1}, we have that f(r,1) = “—=2r=1) By 4

|r—1]e
direct computation, we have that f,.(r,1) = ﬁ (q —-1- Tq;_ll_ 1), and then
min{ f(r,1), 1 #r >0} =min{l,¢g— 1} =1,ie. A\, < 1.
On the boundary (r,z) € [0,00) x {—1}, we have that f(r,—1) = Tq_;iiqlﬁzm. It is
easy to check that f,(r, —1) = s [r ' — (¢ — 1)r — (¢ — 2)]. Then

min{f(r,—1), r > 0} is attained at the point 7 > 0, solution of the equation

M (g— )i = (g—2) =0, (64)
Noting that f(7, —1) < f(1,—1) = 35 < 1, and using (60) and (63), we deduce that

M —14+q(r+1)

Next, we multiply (64) by 7 to have 77 = (¢ — 1)r> + (¢ — 2)7, and we substitute this
expression into (65) to conclude that \, = #, where 7 > 0 solves equation (64).

The next theorem gives the convergence to equilibrium in the g-Wasserstein distance
for equations (10)-(11).

Theorem 3.2 Let ¢(x) = %, q > 2, and assume that G : [0,00) — R satisfies (H).
Then for all probability densities u,us € P,(IR"), such that V (G'(ux) +c¢) = 0, the

following generalization of the Talagrand’s inequality holds:

1/q
Wil m) < | HE )| (60
q

where A\, is defined as in Lemma 5.1.

Furthermore, if G = F is defined by (7) with m > z(;pjl; and % + % =1, and if the

initial probability density py € Pa(IR™) is such that HE (py) < 0o, then any solution p(T)
of equations (10)-(11) with finite energy HE (p(7)) < oo, satisfies the decay rates: If

q = 2, then
W2 (p(7), Poo) < €7/ 2HT (po|poo) (67)

and if ¢ > 2, then
A 1/q
Ay —r/q | 2H (Polpo
W, (), ) < ¢ 1t | HELRIP)| (68)
q
where po, s the unique equilibrium solution of equations (10)-(11), defined by (15).
Proof. For q # 2, (66) was first established by Cordero-Gangbo-Houdré [9]. The
proof that we present below is taken from this paper. Here, we will assume that u €

C(IR") and u., have compact supports contained in some bounded domain Q C R".
The complete proof is obtained by an approximation argument, as done in Theorem 2.2.
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The idea of the proof is based on the toy model Talagrand’s inequality (25) established
in Section 2. Indeed, let T be the optimal map that pushes u., forward to u in (17)
with the cost ¢(z) = |”"| q > 2. Then, the energy inequality (26) holds, that is,

HS(u) — H(uy) > / UV (G (us)) - (T = I dy. (69)

Since ¢ > 2, then ¢(z) = |z| satisfies (58) with A, > 0. Then,

Ho(u) = Hlus) = [ [(T(y)) = e(v)] uoly) dy
> /uoch-(T—I)dy—l—)\q/c(T—I)uoody
= /uoch (T —I)dy + AW (u, us). (70)

Adding (69) and (70), and using that W, = %Wg, we obtain the total free energy
inequality

HO(w) = B (1) > [0V (F(um) +6)- (T = Dy + 2 Wouu)t,  (71)

which is analogous to the basic uniform convexity inequality (21), in the sense that it ex-
presses the c-uniform displacement convexity of HY. Next, we use that V (G/(uw) + ¢) =
0 to conclude (66).

If ¢ =2, Lemma 3.1 gives that Ay = 1. Then we combine (32) and (66) - where we
use G = F - to conclude (67). If ¢ # 2, we combine (33) and (66) to conclude (68).

4 Convergence w.r.t the L'-norm

In this section, we establish the rates at which the L'-distance ||p(7) — poo||11(rn) be-
tween a solution p(7) of the rescaled equations (10)-(11), and the equilibrium solution
poo converges to 0. Then, we derive the rate of convergence to 0 of the L!-distance
|p(t) — poollzi(rry between a solution p(t) of the initial equations (1)-(2), and the
fundamental solution p.., defined by (9), (13) and (15). The L!-decay for equations
(10)-(11) will be obtained from the convergence of the relative energy (Section 2), via
some Csiszar-Kullback [11, 21] type inequalities, which are estimates of the L'-distance
1A(T) = PoollL1 (g in terms of the relative energy HE (5(7)|ps0).

Theorem 4.1 Let c( ) = |“’| ,q > 1, and F : [0,00) = IR be defined by (7) with

m > Z(pp% and 1 + = =1. Then for any probability density u € P,(IR"), the following

Cszszar-Kullback type inequalities hold: If m = p%l, then

lu = oollTa ey < 8(p — 1) H; (uloo) (72)
and if m 7é —~ then
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8
- Aoo 21 ny < — A2_7) HF Aoo 73
o= polsqamy < — ([ 757) HE(ulpo), (73)

where po € P,(IR"™) is the unique equilibrium solution of equations (10)-(11), defined
by (15).

Furthermore, if the initial probability density po € P.(IR™) is such that HF (py) < oo,
then any solution p(T) of equations (10)-(11) with finite energy HY (p(7)) < oo, satisfies
the decay rates: If ¢ = 2, then

18(T) = boollzr(rmy < Me™™\/ HE (pol foo) (74)

and if ¢ # 2, then

16(r) = poollrcamy < Me™"/2\/HE (polpnc), (75)

where M > 0 1s a constant.

The scalings (9), (12), (13) and the exponential decays (74) and (75) of the solutions
p(T) of equations (10)-(11) to the stationary solution j,, give an algebraic decay in
the L!-norm for the solutions p(t) of equations (1)-(2) to the fundamental solution pe,
defined by (9), (13) and (15), as shown in the next theorem.

Theorem 4.2 Let c(z) = %; g > 1, and F : [0,00) — R be defined by (7) with
m 2> Z(_p{% and % + % = 1. If the initial probability density py € P.(IR™) is such that

HF(pg) < oo, then any solution p(t) of equations (1)-(2) satisfies the decay rates: If

q = 2, then

lott) = poellrimny < =N 50 (76)

and if ¢ # 2, then

HE (polpoo)
(1+ 6,t)1/2%
where 0, = (p—1)(nm+1)+1—n for allp > 1, M > 0 is a constant, and pe, is the

unique equilibrium solution of equations (10)-(11) defined by (15), and p is defined by
(9) and (13).

[o(t) — poollL1(rm) < (77)

Proof of Theorem 4.2. Straightforward, using (9)-(13), (74) and (75).

Proof of Theorem 4.1. The proof of the Csiszar-Kullback type inequalities (72)
and (73) is standard. For ¢ = 2, (72) is first established in [11, 21] for F(z) = zlnz

e—lzl?/2

and P = <, and (73) first appeared in [5] for F(z) = 2=, m > 1, and pe =

m—1"

1
(K — "5—_1|x|2) ™~!. Some generalizations of this inequality can also be found in [29, §].
m +
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Here, we prove (72) and (73) for all ¢ > 1. The proof follows the same ideas as in the
case ¢ = 2. First, we observe that the relative energy HY (u|p.,) can be written as

HE(ulpw) = [ [P0 = Fpe) = F(poe) (= )] dy

+M U — Poo) dy + F(u) + culdy, 78
g\ PRy [F(w) + cul dy (78)

for some real M. Indeed, since V (F'(fx0) + ¢) = 0 on supp(fe), we have that c(y) =
M — F' (poo(y)) for all y € [p # 0], and for some real M. Therefore,

H (ulp) = [ [F(u) = Flpw) + ot — pc)] dy
= [ @) = F(p) = Fpo)(u—p)] dy + M [ (u= ) dy
P+ e (Flw) +epe)] dy,

which proves (78), because on [pe = 0], F(poo) + ¢Poo = F(0) = 0. The second order
Taylor expansion of F around 1, evaluated at t = Y- for y € [po # 0], gives on

R poo(y)
[P # 0]

u F'(1) . 1 o ,,( u )
F |- —F(1) — — U— Poo) = —|U — Poo|“F" [1+0(— —1) |, 79
() - Py = Z8 = ) = = -n). )

for some 6 € (0,1).

Case 1: m = L.
p—1

Here F(t) = Iﬁtlnt and poo(y) = Lexp (—p%l|y|q). Then [po # 0] = R", and (78)
read as
HY (ulpo) = [ [F(w) = Flpo) = F'(poc)(u = puc)] dy, (80)

where we use that [p. udy = [gn Poo dy. Multiplying (79) by p0, and integrating over
IR", we have, after using (80),

1 1 1
HE(upe) = 5o [ —fu— pucf dy
o) = 1) S o P g ()
1 1
> [ uepuftay. 81
2(p — 1) Jju<poo] poo| | (81)

Since u and p, have equal mass, we have that %fRn [U — Pool AY = Jucpo] [ — Poo| dy-
Then, we use Holder’s inequality and (81) to obtain that
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1 1
: w— puldy = / L b o d
2/Rnl Poo| dy oy hpool Poo|\/ oo Ay

\ 1/2 1/2
< ( Poo| dy) (/ poody>
[u<poo R"
1/2
(ot
[u<Poo poo
1/2
< [ —1HFu|poo)]/.

This proves (72).

Case 2: m < %
P

1/v—1
Here F(t) = 7&”_71) where v = m-l—z%f < 1, and poo(y) = (K — 3’ﬂ:—;|y|q) a is positive.
Therefore [f # 0] = IR™ and (80) holds. We multiply (79) by pZ , and we observe that

SLF ( u ) _ Flu), pLF(L) = F(pw) and FEF(L) = F'(5e)

o0

to have that

F(W) = Flpw) = Fpa)a = o) = 3057 = pulF (140 (S5 -1) ). (o2

Then, we use (80) to obtain that

y—2
R ) = [ —ﬁoo|2(1+e(ﬁ“ —1)) . (83)

Since v < 1, then (83) gives that

HE (ulpo) 2 2 [ 32— puol? dy. (84)

T 2 Jju<poo]

We use (84), Hélder’s inequality and the fact that u and p., have equal mass, to obtain
that

1

= U—fPoo|dy = / U — Poo| d

2/Rnl foo| dy [u<ﬁoo}| fool dy

(/ U — foo|*PL 2dy> (/ ﬁi;”dy)
[u<Poo R™

) 1/2 1/2

(i wloe) ([, %7 a0)

m
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This proves (73). It is easy to check that [, p257 dy < oo since y > 1— 1 because of (3).

Case 8: m > zﬁ'
m -~ R -~ 1/4—1
Here F(t) = 7(7171) where v = m + ;’Tf > 1, and p(y) = (K— 'Ym—ql|y|q)Jr has a
compact support, supp(pe) = {y € R" : M —c(y) > 0} = {y € R" : |y| < (¢M)"/7},
where M and K are related by K = -1 M. Using that c(y) > M on [ps = 0], we have
from (78)

HE (lp) > [ () = F(po) = F'(po)(u — )] dy

+M (U — Poo) dy + M (U — Poo) dy + F(u)dy
[P0 70] [poo=0] [Poo=0]
= [ [P = F(ps) = F'(puc)(u = po)] dy + M [ (1= poc) dy
(oo 0] R"
+ F(u) dy.
[ﬁoozo]

And since u and p, have equal mass and F' > 0, we obtain that

H, (ulpoo) > ot [F(u) = F(poo) = F'(hoo) (v — poo)] dy. (85)

As is Case 2, (82) holds on [p # 0]. Then using (85), we have that
HE(ulp) = [ [F(0) = F(p) = F'(po)(u — )] dy
Poo
m u i
_ T et pf? 1+9(A_1>) dy. (86
v p|( - g (86)
If 1 <y <2, then (86) gives that

m m
Hfuﬁoo 2= ﬁ’go_zu_ﬁoo2dy:_ ﬁ’go_zu_ﬁoo2dy
(1]72o) 2 J[poo A0N[u<poo] | | 2 J[u<poo] | |

because [u < poo] C [foo # 0] since u > 0. Then we follow the same argument as in Case
2 to obtain (73).
If v > 2, then (86) gives that

HP(ulpoe) > 5 [ % pulPdy > 0 [ L= peoftdy  (87)
2 Ju>poo]Npoo 0] 2 Ju>poo]

because p7-2 = 0 on [p = 0]. Using (87), Holder’s inequality and the fact that u and
Poo have equal mass, we obtain as in Case 2

1 2 » 1/2 ) 1/2
o u=psldy= [ ju—puldy < (SHEA) ([ Ady)
R [u>poo] m Rn
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which proves (73). Note that [p. p%7 dy < co because
2—y
—1 y-1 2—y
52-7d =/ (K—,y—yq> dy = cst 1—|z|9)71dz
/" Poo "= Jitaanyiva m Y |z|s1( 1)

converges since E < 1.
If ¢ = 2, we combine (32) and (72)-(73) to deduce (74). And if g # 2, we combine
(33) and (72)-(73) to conclude (75).

5 Examples

Here, we apply Theorems 2.2, 3.2, 4.1 and 4.2 proved in Sections 2-4 to some examples
of equations of the form (1)-(2).

Heat equation (p = 2,m = 1). If ¢(z) = @ and F(z) = zlnz, then (1)-(2) is
the heat equation

at
p(t=0)=py in IR".

Scaling in time and space as

T=In(vV1+2t), y=

{ % — Ap in R" x (0,00) (88)

Xz n
,Po(my) = (14 2t)2p(t, x),
T A(r,y) = ( )2p(t, )

(88) reads as the linear Fokker-Planck equation

% = Ap+div(yp) in R x (0,00)
p(t=0)=po in R".

Theorems 2.2, 3.2 and 4.1 assert that the self-similar solutions p of (88) decay expo-

2

nentially fast to the normalized Gaussian po(y) = © '2'"'; ” in relative entropy, in the

2-Wasserstein distance and in the L!-norm, at the rates 2, 1 and 1 respectively. Theo-

rem 4.2 gives the algebraic decay of the solutions p of (88) to the fundamental solution

laf? ,
Poolt, ) = % in L'-norm, at the rate 1/2. These rates are all sharp.

Porous medium and fast diffusion equations (p = 2,1 # m > 1—1). If
c(z) = @ and F(z) = -2, then (1)-(2) is the porous medium equation (m > 1), or
the fast diffusion equation (m < 1)

at
p(t=0)=py in R"
After scaling in time and space as in (12)-(13) with R(t) = (1 + 8,t)/% and 0, =
n(m — 1) + 2, then (89) reads as
% = Apm+div(yp) in R™ x (0,00)
p(T=10) = po in R

% — Apm i n
{ = Ap in IR"™ x (0,00) (89)
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Theorems 2.2, 3.2 and 4.1 give the same exponential decay rates to the equilibrium
solution P, (y) = ( S|y )’" ' as for the heat equation, while Theorem 4.2 gives
the algebraic decay of solutlons p of (89) to the Barenblatt-Prattle profile

poo(t .Z') m (K + W|l’| )m ! in Ll -norm, at the rate m These

rates are all sharp.

Parabolic p-Laplacian equation (2 # p > 2¢H . m = 1). If ¢(z) = % and

10
F(z) = ”—11) where vy = % and | + ; = 1, then (1)-(2) is the parabolic p-Laplacian
equation

(v

{ %’tf = A,p =div (|Vp|P2Vp) in R" x (0,00) (90)

p(t =0) = po in R".

After using the scaling (12)-(13) with R(t) = (14 6,¢)/% and 6, = p(n + 1) — 2n, (90)
reads as R

% = App+div(yp) in R" x (0,00)

p(t=0) = po in R"

Theorems 2.2, 3.2 and 4.1 show that the self-similar solutions p of (90) decay exponen-

p—1
tially fast to the equilibrium solution pu(y) = (K - ‘%2|y|q) 172 in relative entropy, in
the q -Wasserstein distance (for ¢ > 2 i.e. p < 2), and in L'-norm, at the rates 1, 1
and 1 3, respectively. And Theorem 4.2 gives the algebraic decay of the solutions p of

p—1

. _2 .
(90) to the Barenblatt type solution pe(t,z) = m (K mm )+ in

L'-norm, at the rate Note that when p > 2, the rate, 1, obtained here for

1)
the convergence in relative entropy is sharper than the rate ¢ (1 — Il)(p — 1)V ‘1) of Del
Pino-Dolbeault [14], but this is not true when p > 2. Therefore, the optimal rate of
convergence to equilibrium for the p-Laplacian equation is still unknown.

Generalized heat equation (2 # p > 1, m = p%l) If ¢(z) = % and F(z) =
—xln z, % + % =1, then (1)-(2) is the generalized heat equation

ot

{ % = Aypr1 =div ([Vp71[P2Vpi1) in R™ x (0, 00) (01)
p(t =0) = po in R"

The scalings (12)-(13) applied with R(t) = (148,t)}/%, §, = (p—1) (— + 1>+1 n, and
we get the same exponential decay rates as in the p—Laplaman equatlon for the conver-

gence t0 Poo(y) = %e_(” DIvl?/a and the algebraic decay rate 55 for the L'-convergence

to po(t, 7) = w0 ()

Generalized p-Laplacian equation 2#p>1m# -L). Here c(z) = 21

q
F(z) = ngjl) y=m + and A m > "n(l()p 1;). Then, Theorems 2.2, 3.2, 4.

)
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and 4.2 give the same decay rates as for the generalized heat equation with p.,(y) =
(K = 3 vl7) " and po(t,) = g (K = ialel”) [, where R(®) = (1-+8,)'/%
and §, = (p—1)(nm+1)+1—n.
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