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Abstract

We obtain solutions of the nonlinear degenerate parabolic equation

% - div{pvc* [V(F'(p)+V)]}
as a steepest descent of an energy with respect to a convex cost functional. The
method used here is variational. It requires less uniform convexity assumption than
that imposed by Alt and Luckhaus in their pioneering work [4]. In fact, their
assumption may fail in our equation. This class of equations includes the Fokker-
Planck equation, the porous-medium equation, the fast diffusion equation and the
parabolic p-Laplacian equation.
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1 Introduction

We consider a class of parabolic evolution equations, so-called doubly degenerate
parabolic equations. These equations arise in many applications in physics and biology
[12, 20, 21, 23]. They are used to model a variety of physical problems, e.g. the evolution
of a fluid in a certain domain: porous-medium equation [19] and Fokker-Planck equation
[13]. In this work, we focus on these parabolic equations of the form

8?)(:) =div (a (b(u),Vu)) on (0,00) x Q
u(t =0) =wuo on (1)

a(b(u),Vu)-v=0 on (0,00) x 9

where

a(b(u), Vu) := f (b(u)) Ve [V(u+ V)]

and ¢* denotes the Legendre transform of a function ¢ : R? — [0,00), that is,

() = sup {(z,2) — c(z)}
zERS

for z € R%. Here Q is a bounded domain of R?, v is the outward unit normal to
00, b: R — R is a monotone nondecreasing function, V : @ — R is a potential,
c: R* — [0,00) is a convex function, f is a nonnegative real-valued function and
up :  — R is a measurable function. The unknown isu : [0,00)xQ — R, u = u(t,x).

In a previous work, Alt and Luckhaus [4] proved existence of weak solutions to (1)
when V' = 0 under the following ellipticity condition on a(t,z) := f(t)Vc*(2)

(a(t,z1) —al(t,z2),21 — 22) > A z21 — 22 |P (2)

for some A > 0 and p > 1, and for all z1, 22 € R®. This amounts to imposing that f is
bounded below and the cost function c satisfies the ellipticity condition

(Vc*(z1) — Ve (22),21 — z2) > A 21 — 22 |P. (3)
Note that when ¢(z) = % or equivalently ¢*(z) = % where p > 1 is the conjugate of

qg>1, % + % = 1, condition (3) reads as
<| 21 |p7221 — | 22 |p72Z2,21 — 22> > )\| 21 — 29 |p (4)

which holds only if p > 2. In fact when 1 < p < 2, the reverse inequality in (4) holds (see
[9], pp- 13). In [4], the authors approximated (1) by a time discretization, and they used
a Galerkin type argument to solve the resulting elliptic problems. In the same paper,

they proved uniqueness of solutions to (1) when V' = 0, assuming that (2) holds and that
b(u)
¢

the distributional derivative of a solution u of (1) is an integrable function. The
last condition was removed by Otto in [17] where he used a technique called “doubling
of variables” which was first introduced by Kruzkov in [14]. This technique consists
of doubling the time variable of two solutions of (1) and treating each solution as a
constant with respect to the differential equation satisfied by the other solution.



In this work, we eliminate assumption (3), and we impose instead the following
growth condition on the function c :

Blal? <e(z) <a(l2]'+1) (5)

for z € R? and for some o, f > 0 and ¢ > 1. Notice that (5) is much weaker than
the ellipticity condition (3) imposed by Alt and Luckhaus in [4]. Typical examples of

functions which satisfy (5) but not (3) are ¢(z) = % where ¢ > 2. Indeed, for such
functions ¢, we have that ¢*(z) = |Zp|p where 1 < p = ﬁ < 2, and then, the reverse

inequality in (3) and (4) hold.

We interpret (1) as a dissipative system and then, we introduce the internal energy
density function F : [0,00) — IR satisfying F’ = b~!. Setting p := b(u), po := b(up) and
f(z) = max(z,0), we rewrite (1) as

90 +div(pU,) =0 on (0,00) x Q
p(t =0) = po on 0 (6)
pU, - v=0 on (0,00) x 9.

Here
Uy ==V [V(F'(p)+V)]

denotes the vector field describing the average velocity of a fluid evolving with the
continuity equation in (6), po : © — [0, 00) is the initial mass density of the fluid, and
the unknown p : [0,00) x Q — [0,00), p = p(t, ), is the mass density of the fluid at
time ¢ and position z of €.

The free energy associated with the fluid at time ¢ € [0, 00), is the sum of its internal
energy and its potential energy,

E(p(t)) = /Q [F (plt,2)) + plt, 2)V (2)] da.

Problem (6) includes the

e Linear Fokker-Planck equation:

9 _ Ap + div(pVV)
ot
(where we use ¢(z) = @ and F(z) = zlnzx)

e Porous-medium and Fast diffusion equations:

dp
P Ap™
at P

™

(V=0,c(z) = £, and F(z) = 22 with 1 £m >1- 1)

m—1



e Generalized heat equation:

% = div (|Vpr T P72V pr 1 )

(V=0,c(z) := L | with 1 +— and F(z) = = —L-zlnz with p > 1)

e Parabolic p-Laplac1an equation:

ap a1 p—2
i div (| Vp|P~*Vp)
(V =0, c(z) = 2L and F(z) = m(fn’"_l) with m := 2;’%13 241 =1andp> 2
e Doubly degenerate diffusion equation (see [16]):
op
n P — div (| Vo™ [P~2Vp") (7

(V=0,¢(2) == 2 with 1 + 1 =1, and F(z) = 72" with m :=n + 2= and
d—(p—1)

pﬂé”— 1) )

The above restrictions on m, n and p are made so that F' satisfies the assumptions (HF1)
and (HF2) stated below.

We are interested in the following questions: under what conditions does (6) have a
solution? Is the solution unique? What are the most relevant conditions on ¢, F' and V'
which ensure that solutions converge asymptotically to an equilibrium?

In this work, we answered the first and the second questions. We proved existence
and uniqueness of weak solutions to (6) when the initial mass density pg is bounded
below and above, that is, po + % € L*®(Q) (see Theorems 3.11 and 3.12). This restric-
tion is made to simplify the proofs and not to bury fundamental facts into technical
computations. We include in Remark 3.13 a method to extend our existence result to
cases where io fails to be bounded and where py belong to a wider class of probabil-
ity densities, e.g. pp € LP(?), p > ¢. In a coming paper [3], we establish large time
asymptotics for solutions of (6).

Our approach in studying existence of solutions to (6) was inspired by the works
of Jordan-Kinderlehrer-Otto [13] and Otto [16]. In [13], the authors observed that the
Fokker-Planck equation can be interpreted as the gradient flow of the entropy functional

H(p) == /Rd (plnp+pV) dz,

with respect to the Wasserstein metric da. Recall that ds is a metric on the set of
probability measures on R? with finite second moments defined by

‘ z — 2 1/2
da(po, p1) := [lnf{/Rd o | 2y| dy(z,y): ~€ F(MOyILl)}]
X

where T'(ug, 1) denotes the set of probability measures on R? x R? having pg and p1
as their marginals (see the definition below). This idea was extended by Otto in [16] for
doubly degenerate diffusion equations of the form (7) when p > 2.



Now, we outline the proof of our existence theorem to (6). For the sake of illustration,
we assume that V' = 0. The proof consists of four main steps.
Step 1. We interpret (6) as a steepest descent of the internal energy functional

Pa(Q) 3 p = Ei(p) := /Q F (p(x)) da

against the Monge-Kantorovich work W/, where h > 0 is a time-step size and P,(Q)
denotes the set of probability density functions p : Q — [0,00). In other words, given a
mass density p?' ; of the fluid at time ¢;_1 = (k — 1)h, we define the mass density p} at
time t; = kh as the unique minimizer of the variational problem

(P):int (WL (ph1p) + Eip) | (®)

(see Proposition 2.3). So at each time ¢, the system tends to decrease its internal energy

E;(p) while trying to minimize the work to move from state p(t) to state p(t + h).
Step 2. We write the Euler-Lagrange equation to (PJ), and we show that

P — o
S = aiv {phver [V (F/(o1)] } + Axh) 9)
weakly, for k € IN (see Proposition 2.6), where Ag(h) tends to 0 as h goes to 0. Equation
(9) explains why (8) is a discretization of (6).
Step 3. We define the approximate solution p” to (6) as

ptx) = pi(=z) if te ((k—1)h,kh], ke N

p*(0,z) = po(x)

and we deduce from (9) that p" satisfies

o div{ph Ver [V (F'(p))] } +A(R) on (0,00) x Q w0
10
pMt=0)=py on Q

in a weak sense (see Proposition 2.9), where A(h) is shown to be 0 (h<(?9) with €(q)
defined by €(g) := min(1, g — 1) (see Proposition 3.2).

Step 4. We let h go to 0 in (10) and we show that (p"); converges to a function p
which solves (6) in a weak sense. Here two convergence results are established: the weak
convergence of (p"); to p in L1 ((0,T) x Q) for 0 < T < oo up to a subsequence, which

proves that (%L:)h converges weakly to % in the dual [C2°(R x Rd)]l of CX(R x

R?), and the weak convergence of the nonlinear term (div{p"Ve* [V (F'(p"))]}), to
div{pVe* [V (F'(p))]} in [C(R x Rd)]l for a subsequence.

The first convergence follows from the upper bound (26) in Proposition 2.3 which is
a consequence of the Maximum Principle stated in Proposition 2.2 (see Lemma 3.3):
starting with a probability density function pg which is bounded above, that is, pg < M,
the probability density function pZ - solution of (P,?) - 15 bounded above as well, that is,



pl < M for all k € N. As a consequence, (p");, is bounded in L% ((0,00) x ) and
then, it converges to some p in L' ((0,T) x oo) for 0 < T < oo up to a subsequence.
The second convergence is one of the most difficult tasks in the proof of the existence
theorem. Its proof requires elaborated intermediate results. Here come some technical
differences with the works in [4] and [16]. Indeed, due to the weaker condition (5)
imposed on ¢ compared to the stronger ellipticity condition (2) or (3) in [4], the methods
used in [4] and [16] do not yield here strong convergence of the nonlinear term as in [4]
and [16]. The best we could expect is the weak convergence of the nonlinear term, and
to prove this convergence, we proceed as follows:

. . . . . . h
. s )
(i). First, we improve the previous convergence by showing that in fact, (p")p, converges
strongly to p for a subsequence in L' ((0,T) x §2) (see Proposition 3.7).

(ii). Then, we deduce that (div{p"Vc* [V (F'(p"))] }),, converges weakly to
div{pVe* [V (F'(p))]} in [C°(R x Rd)]l for a subsequence (see Theorem 3.10).

To prove (i), one needs to have a good control on the spatial derivative of p, for example,
to show that {v (F'(ph)) }h is bounded in LI ((0,T) x ©2), 0 < T < oo. The main
ingredient used to establish this result is the following Mass Transportation type Energy
Inequality:

Ei(fo) — Eilpn) > /Q (V (F(51)) , 5(y) - v)Ai () dy, (11)

for po, p1 € Pa(). Here, S denotes the c-optimal map that pushes g7 forward to gy (see
the definition in Proposition 1.1). A more general statement of the energy inequality is
given in Theorem 2.8. Inequality (11) can be seen as a consequence of the displacement
convezity of the internal energy functional P,(2) 3 p — E;(p), that is, the convexity of

[0, 1] St Ei(ﬁlft),

where,
Prig = ((1 —t)id + té)#p] (12)

is the shortest path (w.r.t. the Monge-Kantorovich functional W, defined below) joining
p1 and pp in Pg(Q). When ¢(z) = @ in which case S is the gradient of a convex
function, the interpolation in (12) was first introduced by McCann in [15].

Indeed, setting gp := /’2—1 and g1 = PZ in (11) and using the Euler-Lagrange
equation of (P,?), that is,

S _ver [v (Ph)]. (13)

where S ,’: is the ¢ (ﬁ)-optimal map that pushes PZ forward to ,0’,;71, we obtain that

b (P D) Ve [V (FED) ik < Bk - BG4

We integrate (14) over ¢t € [0, 7] and we use Jensen’s inequality to deduce that

/ : L (F6) vet [V (P6) ]y < i)~ 1217 <ﬁ) )

6



Using condition (5) combined with (15) and the fact that (p") is bounded in
L ((0,00) x §2), we obtain that

/OT/Qp"\v (Fe) [

Then, we use that (Pih)h is bounded in L* ((0,00) x Q) (see (26)) which is a conse-

*

< cst (see Lemma 3.3).

quence of the Minimum Principle of Proposition 2.2, to conclude that {V (F’ (ph)) }h
is bounded in L ((0,T) x ), 0 < T < oo. This yields (i).

To prove (ii), we first use (13) and condition (5) to have that {Vc* [V (F'(p"))] }h is
bounded in L7 (Q x (0,00)) (see Lemma 3.8), from which we deduce that

{Vc* [V (F'(p"))] }h converges weakly to some o in L7 (2 x (0,7)) for a subsequence

and for all 0 < T < oo. Next, we use (i) and the boundedness of {V (F'(p™)) }h
in L9 (Q x (0,00)) to obtain that {V (F'(p")) }h converges weakly to V (F'(p)) in

LT (Q x (0,T)) for a subsequence (see Lemma 3.8). In the end, we extend the en-
ergy inequality (11) in time-space (see Lemma 3.9), and we combine the new inequality

with the strong convergence of (p");, to p, the weak convergence of {V (F'(p")) }h to

V (F'(p)) and the weak convergence of {Vc* [V (F'(p"))] }h to o, to establish that

(div{p"Ve* [V (F' (ph))]})h converges weakly to div(po) for a subsequence, and that
div(po) = div{pVc* [V (F'(p))]} (see Theorem 3.10). The convexity of ¢* plays an im-
portant role in this proof.

Notations

e ) is an open, bounded, convex and smooth domain of R? d > 1, and Qp :=
(0,T) x Q2 for 0 < T < o0.

e Br(z) C R? denotes the open ball of radius R centered at x, Bg(z)° is the
complement of Br(z) in R?, and p* denotes the conjugate index of p > 1, that is,
1,1
=4 = =1
p T p

o Pu() := {p : Q — [0, 00) measurable, [, p(z)dz = 1} and
((ZR)(Q) = {p EPu(V): p<R a.e.} for 0 < R < o0.

o If p: Q — R, then || p||e(n) denotes the Li-norm of ¢, and spt (¢) denotes the
support of ¢, that is the closure of {z € Q: ¢(z) # 0}.

o Ifz = (x1,---,2q) and y = (y1,- -, ya) are vectors in RY, then (z,y) := 2?21 TilYi,
and |z|:=/(z,z).

e If A is a convex subset of RP, D > 1, and if G : A — R is convex function on A,
then G* : R — R denotes the Legendre transform of G, that is,

{ G(z) ifzeA

G*(y) = sup {(a,9) — G(a)}, where Gla):= 4 L) Lo E

z€R4



By abuse of notations, we will identify G and G.

e If A is a Borel subset of R%, then | A| denotes the Lebesgue measure of A, and

I4(x):= L ifze A denotes the characteristic function of A.
0 otherwise

e If yg and py are two nonnegative measures, by pug << p1 we mean that ug is
absolutely continuous with respect to py.

Throughout this paper, M and N are positive constants, a.e. (almost everywhere) refers
to the d-dimensional Lebesgue measure, and

cn(z) i =c <%) and E;(p) := /QF(p(:L‘)) dz
for all z € R% and p € P,(R).

Definitions

Probability measures with marginals. Let po and p; be probability measures on
R?Y. A Borel probability measure v on the product space R? x R? is said to have g
and pup as its marginals if one of the following equivalent conditions holds:

(i). for Borel A C RY,

v[A x R = po[A] and y[R® x A] = uy[A].

(ii). For (p,9) € Ly (R*) x L, (R?), where L, (IR%) denotes the space of y;-integrable
functions on R? (i = 1,2),

[ @+ v@) de) = [ o)+ [ b0 du

We denote by I'(uo, 1) the set of all probability measures satisfying (i) or (ii). If uo and
p1 are absolutely continuous with respect to Lebesgue with pg and p; denoting their
respective density functions, we simply write I'(pg, p1)-

Push-forward mapping. Let o and p; be probability measures on R?. A Borel map
T : R* —» R? is said to push pg forward to p1, if

(i). m[A]= [T 1(A)] for Borel A C R?, or equivalently

(). JSpaeW)dui(y) = [gae (T(x)) dpo() for ¢ € LL (R?).

Whenever (i) or (ii) holds, we write that u; = Twpuo, and we say that T pushes po
forward to p1.

Similarly, if 7 : R? — R? x R? is a Borel map, the push forward v = T4 o of po by 7 is
the probability measure on R* x R? defined by y(A x B) = po (77 }(A x B)) for Borel
subsets A and B in R?, or equivalently [, pa ©(y,2) dY(y, 2) = [pa ¢ (7(z)) duo(z) for



p € LL(R? x RY).
The next proposition is due to Caffarelli [5] and Gangbo-McCann [11]. It asserts the

existence and uniqueness of the minimizer for the Monge-Kantorovich problem.

Proposition 1.1 (Ezistence of optimal maps).
Let ¢ : R? — [0,00) be strictly convez, and po, p1 € Pa(). Then

(i). there is a function v:Q — R such that T : Q — Q, T := id — (Vc*) o Vu pushes
po forward to p1, where u(z) = inf g {c(w —y) — v(y)} for x € Q.

(ii). T is the unique minimizer (a.e. with respect to pg) of the Monge problem
(M): inf {/Qc(w—T(:c)) po(a) e, Typo=p1}.
(iit). The joint measure v := (id x T')4po uniquely solves the Kantorovich problem

() it { [ clw—u) dien) vETon ).

(iv). T is one-to-one that is, there exists a map S : Q — Q pushing p1 forward to po,
such that T (S(y)) = y a.e. with respect to p1 while S (T'(z)) = = a.e. with respect
to Po-

Moreover, S = id + Vc*(—Vv), where v(y) = inf g {c(:c —y) —u(w)} fory € Q.
v s called the c-transform of u, and it is denoted by v := u°.
We will refer to T' (respectively S) as the c-optimal map that pushes py (respec-

tively p1) forward to p; (respectively pp), and « will be called the c-optimal measure in
T'(po, p1)-

Monge-Kantorovich functional. Let ¢ : R? — [0,00) be strictly convex, h > 0, and
P0, p1 € Pa(2). We define the Monge-Kantorovich functional for the cost ¢ ( ) by

h
W (po, p1) := inf {/

R

-y
C< - )dv(w,y): WEF(po,m)}-
dw Rd

If c(2) = %, we denote W by W[, When ¢(z) = % and h =1, dy := /W4 is called

the Wasserstein metric.

We deduce from Proposition 1.1 that there exist a unique probability measure v €
I'(po, p1) and a unique map T that pushes py forward to p; and whose inverse S pushes

p1 forward to po, such that
W2 (po, p1) =/ c (m - y) dy(z,y) /Qc <x_TT($)> po(z) dz
= /Qc <W) p1(y) dy.

Rix R4

Assumptions



(HC1) : c¢: R* — [0,00) is such that 0 = ¢(0) < ¢(2) for all z # 0.
(HC2) : lim|y 00 % = 00, i.e. ¢ is coercive.

(HC3) : B|z]? < ¢(z) < a(]z|?+1) for all z € R?, where a, > 0and q > 1.

(HF1) : Either limg oo Fle) — 1o (i.e. F :[0,00) = R has a super-linear growth

T

at +00), or limg_s oo & = 0 and F'(z) < 0 for all z > 0.

T

(HF2) : (0,00) 3 z — z¢F(z~9¢) is convex.

We impose assumption (HF1) to ensure that the Legendre transform F* of F' is finite
on (—00,0). In fact, the assumption (HF1) combined with the strict convexity of F' and
F(0) = 0 imply that F*(z) is finite for all z < 0. Therefore, F* (F’(x)) is finite for z > 0.
Let us also point out here that assumption (HC3) implies (HC2), and (HC3) combined
with ¢(0) = 0 imply both (HC1) and (HC2). So, we will omit (HC1) and (HC2) wher-
ever (HC3) and ¢(0) = 0 are assumed. We warn the reader that assumptions (HC1)
and (HC2) are introduced for the sole purpose to achieve maximum generality in our
results. If preferred, the reader could replace these assumptions by (HC3) and ¢(0) =0
in all our results.

Examples of cost and energy density functions which satisfy the above assumptions
are:

e c(z) =|z|? where ¢ > 1, or in general ¢(z) = ) i A; | 2|% where n € IN, ¢; > 1,
and A; > 0 (take ¢ = maxg;—; ... »3(¢;) = gy, for some ig € {1---,n}, B = A;;, and
a =), A; for assumptions (HC1)-(HC3) to hold).

e F(z)=zlnz, Fz)= 2=, m>1lorl1—1<m<1 and F(z) = Y7 ;| A; F(z),
where n € IV, A; > 0 and the F; are like the examples given above.

2 Calculus of Variations on P,()

We discretize (6) and we prove in section 2.1 that the problem

(P): inf{I(p) = hWl(po,0) + Ei(p), 1€ PulQ)} (16)

admits a unique minimizer p;. The reason why we minimize such a functional I(p) will
be clear in section 2.2 where we find the Euler-Lagrange equation of (P). In fact, we
shall see that the Euler-Lagrange equation is nothing but the discretization of (6). In
section 2.3, we show that

d E(p1-1)

1
dt t=0 (17)

Ei(po) — Ei(p1) >

10



where p;_; (defined by (12)) denotes the probability density obtained by interpolating
po and p; along the geodesic joining them in P,(£2) equipped with W,.. We refer to (17)
as the - internal - energy inequality. We shall see later that (17) is an essential ingredient
in the proof of the convergence of the approximate sequence (p);, (see the definition in
section 2.4) to a solution of (6).

Throughout this section, we assume that F' : [0,00) — R is strictly convex and twice
continuously differentiable on (0, co).

2.1 Existence of solutions to a minimization problem (P)

In this section, h > 0 and py € P,(f) is such that pg < M a.e. We show that the
problem

(Pr) : inf {1(p) := W/ (po,p) + Bilp) : p e PO()} (18)

admits a unique minimizer p1g for R > M (Proposition 2.1) and that pig € ’PlgM)(Q)
for R > 2M that is, 0 < p1g < M a.e. (Proposition 2.2). We deduce that (P) (defined
by (16)) has a unique minimizer p; which satisfies 0 < p; < M a.e. (Proposition 2.3).

Proposition 2.1 Let R > M, and assume that ¢ : R* — [0,00) is strictly convex and
satisfies (HC1). Then (Pr) has a unique minimizer p1g which satisfies

|Q|F (ﬁ) < Ei(p1r) < Ei(po)- (19)

Proof: Let I;, denote the infimum of I(p) over p € P(SR)(Q). Since pg € P(SR)(Q),
E;i(po) < oo and ¢(0) = 0, we have that Ij,s < +E;(po). Moreover, because of Jensen’s

. . Q
inequality and the fact that ¢ > 0 and p € P,(2), we have that I, > %F (ﬁ) We

deduce that I, is finite. Now, let (p(”))n be a minimizing sequence for (Pgr). We have
that (p("))n is bounded in L*°(f2). As a consequence, (p("))n converges weakly-x to a
function p1g in L®(f2), and then weakly in L'(Q2) for a subsequence since 2 is bounded.
Clearly, p1p € P(SR) (©). Furthermore, because of Proposition 5.3.1 [2], we have that
Pu() > p— I(p) is weakly lower semi-continuous on L'(Q) as the sum of weakly lower
semi-continuous functions. Therefore,

I(p1r) < liminf 1(p™) = Lins < I(p1R),

which shows that pig is a minimizer of (Pgr). The uniqueness of p;g follows from the
convexity of Pa(Q) 3 p — W/ (po, p) and the strict-convexity of Py(Q) 3 p— [, F(p)dz
(see Proposition 5.3.1 [2]).

Next, we observe that I(p1g) < I(po), and since W/ (pg, po) = 0 and W’(pg, p1r) > 0
(because of (HC1)), we deduce that E;(p1r) < E;(po). We use Jensen’s inequality and
the fact that pig € P[(LR)(Q) to conclude that | Q| F (ﬁ) < Ei(p1r) < Ei(po). O
Proposition 2.2 (Mazimum/Minimum principle)

Let R > 2M and po be such that N < py < M a.e. Assume that ¢ : R — [0,00)
is strictly conver and satisfies (HC1). Then the minimizer pig of the problem (Pgr)

(defined by (18)) satisfies N < pir < M a.e. Therefore, p1r does not depend on R.

11



2
Proof: The proof we present here is similar to that in [18] where ¢(z) = % and

F(z) = xzIn(z). Since the proof of “p1p > N a.e.” is analogue to that of “p1p < M
a.e.”, we only prove that pjg < M a.e. Suppose by contradiction that £ := {y €
Q : pir(y) > M} has a positive Lebesgue measure. The idea is to come up with

pg?% e pi* )( Q) such that I(p1g) > I(pg). This contradicts the fact that p1g is the

minimizer of I over P\ (Q).
Let g be the cp-optimal measure in I'(pg, p1g). We have that

Yr(E® x E) >0, (20)

where E°¢ := R?\ E; otherwise
MIE|< [ pn)dy = vo(R® x E) = ya(E x B) < 1n(E x RY)
E

- /po<x)deM|E|,
FE

which yields a contradiction. Consider the measure v := yg Igc« g defined by

/ §(z,y) dv(z,y) = / §(z,y) dyr(w,v),
Rix R4 Ec<xE

for £ € Co(R? x R?), or equivalently
v(F)="r[FN(E°X E)],

for Borel sets F' C R? x R®. Denote by v and vy its marginals that is,

[ e@+ o) vt = [ e@an@ + [ vw)ant

for ¢, ¢ € Co(R?). Since v << vg and Yr € I'(po, p1r), We have that vy << po(x)dz
and v; << p1r(y)dy. As a consequence, vy and vy are absolutely continuous with
respect to Lebesgue. Denote by vg and vy their respective density functions. We have
that

(i). 0<vp<M ae and 0<v; <R a.e., and

(ii). vp=0 a.e. on E, and v; =0 a.e. on E°.

For € € (0,1), we define Pg 1).2 = p1r + €(vp — v1) and the probability measure 'y}(%) by

/ £ ) VD (@) = / £(z,y) dyr(@,y)
RIx R4 Rdx Rd

+ C/ECXE [£(z,z) — &(z,y)] dyr(z,y),

for ¢ € Cp(R? x R?). Because of (i), (ii) and the fact that 2M < R, we have for small
enough ¢, that 0 < p(e) < R and

/ P (y) dy = 1+ e[yr(E x E) — yr(E° x E)] =

12



Hence, pg?% € PC(LR) (©). Moreover, since vyg € I'(po, p1r) and v has marginals vy =

vo(z) dz and v; = v1(y)dy, we have that ’71(;) € F(po,pge)). Now, we show that I(pgel)%) <

I(p1R), for € small enough. Indeed,
I(p{3) — I(p1r) = h [Wch (po, p\) — WE (Po,le)} + /Q [F(pg?z) - F(le)] - (2
Because 71(;) € F(po,pg) and ¢(0) = 0, we have that

€ T— €
Wch(Po,PEJZz) —W2(po,p1r) < / c (Ty) d’Yz(z)(w’y)
Rix R4

—/ C(x;y) dyr(z,y)
Rdx R4

_ _e/ECXEc(”;y) dvr(z,y). (22)

On the other hand, according to (i) and (ii), we have, for e small enough, that

ng)zzle—CleM_a’l>0 on E, (23)
and
Pgel)zzle+€Uoz€Uo>0 on E°N[v>0]. (24)

We combine (i), (ii), (23), (24), and the fact that F € C2(0,00) is convex, and v =
YrIEgex g has marginals vy = vo(z) dz and v1 = v1(y) dy, to obtain that

| [P = Foun)]

o [F (p1r + €vo) — F(p1R) ]

_+_/E[F(p1R—evl) — F(p1r)|

€ [/ F'(p1r + €vo)vo — / F'(p1r — 61}1)?}1]
E<N[vo>0] E

€ [ F'(M + evg)vy —/ F'(M - evl)vl]
Ee E

IN

IN

= [ 0r+ane) - FOL- ) dmten)]

Therefore,
| [Pelh=Flom) | = o). (25)

Combining (21), (22) and (25), we conclude for small enough € that

6 —eh T —
6 -1 < =5 [ e(T5Y) dma) <o
X

where the last inequality holds because of (HC1) and (20). O
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Proposition 2.3 (Ezistence and uniqueness of solutions for (P))

Assume that N < pg < M a.e. and ¢ : R? — [0,00) is strictly conver and satisfies
(HC1). Then p1 := pir (defined in Proposition 2.2) is the unique minimizer for the
problem (P) defined by (16). Therefore,

N <p1 <M ae. (26)
and

| Q| F (ﬁ) < Ei(p1) < Ei(po)- (27)

Proof: Let p € Py(f2). Because of Proposition 1.4.1 [2], there exists a sequence
() Rson 1D PR (Q) converging to p such that

L) < [ P (28)

Since pp is the minimizer for (Pg) (see Proposition 2.2), we have using (28) that
W2 nap0) + [ Flon) < 17200, 1) + [ Flp) (29)
And since (p(R)) R converges to p in L'(2), Proposition 5.3.2 [2] gives that
lim W (po,p(R)) = W (po, p). (30)

We let R go to oo in (29) and we use (30) to conclude that p; is a minimizer for (P). The
uniqueness of the minimizer follows from the strict convexity of P,(2) 3 p +— I(p) as in
Proposition 2.1, and the statements (26) and (27) are direct consequences of Proposition
2.2 and (19). O

In the remaining of this section, we state two propositions needed to establish the
convergence of the approximate solution p® (defined by (65) below) of equation (6)
as h goes to 0. The proposition stated below shows that the interpolant densities
p1—t, t € [0,1] (defined by (12)) between two probability densities pg and p; which
are bounded above, are also bounded above.

Proposition 2.4 Let pg, p1 € Po() be such that py, p1 < M a.e., and assume that
c: R% — [0,00) is strictly convez, of class C' and satisfies ¢(0) = 0 and (HC3). Denote
by S the c-optimal map that pushes p1 forward to pg, and define the interpolant map

St = (1 — t) id + tS,

fort € [0,1]. Then, for nonnegative functions ¢ in C.(R?), we have that

/Q £ (Siw) mw)dy < M [ ¢(2)da. (31)

R4
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Proof: We split the proof into two steps. In step 1, we prove (31) for sufficiently
regular cost functions ¢ € C%(IR?) whose Legendre transform c¢* are also C2. Under
this assumption, the matrix V.S is diagonalizable with positive eigenvalues, and A —
(detA) 1/d i5 concave on the set of d x d diagonalizable matrices with positive eigenvalues.
In step 2, we approximate a general cost function ¢ by regular cost functions ¢ of the
type of Step 1, and we obtain (31) in the limit as k goes to co.

Step 1. Assume that c is strictly convex, and ¢, ¢* € C?(R?).

Because of Proposition 4.1 in the Appendix, pui—; := (S¢)4p1 is absolutely continuous
with respect to Lebesgue for all ¢ € [0,1]. Let p1_; denote the density function of p;_;.
Then (31) reads as

| ¢@pi@de < /Rdf(w)dx.

Thus, it suffices to show that p1_; < M.

From Proposition 4.1, there exists a set K C Q of full measure for p; := p1(y) dy such
that S; is injective on K, and for y € K and ¢ € [0,1], VS(y) is diagonalizable with
positive eigenvalues, and

0 # p1(y) = p1-+ (Si(y)) det [VSi(y)] (32)

where VS;(y) = (1 —t)id + tVS(y). Since pp,p1 < M a.e. and Syp1 = po, we can
choose K such that pi(y), po (S(y)) < M for y € K. We set t = 1 in (32) and we use
that po (S(y)) < M to deduce that

det [VS(y)] > 2. (33)
M
Since A > (det A)l/ 4 is concave on the set of d x d diagonalizable matrices with positive
eigenvalues, we have that

[det VSy(y) ]/ > (1 —t) + ¢ (det [VS(y)])"?. (34)

We use (33), (34) and the fact that p1(y) < M, to obtain that

det [VS(y)] > 2. (35)

We combine (32) and (35), and we use that S; is injective on K to deduce that p;_; < M
on Sy(K). But, since pu1(K€) = 0 and p1-¢ = (S¢)4p1, we have that pg 4 [ (S¢(K))°] =0
and then p1_; = 0 on [ Sy(K)]°. We conclude that p;_; < M.

Step 2. Assume that ¢(0) = 0 and c satisfies (HC3).
Since ¢(0) = 0 and c satisfies (HC3), there exists a sequence (cg)j, of strictly convex cost
functions such that

Ck, Cf, € C?(RY),
cx — ¢ locally in C*(R?), as k — oo, (36)
0 =ck(0) < cx(z) for z2#0

(see [2], Proposition 1.3.1). Denote by Si, the cix-optimal map that pushes p; forward to
po, and set
SW = (1 —t)id + Sk

15



for t € [0,1]. Lemma 2.2.2 [2] gives that (S’(“t))k converges to S; a.e. on [p1 # 0] for a

subsequence, and from Step 1, we have that

[ ¢ (s0w) mwyay< s [ e@)d (37)
Q Rd

We let k go to oo in (37), and we use that 0 < ¢ € C,(RR?) and Fatou’s lemma to
conclude (31). O

Next, we state a proposition needed in the next section to prove the strong conver-
gence of the approximate solutions (p"); of (6) in L! ((0,T) x ), for 0 < T < oo.

Proposition 2.5 Let f : R — R and g : R — R be strictly convex of class C'(R),

such that lim;_, @ =o0. Given M, 6 >0, and p, ¢ > 1, define

Ay = {(U1,u2) € LUD)*: |lujllpem) < M, |9 (w) lwree) < M and
Jal£/(w2) = F'w)] [z —m] <3, (G=1,2)],

and set
AM(5) = sup “ U2 — U1 “LI(Q)
(u1,u2)EANs
Then
151?01 Au () =0.

Proof: Suppose by contradiction that there exist x > 0 and (ug)gw, (j = 1,2) such
that (u$,u$) € Ay and
lug = ud () > & (38)

J
a.e. for a (non-relabeled) subsequence. Since g € C!(IR) is strictly convex and has a
super-linear growth at oo, we have that (¢’)~! is continuous. We deduce that

By the Sobolev embedding theorem, (g’ (u‘s))(s converges strongly in LP(€2), and then

(1). (U,?)g converges to some function u; a.e., for j =1,2.

We use (i), || u? lLa() < M and the fact that ¢ > 1 to conclude that (uﬁ)g converges
strongly to u; in L'(). And since || uf — u$ llz1(q) > k, we obtain that

|| Uz — U1 ||L1(Q) > K. (39)
Next, we use (i), the convexity of f and the fact that [, [ f'(u$) — f/(ud)] [u§ —ud] <6,
to have that

0< /Q [ (u2) — £'(u1)] [ug — w] < lim inf /Q [f'(uff)—f'(uf{)} [ug_uﬂ <0.

510

This implies that

[f' (ua(z)) — f' (u1(z))] [ua(z) — ui(z)] =0 for a.e. z € €. (40)
Since f € C(RR) is strictly convex, we have that f’ is one-to-one and then (40) implies
that uj(z) = ua(z) for a.e. z € Q. This yields a contradiction to (39). O
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2.2 Properties of the minimizer for (P)

We establish the Euler-Lagrange equation for the problem (P) defined by (16), and
we derive some properties of the minimizer for this problem. The next proposition is
the first step toward showing that (P) is a discretization of equation (6), or in other
words, (6) is the steepest descent of the internal energy functional E; with respect to
the Monge-Kantorovich functional W2,

Proposition 2.6 Let pg € Pu() be such that N < pg < M a.e. Assume that c: R* —
[0,00) is strictly convez, of class C' and satisfies (HC1) - (HC2). If p1 denotes the
minimizer for (P), then the following hold:

[ 9e(55) v dre + [ Plo)diviyds=o (@)

for ¢ € C2(Q, RY); here P(x) := Pp(x) := x F'(x) — F(x) for x € (0,00), and v is the
cp-optimal measure in T'(pg, p1). Moreover,

(i). P(p1) € WH(Q).

(ii). If S is the cp-optimal map that pushes p1 forward to pg, then

Sy) —y

— = V& [V(EF (01 ()))] (42)

for a.e. y € Q, and

‘/m —0®) oy ay /pl(y)wc*[V(F’(m(y)))]vW(y”dy

1

< — sup| D’¢(z ‘/ |z —y[* dy(z,y), (43)
2hz€Q

for p € C%(Q).

Proof: Since ¢ € C'(R?) is strictly convex and satisfies (HC2), we have that c* €
CY(R?) and (Ve)~! = Vc*. Following [13], let 3 € C(Q, R%) and consider the flow
map (¢e)ecr in C°(Q,Q) defined by

Ode __
e — Yo e
i ()
We have that det (V¢,) # 0, and
0(det V. .
O(det Vo) 686 ge) o= div . (45)

Define the probability measure . := (¢c)xp1 on Q. Since ¢ is a Cl-diffeomorphism,
then u. is absolutely continuous with respect to Lebesgue. Let p. denote its density
function. Clearly, pe € Po(Q2) and

(pe o pe) det (Vpe) = p1 ae. (46)
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Next, define the probability measure . := (id X ¢c)x7y on Q x €, that is,

£(2,y) drel, y) = / £ (@ 0e) dr(zy), VEECQxQ).

QxQ QxQ

We have that 7. € I'(pg, pe), and then, the mean-value theorem gives that

W(fb(p(hpe) - ng(p(hpl)
€

< [ £ lento — 64) ~ enla ~ )] dr(a,v)
¢6 - ¢0

€

(y) ) dy(z,y),

:-/(Vch[:c—y+9(y—¢e(y))]7

where 0 € [0, 1]. Because of (44), we have that | @ | < |9 ||p~ for € > 0. Then, we
use that ¢ € C(R?), the Lebesgue dominated convergence theorem and (44) to obtain

that

lim sup Ve (000 = Wellpo, 1) [ee - @) dr@y). @
€l0 €

On the other hand, because of (46), we have that

F(pe(a da::/Feoe det Vg, 01:/1?<”17(y))detve dy.
| Fe@) da= [ Focoswydevoay= [ F( I ) det Vo) dy
And since F € C! ((0,0)), we deduce by the mean-value theorem that

RGBS
[¢) €
1

—+ [ [ (7 (zefes) - Fon)) det Voo + Flony(@ervo. 1)

€ det V ¢
AR e R ]
+ [ [P Tt (48)
where 6 € [0,1]. We combine (44), (45) and (48) to have that
i [ LWV =IO o [ plor() aiv i)y (49)

We use (47) and (49), to conclude that
[ (Vae-pww)dren+g [ Pew)dvi@a <o (50
QxQ Q

Substituting Veg(z) = + Ve (%) in (50) and using that 1 is arbitrarily chosen in
C> (9, RY), we conclude (41).

18



(i). By (26), N < p; < M a.e., and since F € C' ((0,00)), we have that P(p;) €
L>*(€2). Now, let ¢ € C*(Q) and for an arbitrary ¢ € IN, define ¢ = (¢;)j=1,..4 €
C>(Q, R?) by v := &;j ¢, where §;; denotes the Kronecker symbol. Because of (41),
we have that

‘/QP(m(y) g—:(y)‘ = ‘/an 2 ( - )w(y)dv(wyy)‘
zs;lepn 5zz< 0 ) /W Jler(y

Oc (xz—vy
M 2 .
ol s |52 (52)

And since ¢ € C1(R?), we deduce (i).
(ii). Because P(p1) € Wh*(Q), we can integrate by parts in (41). We use that
v € T'(po, p1) and Syup1 = po to obtain that

Lve(BO=0) wwnmmar = [(T1P@i6)]v0)
— [ p@(VIF )] )
Q

for ¢ € C°(Q, R?). And since 1 is arbitrarily chosen, we deduce that

ve (*U=Y) i) = [F16)] ), 1)

for a.e. y € Q. We combine (51) and the fact that (Vc)~! = Ve* and p; # 0 a.e., to
conclude (42).

Next, consider ¢ € C2%(Q). Taking the scalar product of both sides of (42) with
p1(y)Vp(y), and using that v = (id x S), p1, we have that

%/anw —z,Vo(y) ) dy(z,y)

IN

IN

= —/QWC* [V(F' (1) +V ()], Ve))py)dy. (52)

fQ Pl(y);po(y) o

Now, we express + [, (¥ — z, Vo(y) ) dy(z,y) in terms of y) dy. Since

v € T'(po, p1), we have that

/QM p(y)dy = %/QXQ [(y) = p()] dy(@,y).

Combining the above equality with the first order Taylor expansion of ¢ around y, we
obtain that

‘%/(lxg<y—wvv<p(y))dv(w7y)— %/ﬂ(pl(y) —po(y)) ©(y)

1
< spswl D@ [ Je—yPdre) (5)
z€eQ) QxQ
We substitute (52) into (53) to conclude (43). O
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2.3 Energy inequality

We establish an inequality relating the internal energy E;(pg) and E;(p1) of two proba-
bility density functions pg and p;. This inequality will be called Energy Inequality and
will be used later to improve compactness properties of the approximate sequence p
(see the definition in section 2.4), to solutions of equation (6). First, we prove this in-
equality for smooth cost functions ¢ whose Legendre transform c¢* are C2. Rather than
using the density function F', we consider a more general function G which satisfies some
assumptions to be specified below. The (internal) energy inequality reads as

/ G(po(y)) dy — / G(p1(y))dy > — / Pa(p1(y)) div (S(y) — y) dy, (54)
Q Q Q

where S is the c-optimal map that pushes p; forward to pg, and Pg(z) := zG'(x) —
G(z) is the thermodynamical pressure associated with G. For smooth cost functions c,
this inequality is simply a consequence of the displacement convexity of P, () > p —
Jo G(p(x)) dz, that is, the convexity of [0,1] 3 t — [, G(p1-¢(x)) dz, where p;_; is
the probability density obtained by interpolating pg and p; along the geodesic joining
them in (P,(2), W) (see Proposition 4.1 in the Appendix). To prove (54), we rather
follow a more direct approach using the following regularity property of the c-optimal
map (Proposition 4.1): if pg, p1 € Pa(Q), ¢, ¢* € C?(R?) and S is the c-optimal map
that pushes p1 forward to pg, then VS(y) is diagonalizable with positive eigenvalues for
w1 := p1(y) dy - a.e. y € Q. Moreover, the pointwise Jacobian detV S satisfies

0 # p1(y) = detVS(y) po(S(y)) (55)

for pu1 - a.e. y € Q.

Proposition 2.7 (Energy inequality for regular cost functions)

Let po, p1 € Pa(Q2) be density functions of two Borel probability measures po and pi
on R?, respectively. Let ¢ : R — [0,00) be strictly convez, such that ¢, ¢ € C%(R?).
Let G : [0,00) = R be differentiable on (0,00), such that G(0) = 0 and (0,00) > = —
4G (z~?) be convex and nonincreasing. Then, the internal energy inequality (54) holds.
In addition, if Pg(p1) € WH®(Q) and p1 > 0 a.e., then

/G(po(y))dy—/ G(pl(y))dyZ/W[G' (p1(¥)],5(y) = v)p1(y) dy. (56)
Q Q Q

Proof: Set
A(z) == 2%G(z™?), z € (0,00).

We have that
Al(z) = —da® 1 Pg(z79). (57)
Since A is nonincreasing, we have that Pg > 0, and then
G(z)

(i). (0,00) 3z + —* is nondecreasing.
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Proposition 4.1 gives that VS(y) is diagonalizable with positive eigenvalues and that
(55) holds for uj - a.e. y € Q. So, po(S(y)) # 0 for p1 - ae. y € Q. We use that
G(0) =0, Sygp1 = po and (55) to deduce that

[emenae = [ CD g g, - [ COEUD, @),
Q [po7#£0] Q

po(z) po(S(y))
p1(y)
———— | det dy.
6 (grans) devs)ay 59
Comparing the geometric mean (det V.S(y))*? to the arithmetic mean %, we have
that J
p1(y) d
_ P\ - ) .
detvsiy) =W <tr VS(y)>
Then, we deduce from (i) and the above inequality, that
p1(y) i (P1(Y) ( A )
G|—==—~ ) detVS(y) > A°G = A 59
<detVS(y)) VSl ( as ) =W ) B
where,
tr VS(y)
A= —"
d

Now, we use (57) and the convexity of A, to obtain that

n (i) = )[4 () <4 () (i)

_ Gi(p1(y) .\ Feln(y)
a pl(y){ PO A0 ]
= G1(p1(y)) — P (p1(y)) tr (VS(y) —id). (60)

Combining (58) - (60), we conclude that

/ G (po(y)) dy / Gm) dy > — / Pe (p1(3)) tr (VS(y) — id) dy
Q Q Q
— /Q P (p1(y)) div (S(y) — ) dy.

Next, assume that Pg(p;) € W1>®(Q2) and p; > 0 a.e. Since Pg > 0, we can
approximate Pg(p1) by nonnegative functions in C®°(R?). We use Proposition 4.1 - (iv)
to obtain that

- /Q Pa(pr() div (S(y) — v) dy > /Q (VIPa(or )], S() —v)dy  (61)
- /Q (VIG (01 ()], S(v) — ) p1(v) dy.
We combine (54) and (61) to conclude (56). O

The next theorem extends the energy inequality (56) to general cost functions c.
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Theorem 2.8 (Energy inequality for general cost functions).

Let po, p1 € Pa(Q) be such that p1 > 0 a.e., and let ¢ : R* — [0,00) be strictly conve,
of class C' and satisfy c(0) = 0 and (HC3). Let G : [0,00) — R be differentiable on
(0,00), such that G(0) = 0, (0,00) > z — z?G(z~ %) be convexr and nomincreasing,
V (G'(p1)) € L®(Q), and Pg(p1) € WH*(Q). Denote by S the c-optimal map that
pushes p1 forward to pg. Then,

/GMMD@—/GW@W@;/WWWMWLﬂw—me@- (62)
Q Q

Q

Proof: Let (cx)r be a sequence of regular cost functions satisfying (36), which exists
because of Proposition 1.3.1 [2]. By Proposition 2.7, we have that

/G(po(y))dy—/G(m(y))dyZ/(V(G’ (m1(y))),Sk(y) —y)p(y)dy,  (63)
Q Q Q

for all £ € IN, where S}, denotes the ci-optimal map that pushes p; forward to pg. We
let k go to oo in (63), and we use that V (G'(p1)) € L*(R2) and (Sk)x converges to S
in L;2>1 (92, R?) (see Lemma 2.2.2 [2]), to conclude (62); here L;271 (92, R?) denotes the set

of measurable functions ¢ : Q — R?% whose square are summable with respect to the
measure p = p1(y) dy, that is, [ |¢(y) [*1(y) dy < cc. O
2.4 Approximate solutions to the parabolic equation

Throughout this section, we assume that po + % € L*°(Q). For fixed h > 0and ¢ € IV,

we denote by p? the minimizer of
(Ply: inf {hWA(oly p) + Eilp) i p e Pal@)}, (64)
where p? := py (see Proposition 2.3). We define the approximate solution p" to (6) by

po(z) if t=0

ot x) = (65)
pf(a:) if te (ti_1,ti],

where t; = th, 1 € IN. The next proposition shows that

h

o (e [9 ()] .

in a weak sense. We will show in the next section that
| A(R) [l (w200 () = 0 (hé(q)) ,

where €(¢g) := min(1,q — 1).
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Proposition 2.9 Assume that ¢ : R — [0,00) is strictly conver, of class C' and
satisfies (HC1) - (HC2). Then

‘/()T/Q(po—ph)at”ﬁdxdt + /OT/Q<pth*[V (F(")].verdoat|  (66)

T/h
< 5o [Peea| X[ k-vPatey),

2 [0,T]x$

for all functions ¢ : R x Q — R such that £(t,.) € C?(Q) fort € R, and spt&(.,z) C
[-T,T] for x € Q and for some T > 0. Here,

E(t+h,z) —&(t,x)
h )

Ope(t, @) =
and Y is the cp,-optimal measure in T'(pl_,, pl).

Proof: Without loss of generality, we assume that % € IN. Because of (43), we have
that

‘ / A?(t,x)dac‘ < B!
Q
for t € (0,T), where

Ait.a) = EO=I9E) ¢ o) 1 payver [V (F (b)) ] Ve ).

and

1
Bl = o sup | DP(t3)| / 2~y 2 v (a,y).
[0,7]xQ QxQ

We integrate the above inequality over ¢ € (0,T) to obtain that
T/h

[ Arzyae| < 1S B (67)
3 [ o] <n3

ti—1

The right hand side of (67) gives that
T/h ) T/h
hZBh—— sup ‘thw ‘Z/ |z —y|2dy! (z,y), (68)

2 [0,T]1xO

while, on the left hand side, we have that

T/h

> [ [aremia - / [AO-AO i
+ /0 /Q (Ve [V (F(oM)],ve) doat.
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By a direct computation, the first term on the right hand side of (69) gives that

T/h borop p z)
/ /z il E(t,r)dzdt = // (t,z) &(t, z) dz dt
ti—1

T/h &
/ / (1 —h,z)&(1,z)dzdr
ti—1

/ /po &(t,x) dz dt.

We use the substitution 7 = ¢ + h in the above expression, to obtain that

T/h t;
/ /”Z p’ 1) ¢4, 2) de at
tﬂ. 1

T h
— E/ /ph(t,:v)ﬁ(t,w)dxdt - %/O St 2) E(t + b ) da di

——//p(] &(t,z)dzdt

h h LT,
—/ /p (t,z) 0y &(t, x) de dt + E/ p"(t,x) &t + h,x)

T—h
/ /p(] &(t,z) dtdz.
/ /po &tz dtda:—/ /po )ORE(t, x) da dt,

and {(t+h) =0fort € (T — h,T), we deduce that
t;
/ /p’ ”’ pil@) = Pir@) ooy avar (70)
ti—1

_ /0 /Q (eo(a) — o (t,2)) Ble(t, ) dadt.

We combine (67) - (70) to conclude (66). O

Noting that

3 Existence and uniqueness of solutions

Below, we study the limit of inequality (66) as h goes to 0. The first three sections below
deal with the limits of the three terms of (66), and the last section proves the existence
theorem to equation (6) when pg is bounded below and above.

Here and after, p” is defined as in (65), and F : [0,00) — IR is strictly convex, twice
continuously differentiable on (0, c0) and satisfies F'(0) = 0 and (HF1)-(HF2).
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3.1 Second moments of the optimal measures

We show that
T/h

S [ -l = 0w, (1)
i=1 X

where €(g) := min(1,q — 1), y¥* denotes the cp-optimal measure in T'(p? ;, p?) and p?
is the unique minimizer of (64). The first step toward proving (71) is the next lemma
which states that Y22, W[ (pP |, p) is bounded, uniformly in h.

Lemma 3.1 Assume that c : R* — [0, 00) is strictly convex and satisfies (HC1). Then

S hWE(pls ) < Fipo) = |1 <ﬁ) | (72)

Proof: Let T > 0 be such that £ € IN. Since c¢(0) = 0, Proposition 2.3 gives that

hWE (ol 1, pl) < Ei(pl1) — Ei(o]),
for all ¢ € IN. We sum both sides of the above inequality over 7, to obtain that

T/h
S RWA(p, o) < Ei(po) - /Q F(ph (@) da.

=1

We apply Jensen’s inequality on the integral term above, and we let T' go to oo to
conclude (72). O

Proposition 3.2 Assume that c : R* — [0, 00) is strictly convex and satisfies c(0) = 0
and (HC3). Then for T >0 and h € (0,1) such that % € IN, we have that

T/h
3 /Q o=yl difa,y) < MQT,F, o, 6) 4, (73)
i=1 X

where €(g) := min(1,q — 1).

Proof. Because of (HC3), we have that ¢(z) > 2|9, and then

hq
/Q o=y ldife) < % WA (74)
X

for ¢ € IN. We distinguish two cases, based on the values of ¢.
Case 1: 1< qg<2.
Because of (74), we have for i € IV, that

/ 12— yPdyi(e,y) < sup_|x—y|(2—q)/ 1z~ y|7dyi(a,y)
QOxQ QxQ

z,y€Q
diam Q)(2—9)
< B ot o),
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where diam ) denotes the diameter of {2. We sum both sides of the above inequality
over ¢, and we use (72) to conclude that

/h
Z/ |z —y [P dyf(z,y) < M(Q,F,po,q,8)hT .
i—1 Y OxQ

Case 2: q > 2.
Because of Jensen’s inequality and (74), we have that

2/q h2
/ |z —y|?dy}(z,y) < (/ Iw—qud%h(w,y)) < 57 [Wc”(p?_l,p?)
axQ QxQ B

We sum both sides of the above inequality over i, and we use Holder’s inequality on the
right hand side term, to obtain that

]2/11‘

& 2 h h2 T 1_% AL h( h h e
r—y|tdy(z,y) < 5 (—) W (0i1, pi
S [l vPaten < g (5) TS weeh b
1-2 h T/h e
=T o ShWrel L, | . (75)
=1
We combine (72) and (75) to conclude that
T/h
> [ le-yP i) < MO pa.b)h O
=1 73x

3.2 Strong convergence of the approximate solutions

We prove that (p);, is compact in L'(27), for 0 < T < co. The main ingredient in
the proof is the energy inequality (62). It allows us to obtain a uniform bound in h of
the L7"- norm of V (F'(p")), which leads to the compactness of (p"), in L1(Qr). We
first show that (p");, converges weakly in L!(27) for a subsequence. We introduce the
following constant needed in the next lemma:

_ 1
M(Q7T7 F, POa(La) = M(CE,Q) <Ez(PO) - |Q |F (m) + aT| Q | “ PO ||L°°(Q)) )

where M («,q) is a constant which depends only on « and gq.

Lemma 3.3 Assume that c : R? — [0,00) is strictly convez, of class C' and satisfies
(HC1). If po € Po(2) N L®(Q), then

Il 6" 1200 ((0,00): () < Il P0 |1 250 (52)- (76)

Therefore, there ezist p : [0,00) x & — R and a subsequence of (p™)nyo which converges
to p weakly in L'(Qr) for 0 < T < oco.
In addition, if pio € L*™®°(Q) and c satisfies (HC3), then

[, #1e ) [
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Proof: Because of the upper bound in (26), we have that pf! < || po || Lo (q) for all
i € IN. Then || p"(t) lLeo() < Il o ||z () for t € [0,00). We take the supremum of the
previous inequality over ¢ € (0, 00) to deduce (76).
Due to (76), we have that (p”);, is weakly precompact in L'(Qr), for 0 < T' < co. We
use the standard diagonal argument to conclude that (p")y 1o converges weakly to some
function p : [0,00) x 2 — R in L'(Qy) for a subsequence.
Because of Proposition 2.6, the estimate (26) and the fact that
V (P(pl) = pV (F'(pl)), we have that P(pl') € Wh°(Q) and V (F'(pf!)) € L=(Q)
for i € IN. We choose G := F in the energy inequality (62), and we use (42) to obtain

that
h/Q<V<F'(p?)),VC* [V<F'(p?))] >p?S/QF(p?_1)—/QF(p?)-

We sum both sides of the subsequent inequality over 7, and we use Jensen’s inequality
to deduce that

/QT<V(F'<ph)),Vc*[v(F%ph))} >phs/QF<po)—|n|F(|Q ) (78)

Using (139) of Proposition 4.2 in the Appendix, and the fact that ¢(z) < a (] 2|7+ 1),
we have that
(2,Ver(2)) 2 ¢"(2) 2 M(a,9) |27 - a.

Then (78) implies that
M(a,q) /Q 9 (F6) " < [ Fow - 1217 (ﬁ) *"‘/QT S (19)

We combine (76) and (79) to obtain that
q* 1
Mea) [ oV (F6N) [ < [P - 1217 (1) +aTiol e
Qr o Y

We divide both sides of the above inequality by M («,q) to conclude (77). O

Lemma 3.4 (Space-compactness)
Assume that ¢ : R? — [0,00) is strictly convez, of class C' and satisfies ¢(0) = 0 and
(HC3). If po € Pa(R2) is such that po + pio € L>®(R), then forn #0 and 0 < T < o0,

/Q(ﬂ) ‘ph(t,x + 7’]6) B ph(t,x) S M(Q’T7 F, pOaa’q) |77|’ (80)
T

where e is a unit vector of R, QM = {z € Q : dist(z,0Q) > |n]|}, and Qg’) =
(0,T) x Q).

Proof: Since pg+ % € L*(9), (26) implies that (p"); is bounded below and above.
Then, we use that F' € C2(0,00) to obtain that

« 1 h /(b
= —————=p |VI(F
LT (Qr) /QT ph [F”(ph)]q P ‘ ( (p ))

< M(Qp0, F) /Q v (Fe) [

*
h q

e

*
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We combine (77) and (81) to conclude that (Vp"), is bounded in LT (Q7). As a
consequence, (p); is bounded in W1 (Qr). Approximating p* by C°°(Qy)-functions
and using the mean-value theorem and the fact that (Vp"), is bounded in LI (Qr), we
have that

/Q(n) | " (t @ +me) = p"(t,2) |7 < M(Q, T, F, po, a,q) || (82)
T
We combine (82) and Hélder’s inequality to conclude that

- 1/q
/ngﬂ

Next, we focus on the time-compactness of (p?) in Q7 for 0 < T < co. The following
constant will be needed in the next lemma:

*

IN

p"(t, @ +ne) — p"(t, o)

| Qr [V (/Qm |ty w+me) = o (t, )
T

< M(QaTaF,p07a7q)|n|' =

ﬁ(ﬂ T F Po0,4, &, B)

el

o w(a,8) (Elon) ~ 1917 (17 ) + o7l I i)

L (©)

1

|~

where M (q,, 3) is a constant which only depends on ¢, a and .

Lemma 3.5 Assume that ¢ : R — [0,00) is strictly convez, of class C' and satisfies
c(0) =0 and (HC3). If py € Pa(R2) is such that py + pio € L>®(Q), then for 7 > 0 and
0<T< o0,

/QT [F' <ph(t+7',x)) - F (ph(t,x))] [ph(t—i-'r,w) —ph(t,a:)]
< ﬁ(Q,T, F, po,q,, ) T. (83)

Proof: Without loss of generality, we assume that % € IN and 7 = Nh for some N € IN.
For simplicity, we set

L(h,7) = /Q [F (et m) P (o) ] [+ m2) - peo)]
and
J(i,h, N) = /Q | (phn(@) = F (@) | [ phiw(@) = pb(@) ] -
It is straightforward to check that

T/h
L(h,7) = ZthhN (84)
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Since (W*)1/9 does not satisfy the triangle inequality, we introduce the g-Wasserstein
metric df := (W})!/7 defined by

y— St(y) ja v
dn(pl, piin) = < /Q ‘Tq‘ prn(y) dy) : (85)

where Sg denotes the | ;- |?-optimal map that pushes pﬁ_ y forward to pl. Setting goz N =
F' (pl ) — F' (pl), we obtain that

7. N) = [ [ (@) ~ oo (550) ] bt

Since po-l-p—lo € L*(Q), F € C%(0,00) and p!'V (F'(pl")) = V (P(pl)) € L>°(2) (because
of Proposition 2.6 - (i)), (26) gives that goﬁ ~ € WH®(9Q). So, approximating goﬁ N by
C*(Q)-functions and using that (Sg) " pf+ N = pl and the mean-value theorem, we
rewrite J(i,h, N) as follows:

1
261N = [ (Tl (1= 0+ 1550) = S50) ) sty de .
We combine Hélder’s inequality and (85) to deduce that
J(i, h, N) (86)

<hat <p?,p?+N) [/Q/Ol‘vso?ﬂv ((1-t)y+t5§‘(y)) ‘q*p?ﬂv(y) dtdy]l/q*.

But, observe that p?, p" v < |l po || Le(q) because of Proposition 2.2, and |V<p£" N7 €
L*>(Q). So, we approximate | chz ~ |7 by nonnegative functions in C°(R?) and we use
(31) in Proposition 2.4 to deduce that

q* q*
/Q‘VSDZN ((1—t)y+tpf;(y)) ‘ prin () dy < |l po (o) /Rd‘vwﬁfw(y) dy. (87)

We combine (84), (86) and (87) to have that

T/h
1 *
L(h,’?’) < ” PO ”L/OZ(Q) h2 ng <pil7p?+N) ” V¢ZN ||L‘1*(Q)
=1

And since d,’; is a metric, the triangle inequality gives that

N N T/h
Lk, 7) < 9o 1 Froay B2 D0 D0 IV ey i (Plasees o) -
k=11i=1

Then we apply Hélder’s inequality to the interior sum to deduce that

L(h,7) (88)
. [T Y N Tm "
<o e B2 7 | DRIVl N 19 ST S dr (pfris ik
() — () — | =
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Because of (26) and (77), the sequences <h1/q* H V (F'(p})) ‘ and

Lq*(ﬂ)) i=1,,T
(077 v (ot |

inequality, Minkowski’s inequality, (26) and (77) to have that

1/q*
q*
La*(Q)

T/h
(Z (h” |V (Felw)

i=1

. ) belong to lg«(£2). Then we combine Holder’s
L7 () i=1,-,T

T/h
(Z h HVSDZN
i=1

IN

+ RV H v (F’(pg))

e (9)

N\ YVa*
q
o))
1/q*
q*
LI*(Q)

[M(Q,T,F, po,q,a)]l/q*. (89)

IN

T/h - 1 T/h
(Bt [) + (Brl (oot
i=1 =1

1
1/¢*

Lo ()

1

po

On the other hand, since ¢(z) > 3|z |9, we have that (df;)q < 1w’ and then,

1
B
N | T/h . 1/q 1 N [T/n 1/q
h( h h b h h
Z qu (pi—l-k—hpi-',—k) < W Z Zth (pi+k—17pi+k) :
k=1 | i=1 k=1 | i=1
We use (72) and the above inequality to deduce that
1/q
N | T/h 1/q
q 1 1 _

oD d (p?+k—17/’?+k) < 3 [Ei(Po) —|Q|F (m)] Nh Y (90)

k=1 | i=1
We combine (88) - (90), and we use that 7 = Nh to conclude that

L(h,7) < M(Q,T, F, po,q,, ) 7. O

Lemma 3.6 (Time-compactness)
Assume that the assumptions of Lemma 3.4 hold. If pg € Pa(R?) is such that po + pio €
L>(Q), then for 0 <T < oo and small T > 0,

Jo

for some function A such that lim, o A(\/7) = 0.

pM(t+71,2) - p'(t,z) | < M(R,Q,T, F,po,,q, B)VT + TA(VT)
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Proof: Let R > 0 and for fixed h, T and 7, define

ER = {t €0.T): Anslt):= H o (t) HLq(Q) + H P+ T) HL‘I(Q)

O [y [ 7 e |

wia*(Q) wila*(Q)

+1 [y [F (ot +7) = F' (0(9) ] [Pt +7) = ()] > R}

Because of (26), (77), (83) and the fact that F' € C?(0,00), we have that (0,7) > t —
Ap,-(t) belongs to L'(0,T). Hence

M(Q7Ta F7p07q7a7ﬂ)

| Er| < R (91)
We combine (76) and (91) to have that
M Q7 T7 F7 ’q7 a7ﬂ
[ []e+n0)-0.2)] <2l llmiey 191 Be| < HEDELA0E) (g
R

On the other hand, if t € E§ := (0,T) \ ER, setting p"(t) := uq and p(t + 7) := ua, we
have that || u; ||Lq(Q) <R, [| F'(u) lwrar ) < R fori=1,2, and
Jo [F'(u2) — F'(u1)][ug — u1] < R7. Then Proposition 2.5 gives that

/ /|p (t+72)~(ta) | < [ A(Rr) <TARD), (93)
ES, <

where A(R7):= Agr(RT) is defined as in Proposition 2.5. We combine (92) - (93), and
we choose R = % to conclude the proof. O

Having proved the space-compactness and time-compactness of (ph) h, We are now
ready to show that (p"), converges strongly to p in L'(Q7), 0 < T < oo, for a subse-
quence, where p is defined as in Lemma 3.3.

Proposition 3.7 Assume that ¢ : R? — [0,00) is strictly convex, of class C' and
satisfies ¢(0) = 0 and (HCS3). If po € Pa(Q) is such that po + pLo € L>®(Q), then for
0 < T < oo, there is a subsequence of (p")pjo which converges strongly to p in L™ (Qr)
for 1 < r < oo, where p is defined as in Lemma 3.3.

Proof: Fix § > O, and define Qgﬁs) as in Lemma 3.4. Because of (76), we have that
(p™)p, is bounded in L! (Qgﬁ))‘ Furthermore, for € > 0 and small 7 > 0 and n € (0,9),

we have that Qg,is) C Qgﬂ C Qr and then, Lemma 3.4 and Lemma 3.6 give that
o 1# izt ne) = pta) | < and [ |+ m0) = (k) <
o) @

uniformly in h. We deduce that (p") is precompact in L' (Qg) (see [1], Theorem

2.21). We observe that lims_,o |\ Q)| = 0 and then, we use the diagonal argument
to obtain that (p"); converges strongly to p in L'(Qr), for a subsequence. And since
(76) gives that (p")p, is bounded in L>(Qr), we conclude that (p);, converges to p in
L"(Qr) for 1 <r < oo, up to a subsequence. O
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3.3 Weak convergence of the nonlinear term

We use the energy inequality (62) to show that (div{p"Vc* [V (F'(p"))] })h converges
weakly to div{pVe* [V (F'(p))]} in Qp, for a subsequence. Throughout this section,
(p™)1, denotes the (non-relabeled) subsequence of (p”);, which converges to p in L™(Qr)
for 1 < r < oo (from Proposition 3.7), and

h= Ver [v (Fl(ph))} .

The next lemma shows that (o), is bounded in LI(Q) and (V (F’ (ph)))h converges
weakly to V (F'(p)) in LI (Qr) for a subsequence.

Lemma 3.8 Assume that c : R? — [0,00) is strictly convez, of class C' and satisfies
¢(0) =0 and (HC3). If po € Pa(Q) is such that po + p% € L*(Q), then

llohll‘iqmm)sﬂl%; B - 1907 (1) | (94)

L (©)

(i). Therefore, there is a subsequence of (ah) h10 which converges weakly to a function
o in LI(Qr), for 0 < T < 0.

(ii). Furthermore, there is a subsequence of {V (F'(p™) }hw which converges weakly
to V (F'(p)) in LT ((0,T) x Q), for 0 < T < oo.

Proof: By (42), we have that

Szh(y}z I v [V <F'(p?(y)))] (95)

for ¢ € IN, where Sh denotes the cp-optimal map that pushes pZ forward to pl 1- We
use (26) and (95) to deduce that

I Moy = 20 [ 7 [7 ()] ["ar=Son [ [F0=2 "a

—‘ n 1 ih/ﬁ‘—sh( y‘ (y) dy.
o P

L (Q)

IN

Since ¢(z) > | 2|7, we obtain that

[e o]

> RWEpE, o) (96)

o) !

1

1

|| Oh ||qu(90°) <
E

We combine (72) and (96) to conclude (94). (i) is a direct consequence of (94).
Now, fix 0 < T < oco. By Proposition 3.7, (p*), converges strongly to p in L'(Qr),
and by (76) and the fact that F’ is continuous on (0,00), (F’(p")) , is bounded in
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L*®(Qr). We deduce that (F’ (ph))h converges weakly to F'(p) in L9 (Q7). And, since
{ V (F'(p)) }h is bounded in L7 (Qr) (because of (26) and (77)), we conclude (ii). O
The next lemma extends the energy inequality (62) to the time-space domain (0, 0o) x 2.

Lemma 3.9 (Energy Inequality in time-space)

Assume that ¢ : R? — [0,00) is strictly convex, of class C' and satisfies ¢(0) = 0 and
(HC3). If po € Pa(S2) is such that py + p% € L*(R), and t — u(t) is a nonnegative
function in C?(R), then

[7 [ () ve [v (Fm)]) uo
<3 [ [ romenun + [T [ reot

u(t+h) — u(t)
; .

Proof: Let T be such that % € IN, and assume that sptu C [-T,T]. We choose
G := F in the energy inequality (62) and we use (95) to obtain that

F (ply) = F (pt1 ()
A B W

< —/Q<V [F' (p?(y)) ] ,Ver [V (F’(p?(y)))} > Pl (y) dy,

for all 2 € IN. Since u > 0, we deduce that

g / [ () “F ) (97)

<- /Q o (v (F’<ph)) e [V (F(h)] ) ule)

By direct computations, the left hand side of the above inequality gives that

where

M u(t) :=

T/h

Z / / (i (y (pz 1®)) u(t)
- / F (ot ))u(o—— | Fleo@)u®

] fremyeo

We use the substitution 7 = ¢ — h in the last integral and the fact that u(t + h) = 0 for
t € (T — h,T) to have that

T/h /:1 / (o2 (y (pz 1(¥) u(®) (98)
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=~ [ P(erww) atuo - [ o) u),

Qp

We combine (97) and (98), and we let T' go to 0o, to complete the proof. O

Theorem 3.10 Assume that ¢ : R — [0, 00) is strictly convez, of class C' and satisfies
c(0) = 0 and (HC3), and F : [0,00) — R is strictly convez, of class C%(0,00) and
satisfies F(0) =0 and (HF1) - (HF2). If po € Pa(Q) is such that po + plo € L*(), and
t = u(t) is a nonnegative function in C2(R), then

tim [ { oot (F(0") ) ult) = /Q {00,V (F'(0)) ) u(t), (99)

hio Jo

where p and o are defined in Lemma 3.8 and Lemma 3.8.
Therefore, (div (phah)) , converges weakly to div(po) for a subsequence in

[C2(R x Rd)]’, and
div(po) = div (pVe* [V (F'(p))]) - (100)

Proof: Let T > 0 be such that sptu C [-T, T/, and assume that p(t) = po for ¢ < 0.
Denote by (p") the subsequence of (p")p, such that

(i).  (p")njo converges to p a.e.,
(ii). {V (F'(p")) Inyo converges weakly to V (F'(p)) in L7 (Qr), and
(iii). {o" =Ve* [V (F'(p™))] Inyo converges weakly to o in LI(Qr),

as in Proposition 3.7 and Lemma 3.8. We first observe that

im [ ("0 V (Fo)ut) = [ 0,09 (F () utt) (101)
and
lm | (Ve [V (F )] (FEN) -V (Fe)um =0 (o)

Indeed, since (p"); is bounded in L®(Qr) (see (76)) and V (F'(p)) € LY (Qr), (i)
and the dominated convergence theorem imply that {p"V (F'(p)) }njo converges to
pV (F'(p)) in LT (Qp). Then we use (iii) and the fact that u € CZ(R) to conclude
(101).
Because of Proposition 4.2, the convexity of ¢ and the fact that ¢(z) > 8|z |%, we have
that

c(Ver(2))

V& (@) P < ——F— =

3 ({2, Ve'(2)) = ¢*(2))

(2, Ve (2)) < M(B,q) | 2|7

IA
| = =

We deduce that

*

“ (103)

Ve [V (F(0)] [ < M(B,0)| ¥ (7(0)
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which shows that Ve* [V (F'(p))] € L4(Qr). Then we use (i) and the dominated con-
vergence theorem to have that { p"Vc* [V (F'(p))] }njo converges to pVe* [V (F'(p))]
in L4(Q7). We conclude (102) because of (ii).

The proof of (99) follows directly from the following three claims:

Claim 1.

[ (3 (#0)) ut) < imint [ (0t 9 (R ) )

hl0

Proof: Because ¢* is convex, and u and p" are nonnegative, we have that
/ (Ve [V (F'(0)] = Ve [V (F' ()], V (F'(6M) = V (F'(s)) Yu(t) > 0
Qr
and then,

lir}rlliionf o, (o, p"V (F'(p)))u(t)

<l inf / (o™, v (F(6") )

Qr

+limsup/ (p"Ve [V (F'(p)],V (F'(p)) =V <F'(ph)))u(t). (104)
hi0 Qr

We combine (101) - (104) to conclude Claim 1.

Claim 2.

limsup/Q <phah,V (F'(ph))> u(t)

10
< / [0 F" (po) — F* (F'(po)) | u(0)
Q
+ [ Totta)F olt,) = F* (P (p(t,2)) ] w/0)

Proof: First, we observe that

. h\ qh o /
im [P0 ) = /Q Flon (o) (105)

Indeed, it is clear that
| [ Fabut) - Fon)
< [ 1PN - ) @1+ [ TFE ke -vel (o)

Because of (26) and the continuity of F, we have that (F(p")) , is bounded in L*° ().
We let h go to 0 in (106), and we use (i), the fact that u € C?(R) and the Lebesgue
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dominated convergence theorem to conclude (105).
Lemma 3.9 gives that

lin’rllfoup /QT <ph0h,V (F'(ph))> u(t)

h
Sliminfl/ /F(po)u(t)+limsup/ F(pM ol u(t),
ho hJo Ja ho  Jop

and by (105) and the continuity of u, we deduce that

hl0 Qr

lim sup /Q (d"a", v (F'(p") ) ult) < /Q Flpo)u(0) + [ F(p(t,))u(t).

(107)

Since F € C! ((0,00)) is strictly convex and satisfies F/(0) = 0 and (HF1), we have that

F*(F'(a)) = aF'(a) — F(a) Va>0.

We substitute (108) into (107) for a = p(t,z) and a = po(z) to conclude Claim 2.

Claim 3.
[ oo o0) = P* (P'(p0)) ] w(0)
+f Lot F (olt,20) = F* (" (ot ) ] ()
</ oo,V (F'() )

(108)

Proof: Set &(t,x) := F' (p(t, z)) u(t) for (¢,z) € R x . Because of (i), (ii), (26) and
the fact that F € C2(0,00), we have that F'(p) € L®(Qr) and V (F'(p)) € LT (Qr).
We approximate F'(p) by C*(Qr)-functions in Wh4" (Q7), and we use (66) with the
backward derivative 8, " £(t,z) := M and Proposition 3.2 to obtain that

/ (po = PMO; "€+ / (o, 0"V (F'(p))) u(t) = O(hD),
Qr

Qr

where €(¢) = min(1,qg — 1). We let h go to 0 in the subsequent equality, and we use

(101) to conclude that

im [ (o= )0 e+ /| (009 (F o) utt) =0

Since sptu C [T, T], we have that

/QT po 8, e = —%/_1/91)0(96)5(157%)

tim [ marte= = [ po(@)60.2) =~ [ wP(m)u(0),

hl0 Qr

and then
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We combine (109), (110) and (i) to have that

| oV (Fe)ue =tm [ st.00 e+ [ mFou©. (111
Qr Q

hl0 Jo.
By direct computations, we obtain that
p(t,2)0; "E(t,x) = p(t,x) F' (p(t, ) 07" u(t)
43 plt@)ult — h) [ F (o(t,2)) — F' (ol — o)) ]
Since F € C' ((0,00)) is strictly convex, and satisfies F(0) = 0 and (HF1), we have that
(F'(b) — F'(a)) b> F* (F'(b)) — F* (F'(a)) Va,b>0
and then we deduce that

plt,2) 97"t z) > plta) F (plt @) O Mult)
1

o u(t =) [F* (F' (p(t,2))) — F* (F' (p(t = h,2)) ]

We integrate both sides of the subsequent inequality over {7, and we use that © = 0 on
(T — h,T) for h small enough and p(t,z) = po(z) for t € (—h,0) to obtain that

| ettmortea) = [ oo (ot.2) ~ P (F (plt,) ] ol

Qr

1 h
5 [ ute=n) [P (Fe0).
h Jo Q

We let h go to 0 in the above inequality to deduce that

lim [ ot 0076t > [ (a6 o) (plt,) = F* (F (o8, 2) ] /()

h0 Jar Qr

- [ P (F(0) (). (12)

We combine (111) and (112) to conclude Claim 3.
In the end, we show that o = Ve¢* [V (F'(p))], which combined with Lemma 3.8 com-
pletes the proof of Theorem 3.10. Indeed, let € > 0, ¥ € C®°(R2) and set we(t,z) =
F' (p(t,z)) — ep(z). Tt is clear that Vw, € L9 (Qr) and

Ve (Ve [ < M(B,0) | Ve |

as in the proof of (102). We deduce that Vc* (Vwe) € L(Qr). We use that ¢* is convex,
and p" and u are nonnegative, to have that

/Q e [V ()] - Ve (Vw), v (F(") ~ Vudu(t) > 0.
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We let h go to 0 in the above inequality to obtain that

lim sup /QT (pho" v <F'(ph))) u(t) — lim inf /QT (o7, p"Vwe) u(t)

R0 hl0
— limin / (Ve (Vw), ¥ (F (")) — Vudu(t) > 0. (113)
hio Jo.,.
As in the proof of (101) and (102), we have that
liminf/ (o™, p"Vwe) u(t) = / (o, pPVwe) u(t), (114)
hl0 Qr Qr

and

i /Q Ve (T, v (F(6") — Vue) u(t)

= /Q (pVc*(Vwe), V (F'(p)) — Vwe) u(t). (115)
We combine (99) and (113) - (115) to have that

/ (po — pVc*(Vwe), V (F'(p)) — Vwe) u(t) > 0.

Qr

We divide the subsequent inequality by €, and we let € go to 0 to obtain that
[ or =09 [ (F(0) ], V(@) u(t) = 0.
T

Choosing —1 in place of 1, we get that
| o =pVe [V (F0)], Vo u(e) = 0.

And since ¥ and u > 0 are arbitrary test functions, we deduce (100). This completes
the proof of the theorem. O
3.4 Existence and uniqueness of solutions

Here, we state and prove the theorem of existence and uniqueness for (6).

Theorem 3.11 (Case V =0).

Assume that ¢ : R? — [0,00) is strictly convez, of class C' and satisfies ¢(0) = 0 and

(HC3), and that F : [0,00) — R is strictly convez, of class C2((0,00)) and satisfies

F(0) =0 and (HF1) - (HF2). If po € Pa(Q) is such that po + L € L®(Q), and V =0,
po

then equation (6) has a unique weak solution p : [0,00) x Q — [0, 00) in the sense that

(i). p+ % € L®((0,00); L®(Q)), V (F'(p)) € LT (Qr) for 0 < T < o0, and

(ii). for ¢ € C?2(R x R%),

L {65+ 09 [VF0)). VO } = [ m@c0ode 10
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Proof: Proposition 3.7 gives that (p"), converges to p a.e. for a subsequence, and

since p" > 0 for all h, we deduce that p > 0. We combine (26) and Proposition 3.7 to
have that p + % € L* ((0,00); L°(Q)). We use that V (F'(p)) € LT (Q7) (see Lemma
3.8) to conclude ().
Recall that (103) gives that Ve* [V (F'(p))] € LI(Qr) for 0 < T < oo, and (26) and
Proposition 3.7 imply that p € L*®(Q2r). We deduce that pVe* [V (F'(p))] € LI(Qr).
Now, fix 0 < T < oo, and let £ € C?(R x R?) be such that spt&(.,z) C [T, T] for
z € ). Because of Proposition 2.9 and Proposition 3.2, we have that

lim | {(oo= M)l + (Ve [V (F'(oh) |, ve)} =o. (117)

Lemma 3.3 gives that (p"), converges weakly to p in L!(Qy) for a subsequence, and
then we have that

im [ (o= ) ol = /QT@O = [/Qp% +/on<x)£<o,w)} ()

From Theorem 3.10, we have (div{p"Vc* (V (F'(p")))}) , converges weakly to
div{pVc* (V (F'(p)))} in [C?(R x Rd)]’ for a subsequence, then we deduce that

i [ (Ve [V ()], V8 = [ (o9 [V(F Q)] VO (119
hl0 Qp Qr

We combine (117) - (119), and we use the fact that spt&(.,z) C [-T,T] to conclude

(116).

Here, we prove uniqueness of solutions to (6) when % € L' ((0,T) x Q), for 0 < T < oo.

Using arguments in [17], it is easy to extend the proof to the general case. In fact,

assumption (2) imposed in [4] would not be required here. The convexity of ¢*, that is

(Vc*(21) — Ve (22), 21 — 22) > 0 for z1, z2 € R4, suffices to extend the proof.

Let T > 0, and assume that p; and ps are weak solutions of (6) with the same initial data,

such that N < p; < M a.e. and % € L'(Qr), j = 1,2. Since V (F'(p;)) € LY (Qr)

and

*

)

|ve [V (7)) ] | < M(8,0) |V (F(p2)) [
we have that Ve* [V (F'(p;))] € L9(Q2r). For § > 0, we define

Qr > (t,z) = & (6 2) = s (FI (p1(t, @) — F' (p2(t7x)))

where
if 7<0

if 0<7<$§
if 7>0.

ws5(T) ==

oy O

Using a smooth approximation of £ as a test function in the differential equations
satisfied by p1 and p2, and passing to the limit, we have that

/ 5 0i(p1 — p2) = —/ (Ve [V (F'(p1)) ] — p2aVer [V (F'(p2) |, VEs),
Qrp Qr
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which reads as

A &5 Ou(p1 — p2)
- _% Q12 p1(Ve* [V (F'(p1)) ] = Ve [V (F'(p2)) ],V (F'(p1) — F'(p2)))

_% /Qu,z) (p1— p2)(V* [V (F'(p2)) ],V (F'(p1) — F'(p2))),

where Qgpl :52) = Qr N[0 < F'(p1) — F'(p2) < §]. Because c¢* is convex, the first term
on the right hand side of the above equality is nonpositive. And since F' € C! (0,00) is

strictly convex and satisfies (HF1), and N < p;, po < M a.e., we have a.e. on Qgpl :52)
that

= pel = | [(F) o F] (o) = [(F*) o Fl(p2)] | <6 sup (F)'(r).
TE[F'(N),F'(M)]
We deduce that

[ &ouor =)
Qr

< sw (P /
TE[ F/(N),F'(M)] o)
2)

We let 6 go to 0 in the subsequent inequality, and we use that ps — Ijg o), | Q% 5 | =0,
and [F'(p1) — F'(p2) > 0] =[p1 — p2 > 0], to have that

/ O [(p1 —p2)™] <0,
Qr

(Ve [V (F'(2) ],V (F(p1) = F'(p2)) |

which reads as
/ (1 (T) — pa(T)]* < / [p1(0) — p2(0)]* = 0
Q Q

for 0 < T < oo. Interchanging p; and p2 in the above argument, we conclude that
p1 = pa. O

Theorem 3.12 (General case).

Assume that V : © — [0,00) is convex and of class C', and that ¢ : R?* — [0, 00)
is strictly convez, of class C1 and satisfies c(0) = 0 and (HC3). Assume that F :
[0,00) = R is strictly convez, of class C?(0,00) and satisfies F(0) = 0 and (HF1) -
(HF2). If po € Po(R2) is such that po-i-pio € L*(Q), then (6) has a unique weak solution
p:[0,00) x Q — [0,00) in the sense that

(i). p+ % € L*> ((0,00); L>®(R)), V (F'(p)) € LY (Qr) for 0 < T < oo, and

(ii). for £ € C3(R x R?),

/noo { - p% +(pVec* [V (F'(p)+V)],VE) } = /on(x)g(o,x) de.  (120)
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Proof: The proof of the uniqueness of solutions is similar to that of Theorem 3.11.
Here, we only prove existence of solutions to (6). Let ¢ € C2(R x R?) be such that
spté(-,z) C [-T,T] for x € Q and for some 0 < T' < oo. Following the arguments in
the previous sections where the energy functional E;(p) is replaced by

E(p) := Ei(p) + /Qdex,
and the minimization problem (P) defined by (16) is replaced by
(PV): inf {AW(po,p) + E(p) : p€Pal(®)},

we have, as in Proposition 2.9, that

‘/QT(pO —ph)afgdxdtJr/QT(phvc* [v (F’(ph) +V)] ,Vf)dxdt‘

T/h
1
<5 osw [Pt Y [ -uPaley a2
2 [0,T]1xQ =1 Y OxQ
and, as in Proposition 3.2, that

T/h
> / |z —y > dy}(z,y) < M(Q,T, F, po, g, 8) h9. (122)
i=1 QxQ

We let h go to 0 in (121), and we use (122) to deduce that

. _ hyah by 1( h -
lim QT{(PO Pope+ (ot |V (Fi(ph + V) | ve)p =0 (123)
The following claim suffices to conclude Theorem 3.12.

Claim. For 0 < T < oo, the estimates

Il 6" || Lo (0,000 () < 1l Po | oo () (124)

/Q A () [

and the energy inequality in time-space

< M(Q,T,F, po,V,q,a), (125)

/Q ) "V (F'(") + V), Ve [V (F (") +V) | ult) (126)

<7 /Q [P0+ 0V ult) + [ [ +ov] atute

oo

hold for nonnegative functions u in C2(R).

Indeed, because of (124), there exists p : [0,00) X © — [0, 00) such that
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(iii). (p")n converges to p weakly in L'(Qr) for a subsequence.

As a consequence,
: o€
lim — oM or =/ —p) —. 12
lim QT(po p*)0; € QT(po P 5 (127)

Using (124) and (125), we deduce the space-compactness and time-compactness of (p")y,
in L'(Q7), as in the case where V' = 0. Hence,

(iv). (p")n converges strongly to p in L!(€27) for a subsequence.

Then, we use (iv) and (126), and we follow the lines of the proof of Theorem 3.10 where
we use F'(p")+V in place of F'(p"), and F(p")+ p"V in place of F(p"), to conclude that

(v). (div{p"Vc* [V (F'(p") +V)]}), converges weakly to
div{pVe* [V (F'(p) + V)]} in [C3(R x Rd)]l for a subsequence.

Hence,
lim QT<,0th* [v (F’(p”)+v)} ,VE) = /QT(ch* [V (F(p)+V)],VE). (128)

We combine (123), (127) and (128) to conclude (120).
As in Theorem 3.11, (¢) follows directly from (124), (125) and the Maximum/Minimum
principle of Proposition 2.2 for VV # 0.

Proof of the Claim: (124) is a direct consequence of the Maximum principle of
Proposition 2.2 for VV # 0.
As in the case V = 0, we have, because of Proposition 2.6 and the Maximum/Minimum
principle of Proposition 2.2, that P(p}) € W1*°(Q) and V (F'(p})) € L*°(Q). Then
choosing G := F' in Theorem 2.8, the (internal) energy inequality (62) read as

[rt - [ Feby= [ (FEh). st - v w

where S? is the cp-optimal map that pushes p? forward to pf! ;. We use that (S})ypl =
pt , and V € C1(R) is convex to deduce the potential energy inequality

/ PV - / v > / (VV,SMy) —y) pl(y) dy.
Q Q Q
We add both of the subsequent inequalities, and we use the Euler-Lagrange equation of

(PY) that is,

St) -y
h

(where S} is the c,-optimal map that pushes p? forward to pg), to deduce the free energy
inequality

Bt~ B 2 h [ (7 (Fh)+v) e [V (P +v) ]k (130)

Qr

= Vc* [V(F’(p’f(y)) + V(y))] for a.e. y €N (129)
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for i € IN. We sum (130) over i, and we use that V' and pgﬂ /p, are nonnegative, and
Jensen’s inequality, to have that

1
/¢ h * 1 h h ~ _ — ).
h[ @ (P v) e (9 (P +V) )t < B 191 F ()
We conclude, as in the proof of (77), that
q
| o[ (P +v)
Qr

On the other hand, because of (124) and the fact that V € C'(2), we have that

*

< H(Q7Ta F7 Lo, q7a)' (131)

[ty wv | <l e 19V o) (132)

L (Qr)

We combine (131) and (132), to conclude (125).
The proof of (126) follows the lines of the proof of Lemma 3.9 where we use the free
energy inequality (130) in place of the internal energy inequality (62). O

Remark 3.13 (Ezistence of solutions to equation (6) for a wider class of po).
Assume that ¢ and F satisfy the assumptions in Theorem 8.12. We extend the existence
Theorem 8.12 to a wider class of initial probability densities py, e.g. po € L>®(R?) and
pLo ¢ L>*(Q), or pg € LP(Q) where p > q. For simplicity, we assume that V = 0.

Case 1: py € L*(f2) and plo ¢ L*(Q).
From Proposition 1.4.2 [2], consider a sequence (pp5)s in Pq(€2) such that

ns < po,s < || pollzo() a-e., where 0 <ns <4

Ei(po,s) < Ei(po) (133)
pos — poin L1(2), as 6 | 0.
Define the approximate solution pf to (6) by
po’(g if t= 0
Ps =
prs if te ((i—1)h,ih]

where p? 5 is the unique minimizer of
k)

(Pis): inf {hW2 (i1 50) + Bilp) i p € Pa(@)}.

Since po 5 + ﬁ € L*°(Q), we have as before, that
| o3 1| Loo ((0,00);2°0(02)) < |l P06 Lo (62),
. (134)

<M(Q,T,F, pos,q,c)

Jor 2] (F'60)) |
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and

| oo=shyote+ [ (ohver [V (FGh)] Vo) —o@), s

Qr Qr

where €(q) := min(1,q — 1), ¢ € C?(R x R?), and
— 1
M(Q,T, F,pos,q,a) = M(a,q) (Ei(Po,a) —|Q|F (m) +aT| Q||| pos ||L°°(Q)) :
We introduce a convex function H : [0,00) — R satisfying the assumption
(HH1) : H € C'[0,00) N C?%(0,00) and H"(z) =z F"(z), V& > 0.
Combining (133), (134) and (HH1), we have that

I 6% | 2oo((0,00);L2 (@) < Il PO Il Loo (),

- (136)

<M(Q,T,F )
L9 (1) ( ) 7p07Q7a)

vy |

We deduce that there exists p : [0,00) x © — [0, 00) such that (pf), s converges to p in
L'(Qr) for a subsequence, and {57 := (p?)l/ch* [V (F'(p2)) | }ns converges weakly
to p/aVe [V (F'(p))] in LI(Qr) for a subsequence, as (h,d) goes to (0,0). Then
we let (h,d) go to (0,0) in (135) to conclude that p € L ((0,00); L>®(Q)) is a weak
solution of (6), as in Theorem 3.11, with the exception that we do not require that
5 € L™ ((0, 00); L™(92)). O

Case 2: pg € LP(2) with p > ¢, and E;(pg) < oo.
Using Corollary 1.4.3 [2], we approximate py by a sequence (pgs)s in P, (£2) such that

ns < po,s < €sa.e., where 0 <75 <0 and e5 > %

E;i(po,s) < Ei(po)

po,s — poin LP(Q) as § | 0.

Define p? as in Case 1. Since pg & L°(£2), we cannot obtain (136) from (134) as in Case
1. Here, we take advantage of the fact that po € LP(2) and E;(pg) < oo, as follows:

(i). We choose G(z) := %p, xz > 0, in the (internal) energy inequality (62), and we
observe that (VpP~1, Vc* [V (F'(p))]) > 0 for p € Py(f2), to have that

1 6% (| oo ((0,00):22 () < 1l P0 | Lo () - (137)

As a consequence, there exists a function p : [0,00) X © — [0, 00) such that (pf;‘) h6
converges weakly to p in LP(Qr), 0 < T < o0.

(ii). Next, we choose G := F in (62) to control the spatial derivatives of pf as

/ ) i
1

< M(e,q) ( Ei(po) = |QIF (=7 ) + 0l Q0 VP | po 1oy ) . (138)
| Q2]
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We combine (137),(138), and we use (HH1) to deduce, as in the previous sections, that
(p?)ns converges strongly to p in L(Q7), for a subsequence. We conclude, as in case 1,
that p is a weak solution of (6) in the sense that p € L ((0,00); LP(R2)),

pVcr [V (F'(p))] € LY(Qr) for 0 < T < oo and (116) holds. O

Some examples of energy density functions satisfying (HF1)- HF2) and (HH1) are
F(z) = 3! | A;Fi(z), where Fy(z) € {zIn(z), £} with m > 1 or max (%, 1-— é) <

m < 1, and A; > 0. For examples, for the fast diffusion equation %% = Ap™, this
corresponds to the range 1—5 <m<1lifd>2, and % <m<1lifd <2 for

% = App", we have n > d(;é’:? ifd>p,and n > zﬁ if d < p; and in particular, for
the p-Laplacian % = Ap,p, we require 2dd—j_'11 <p<dorp>max <d, 1+2—‘/5>

4 Appendix

In Proposition 4.1 we collect results of previous authors used in this work, and in Propo-
sition 4.2 we establish intermediate results needed in the previous sections. Proposition
4.1 is due to Cordero [7] and Otto [16] . For its proof, we refer to these references. A
sketch of proof of this proposition can also be found in [2], sections 5.1 and 5.2.

Proposition 4.1 Let po, p1 € Po(Q) and assume that c : R — [0, 00) is strictly convez
and satisfies c,c* € C?(R?). Denote by S the c-optimal map that pushes py forward to
po, and define the interpolant map S: and the interpolant measure pi—; by

Spi=(1—=t)yid+tS and pi—s:= (Se)zp1,
fort €10,1]. Then,

(i). S is injective, and p1—¢ is absolutely continuous with respect to Lebesgue.
Moreover, there exists a subset K of Q of full measure for p1 := p1(y)dy such that,
forye K and t € [0,1],

(11). VS(y) is diagonalizable with positive eigenvalues.

(i5i). The pointwise Jacobian det(VS) satisfies

0 # p1(y) = p1—1 (St(y)) det [(1 —t)id +tVS(y)],

where p1_; 18 the density function of p1_s.
In addition, if p1 > 0 a.e., then

(iv). the pointwise divergence div(S) is integrable on 2, and

| div(S) = e dv < = [ (Sw) =, VE) o,
for € >0 in C(RY).
The following estimates are needed in the previous sections.
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Proposition 4.2 Assume that ¢ : R — [0,00) is strictly conver, of class C' and
satisfies ¢(0) =0 and (HC2). Then

(2,Vc*(2)) > ¢*(2) >0, Vz € R (139)

In addition, if c¢(z) > | z|? for some >0 and ¢ > 1, then
(2,Ve'(2)) < M(B,q) | 2|7, (140)

where M(B,q) is a constant which only depends on 8 and q.

Proof: Since c is strictly convex, differentiable and satisfies (HC2), we have that ¢* €
C'(R?) is convex. Then,

(2,Vc* (2)) = c*(2) + ¢ (Vc*(2)) > ¢*(2). (141)

Because ¢(0) = 0 and 0 minimizes ¢, we have that ¢*(0) = 0 and 0 minimizes ¢*. We
conclude that ¢*(z) > 0, which proves (139).

Now, assume that c(z) > 8| z|?. Since ¢* € C*(R?) is convex and nonnegative, we have
that

(z, V' (z)) < ¢(22) — ¢*(z) < *(22). (142)

Moreover, because ¢(z) > 3|z |9, we have that
¢*(22) < M(B,q)| 217" (143)
We combine (142) and (143) to conclude (140). O
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