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The average-case complexity of recognising some NP-complete properties is
examined, when the instances are randomly selected from those which have the
property. We carry out this analysis for

(1) Graph k-colourability. We describe an O(n?) expected time algorithm for
n-vertex graphs, with k constant.

(2) Small equitable cut. We describe an O(n*) expected time algorithm for finding
and verifying, the minimum equitable cut in a 2n-vertex graph G, condition on G
having one with at most (1 — &)n?/2 edges.

(3) Partitioning a 2n vertex graph into two sparse vertex induced subgraphs of a
given class. We describe an O(n’) expected time algorithm for computing such a
partition.

(4) The number problem 3-PARTITION. We describe an O(n?) expected time
algorithm for problems with 3» integers. © 1989 Academic Press. Inc.

1. INTRODUCTION

We examine the “average-case” computational complexity of some prob-
lems which are known to be NP-hard [3]. By “average-case” we mean that
the inputs are selected randomly from some natural family of distributions
parameterised by problem size.

The type of problem we consider is one in which the instances are known
to have the property we are seeking, and our task is to exhibit a proof of
this. From the worst-case point of view such problems are just as hard as
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those in which we do not know whether the instance has the property. For,
suppose 7 is an NP-hard property, and we had an algorithm which would
exhibit a proof that the instance had property =, given that it did, in
polynomial time. It is easy to construct from this a polynomial time
algorithm for deciding whether an arbitrary instance has 7.

As a concrete example (see Section 3) consider 3-colouring the vertices of
a graph. It is well known (3] that the decision problem is NP-complete. Our
problem is, given a 3-colourable graph, colour it using only three colours. In
this case our input distribution would be the uniform distribution on the set
of all 3-colourable graphs on N vertices, for example. This type of problem
for graph-colouring has been studied previously by Kucera [5] and Turner
[8, 9]. We strengthen their results by exhibiting an algorithm which per-
forms the colouring in expected polynomial time.

In Section 4 we examine the problem of “minimum cut into equal-sized
subsets” —see also Bui, Chaudhuri, Leighton, and Sipser [1]. An interesting
feature of this problem is that we present expected polynomial time
algorithms not only for finding, but also for proving optimality of the
minimum cut under a natural model.

In Section 5 we consider a partitioning problem on graphs of the type
considered in [2]. In Section 6 we examine a non-graph problem, 3-parti-
tion. Finally, in Section 7 we comment briefly on other problems which fall
within the scope of our approach.

2. NOTATION AND PRELIMINARIES

We denote an arbitrary graph by G = (V(G), E(G)), and we will also use
N = |V(G)|, M = |E(G)|. For a vertex v € V(G), I'(v) will denote its set
of adjacent vertices in G. By extension for S C V(G) we will write I'(S) =
U, esT(v) = S. (By convention I'(@) = V(G)). We will also use 8,(v) on
occasion to mean |I'(v) N X| for some X C V(G), ie., 8,(v) is the
number of neighbours that » has in X. For any X c V(G), G[X] will
denote the subgraph of G induced by X.

We will denote by B(an, p) the bmomlal distribution with parameters
n, p. We use the notation = and < to imply equality and dominance in
distribution. Many of our results involve transformations between probabil-
ity spaces, and to this end we will give the following two simple results here
for future reference. The first concerns restricting or enlarging the sample
space.

LEMMA 2.1.  Let S, be a discrete sample space with a probability measure
P. Suppose S, C S, and let S, =S, — S,. If E, C S, and E, = E,|S, then

P(E,) < P(E,) + P(Sz)
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and

P(E,) < P(E,)/P(S,).
Proof. P(E,) = P(E,)P(S,)+ P(E, N S,). Hence
P(E)) > P(E,)P(S,) and P(E)) <P(E,)+P(S5,). 0

Lemma 2.1 is used as follows. Suppose S, is, for example, a class of
graphs with input distribution P, and E| is the event that at graph fails to
have some property 7. If we restrict it to a subclass S,, then E, is the event
that graphs in S, do not have 7. Then P(E,) will be small if P(E,)/P(S,)
is small. Similarly, P(E,) is small if P(E,) + P(S,) is small. Thus, under
these circumstances, we can add or delete parts of the sample space without
significantly affecting probability results.

Our other transformation involves many—one mappings of the space. The
following is not the most general result of this type, but is sufficient for our
purposes.

LEMMA 2.2. Let U, be the uniform random variable on discrete sample
space S; (i=1,2). Let f: S, = S, be onto. Suppose X, = g(U,) is a
non-negative random variable and X, = g(f(U,)) is the random variable
induced in S,. Then

E(X,) B 1
E(X,) ~ EQ/I ()

Proof.
E(X) = X g(u)/18] < X If ' (u)lg(u2)/18,)
U €S, U, €S,
(since f is onto and g is non-negative)
Y g(f(u))
15,1 &Y YOS
E(X) :
YOEQ/W))
(The last equation follows from
LISl

EQ/ Y0 = T s s T s
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COROLLARY 2.3. (a) E(X,)/E(X,) < k/Pr(|f"Yf(U))| < k) for any in-
teger k > 1.

(b) E(X,)/E(X,) < E(If (D)D)
Proof. For any positive random variable X,

(@ EQ1/X) 2Tk \Pr(X =i)/i 2 P(X < k)/k;
(b) EQQ/X) = 1/E(X), since 1/x is a convex function on x > 0 and
use Jensen’s inequality. O

Lemma 2.2 and its corollary are used as follows. Suppose S, is a sample
space of pairs (graph, label), in which the same graph can appear more than
once, but with a different label, and we have a uniform distribution on a
sample space S, in which each such graph appears only once. (The label
indicates the way the graph was chosen.) Under the mapping f which
discards the label, |f~1f(U,)| is the number of “occurrences” of a random
graph in S,. Then, provided either that |f~!f(U,)| has a large enough
probability of being 1 (unique occurrence) or has small enough expected
value, then by Corollary 2.3 we deduce that events having small probabili-
ties in S, will also have small probabilities in S,. Note that unique
occurrences is simply the case k = 1 of Corollary 2.3(a), but we will need
the more general statement given in the Corollary in Section 5 below.

3. GrarPH COLOURING

We will describe a polynomial time (randomised) algorithm which always
solves the problem of vertex colouring a graph with a fixed number of
colours, k. Our input distribution for this result is the uniform distribution
on all k-colourable graphs with N vertices. Thus our main result says that
if we know a graph is k-colourable, then we can colour it in polynomial
expected time under the assumption that all such graphs are equally likely.
We proceed to this result indirectly, by considering a sequence of models,
which are themselves of some intrinsic interest. We will first describe these.
Let N = |V(G)|, M = |E(G)|. Our first model, Model 1, has & colour
classes each having approximately the same number of n = N/k of ver-
tices, and all possible edges between different classes have the same
probability p(n) of being present, choices being made independently for
each edge. The number p(n) is called the edge-density. Here we will be
principally concerned with p(n) bounded away from zero. To avoid confu-
sion we will call the colour classes used in the generation of G, the blocks of
G. By approximately equal-sized blocks, we mean that each has size = n as
N — oo. Our second model, Model 2, again assumes fixed blocks, but we
then select M edges at random for some given M.
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Our third model has two variants, Models 3 and 3’. For a fixed M,
Model 3 selects a graph uniformly from the following sample space. The
distinct sample points are all ways of choosing the k blocks as a partition
of V(G) (of size N) and then selecting M inter-block edges. Since the
colouring of such a graph may not always be unique, the same k-colourable
graph with N vertices and M edges may occur more than once in the
sample space for Model 3. By contrast, Model 3’ is the uniform distribution
on the sample space obtained by removing all duplicates of the same graph.

Finally, Models 4 and 4’ allow M to vary and consider all graphs
obtained as in Models 3, 3’ as equally likely. Thus Model 4’ is the true
object of interest, the uniform distribution on all k-colourable graphs with
N vertices. A random graph under Model i will be denoted G, (i =
1,2,3,3,4,4"). Kucera [S] and Turner [8, 9] have examined the graph
colouring problem under one or more of these models and given “almost
sure” algorithms. That is, their algorithms have a negligible probability of
failure. However, in case of failures, there is no known algorithm which
requires less than exponential time to colour G, and this, unfortunately, is
too large in relation to the failure probability to give a polynomial expected
running time. Thus, they have shown that we can “usually” colour G fast.
In contrast we will show that we can always colour G fast “on average.” We
exhibit a raridomised algorithm and prove its polynomial expected-time
performance under each of the models described above, provided suitable
conditions are imposed on the parameters of the model.

Before describing our algorithm, we will deal with an issue which is of
great importance in relating our models. This is that of uniqueness of
colouring. We prove this for Model 1. Turner [9] gives a weaker form of the
following result as a by-product of his colouring algorithm. Here we will
give a direct proof. We restrict ourselves to constant values of p and k, as
n — oo, though the analysis extends to other cases. We also assume all
blocks are of size exactly n. The modifications for blocks of size n(1 + o(1))
are trivial.

THEOREM 3.1. Let k, p be constants. Then, under Model 1, G, almost
surely has a unique k-colouring. Moreover, the expected number of different
k-colourings of G, is 1 + o(1).

Remark. Here, as elsewhere, we use the term “almost surely” to mean
“with probability 1 — o(1) as n — o0.” This usage, while at odds with
practice elsewhere in probability theory, is common in random graph
theory.

Proof. Denote the blocks of G, by B, (i=1,..., k). Suppose 4,
(i = 1,..., k) is some alternative partition of V(G,). We will estimate the
probability that this provides a proper colouring of G,.
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Let a;; = |B,N Aj|. Thus we have £%_,a,,=n for i =1,2,..., k. We
will assume that the 4, are numbered such that

n— iila,.j)/(k —i+1). (3.1)

Jj=1

This can be achieved by re-indexing in a “greedy” manner. We choose the j
maximising a,; as 4,, then the j (# 1) maximising a,; (j # 1) as 4,, etc.
Now the probability that the A,’s are stable sets is (1 — p)* where § =
Ek 124 815

Consnder the followmg two cases. Suppose 1 < a < 1.

(2) There are two of the a;; > n® for some j. Then clearly S > n?®
The number of possible partitions of ¥(G,) into k sets is less than k*", so
the expected number of such stable partitions is < k*(1 - p)S < kkn1 -
p)" which approaches zero super-exponentially as n — oo since 2a > 1.

(b) Case (a) does not hold. Thus a,; < n® (j # 1), since a,, > n/k by
construction (3.1). Therefore a,, > (1/(k — 1))(n — n®), which implies
a,; < n® (j # 2) for large n, since a < 1. Generally we will have a;; > (n —
(i = Dn®)/(k = i + 1) which implies a;; < n* (j # i). Therefore we find
that a;; < n® for all J=/=1andhencea =n-LX;4a;>n—(k—-1n°
(i=12,...,k).

Hence S > (n — (k — D)n*)Zk_\X,, ;a,; > n — (k — 1)n® since the 4,
differ from B,. However, the number of partitions of V(G,) into such sets
A; is now at most

k k
E I‘Inzj,ia,-, < l"[nk+(k-l)n" = nk2+k(k—l)n".
{a,) i=1 i=1

(n%s#% is an upper bound on the number of ways of partitioning B; into
blocks B; N A; for j=1,2,..., k given the values of the a;;) Thus the
expected number is at most k= ons 1 - p)r-tk-nn° which tends to
zero exponentially fast as n — co.

Thus, in either case, the probability of non-uniqueness is at least expo-
nentially small. (In fact it is exactly exponentially small, since G, will have
an isolated vertex with probability at least (1 — p)"*~D,_ in which case the
colouring is certainly not unique.)

If y(G,) is the number of different k-colourings of G,, then using the
estimates in (a), (b) above

E('Y) <1+ kkn(l —p)"za + nk2+k(k—l)n"(1 _p)n-(k—l)n“
=1+ o(1).
Clearly E(y) = 1, giving the result. O
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We will now describe our algorithm, COLOUR, to find a k-colouring of
a graph G.

COLOUR

Apply COLOUR 1 below to G;

If COLOUR 1 fails then apply COLOUR 2 below to G;

If COLOUR 2 fails then try all possible k-colourings to colour G;
Stop Either G is k-coloured or no such colouring exists.

We must describe the procedures COLOUR 1 and COLOUR 2. In order
that our algorithm is reasonably fast on the average, we use a “greedy”
procedure for COLOUR 1. The method is essentially that of Kucera [5].

COLOUR 1
fori =1tok—1do
begin
X; « @ (where X; is the set of vertices coloured ).
Y, « V(G) — U; ., X; (the uncoloured portion of G which is available to be coloured i)
repeat
Select v € ¥, such that 8y (v) is minimal. (If there is a tic choose arbitrarily.)
X, < X,U (v}, Y, « ¥, ~ {0} - T(v).
until Y, = 2.
end,
If X, = V(G) — Uji:,'X,- is stable then X,,..., X, is a k-colouring else COLOUR 1 has failed.

Each repetition of the for-loop finds a stable set disjoint from previous
ones by a “greedy minimum degree” choice. It can be implemented in time
linear in the number M of edges in G by simply updating degree counts at
each vertex of Y, as vertices are deleted from it. The overall complexity will
then be O(kM) = O(N?) for k constant. We could, alternatively, use the
method of Turner [8] for COLOUR 1. For fixed k and p this would have
the same expected time-complexity.

Before proving any properties of COLOUR 1, we will describe COLOUR
2. COLOUR 2 guesses large k-coloured subgraphs of G and uses an “only
available colour” rule to colour most of G; then it uses complete enumera-
tion on the remainder, provided this is small enough.

COLOUR 2
r < [8k2log n/— log(1 - p)]
repeat 2nr* /2 times
begin
Choose W C V(G) at random with | W| = kr
for each partition of W into k equal subsets W,,..., W, do
if Wy,.... W, is a k-colouring of W then
begin
X, « W (i= 1,.... k)
for ecach v € V(G) — W do
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begin
if 8y, (v) =0 for more than one 1 then next v
else let J be such that 8, (v) =
if no such j then next partmou of w
else X; « X; U {v)
end; ’
Y « V(G) - UL, X;
if | Y| > kr then next partition of W;

else for each ordered partition of Y into k sets ¥},..., Y, do
fF{Xx;uY:i=1..., k} is a k-colouring of G then stop {success}

end

end

Stop: COLOUR 2 has failed.

We now show that COLOUR gives a polynomial expected-time algorithm
under Model 1 with k, p constant.

LeMMA 3.2 (Kucera [S]). If k, p are constant, then COLOUR 1 fails with

probability at most e for any 0 < B <1, when G is a random graph
selected using Model 1.

Proof. Since Kucera [5] does not provide a proof for his claims, we will
sketch the proof here.

It is sufficient to show that the first repetition of the for-loop in
COLOUR 1 terminates with a block of G in X;. If this is the case we are
then effectively applying COLOUR 1 to a random graph generated by
Model 1 and k < k — 1. Multiplying the failure probability for phase 1 by
k will then give the result.

Without loss assume that the first v € Y, selected is in block B,. It is
necessary to proceed with a little care, since the minimum degree choice
rule immediately conditions all of G. Let us use the phrase “high probabil-
ity” to mean with probability at least 1 — e~ for any 0 < 8 < 1. Suppose
r > 1 vertices have been selected in X, and suppose X, C B,. Note that
Y, = (G) — T(X,) — X,. Let r, = [(log k — log p)/— log(1 — p)].

If r < r,, we can show using the Chernoff bound that, for any such set
X, with r vertices, |B; — I'(X;)| = n(1 — p)" with high probability, for all
Jj # 1. By the same method we show that with high probability, for all
Jj # i, if v € B; there will be =n(1 — p)™*! vertices in B, — T(X, U {v}).
Also any vertex v € B; (j# 1) will have degree =np in B; with
high probability. It now follows that if v € B, N Y, then §,(v) =
(k = D[n(A = p)" = n(1 = p)"™*!]1 = (k - )np(1 — p)". However, if vE
B;NY, (j+#1) then 8y(v) = np + (k — 2)np(1 — p)". The latter is al-
ways larger. Thus if » < r, we will select the next vertex from B, with high
probability.

If r > r, we use a slightly different argument. Now |B; N Y| is at most
=n(l — p)™ for all j>1 with high probability. Also if v € B;N Y,
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(/ > 1) then all its =np neighbours in B, must still be in B, N Y,. Then if
v € By N Y, it must have 8y(v) at most =(k — 1)n(1 — p)”, whereas if
v € B;N Y, (j>1)it has at least =np for 8y(v). The choice of r, now
ensures that the latter is larger. Thus with high probability in this case also
we select the next vertex for X; from B,. Thus with high probability
X, = B, after n steps. O

Lemma 3.2 and its proof extend to k growing quite rapidly with »n (for p
constant) or for p decreasing with n (k constant). We will not need this
here, but see Kucera [5]. We know therefore that COLOUR 1 usually
succeeds and gives us an almost sure solution algorithm. However, its
failure probability is not small enough to allow us to enumerate the cases of
failure and obtain expected polynomial-time behaviour.

We must show that COLOUR 2 has a small enough failure probability.
We consider its running time subsequently.

LEMMA 3.3. COLOUR 2 has failure probability at most e~"1%8" for n
large and G selected using Model 1 with k, p constant.

Proof. If we select sets of size kr with r = I8k2 log n/— log(1 — p)] at
random from V(G), the probability that we select r from each B, is

(1) v

&~ =
kr

for large n.

Now consider block B, and random r-sets W,,..., W, in B,,..., B,. For
any v € B,, the probability that it is not adjacent to at least one vertex in
each W, (j =2,...,k) is less than k(1 — p)". Thus the probability that
there is a subset of size r in B, all of which fail to be adjacent to at least
one W, is at most (")k@ - p)) < n"(kn=%")" < n~¥r for large n.

Let us call W, ..., W, a bad selection for B, (otherwise good) if there is
such a subset of size r in B,. Now suppose B; is partitioned into n/r
subsets B;, Bj,... (i =1,..., k) each of size r. (We can assume all B,
have |B;| = n and r|n for simplicity, the modifications otherwise being
trivial but cumbersome.) Consider the n/r choices of W,= B, (i=
1,...,k)fort = 1,2,..., n/r. The probability that a proportion more than
1/2k of these are bad is then, using the independence, at most

(n%;r)(n“‘s"z’)"/z"’ < 2"/'p=3kn < p=2kn for large n. Now let us call such

an (ordered) partition of the B, “defective” if it contains more than a
proportion 1/2k of bad selections for B,. There are less than n*" partitions
altogether, so the probability that there exists any defective partition is less
than n*"n=2k" = p=%" Now the procedure of randomly selecting a parti-



460 DYER AND FRIEZE

tion, then randomly selecting a W,,..., W, from the partition in the
prescribed manner is clearly equivalent, by symmetry, to a random choice
of sets W, from B, (i=1,..., k). Thus the probability that a random
selection is bad for a given B; is at most 1/2k. The probability that a
random selection is bad for any B, is therefore at most k(1,/2k) = 1. Thus
the probability that our random W contains r vertices from each block and
a good selection is at least 1/2r%/2 at each sampling. But if W contains a
good selection we will find it, since we enumerate all cases. Then all of
V(G), except for a subset of size at most r in each B;, will be correctly
coloured by the “only available colour” rule used in COLOUR 2. Thus
| Y| < kr and the final loop will complete the colouring by enumeration.
Since sampling is independent, the probability that we fail to get a good
selection in all trials is at most

2nrtk+ /2

1
(1 - W) < e " < gmnlogn for large n. O

The running time of the main loop of COLOUR 2 is dominated by the
two enumerations of W and Y. These will take the O(k*") which is
polynomial in » for fixed k, p. The number of repetitions of the main loop
is polynomial, hence COLOUR 2 has polynomial overall running time. It
may be noted that the exponent grows rather fast with &, i.e., k*log k. A
more complicated implementation of the same idea used in COLOUR 2
might reduce the exponent, but it appears we can only obtain polynomial
behaviour for fixed k. (However, note that even if COLOUR 2 is non-poly-
nomial, we may still be able to obtain a polynomial expected-time algo-
rithm for COLOUR provided the failure probability is small enough).

THEOREM 3.4. COLOUR has expected-time O(n*) under Model 1 with
constant k, p.

Proof. Let T be the running time of COLOUR, 7; that of COLOUR 1
and 7, that of COLOUR 2. Let A4, be the event that COLOUR i succeeds
(i = 1,2). Then

E(T) < T, Pr(4,) + T, Pr(4;, " 4;) + k*" Pr( 4, N 4,)
< T, + T, Pr(4;) + k* Pr( 4;).

But 7, = O(n?), T, is polynomial in n, Pr(4,) < e~ ¥, say, and Pr(a,) <
e "&" Thus E(T) =T, + o(l), i.e., E(T) = O(n?). O

Thus COLOUR is not only polynomial expected-time, but has expected-
time linear in the number of edges of G in this model.
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A possible criticism of our algorithm might be that p appears to have to
be known, since it is used to define r in COLOUR 2. This is not necessary,
since all we really require is a good lower bound on p. This can easily be
obtained by counting the number of edges in G. If this is M, then for any

e>0, M /((’;)nz(l + e)) is a lower bound on p with probability at least

1 — O(e™""), where a = %az(’;)p, using the Chernoff bound. Thus the
probability of failure of this estimation procedure is small enough that we
could afford to handle all graphs where it fails by complete enumeration.

We now “translate” Theorem 3.4 model by model in order to obtain our
desired result. Thus we next consider Model 2, in which M inter-block
edges are selected at random.

LEMMA 3.5. COLOUR has O(n?) expected time behaviour if G is selected
using Model 2 with M = Q(n?), k constant and all block sizes =n.

Proof. Let p= M/(*)n? then as n - oo p is bounded below by a
constant. Note that Model 2 is equivalent to Model 1 conditional on
|E(G)| = M. But in Model 1 with p = p,

1
‘/2ﬂ(§)nzﬁ(l - p) ’

using Stirling’s formula to approximate B((’;)nz, ﬁ). Thus Pr(|E(G)| =
M) = Q(1/n). Now, using Lemma 2.1, we see that the events A4, of Lemma
3.4 will have essentially the same probabilities. O

Pr(|E(G) = M) =

We also have

LEMMA 3.6. In Model 2, under the conditions of Lemma 3.5, the colour-
ing is almost surely unique and the expected number of colourings is 1 + o(1).

Proof. Same as Lemma 3.5 using Theorem 3.1. O

We now turn to Model 3. Here the block sizes are not fixed. Let n, = | B;|
(i =1,..., k). We then select M edges at random. There are (’:' ‘;{""’" ways
of selecting M edges. Thus the total number of such graphs is

N! Yonn;
Y ii | =S(N,M), say. (3.2)
Xn;=N I—.[ni! M

j=1

We assume in Model 3 that G is chosen so that all S(N, M) such graphs
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are equally likely. We first show that restricting to n; = n, where n = N /k
makes no difference provided M = Q(n*/?).

LEMMA 3.7. Suppose |n; — n| < n 8 > k for any i, then

N! Z”i"j a2\ M N Z'i’j

% i<j < - F % | i</ ,
[T\ M N EARN
i=1 i=1

where all t;, = |n) or [n] and ¥ ,t,= N.

Proof. First note [1X.\n;! > T, ¢,! always. Thus it is only necessary to

show
Z”i”j 82\ ¥ E’i’j
i<j < (1 - ?) i<j .
M M

We use the identity

Enm,= (5)= 3 L (n= ) ()

i<j

which is easily proved by direct expansion. This implies

1
Zt,.tj> (g)nz— Ek, since |¢; — n| < 1 forall {

i<j
and

1
z.n,.nj < (lzc)n2 - 5n282,

I<j

and also

Ynn;< Y,

i<j i<j

Now observe that if M < A < B for any integers M, A, B then

(4)=(5) (2) o4
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Putting A =X, _.nn, B=YX,_ .tit, we have

i< jri% i< joitj
1
a 33 s
TR D 1- re provided nd > k.  (3.5)
(lzc)nz_ Ek

The result now follows from (3.4) and (3.5). O
LEMMA 3.8. In Model 3, with M = Q(n?) and n large,

Pr(ln,—n| <n*%,i=1,2,...,k) 21— e """,

Proof. Putting § = n~'* in Lemma 3.7 for large n each term of
S(N, M) not satisfying the condition |n, — n| < n®* for all i is at most

Q(n?)
-0 3/2
(l— W) S(N,M)Se (n )S(N,M).
Since there can be at most k" such terms, the prolgazbility th‘ag there exists
any i such that |n, — n| > n3* is at most k*"e~ %" < ¢="*” for large n.
0

THEOREM 3.8. If M = Q(n?) then COLOUR has expected time-complex-
ity O(n?) under Model 3, with constant k.

Proof. The difference between the sample spaces for Models 2 and 3 is
an event of probability at most e~"* in Model 3. This is sufficiently small
that, even if COLOUR used complete enumeration on all graphs in this
event, the expected running time would still be O(n?). O

Lemma 3.10. Colourings are almost surely unique in Model 3, with
expected number 1 + o(1).

Proof. Similar to Theorem 3.9, noting that no graph has more than k¥
different colourings. O

Now, in view of Lemma 3.10 and Lemma 2.2, we see that all our results
for Model 3 are unaffected if we modify it so that all graphs which do not
possess a unique k-colouring are represented only once in the sample space.
But this is Model 3’, the uniform distribution on k-colourable graphs with
N vertices and M edges. We have, therefore,

THEOREM 3.11. COLOUR has expected running time O(n?) under the
model in which input graphs are chosen at random from the uniform distribu-
tion on all k-colourable graphs with N vertices, M edges provided M = $(n?).
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Moreover, in this model almost all graphs are uniquely colourable, with
expected number of colourings 1 + o(1).

Proof. Consider, for example, the event A_1 from Lemmas 3.4, 3.5. Let
Pr(A,) be the probability of A, under Model 3 and Pr(4,) under Model 3'.
Using Corollary 2.3, Pr'(4,)/Pr(4,) <1 + o(1). Thus Pr'(4,) <
e~ (1 + o(1)). The other results follow immediately. O

We finally turn to Model 4. We consider the sample space of T(N) =
L S(N, M) graphs generated as in Model 3, with all allowable values of
M. We select uniformly from these T(N') graphs. This gives Model 4, with
Model 4’ then derived by omitting copies of non-uniquely colourable

graphs.

LEMMA 3.12. Let My= Y(k/2)n* and, for fixed ¢>0, let Q=
{M|M — M| < eM,). Then, under Model 4, Pr(M € Q) < e~ Mot for
large n.

Proof.
Nt [ Xnn;
S(N,M) =Y i<y ’)
" l—["i! M
i=1
N!
<)Y 2M°), since Y, n.n; < 2M,
n; 1 M i<j
n;!
i=1
_ kN(ZMO)_
M
Thus

Y S(N,M)sk¥ ¥ (2Mo)=2k~ > (ZMO)

MeQ Mepo\ M M<d-oM\ M

< 2k Ne- 2Mo/222M0’

using the Chernoff bound.

But T(N) > (N!(n!)")(zh':?), since this is a term of S(M,, N). Thus
we obtain, using Stirling’s approximation T(N) > (kV/n*)22Mo /(M /2)
for large enough n. Thus Pr(M € Q) = L, coS(M, N)/T(N) <
Myn*e=Mo/2 < ¢=¢Mo/3 for large n. O
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Thus, the probability that M is far from M, is vanishingly small. We use
this to establish

THEOREM 3.13. Under Model 4, COLOUR runs in O(n?) time. Also
colourings are almost surely unique with expected number 1 + o(1).

Proof. Let A be any event in Model 4. Then write X = |E(G,)|. We
have

2M,
Pr(4) = ﬁ' Pr(A|X = M)Pr(X = M)
M=0
= Y Pr(A4|X = M)Pr(X = M) + O(eM/3)
Me&Q

using Lemmas 3.12 and 2.1.
< max Pr(A|X = M) + O(e~¥M/3),
MeQ

Thus any event having small probability in Model 3 will have small
probability in Model 4. Applying this to the events A; of Theorem 3.4 or
the events of Theorem 3.1 gives the result. O

Finally we transfer this to Model 4, to give

THEOREM 3.14. For fixed k, COLOUR runs in O(N?) expected time
under the model in which graphs are selected randomly from the uniform
distribution on all k-colourable graphs with N vertices. Moreover, under this
model, k-colourings are almost surely unique, with expected number 1 + o(1).

Proof. Follows the same lines as Theorem 3.11. O

4. MinmmuM Cut

We consider the problem of determining the minimum number of edges
in a cut which partitions the vertices of a graph into two equal-sized
subsets. (See [1].) We will show that we can find, and prove we have found,
the minimum cut, in polynomial expected time. Our eventual model here
will be the uniform distribution on the set of all graphs G, of a given size
|V(G)|, which have a “small” cut into two equal subsets, ie., a cut
containing at most (3 — €)| E(G)| edges for some fixed ¢ > 0.

Again, as in Section 3, we approach this through a sequence of related
models. Since some of the methods are similar to Section 3, we will omit
details on occasion. Model 1 is the following. Let V(G) = {1,2,...,2m}.
Randomly select 4 € V(G) with |4| = m. Write B = V — A. Select, ran-
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domly and independently, edges joining vertices of 4 with those in B with
probability p. Similarly, edges joining two vertices of 4 or B are selected
with probabilities p,, pg, respectively. We assume p, < pp without loss,
and 2p < (p, + pp) so that the 4: B cut will tend to be small. We will
suppose p, P4, Pg, and ( p, + pg — 2 p) remain bounded below as m — oo,
though many of our results hold with these assumptions relaxed somewhat.
We first show that 4 : B is almost surely the minimum cut.

THEOREM 4.1. Under Model 1, Pt(A: B is uniquely the minimum cut) =
1—-0Q1)asm— oo.

Proof. Let A’, B’ be an arbitrary cut in G with |4’} = |B’| = m. Let
Ay=ANB', Bp=BNB, A,=ANA, B,=BnN A" Write k = |4,|
= |B,|, and assume without loss that k < im.

Let A= |A":B’| — |4:B|,s0 A < 0if 4: B is a smaller cut than A4:B.
Now A = |A;:4,| + |By:B,| — |4;:B,| — |4,:B,| and |[A4,:B,|, |A4,:B,|
=4 B(k(m — k), p), |Ay: A, =* B(k(m = k), p), |By:B,| =*
B (k(m — k), pp) are independent random variables.

Thus A is a sum of k(m — k) random variables, independently and
identically distributed between —2 and +2 and having expectation (p, +
pp — 2p). It follows from Hoeffding [4, Theorem 2] that

Pr(A < 0) < e~*(m=k)Xps+ps=2p)*/16

Thus Pr(A4: B is not minimum) < Z}‘"l/lzl(',:')ze”"('”"‘)"z, where A = (p, +
ps— 2p)/4> 0. It follows that Pr(A < 0) = O(m% ™) which tends
rapidly to zero with m. Note that A could approach zero as fast as

yclogm/m for any ¢ > 2 and the conclusion of the lemma would still
hold. O

It is worth noting that when p,, pg, p are constant, Theorem 4.1 only
guarantees an exponentially small probability that 4: B is not the minimum
cut. It is necessary to take account of this in our algorithm. Qur algorithm
is again three-phase, similar to that of Section 3.

CUT

Apply CUT 1 below to G;

If CUT 1 fails to produce a provably minimum cut then apply CUT 2 below to G;

If CUT 2 fails to produce the proven minimum then Try all O(22™) equitable cuts and choose
the minimum.

Stop

The difference between this and the colouring case will be apparent. We
not only have to produce a cut here, but we have to devise a proof
procedure which is also fast enough. Thus there are two ways the algorithm
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can fail at each stage, by failing to find the minimum cut or by finding it
and failing to prove it.

CUT1

Choose the vertex w € V(G) of maximum degree. W « T'(w).

for all v € V(G) do d(v) « &, (v);

k < mth largest d(v);

C « {v:d(v) < k}, such that |C| = m;

Output cut C:¥V — C

Stop

We first note that it is easy to implement CUT 1 to run in O(]E|) = O(m?)
time. It succeeds because W is likely to be large, with | W N A| significantly
larger than |W N B, assuming w € A. Vertices in 4 will then have
significantly larger 4 values than vertices in B.

LEMMA 4.2.  Under Model 1, Pr(CUT 1 finds A:B) =1 — O(e™*™) for
some 3 > 0.

Proof. If a€ A, be B, then Pr(8,(a)> §,(b)) < e~(m=1Xrs=pa)/4
using Hoeffding [4, Theorem 2] in a manner similar to Lemma 4.1. Thus
Pr(w & B) < me~("~Dps=p0’/4 Hence if p, # p,, we may assume that
w € B, since this failure probability is small enough. If py = p, we will
assume without loss that w € B.

Now for any a € A4, b € B, let us suppose at first that w € B is chosen
arbitrarily, so G is unconditioned by this step. Let ¢ = 1(p? + p3 — pp, —
ppg) = §(py + pp— 2p)* > 0.

Now, again using Hoeffding’s Theorem 2,

Pr(8,(a) > m(pp, + ppy + 1)) < 2e~"C/4
and
Pr(8, (b) < m(p? + p — 1)) < 2e=m"/4,

Thus Pr(3a € A:8,,(a) > m(pp, + ppp + 1)) < 2me~™"/% and Pr(3b €
B:8,,(b) < m(p*+ pk — 1)) < 2me™™"/% Hence, using the value of 7,

Pr(3a €A,be B:Sw(a) > SW(b)) < 4me""'2/‘.

Finally, Pr(3a € 4; b, w € B:8,,(a) > 8,,(b)) < 4m%~™"/% Thus, al-
most surely C «— A in CUT 1. O

We note in passing that the threshold for success in CUT 1 could be
reduced to (p, + pp — 2p) = 5(log m/m)'/* by the same calculation.

Before turning to the optimality-verification algorithm associated with
CUT 1, we will describe CUT 2, which does more work but has a higher
probability of success. For constant p,, pp, p, it is possible to derive such
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an algorithm which works in polynomial time by a similar method to
COLOUR 2 of Section 3. There is a technical problem with lack of
independence if we proceed in exactly the same manner, but we can resolve
this as follows. We randomly split the graph into two O(m) times. With
high probability one such split will contain exactly half of A and half of B
in each half of the split. For each split we take repeated “small” random
subsets from each half. We use the random subsets to determine the A: B
partition of the other half of the split by counting degrees in the subset of
external vertices. The “partition” argument used to justify COLOUR 2 can
now be used to show a high probability of success in polynomial time.
However, we will not do this here, for two reasons. First, our proof
procedure in this case does not work in polynomial time and hence there is
little advantage when we require proof of optimality. Second, the above-
outlined procedure requires knowledge of p,, pg, p, and, unlike COLOUR
2, we cannot give a simple estimation procedure, with a high enough success
probability, for these parameters. Thus the procedure we describe is rather
crude, but nonetheless effective. It randomly chooses a set U of size m?/3
and checks each possibility for U N 4,(X =)U N B, by complete enumera-
tion. The great majority of vertices in B should then have a high value of
8,(v), and so the vertices with the m — | X| largest §, values are added to
X to produce C (our guess for B). There is then a final check to account for
a few “misplaced” vertices.

CUT 2
min « oo;
repeat m*> times
begin
Select a random subset U € V(G) with |U| = [m*/3]
for each subset X € U do
begin
for eachv € V — U do d(v) « 8,(v) od
k « (m — | X|)th largest value of d(v)
C « {v:d(v) 2 k} U X, such that [C| =m; C« V - C;
for each subset Y © C with | Y| < 2[m*/?] do
begin
for each subset ¥ € C with | Y| = | Y| do
C’'—=(C-Y)UY
C«(C-Y)uY
if |C":C’| < min then
begin
G < C',min « |C:C'|
end
end
end
end
Output G:V - G
Stop
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2
The running time of CUT“2 is 0(2""2/3'( ZI:;/’I) m?”) for some integer
constant p > 0. This is O(2" / ).

LEMMA 4.3. Under Model 1, Pr(CUT 2 fails to find the minimum
cut) = O(e"" )

Proof. Suppose A’: B’ is the minimum cut. First observe that the
probability that A’: B’ differs greatly from A:B is very small. Suppose
|4,] = |4 N B’| > m*/3, then the proof of Theorem 4.1 shows

2 ,
Pr(j4,| >m¥*) < ¥ (k) e~ km=k)X

k=[m*?]
where A = (p, + pg — p)/4 > 0. Thus,
Pr(|4,| > m*?) = 0(e™™"),  say.

Now the probability that CUT 2 fails to produce some subset U with
|U N B| = [im?*?]is O(2™™") in view of the m? repetitions. Thus we may
suppose that CUT 2 determines some X with X C B and |X| > [1m?/).
Let 0 < e < (pg— p)/(pg + p). Then, using the Chernoff bound, for any
aed-UbeB-U,

Pr(8,(a) > (1 + €)| X|p) < e~m/ ¢ p/6
Pr(8,(b) < (1 — e)|Xlpy) < &= pas

and these are independent for all such a, b.

Let S={acd-Ubya)>(+e)X|p), T={be B~ U:dy(b)
<(1 = ©)|Xlps} then Pr(|S| > m*?) < (| 7, Je= ¥p/6 = O(e=m").
Similarly, Pr(|T| > m*?) = O(e~™"").

Let E, be the event that the vertices with the (m — | X|) largest values of
d(v) in CUT 2 contain more than m?/3 from A. Since by choice of &,
(1 — &)|X|ps > (1 +¢)|X|p, E, C(IS| > m*?) U (|T| > m*?). Hence,
Pr(E,) = O(e™™"").

Now let E, be the event that C contains more than m?? vertices from
A. Since X c B, we have Pr(E,) = O(e™" /‘) Thus, with probability
1 — O(e~™"*), we find a set C which differs from B by at most m?/>
vertices. But B’ differs from B by at most m?/* vertices with probability
1 - 0O(e -m/ ) Thus we have C’ « B’ at some stage in CUT 2 with
probability 1 —~ O(e™™ /') 0

We now turn to proving optimality. We first consider CUT 1.
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THEOREM 4.4. Let B <1 be chosen arbitrarily. There exists an O(m?)
time deterministic algorithm which

(i) has failure probability O(e~"F) under Model 1;

(ii) if it succeeds, constructs a correct proof of optimality for the cut
produced by CUT 1.

Proof. The algorithm is quite simple, and will be described informally in
our proof. First, in calculating probabilities we may assume that CUT 1
finds A:B, by Lemma 4.2. Thus in the following A:B means the cut
produced by CUT 1, but will mean the underlying cut 4: B where probabil-
ity calculations are involved.

We split the argument into two cases. Let A’: B’ be any cut, and let other
quantities be as defined in the proof of Theorem 4.1. The two cases are then
as follows:

Let0 <y < 4(1 —B)and 1 — 1y < a <1 be chosen.

@) k= 14,| = |B,| s m®
(i) m*<k<im.
Define the following quantities:
P = mind,(v)/m, pp= mindy(v)/m,
vVEA veB
p = min{ ming,(v), mind,(v)/m)

7= maX{ max8,(v), rung&(v)/m}.

Case (i). We consider A = |4,:4,| + |B:B,| — |A;:B,| — |4,:B,].
However, [4;:4,] = I,e484(v) — 2()> kmp, — k(k — 1). Similarly,
|By: By| = kmpg — k(k — 1). Also [4;:By| < ¥, 485(v) < kmp’ and
|Ay:By| < kmp’. Hence A = k(m(p, + pg—2p') — 2(k — 1)) > 0 pro-
vided

k <k =[im(p, +ps—2p) + 1].

We can compute k; in O(m?) time by straightforward vertex-counting,

Let 0 <e<(pys+pg—2p)/(ps+ ps+ 2p). Then a standard argument
using the Chernoff bound shows that

ky> 5m((1—e)ps+ (1 - e)pp — 2(1 + &) p) = Q(m)

with probability 1 — O(e™%™) for some ¢; > 0. Thus k, > m® with high
enough probability for the conclusion of the theorem.
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Case (ii)). We make use of some recent results of Thomason [6, 7] on
“jumbled” or “pseudo-random” graphs. By a straightforward calculatlon
using the Chernoff bound, we know that, with probability 1 — O(e"” ),

8,(a)2mp(1—1im™) forallaec 4
and
8.(ay, a;) <mpi(1+im~v) forall a;, a, € 4.

We are using the notation 8,(a,, a,) to denote the number of common
neighbours of a,, @, in 4, 1e 8,(ay, a,) = |I'(a;) N T(a,) N A|. Thus,
with probability 1 — O(e” m ) P4 = py(1 — $m™7) and hence

8,(ay, ay) <mpi(1 + m™7) < mp3 + m ™",
Consider these two properties of the graph G[ A4]:

(a) 8,(a) = mp,. This always holds, by choice of p,, for all a € 4.

(b) 8,(ay, a,) < mp; + m'~". This holds, with probability 1 —
O(e™™"), for all pairs a,, a, € 4.

The condition (b) can be checked in O(m?) time by edge-counting. If it fails
for any pair a,, a, we report failure of the proof procedure.

Now conditions (a), (b) imply, by Theorem 1.1 of [6], that all subgraphs
of G[A] have approximately the number of edges we would expect if G[ 4]
were a random graph with edge probability p,. Specifically, if H is a
subgraph of G[A] with k vertices and e edges,

_ _ A2, -
e—pA(g)’s((mpA-f-(m—l)ml 1) +pA)h
<2m'™%h  form = 4. (4.1)

A similar conclusion holds for G[B], using pg. For the bipartite graph
G[A, B] with edge set A: B we also have analogous properties to (a), (b)
above, using p. Note that all these conditions, for G[A4], G[B], and
G[ A, B], can be checked in O(m?) time, and if the condition (b) fails for
any pair of vertices we report fallure of our proof procedure. The failure
probability thus far is clearly O(e"" )-

Now, for G[ 4, B] another theorem of Thomason [7] then implies that for
any bipartite subgraph G[X,Y] of G[A4, B] with |X|=x, |Y|=
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and | X:Y| = e,
1/2
_ yim=-y) I
le — pxy| < x((—mx—(m‘ "(x-1) +p(1 —p)m))
mr m\Y?
< x( 2 + 1—6;)
<xm'~7? ifx > m, (4.2)

which is certainly true if x > m' /2, which is the case we shall require.
Now from (4.2), we obtain, putting X = 4,,Y = B,,

|Ay:By| < k(m—k)p + km'~/?
<k(m—k)p+ Im* /2 since k < im. (4.3)
Similarly,
|Ay: By} < k(m —k)p + im?™/2, (4.4)
Writing E( X) for the edge set of G[ X] we have, from (4.1),
|E(4,)] < (’2‘)@ + 2km' " < (’2‘)@ + m22

|E(A4,)] < (m ; k)ﬁA +2(m - k)ym'~v% < (m ; k)iA + 2m2-V2,

Also |E(4)| 2 (7)5,, always. Thus

g2 A,] = |E(A)] = |E(A)] — |E(4,)] 2 k(m — k) B, — 3m>~12,

(4.5)
Similarly,
|B,:By| = k(m — k)p, — 3m*™/2, (4.6)
Hence from (4.3)-(4.6) we get
A>k(m—=k) p,+pg—2p) - Tm*/? 4.7

from which it follows that A > 0 if

1 7
k>k2=§-m 1- I_W )
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where A = (p, + pg — 2p)/4> 0. (If A < 0 we report failure of the proof

procedure.)
Tm!~v/2 7
k,= ™ (1 +1/1 - X2 )

Note that
and can be evaluated in O(m?) time, the main task being the evaluation of
Pas Py P- -

Again a standard calculation shows that A = (1) with probability
1 — O(e™“2™) for some c, > 0. Thus, with probability 1 — O(e™ ™), k, =
O(m'=/?) s0 k, = o(m®) = o(k,). Thus there will be no values of & for
which A4’: B’ could be better than A:B with probability 1 — O(e~"") as
required.

Algorithmically, we must determine k,, k, and check that k; > k, in
O(m?) time. In addition, we must check the conditions (b) above for G[ 4],
G[B), and G[4, B] in O(m?) time. Thus we have established the claims of
the theorem. O

Thus, to summarise, CUT 1 and its proof procedure take O(m?) time and
have failure probability O(e~"#) for any 8 < 1. We now turn to CUT 2.

THEOREM 4.5. There exists an 0(2'"3/‘) time deterministic algorithm
which

(i) has failure probability O(e™™"") under Model 1,

(ii) and, if it succeeds, constructs a proof of optimality for the cut
produced by CUT 2.

Proof. Again we will describe the algorithm informally with our proof.
First, we may assume that the cut A*:B*, say, produced by CUT 2 is
optimal, by Lemma 4.3. Second, we may assume that |4 N B*| < m'/3
with the requisite probability—see Lemma 4.3.

We start the proof procedure by enumerating all cuts with |4* N B’| <
m?* and copnting the number of edges in each cut. We can do this in
O(m¥(,, ) ) = 0Q™") time, as in CUT 2.

If we find a better cut than A*:B* we report failure for the proof
procedure. Otherwise we know that any better cut A4’: B’ must have
|4* N B’| > m?/3. We continue by selecting all possible pairs of disjoint
subsets S;, S, € A* such that {[m*?] < |S;| < [m??)], i =1,2. Let

p, = min|S;:S Sil - 1S,]).
P4 gl'lgll AVANYREEA),

2 4 N . e
This can be calculated in O(mz([m,"',,‘) )= 0(2’”3/) time. Similarly, we
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calculate pp by choosing S, S, ¢ B*. We also determine, by choosing
S, € 4%, S, € B*,

p = max|S;:8;] /(|S:] - 1S55]).
P S,.52|1 2|/(| 1l |2)

The total time for these computations is 0(2"'3"). Now each S, ¢ 4*
(i = 1,2) contains, with the required probabilty, at least (|S;| — m'/3)
vertices from A. Thus §;:S, contains j,|S,| - |S;|(1 — o(1)) edges from
G[A]. Hence

Pr(3S,, S, € 4*:]8,:S,| < (1 =€) pyISi] - |S,])
m )
< (Imz/sl) e~ Pa/16 for large m,

and hence,

mS/4 1
fora < 5;.

Pr(p, < p (1 - m=®)) <e”

A similar lower bound on p, and upper bound on p can be derived, with
the same probability.

Now, letting 4, = A* N B’ etc,, in notation similar to the proof of
Theorem 4.1, but with 4*: B* playing the role of A4:B, for some disjoint
sets S; (i € I), we have 4, = U, ,S; with {{m?*?] < |S,| < [m*?), since
|4,] > m*/3,

Also, similarly, A, = U, S/ with 3{m*?] < |S/| < [m*/*), since |4,|
> 1im. Hence

|4: 45l = X 2 1S:8/1 2 X X BalSi| - 157

iel jeJ iel jeJ
=B LIS X IS/| = Baldy] - 14,
iel jeJ

Similarly, |B,: B,| 2 pg|B,| - |B,| = pgl4,| - |4,]. Also |4,;: B} < p|A,| -
|B;| = plA4,| - |42] (i=1,2), by similar reasoning. Hence A > |4,| -
|4,1(py + Pg — 2p) > 0, provided p, + pg— 2p > 0. Thus the proof of
optimality now simply involves checking whether p, + pp > 2p. If so, we
have proved the optimality of A*: B*. Otherwise, we report failure. Now,
with probability 1 — O(e™™""),

PatPp—2p>p(1 —m™*) + pp(l — m™")
-2p(1+m™®) fora<
>0 for large m.
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Thus CUT 2 and its‘proof procedure require 0@2™"") time and have failure
probability O(e~""*). O

THEOREM 4.6. Under Model 1, CUT and its proof procedures run in
O(m?) expected time.

Proof. From Theorem 4.1, Lemmas 4.2 and 4.3, and Theorems 4.4 and
4.5, if T is the running time, then

E(T) < O(m?) + 0(2,..3/4) ; O(e""ﬂ) + 0(22m) - 0(8_’"5/‘)
= 0(m3)  choosing 8> 3/4. 0

We now go through our “result translation” procedure. We first consider
Model 2 for this problem; we randomly select 4, B as in Model 1. Then we
randomly select M, edges between vertices of A, M, between vertices of B,
and M between A and B. We require the existence of a constant C such
that M, M,, My, and M, + Mz — M > Cm? for all large enough m.

LEMMA 4.7. Under Model 2, CUT and its proof procedureé run in O(m?3)
expected time. Moreover, for some B > 0, the minimum cut is unique with
probability 1 — O(e™ ™).

Proof. Set p,=M,/(7), ps=Ms/(7), p = M/m> Then the exis-
tence of C implies that p,, pg, p, and p, + py — 2p are bounded away

from zero. We now use the same method of proof as in Lemmas 3.5 and
36.0

Model 3 is now the following. We allow M,, My, M (as in Model 2) to
vary, but we require the existence of a constant § > 0 such that M, + M,
= (1 + 8)M. Then all graphs which can be chosen in this way are equally

likely. Let
(2) ) ,

M,

S(M) = )y ((?)

Mo+ M2 +8)M | M,

T’=§('X;)S(M) and T=(2’;”)T'.
M=0

Then Model 3 selects from the uniform distribution on a sample space of T
graphs.

LEMMA 4.8. Let E be the event that a graph selected randomly according
to Model 3 fails to satisfy the conditions of Model 2 with

1 1 &
N 16"‘"‘{8’ 1 +s}'
Then, for some vy > 0, Pr(E) = O(e™ ™).
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Proof. Let M, = [%(;’)/(l + 8)] and S’ = 2"(™=D_Then it is easily
shown that 28’ < S(M) < §’ for M < M,,. Then

Wo/2l (g 2
S(M) <S' 3—M0/2
M2=0 ( MO) (M) ( MO)

by a straightforward calculation. But

2\ 3
mo s
M) a

Hence Pr(M < iM,) < 43°M/2 Thus M > im(m — 1)/(1 + &) with
probability 1 — O(e™ """y for some v, > 0. Hence M, + My > tm(m — 1)
and M, + Mg — M > dm(m — 1)/8(1 + §). Thus for m > 2, M and M,
+ My — M satisfy the conditions of Model 2 with C = §/16(1 + §). Let

(3)]| (2)

M, K—MA)’

T > (X}Z)S(Mo) >

HE) - ¥ (

M, =0

so S(M) = ZZ'LT(;P&)M]H(K)-
Now for k > tm(m — 1), it is straightforward to show that if

H(K)= Y (’;) (';) ]
M, |\K-M,

17K /8]
M, =[K/8]

then
H(K) = H'(K)(1 + 0(67*/%))
= H'(K)(1+ 0(e™»™))  forsome0 <7y, < y,.

It follows that Pr(M, < m(m — 1)) = O(e"h”‘z), and similarly for M.
Thus M,, M satisfy the conditions of Model 2, with C = z, for m > 2.

Thus
c (1 )
~ MM 128" 1601 + 8)
and y = v, satisfy the lemma. O

THEOREM 4.9. Under Model 3, CUT and its proofs run in O(m?) ex-
pected time, and the cut is unique with probability 1 — O(e~#™) for B > 0.
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Proof. Follows directly from Lemma 4.8 and Lemma 4.7 in the same
way as Theorem 3.12 was proved. O

Model 3’ is now Model 3 with copies of the same graph deleted. Note
that the condition M, + My > (1 + §)M is equivalent to M <
1/(2 + 8)|E(G)| = (1 — €)|E(G)] for e = 8§ /(2 + 8).

THEOREM 4.10.  For € > 0, let G, be the set of all 2m-vertex graphs for G
possessing an equitable cut of size at most (3 — €)|E(G)|. Then, if G is
chosen uniformly from G,, CUT and its proof procedures run in O(m?3)
expected time and the minimum cut is almost surely unique.

Proof. Follows from Theorem 4.9, by the same method of proof as
Theorem 3.10. O

This result is that claimed in the introduction to this section. By refining
the analysis it would appear that we could let & tend slowly to zero as
m — oo and Theorem 4.10 would remain true. However, we will not
consider this further here.

5. GRAPH PARTITIONING

We consider the following problem. Let €,, €; be two classes of graphs
which

(i) can be recognised in polynomial time. For simplicity below we will
assume recognition in time O(m?/log m). Otherwise the running time of
our algorithms is dominated by the recognition steps.

(ii) have |E(G)| < c|V(G)| for all G € ¥,, ¥, and some constant c.
(We could assume different c,, cz but then obviously ¢ = max(c,, cg)
suffices.)

Thus €, €5 could be, for example, trees (¢ = 1), planar graphs (¢ = 3), or
2c-regular graphs. These can all be recognised in O(m) time if m = |V(G)|.

We are given a graph G with |V(G)| = 2m and the problem is to
partition V(G) into subsets A, B with |4| = |B| = m such that G[4] €
€,, G| B] € €p, or prove that this is impossible. For most common classes,
%,, €y this problem is NP-hard. See Dyer and Frieze [2] for further
information.

Here we will prove the following. Let T' be the class of 2m-vertex graphs
which have a partition into G, € €,,Gz € €. Then, if G is chosen
uniformly at random from T', we can partition G into graphs G’, € €¢,, G}
€ ¥y in O(m?) expected time. Note that the partition is not always unique
here, but we will show that there are almost always O(1) such partitions.
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Again we approach this result through a sequence of models. Model 1 is
the following: We have an arbitrary G, € €,, G, € €, with |V(G,)| =
|V(Gg)| = m. The vertices of V(G,) U V(G,) are labelled as a random
permutation of {1,2,...,2m}. Thus we may take 4 = V(G,), B = V(Gy),
where 4, B are as in Section 4. We will write G, = (4, E,), Gy = (B, Ejp).
Now, for p constant, we randomly select the edges in A4 : B, with probabil-
ity p, from the m? possible edges.

Consider the following algorithm. The idea behind it is to guess an edge
(s, ) with s € 4,t € B and decide whether v € 4 or v € B by counting
neighbours in I'(s), I'(¢). Apart from a few vertices (U) with large degree
in their own graphs, this is likely to yield a correct decision. Then U can be
dealt with by enumeration, provided it is small.

FIND 1
Determine the average degree d in G.
U« {(veV:8,(v)>dQ1 + d/am))
if |U| = loglog m then FIND 1 fails else
begin
select Z ¢ E(G) with |Z] = m at random;
for each edge (s,t) € Z do
begin
SeT(s); TeT(t); X« S-T,Y«<T-8§
fJoreachv & SU T do
begin
determine 8(v); 8,(v);
if 85(v) < 87(v) then X « XU {v) else Y « Y U {v)
end,;
for each v € S do
begin
if 8y(v) <8x(v) then X « X — {0}, Y« YU {v)
end,
fJor each v € T do
begin
if 8x(v) <8y(v) then Y « Y — (v}, X « XU {0}
end,
XeX-UYeY-U
for each W c U with |W| =m — |X| do
begin
X« XUW, Y, <YUU-W),
fGIX] € €,Glh] €%
or GINh] € ,,G[X] € &
then output partition, stop {success})
end
end
end
Stop Find 1 has failed.

The time-complexity of FIND 1, implemented in a straightforward man-
ner is easily checked to be O(m?).
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THEOREM 5.1. Under Model 1, Pr(FIND 1 fails) = O(e""ﬂ) for any
B <1.

Proof. Fix B and let 0 <y < i(1 - B). Then for vEA4,6,(v)2
mp(1 — m~Y) + §,(v) with probability 1 — O(e~™* ) and 51m11arly forv e
B. Thus d = mp(1 — m™") + 2¢ with probability 1 — O(e"" ).

Also for v € 4, §,(v) < mp(1 + m~") + §,(v) with similar probability.
Thus, almost surely, 8, (v) = d(1 + d/2m) implies

mp(1 + m~Y) +8,(v)

= (mp(1-m™") + 2c)(1 +ip(1 = m 1) + %)

ie.,
84(v) = 3mp*(1 - o(1)).

So for large m, certainly §,(v) > imp> Similarly for v € B. Thus U
contains only vertices with degree at least 1mp? in their own graph G, or
G, except for probability O(e~™”). However, since G, Ga have at most
cm edges, it follows by simple counting that |U| < 12¢/p? almost surely,
and hence |U| < loglog m.

Now, again by counting, G,, G have at least llm] vertices each of degree
at most 4c. Thus, with probability 1 — O(e~™") there are at least
im?p(1 — 0(1)) edges joining vertices of degree at most 4¢ in their own
graphs Since G has at most m*(1 + o(1)) edges altogether, the probability
that Z fails to contain an edge joining two vertices of degree at most 4c is
O(e™™?/%), by a straightforward calculation. Therefore we can assume
FIND 1 (if it has not already partitioned G) discovers an edge (s, ) € Z
with s € 4, t € B, and §,(s), 8,(1) < 4c.

However, the probability that for any a € 4, §5(a) < 2mp is o(e™™")
and similarly for §,(b), b € B. Thus S almost surely contains at least 2mp
vertices in B and at most 4c in A. Similarly for 7. Now consider
v& S UT. If v €A then, since the edges adjacent to v are unconditioned
(except for (v, t) &€ E(G)), we have 85(v) > £mp? with the required proba-
bility and §,(v) < 8,(v) + 4c. Hence v will be put in the tentative A4 set Y,
unless 8,(v) + 4c > mp®. For large m this implies 8,(v) > 1mp? and
hence v € U. Thus, almost surely, the only vertices misclassified are in U.

Now we turn to examining S, which lies in the tentative B set, X.
Suppose a € S N A. Note that

[ XN Bl =2m— |U| - 4c and [ XNA| < |U| + 4c

with a corresponding statement for Y. Thus, with the required probability,
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we can argue a priori that

8y(a) 2mp(1 —m™") — |U| — 4c
and
dy(a) <8,(a) +|U| + 4c.

Now a will be removed to Y unless 8,(a) = mp and hence a € U. Thus,
at the end of the phase, the only vertices misclassified are almost surely in
U. We now remove U from X and Y and consider all possible ways of

assigning them to give |X,| = |Y;| = m. Clearly one of these must yield
X, = B, Y, = A, almost surely. O

If FIND 1 fails we take the following approach. Choose a large set U,
and consider all possible guesses at U N 4, U N B. Sort the values 8,(v)
for v & U, and put the vertices with small §, value in with X. Finally
check for a few misplacements.

FIND 2
begin
Select U € V(G) with |U| = [m?/3], at random
for all Xc Udo
begin
Jor all v € V(G) — U do determine d(v) « 8y(v) od
k <« (m — | X|)th smallest d(v);
C« (v:d(v)<k}U Xsuchthat |C|=m; Ce V- C
for all S ¢ C with |S| < [m*?| do
begin
for begin
determine 8g(v); 8(v);
if 85(v) < 87(v) then X « XU (v} else Y « Y U {v)
end,
for each v € S do
begin
if 8x(v) <8y(v) then Y « Y — (v}, X « XU {v}
end,
XeX-UYeY-U
for each W € U with |W| = m — | X| do
begin
X< XUW, Y,«YU(U-W),
if GIX,) € €, GIV] € &
or GI¥,] € €,, G[X|] € &
then output partition, stop {success)
end
end
end
Stop Find 1 has failed.

The time-complexity of FIND 1, implemented in a straightforward man-
ner is easily checked to be O(m?).
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THEOREM 5.1. Under Model 1, Pr(FIND 1 fails) = O(e""p) for any
B<1l

Proof. Fix B and let 0 <y < i(1 - B). Then for ve A, §,(v) >
mp(1 — m~Y) + §,(v) with probability 1 — O(e~™") and snmlarly forv
B. Thus d = mp(1 — m~7) + 2¢ with probability 1 — O(e"” ). Also for
vE€ A4, §,(v) <mp(l + m™Y) + 8,(v) with similar probability. Thus, al-
most surely, 8,(v) = d(1 + d/2m) implies

mp(1+m™Y) + 8,(v)
>(mp(l-m™") + 20)(1 +1ip(1-m™7) + %),

ie.,
8,(v) 2 imp*(1 - o(1)).

So for large m, certainly §,(v) > imp Smularly for v € B. Thus U
contains only vertices with degree at least {mp? in their own graph G, or
G, except for probability Oo(e~ ). However, since G,, G5 have at most
cm edges, it follows by simple counting that |U| < 12¢/p? almost surely,
and hence |U | <loglog m.
Now, again by counting, G,, G have at least | lm] vertices each of degree
at most 4c. Thus, with probability 1 — O(e~™) there are at least
im?p(1 — o(1)) edges joining vertices of degree at most 4c¢ in their own
graphs. Since G has at most m?(1 + o(1)) edges altogether, the probability
that Z fails to contain an edge joining two vertices of degree at most 4c¢ is
O(e~™P/*%), by a straightforward calculation. Therefore we can assume
FIND 1 (if it has not already partitioned G) discovers an edge (s,t) € Z
with s € 4, t € B, and §,(s), 85(7) < 4c.

However, the probability that for any a € 4, 8z(a) < 2mp is O(e™")
and similarly for §,(b), b € B. Thus S almost surely contains at least 2mp
vertices in B and at most 4c in A. Similarly for T. Now consider
v & SUT.If v €4 then, since the edges adjacent to v are unconditioned
(except for (v, 1) & E(G)), we have §5(v) = 4mp? with the required proba-
bility and 8,(v) < §,(v) + 4c. Hence v will be put in the tentative A4 set Y,
unless 8,(v) + 4c > §mp?. For large m this implies §,(v) > 1mp? and
hence v € U. Thus, almost surely, the only vertices misclassified are in U.

Now we turn to examining S, which lies in the tentative B set, X.
Suppose a € S N A. Note that

IXNBl2m—|U —4c and |XNA|<|U|+4c

with a corresponding statement for Y. Thus, with the required probability,
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we can argue a priori that
8y(a) 2mp(1 = m™7) — |U| — 4¢
and

8y(a) < 8,(a) + |U| + 4c.

Now a will be removed to Y unless §,(a) = mp and hence a € U. Thus, at
the end of the phase, the only vertices misclassified are almost surely in U.
We now remove U from X and Y and consider all possible ways of
assigning them to give |X;| = |Y;| = m. Clearly one of these must yield
X, = B, Y, = A, almost surely. O

If FIND 1 fails we take the following approach: choose a large set U and
consider all possible guesses for U N 4, U N B. Sort the values of §,(v) for
v € U and put the vertices with small §, values in with X. Finally, check
for a few misplacements.

FIND 2
begin
Select U © V(G) with |U| = [m*/?), at random
for all X c Udo
begin
for all v € V(G) — U do determine d(v) « 8y(v) od
k < (m — | X|)th smallest d(v); _
Ce({v:d(w)<k}uU Xsuchthat |C| =m; C—V-C
for all S € C with |S| < [m*3] do
begin
for all Tc C with |T| = |S| do
begin
X, «(C-S)UT;Y,«(C-T)us
if G[X,) € €, and G[Y,] € ¥, or vice versa
then output partition: stop fi
end
end
end
Stop FIND 2 has failed.

LEMM:\ 5.2. FIND 2 takes 0Q2™"") time and has failure probability
O(e™™"*) under Model 1.

Proof. The running time is easily established. The failure probability
calculations are rather similar to those in Lemma 4.3. The only point to
note is that the only vertices misclassified by the d(v) calculations are those
which either (i) have very high degree in their own graph or (ii) have very
low degree in the 4 : B cut.

We bound the number of type (i) by counting and of type (ii) by their
probability. The enumerated loops will then, with very high probability find
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the A, B partition if FIND 2 has not already partitioned G. The details will
be left to the reader. O

If FIND 2 fails we use complete enumeration to partition G in 0(22")
time. The three-phase algorithm FIND then partitions G with certainty.

THEOREM 5.3. Under Model 1, FIND has expected running time O(m?).
Proof. Similar to that of Theorem 4.6. O

Model 2 selects M edges randomly from the 4 : B cut, with M + Q(m?).
LEMMA 5.4. Under Model 2, FIND has expected running time O(m?).
Proof. Similar to that of Lemma 3.5. O

Model 3 allows M to vary in Model 2 and chooses uniformly.

LEMMA 5.5. Under Model 3, FIND has expected running time O(m?).

Proof. There are (2,,';')2",'}_0(';: ) graphs in the sample space. It is easy to

show that Pr(M < 1m?) = O(e™""/8). The proof then follows the lines of
Theorem 3.12. O

We now wish to move to Model 3’ in which duplicates of Model 3 graphs
are deleted. To do this we return to Model 1. Note that, since FIND 1
almost surely works, there are almost surely at most 2!Y! ways of partition-
ing G, where U is as in FIND 1. But we showed in the proof of Lemma 5.1
that |U| < 12¢/p?, almost surely. It follows that there are almost surely
O(1) ways of partitioning G. This conclusion transfers to Model 2 (since the
failure probability is small) and hence to Model 3 and similarly to Lemmas
5.4 and 5.5 above. Thus in Model 3, there exists some constant K such that
G almost surely has at most K different partitions.

THEOREM 5.6. Let T be the class of graphs on 2m vertices which admit a
partition into G, € €,,Gg € €. Then if G is chosen uniformly at random
from T, FIND will partition G in O(m®) expected time.

Proof. We use Corollary 2.3(a) on the (Model 3) failure probabilities for
FIND 1 and FIND 2 as in Theorem 3.10, but with k = K (as defined
above), rather than k& = 1. Since K is a constant and the probability that
the number of partitions exceeds k is o(1), all probabilities are inflated by
only K(1 + o( 1)), and these remain small. It remains only to observe that
Model 3’ is that described in the theorem. O

This is the result we claimed earlier. Note that it is trivial to extend
Theorem 5.6 to non-uniform distributions on %,, ;. Note also €,, %,
could each consist of a single graph provided we can find its isomorphs in
polynomial time.
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6. 3-PARTITION

The 3-PARTITION problem is defined as follows. Given non-negative
integers By, B,,..., B;,, and an integer B, can we partition I =
{1,2,...,3m} into subsets T, T, ..., T, such that |T;| =3 and X ;.. B, =
B (i=1,...,m)? Clearly mB = 23':_'13 is necessary for the problem to be
non-trivial. It is well known [3] that this problem is strongly (unary)
NP-complete when B = Q(m?*).

We eventually consider the following model of a random 3-partitionable
instance. Let B(m) = wm?, where w = w(m) — oo with m, be an integer-
valued function of m. Now consider the uniform distribution on all
3-partitionable instances of 3-PARTITION with B < B(m), for given m.
Then, as m — oo, we can almost surely solve a random instance drawn
from this dlstnbunon in O(m?) expected time. Note that the requirement
that B = wm? includes all instances known to be NP-hard, by taking
B = Q(m*). Whether there are NP-hard instances of 3-PARTITION with
B as small as, say, m?*® for all e > 0 is, as far as we know, an open
problem.

Our result here is not quite as strong as in previous sections since we give
only almost sure, rather than polynomial expected time, solutions. This is
because the error probabilities are much too small to permit methods like
those used earlier, except in the extreme case where B grows exponentially
fast with m. However, the result here does show that our methods have
wider application than graph problems.

In this section Model 1 is as follows. Let R,, R,,..., R,, be a random
partition of 7/ such that |R,| =3 (i=1,...,m). For each R, = { p, q, r},
say, generate (B,, B,, B,) uniformly from the set of all triples of non-nega-
tive integers satisfying B, + B, + B, = B, where B is a fixed integer. Thus
each instance is certainly 3-partitionable.

Consider the following algorithm.,

PART
comment We first determine the set LIST of all triples {i, j, k), i <j <k, such that
B, + B, + B, = B. We do this in O(m? + |LIST)) time by a process analogous to merging
two sorted lists.//
Sort the { B;} sothat B, < B, < -+ < By,.
LIST« @
fori < 1to3mdo
begin
Jjelike3m
whilej < 3m, k > 1 do
begin
if B;+ B, > B~ B; thenk « k — 1
elseif B;+ B, < B — B thenj « j +1
elsel — k, 1«
while B,_, = B, do!l« | -1 od
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while B,,, = B, dot — 1+ 1 od
Jorp — max(/ + 1,i+ 1) to k do
for g — max(p + 1, j) tot do
add T= {i, p.q} to LIST
end
kel-1 je1t+1
end
comment We now search the list of triples, removing any which are “forced” by having an
element which appears only in that triple, hoping to construct a 3-partition.//
S«
for k « 1 tomdo
begin
Search LIST to determine any i such that
i € T for a unique triple T;
if no such i, T then stop, PART has failed
S<SuU({T)
forje Tdo
for T" € LIST do
if j € T’ then dclete T’ from LIST
end
stop, S contains the required 3-partition.

It is not difficult to implement PART so that it runs in O(m? + m|LIST|)
time. It is evident that, if PART succeeds in constructing a solution, then
the solution is unique, since all triples used are forced. Thus, proving that
PART almost surely works automatically proves that solutions are almost
surely unique.

THEOREM 6.1. Under Model 1,

(1) If B = wm? then PART almost surely succeeds, runs in O(m?) time
and solutions are almost surely unique.

(i) If B = o(m?) then PART almost surely fails, and solutions are
almost surely not unique.

Proof. (i) First note that, if i, j € R, for some k,
2
T (B+1)(B+2)
2B-x+1)
T (B+1)(B+2)

Let us call 4, j (or B, B;) related if {i, j} C R, for some k, otherwise
unrelated. Unrelated variables are independent in Model 1, so for unrelated

i J,

Pr(B, = x, B; = y) (0<x+y<B) (61)

Pr(B, = x) (0 <x<B). (6.2)

2(2B + 3) 4
“3B+1)(B+2) 3B

by a simple calculation using (6.2).

Pr(B, = B))

(6.3)
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Let us call a triple T= {p,q,r} €I bad if T+ R, for any k and
B, + B, + B, = B. Let Q be the event that there exists k and a bad tnple T
such that ITNR,| =2 Let {p}=T~-R,,{q} =R, — T. Then Q im-
plies B, = B, with p, g unrelated. Thus

Pr(Q) < Pr(3p, g unrelated with B, = B,)

< 3? 4 6’ 1 ing (6.3
( )3_B 3 = 0(1), using (6.3).
Thus we may assume that O occurs.

Suppose PART fails during the construction of the solution set S. Let
LIST refer to the undeleted triples at this stage. We show there exists a
sequence 1), T,,...,T,, k=2, of disjoint bad triples where T, =
{pi»q;r} €LIST fori=1,2,..., k and

g; and p,,, arerelated fori =1,2,..., k — 1. (6.4a)
k-1
q, is related to one element of |J 7;. (6.4b)

i=1
k

Any pair of elements from |J 7, not mentioned

~ (6.4c)
in (6.4a), (6.4b) are unrelated.

Now LIST must contain at least one bad triple, else all the triples in
LIST are forced. Let T; be any such bad triple. Suppose now that we have
succeeded in constructing Ty, T,,..., T, where s = 1 or (6.4a) and (6. 4c)
hold with k = s and suppose that (6 4b) does not hold. Let 4, ER;
{4q,, a, b}, where a, b & U;_,T; by assumption. Let p _,, =

LIST must contain another bad triple containing a, else R is forced. Let
T.., = {a, x, y} be this triple. If either of x, y are related to a previous
element then with the appropriate choice of x or y for ¢q,,,, we have
satisfied (6.4) with k = s + 1. (Note that Q prevents x being related to a
or y.) Otherwise the process continues.

Clearly, after no more than |LIST| steps (6.4b) will be satisfied. Now the
number of ways of choosing elements satisfying (6.4) is no more than

(™) 1('" Ly 1)3"(2k) < 3% 19kj 2k

m — .
(k i 1)6" ! ways of choosing q,, P3, 43, -» Gi_1»

then (m ;_’: ;' i )3" *1 ways of choosing

P1> 1> Iy« - -5 Iy, then 2k ways of choosing g,
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The probablhty that such a choice satisfies B, + B, + B, = B for i =
1,2,..., k is less than (2B)X. To see this, first note that glven the values
B,, B for i=12,..., k— 2, the probability that B, = B — B, — B, for
i=1, 2 Jk—2is at most (2/(B + 2))*=2 by (6. 2) Given this and the
values of B B o the probability that B, = B — B,  —B

and B, i B, - B is 2/(B + 1)(B + 2) by (6.1). Hence

Pr((6.4) holds) < i k((’BL,() = 0(m*/B?).
k=2

and so
Pr(PART fails) < Pr(Q) + 0(m?*/B?) = o(1).

To show that PART runs in O(m?) expected time we show that E(|LIST|)
= m + o(m) after the triple construction phase. But if BAD = {bad triples}
then (6.1) and (6.2) imply that E(|BAD|) = O(m?®/B) = o(m) and the
result follows.

(ii) We now consider briefly B = o(m?). Let U be the event that there
exist unrelated i, j with B, = B.. If U occurs, the solution is clearly not
unique. Moreover, PART will fail since, if i € R, = {i, p,q} and j € R,
= {J.,r, s}, the set of triples, R,, R ,{}j, p,q},{i,r,s} cannot be re-
solved (because every index appears twice). So we need only show that U
almost surely occurs. We do this by the standard second moment method.
Let X be the number of unrelated pairs i, j such that B, = B, It is easy to
show that

E(X)=6m*/B and  E(X?)=36m/B*+ 6m?/B

Now, Pr(U) = Pr(X > 0) > E(X)?>/E(X)% Hence Pr(U) = (1 — o(1))/
(1 + B/6m?) =1 — o(1) if B = o(m?). O

Theorem 6.1 provides a “weak threshold” for both unique solutions and
the success of PART, under Model 1. It leaves only the case B = ©(m?)
unresolved. We would not like to guess what happens here. It is clear that
the event U of Theorem 6.1 can have probability bounded away from either
0 or 1. It is possible that we always have, as m — oo, Pr(unique solutions)
— Pr(PART succeeds) — Pr(U), which would be “typical” behaviour for
thresholds of this type, but this looks a little doubtful.

Model 1 may be regarded as selecting uniformly from a sample space of

(Y
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different instances. Model 1’ will be the model given by deleting repetitions
of the same instance, ie., copies of instances not possessing a unique
3-partition.

LEMMA 6.2. Under Model 1', with B = wm?, solutions are almost surely
unique and PART almost surely succeeds.

Proof. Uses Corollary 2.3(a) in a standard way. O

We finally move to Model 2, in which B can vary in Model 1, with
Model 2’ being given by deleting copies. We assume 0 < B < B = wm?.

LEMMA 6.3. In Model 2, PART almost surely succeeds and solutions are
almost surely unique.

Proof. We select uniformly from
_GBmy 2 (B + 2)"‘
(3™ g2\ 2
instances. Now

1\ B2 oxm[E g e 1
Pr(Bs—B)= 2( ¥ ) 2( ) =o(—m)
2 B=0 2 B=0 2 22

by a straightforward calculation. Thus, almost surely, B = wm? and the
lemma follows from Theorem 6.1. O

Moving finally to Model 2/, we have

THEOREM 6.4. If B = wm? and instances are randomly selected uniformly
from all partitionable instances of 3-PARTITION with givenmand 0 < B <
B, the PART will almost surely construct the (almost surely unique) 3-parti-
tion.

This is the result we claimed.

7. CONCLUSIONS

We have shown that, under fairly natural models, various NP-hard
problems can be solved rapidly on average if we are guaranteed that the
instances possess the property we are seeking. We have shown this for
graph k-colourability, a small equitable cut, partitioning into sparse graphs,
and 3-PARTITION. This probabilistic result is in contrast to the worst-case
conclusion, which is that such guarantees are computationally worthless.



RANDOM NP-HARD PROBLEMS 489

We believe that our results indicate that it is quite difficult to disguise
structure, and instances of a given structure are usually apparent to rapid
investigations. This clearly has implications for the design of heuristics for
solving NP-hard problems. An interesting case is crytography, where ran-
domness is often deliberately used in a attempt to hide a structure (the
message) which is known to be present.

Finally, we believe that our approach is quite general, and corresponding
models of other NP-complete problems can be developed. Among graph
problems we might approach large stable set or dominating set by similar
methods. These yield to very easy algorithms based on vertex degrees. For
non-graph problems, satisfiability problems can be approached in a similar
way. Perhaps of greater interest is an extension of results like those of
Section 4 to NP-hard optimisation problems, for example to find the largest
stable set and prove we have found it in expected polynomial time.
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