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MATHEMATICS OF COMPUTATION 
VOLUME 50, NUMBER 181 
JANUARY 1988, PAGES 235-250 

Polynomial Factorization and Nonrandomness 
of Bits of Algebraic and Some Transcendental Numbers 

By R. Kannan, A. K. Lenstra, and L. LovAsz 

Abstract. We show that the binary expansions of algebraic numbers do not form secure 
pseudorandom sequences; given sufficiently many initial bits of an algebraic number, its 
minimal polynomial can be reconstructed, and therefore the further bits of the algebraic 
number can be computed. This also enables us to devise a simple algorithm to factor 
polynomials with rational coefficients. All algorithms work in polynomial time. 

Introduction. Manuel Blum raised the following question: Suppose we are 
given an approximate root of an unknown polynomial with integral coefficients and 
a bound on the degree and size of the coefficients of the polynomial. Is it possible 
to infer the polynomial? We answer his question in the affirmative. We show that 
if a complex number a satisfies an irreducible polynomial h(X) of degree d with 
integral coefficients in absolute value at most H, then given O(d2 + d* log H) bits 
of the binary expansion of the real and complex parts of a, we can find h(X) in 
deterministic polynomial time (and then compute in polynomial time any further 
bits of a). Using the concept of secure pseudorandom sequences formulated by 
Shamir [23], Blum and Micali [3] and Yao [25], we then show that the binary (or 
m-ary for any m) expansions of algebraic numbers do not form secure sequences in 
a certain well-defined sense. 

We are able to extend our results with the same techniques to transcendental 
numbers of the form log(a), cos-'(a), etc., where a is algebraic. 

The technique is based on the lattice basis reduction algorithm from [16]. Our 
answer to Blum's question enables us to devise a simple polynomial-time algorithm 
to factor polynomials with rational coefficients: We find an approximate root of 
the polynomial and use our algorithm to find the irreducible polynomial satisfied 
by the exact root, which must then be a factor of the given polynomial. This is 
repeated until all the factors are found. This algorithm was found independently 
by Sch6nhage [22], and was already suggested in [16]. 

The technique of the paper also provides a natural, efficient method to compute 
with algebraic numbers. 

This paper is the final journal version of [13], which contains essentially the entire 
contents of this paper. 

1. A Polynomial-Time Algorithm for Blum's Question. Throughout this 
paper, Z denotes the set of the integers, Q the set of the rationals, R the set of the 
reals, and C the set of the complex numbers. The ring of polynomials with integral 
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236 R. KANNAN, A. K. LENSTRA, AND L. LOVASZ 

(complex) coefficients will be denoted Z[X] (C[X]). The content of a polynomial 
p(X) in Z[X] is the greatest common divisor (abbreviated gcd) of its coefficients. A 
polynomial in Z[X] is primitive if its content is 1. A polynomial p(X) has degree d 
if p(X) = Ed o piX' with Pd : 0. We write deg(p) = d. The length IPI of p(X) = 

i=o piX' is the Euclidean length of the vector (Po,iPli, . . ,Pd); the height IPIO 
of p(X) is the LOO-norm of the vector (Po,Pi, , Pd), SO IPIO = maXO<i<d lpiI An 
algebraic number is a root of a polynomial with integral coefficients. The minimal 
polynomial of an algebraic number a is the irreducible polynomial in Z[X] satisfied 
by a. The minimal polynomial is unique up to units in Z (see, for example, [11]). 
The degree and height of an algebraic number are the degree and height, respectively, 
of its minimal polynomial. The real and complex parts of a complex number z will 
be denoted Re(z) and Im(z) respectively. 

A lattice in R' is a set of the form 

{ Aibi: AiE Z 

where b1, b2,... ,bk are linearly independent vectors in R'. The lattice is said 
to be generated by the vectors b1, b2,..., bk, which form a basis for the lattice. 
The lattice is denoted L(bl, b2,..., bk). An important result we need is the basis 
reduction algorithm from [16, Section 1]. We will only state the consequence of this 
algorithm used in this paper. Denote by I I the ordinary Euclidean length on R'. 

(1. 1) THEOREM (cf. [16, Propositions (1.11) and (1.26)]). Let 

L = L(bl,b2,. .,bk) 

be a lattice in Zn and let B E R, B > 2, be such that bib12 < B for 1 < i < k. 
It takes O(n k3 log B) arithmetic operations (additions, subtractions, multiplica- 
tions, and divisions) on integers having O(k . logB) binary bits to transform the 
basis b1, b2,... , bk by means of the basis reduction algorithm into a reduced basis 
V1,V2,... , Vk for L. The first vector vi in the reduced basis has length at most 
2(k-l)/2 A1(L), where A1(L) is the length of a shortest nonzero vector in L. 

Now we are ready to describe the idea behind our main result. Suppose upper 
bounds d and H on the degree and height, respectively, of an algebraic number a 
are known. Then we show that a sufficiently close rational approximation a to a 
enables us to determine the minimal polynomial h(X) of a. 

Given a, we compute rational approximations di to the powers ai of a. For 
a polynomial g = Ei giX' E C[X] we introduce the following notation for the 
approximated evaluation of g at a: 

(1.2) g = E gii. 

Suppose the degree of h(X) is n, n < d. We try the values of n = 1, 2, ..., d in order. 
With n fixed, we define for each positive integer s the lattice L, in R'+3 generated 
by bo0 b1, .b . , bn which are the rows (in order) of the following (n + 1) x (n + 3) 
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ALGEBRAIC AND TRANSCENDENTAL NUMBERS 237 

matrix: 
1 0 0 0 28 Re(do) 28. Im(o) - 

O 1 0 0 28 Re(dj) 28 Im(dj) 
O O 1 0 28 Re(d2) 28. Im(d2) 

(1.3) 

O O 0 1 28 Re(dn) 28 Im((n) 
Corresponding to a polynomial g = E 0 giXi in Z[X] of degree at most n (where 
some of the gi are possibly zero), we have a vector 9 in the lattice L, defined by 

n 
(1.4) =E gibi. 

i=O 

Clearly, 

M= 9o6+91 + '+gn8 + 2 ( Re (giai) + 22 (I E 9idi) 

= 1g12 + 22sigai2. 

This correspondence between polynomials in Z[X] of degree at most n and vectors in 
the lattice L, is easily seen to be 1-1 onto and readily invertible. We will strongly 
separate the minimal polynomial h(X) of a from all other polynomials g(X) of 
degree n or less with g(a) :A 0 by showing that for a suitable choice of s and small 
enough Iaiadi I, 

1912 > 2nIhI2. 

We run the basis reduction algorithm on bo, b1, . .. , bn to get a reduced basis. Sup- 
pose v is the first vector of this basis, and v(X) the corresponding polynomial. 
Because the degree of h was supposed to be equal to n, we have that h is contained 
in L8, so that A1(L,) < lhl. Theorem (1.1) now yields IjI2 < 2nIhI2, and therefore 
v(a) = 0 by the strong separation. This implies that h is a factor of v. Combining 
this with deg(v) < deg(h), we see that v and h are associates; further, the fact that 
v belongs to a basis for L, implies that v = ?h. 

The s needed will be bounded by a polynomial function of d and log H. Here is 
a short intuitive description of how the strong separation is proved. If the powers 
of a are sufficiently close to the di, clearly ha is close to h(a) = 0 (quantified in 
Lemma (1.5)). Thus Ihi2 = Ih12+(a small term) and can be bounded above. To 
show that 1I12 is large for other g, we consider two cases: If lgl is large, then of 
course 191 is large. If lgl is small, then we show that Ig(a)I has to be bounded from 
below (Proposition (1.6)). Again, Igitl being close to Ig(a)I, we are able to bound 
it from below and hence bound also I9I2 from below. 

(1.5) LEMMA. If a and di for 0 < i < n are complex numbers such that 
do = 1, and jai - diI < e for 1 < i < n and f is a polynomial of degree at most n 
in C[X], then 

If(a)-faI ? n If l. 
Proof. Immediate. 
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238 R. KANNAN, A. K. LENSTRA, AND L. LOVASZ 

(1 .6) PROPOSITION. Let h and g be nonzero polynomials in Z[X] of degrees n 
and m, respectively, and let a E C be a zero of h with lal < 1. If h is irreducible 
and g(a) $ 0 then 

lg(a)l > n-1 Ihl-m . lgl-n+l 

Proof. Because h is nonzero and a is a zero of h we have that n > 1. If m = 0, 
then g(a) = lgl, so that the result follows. Now assume that m $ 0. Define the 
(n+ m) x (n +m) matrix M as the matrix having ith column Xi-1 h for 1 < i < m, 
and Xi-m-1 g for m+1 < i < n+m, where the polynomials X'-1 h and Xi-m-1 9 
are regarded as (n + m)-dimensional vectors. By R we denote the absolute value 
of the determinant of M, the so-called resultant of h and g. 

We prove that this resultant R is nonzero. Suppose on the contrary that the 
determinant of M is zero. This implies that a linear combination of the columns 
of M is zero, so that there exist polynomials a, b E Z[X] with degree(a) < m and 
degree(b) < n such that a h + b g = 0. Because h is irreducible, any nontrivial 
common factor of h and g must have a as a zero, so that with g(a) $ 0 we have 
that gcd(h, g) = 1. Therefore, we have that h divides b, so that with degree(b) < n, 
we find b = 0, and also a = 0. This proves that the columns of M are linearly 
independent, so that R $ O. Because the entries of M are integral, we even have 
R > 1. 

We add, for 2 < i < n + m, the ith row of M times T'-1 to the first row of 
M. The first row of M then becomes (h(T),T h(T),... Tm1 h(T),g(T),T 
g(T), ... I T, . g(T)). Expanding the determinant of M with respect to the first 
row, we find that 

R = lh(T) (ao +a, T + +am-,1 Tm-1) +g(T) (bo +bl *T + +bn_ 1 Tn-1)l 

where the ai and bj are determinants of (n + m - 1) x (n + m - 1) submatrices of 
M. Evaluating the above identity for T = a yields 

(1.7) R= lg(a)l lbo +bi a+ * +bn-1 can-1, 

because h(a) = 0. From Hadamard's inequality it follows that lbl < hhlm . Igln-1. 
Combining this with lal < 1 we get 

lbo + b, a + + bn-1 an-11 < n - hlm . gln-1, 

so that (1.6) follows from (1.7) and R > 1: 

lg(a)l > n-1 Ihl-m lgl-n+l. 

This proves Proposition (1.6). 
(1.8) Remark. Proposition (1.6) implies that two algebraic numbers that are 

not conjugates (conjugates are roots of the same irreducible polynomial in Z[X]) 
cannot get very close. More precisely, suppose a and : satisfy distinct irreducible 
primitive polynomials h(X) and g(X), respectively, in Z[X], each of degree at most 
n. Without loss of generality suppose that 1/1 < lal < 1, and let la - !1 be -i. It 
is easy to see that lg(a) - g(C)I < -Y lglO, n(n - 1)/2. Now a lower bound on -Y 

follows from Proposition (1.6). This kind of separation result also holds if a and : 
are conjugates (see for instance [21, Section 20]). 
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(1.9) LEMMA. Suppose a is a complex number with laI < 1 and with mini- 

mal polynomial h of degree at most d > 1 and height at most H, and suppose di 

satisfies dxo = 1 and Jai - ail < 2-9 for 1 < i < d. Let g be a polynomial with 

integral coefficients of degree at most d such that g(a) $ 0. Then with the notation 

introduced in (1.4), the following inequalities hold: 

(1.10) Ihl < (d + 1) H, 

(1.11) J9l > 2d/2 * (d + 1) H, 

provided 

(1.12) 28 > 2d 2/2. (d + 1)(3d+4)/2. H2d. 

Proof. First notice that 

(1.13) If 12 < (d +1) If 12 

holds for any polynomial f of degree at most d. To prove (1.10), we combine 

Ih12 = Ihi2 + 22-'Ihal2 and Ihal = Ih(a) - hIl < 2'8 d* H (Lemma (1.5)): 

IhI2 < 1h12 + d2 . H2 

< (d+1) H2+d2 H2 (cf. (1.13)) 

< (d + 1)2 H 2. 

This proves (1.10). We now prove (1.11). Clearly, if lgl > 2d/2 (d + 1) H, we 

are done because 1912 = JgJ2 + 2289,lgl2. So assume lgl < 2d/2 * (d + 1) H. By 

Proposition (1.6) and (1.13), 

g(a) > d-1 ' ((d + 1) . H2)-d/2 (2d/2 * (d + 1) H)-d+ 

> 2-d(d-l)/2 . (d + 1)-3d/2. H-2d+ 

so that, with Lemma (1.5) and a - il < 28 

191 , 2, Igal 

(1.14) > 2 . (2-d(d1)/2 . (d + 1)-3d/2 . H-2d+1 - 2-8 d | lg) 

= 2 2 d(d 1)/2 . (d + 1)-3d/2 . H-2d+1 - d g1. 

From (1.12) and 12d/2 * (d + 1) HI > lgl > lglco we get 

28 . 2-d(d- 1)/2 . (d + 1)-3d/2 . H-2d+1 

> 2d/2 * (d + 1)2 H = (d (d + 1) + (d + 1)) .2d/2 * H 

> d Igloo + 2d/2 (d + 1) H, 

which, combined with (1.14), yields (1.11). This proves Lemma (1.9). 

(1.15) THEOREM. Let a,h(X),d,H, and axi E 2-9Z [VX/], for 0 < i < dy 
satisfy the hypothesis of Lemma (1.9), where s is such that (1.12) holds. Let n be 

an integer satisfying 1 < n < d, and suppose that the basis reduction algorithm on 

input bo, b1, ... , bn defined in (1.3) yields a reduced basis with 
En 

= Z,no vibi as the 

first vector. Then the following three assertions are equivalent: 

(i) I <2d/2.(d+ 1)H; 

(ii) aC satisfies the polynomial v(X) = Zn=O viX'; 
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240 R. KANNAN, A. K. LENSTRA, AND L. LOVASZ 

(iii) the degree of a is at most n. 

Furthermore, if n equals the degree of a, then h(X) = ?v(X). 

Proof. First notice that the lattice L, = L(bo, b1,... , bn) is contained in Zn+3, 
so that Theorem (1.1) can be applied to L8, and that the conditions for Lemma 
(1.9) are satisfied. 

Assume (i). From Lemma (1.9) we get v(a) = 0, which is (ii). 

Next, assume (ii). Then a satisfies a polynomial of degree at most n, which is 
(iii). 

Finally, assume (iii). This implies that h has degree at most n, so that h is a 
well-defined vector in L,. Lemma (1.9) yields lhl < (d + 1) H, so that in the 
notation of Theorem (1.1) we have A1 (L,) < (d + 1) H. It then follows from 
Theorem (1.1) that I<I ? 2d/2 (d + 1) . H, which is (i). This proves the equivalence 
of (i), (ii), and (iii). 

If n equals the degree of a, then (iii) is satisfied, so that a satisfies v(X) (from 
(ii)). Because deg(h) = n, deg(v) < n, and h is irreducible, we then have that v is 
an integral multiple of h. It follows that h = +v because both h and v are contained 
in L8, and because v belongs to a basis for L,. This proves Theorem (1.15). 

This theorem leads to the following algorithm for finding the minimal polynomial 
of a: 

(1.16) ALGORITHM MINIMAL POLYNOMIAL. Suppose we get on input upper 
bounds d and H on the degree and height, respectively, of an algebraic number a 
with lal < 1 and a complex rational number a approximating a such that i1i < 1 
and la - al < 2-8/(4d), where s is the smallest positive integer such that 

28 > 2d2/2 . (d + 1)(3d+4)/2 . H2d. 

First compute dei E 2-8Z [x/ZT, for 0 < i < d, such that do = 1 and ai - di < 
2-8-1/2 for 1 < i < d. This can be done by rounding the powers of a to s bits after 
the binary point. (It is easily verified that the di satisfy the conditions in Theorem 
(1.15), see Explanation (1.17).) 

For n = 1, 2,. . ., d in succession we do the following: 

- Apply the basis reduction algorithm to the lattice L = L (bo, bi, ... , bn) as 
defined in (1.3). 

- If the first basis vector v in the reduced basis satisfies I<I ? 2d/2 * (d+ 1) H, 
then let v(X) be the polynomial corresponding to v by the relation defined 
in (1.4), return v(X) as the minimal polynomial of a, and terminate the 
execution of Algorithm (1.16). 

This finishes the description of Algorithm (1.16). 
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(1.17) Explanation. We show that the di for 1 < i < d satisfy the conditions in 
Theorem (1.15), i.e., jaiaei < 2-9: 

Iaz - aI ? Iaz - &I1 + a& -ail 

< Ia - S lalI-j lli-1 + 2-8-1/2 (due to the rounding) 
j=1 

d ? 2 +2-28-1/2 
< 2-8 -4d 

(1.18) Explanation. It is no major restriction to consider a with lal < 1 only. 
Namely, if a 0 0 satisfies the polynomial h(X) = Ed> hiX, then 1/a satisfies 

Ed=o hd-iXi. Furthermore, an e-approximation a to a with lal > 1 easily yields 
a 3 e-approximation 3 to : = 1/a. Let Ia - a < e with e such that 0 < e < 1/2. 
Determine : such that 1/-1/al < e; then 

1/3-1?' 1: 1 
- 

1 a-al 
+ /3 _ 

ad a*d 

+e 
-a IaIIel 

Now 1a1 > (1 - e)Ial, so lal > IaI/2 > 1/2. So 1 - 1 < e[2 + 1] = 3 e. 

(1. 19) THEOREM. Let a be an algebraic number and let d and H be upper 
bounds on the degree and height, respectively, of a. Suppose that we are given an 
approximation ( to a( such that la-dIl < 2-8/(12d), where s is the smallest positive 
integer such that 

28 > 2d2/2. (d + 1)(3d+4)/2 H2d. 

Then the minimal polynomial of a can be determined in O(no d4 (d + log H)) 
arithmetic operations on integers having O(d2 (d + log H)) binary bits, where nO 
is the degree of a. 

Proof. In order to be able to apply Algorithm (1.16), we replace a by 1/a if 
necessary. It follows from Explanation (1.18) that a then yields an approximation 
/ to / = 1/a such that 1/ - 31 < 2-8/(4d). 

Now apply Algorithm (1.16). For a particular value of n the logarithm of the 
length of the vectors bi in the initial basis for the lattice L, = L(bo, bl, ... , b") is 
O(d2 + d log H) due to the choice of s. Application of the basis reduction algorithm 
to L, can therefore be done in O(n-d4 (d+log H)) arithmetic operations on integers 
having O(d2 . (d + log H)) binary bits. 

When going from n to n + 1 in Algorithm (1.16), we do not have to restart 
the basis reduction algorithm for the new lattice: We just add a new vector bn+i 
and a new dimension in which all the old vectors have a zero component, whereas 
bn+1 has component 1. It follows from this observation and [16, (1.37)] that the 
applications of the basis reduction algorithm for all n < nO together can be done in 
O(no d4 (d + log H)) arithmetic operations on integers having O(d2 . (d + log H)) 
binary bits. 

This bound clearly also holds for the computation of the di, which proves The- 
orem (1.19). 
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(1.20) Remark. A. Schonhage [22] has shown that for the lattice and the basis 
in (1.3), the basis reduction algorithm only needs O(n d3 (d + log H)) arithmetic 
operations on integers having O(d. (d + log H)) binary bits. This implies that 
Algorithm (1.16) actually needs O(no d3 (d+log H)) operations on O(d (d+log H))- 
bit integers. 

A further improvement of a factor d in the number of operations can be obtained 
by means of Schonhage's improved basis reduction algorithm [22]. The formula- 
tion of Algorithm (1.16) should however be modified slightly to incorporate this 
improvement, as the analogue of [16, (1.37)] does not hold for the improved basis 
reduction algorithm; for details we refer to [22]. For a more efficient algorithm for 
basis reduction see also a paper by Schnorr [20]. 

2. Ramifications. The algorithm of the preceding section can be interpreted as 
saying the following: Polynomially many bits of an algebraic number are sufficient 
to specify it completely (polynomially in the number of bits needed to write down 
its minimal polynomial). In a vague sense, then, the bits of algebraic numbers are 
not random, but are completely determined by the first polynomially many bits. 
We will not make this sense very precise here the cryptography papers referred to 
below undertake this task, but we will attempt to provide an intuitive description 
of why the results of the previous section show that the bits of algebraic numbers 
are not '(secure) pseudorandom' bits in the terminology of cryptographers. 

The question of when an (infinite) sequence of 'bits' (O's and l's) is random has 
been raised for a long time, and various reasonable definitions have been provided. 
Since any such sequence may be considered to be the binary expansion of a real 
number between 0 and 1, a rewording of the question is: When are the bits of 
a real number random? (The phrase 'the bits of a real number' will mean the 
binary expansion of the fractional part of the number.) The classical definition 
was provided by Borel in 1909 [4]. The gist of it follows: Define a real number 
a to be normal with respect to the base 2 if for any natural number k, each of 
the 2k possible 0-1 strings of length k occur with equal probability in the bits of 
a. A similar definition can be made for other bases. It was not difficult to show 
that most real numbers are normal. It was shown by Champernowne [7] in 1933 
that the real number ao which equals the infinite decimal .123456789101112... 
(whose digits are obtained by juxtaposing the digits of the integers 1, 2, 3, 4,... ) is 
normal to the base 10. Copeland and Erdos [6] generalized this to any basis and a 
class of reals including ao and a1 = .2357111317... whose digits are obtained by 
juxtaposing the digits of successive primes. An excellent discussion of the various 
classical definitions of when a sequence is random appears in [14, Section 3.5]. 

In several applications related to computer science one would like a notion of 
randomness that implies some kind of unpredictability. The importance of this for 
cryptography as well as complexity theory is discussed in [23], [3], and [25]. Some 
other relevant papers related to this discussion are [9] and [8]. Of course, the bits 
of the real number ao above are eminently predictable; thus intuitively, normalcy 
does not seem to be a good criterion for randomness in this setting. Besides this 
objection, there is another-we cannot really define randomness for one single real 
number and still have unpredictability. The model we have in mind is one where 
a player A presents a player B with some bits of a real number and B is trying to 
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predict the next bit. If there is one fixed real, B can compute the bits as fast as A 
can, and all bits are clearly predictable. So we will have to consider a set of numbers. 
The simplest set is the set of rationals. Blum, Blum and Shub [2] have shown the 
following: If A announces that he is giving out the bits of a rational number with 
denominator at most H, then after seeing 2 10g2 H bits of the rational number, 
B can figure out its fractional part and thus compute the other bits in polynomial 
time. Since A needed at least 10g2 H bits to store the rational, he cannot get a 
pseudorandom sequence of length more than a constant (2) times the length of the 
'seed'. 

The main result of the preceding section may be restated as follows: 
If A announces that he is giving the bits of an algebraic number which is the root 

of an irreducible primitive polynomial of degree d or less with integral coefficients 
each of absolute value at most H, then after seeing O(d2 + d 10g2 H) bits, B can 
compute in deterministic polynomial time the polynomial and hence find for any n 
the nth bit of the algebraic number in time polynomial in the data and n (for the 
latter statement see also Section 3). 

Intuitively, our result can be interpreted as saying that the bits of algebraic 
numbers cannot form very long pseudorandom sequences, because after seeing a 
number of bits that is polynomial in the length of the seed (the seed in this case 
would be the polynomial held by A) the sequence can be easily and uniquely in- 
ferred. As mentioned earlier, the question of whether this can be done was first 
raised by M. Blum (private communication) who foresaw the importance of the 
notion of predictability. 

Another ramification of the result of the preceding section is that computations 
involving algebraic numbers can be done in a natural way by representing alge- 
braic numbers by suitable rational approximations. The traditional representation 
of algebraic numbers is by their minimal polynomials (see, for example, [24] or 
[17]). We now know an efficient method of converting the rational approximation 
representation to the minimal polynomial representation. (For the conversion in 
the other direction, see Section 3.) While it is not hard to see that computations 
in either representation can be changed to computations in the other without loss 
of efficiency (the running time will not change by more than a polynomial), the 
rational approximation method is closer to the intuitive notion of computation. 
For this reason we briefly sketch as an example a polynomial-time algorithm for 
finding a primitive element (see definitions below) of the rationals extended by two 
algebraics. Landau and Miller [15] gave in 1983 a polynomial-time algorithm for 
the same problem as part of their algorithm for testing solvability by radicals. 

First we remark that if a and ,3 are two algebraic numbers, then given sufficiently 
close approximations to both, we can find the minimal polynomial of,B over Q(a) 
the least-degree polynomial p(X) with coefficients in Q(a) satisfied by ,B. This is 
done as follows. Suppose the degree of a over Q is d; then clearly each coefficient 
of p(X) can be taken to be a polynomial in a of degree at most d - 1 with integral 
coefficients. Suppose the degree of ,3 over Q(a) is m (we try m = 1, 2, ... in order). 
Then p(X) = E Zj=o pijaa'X' for some Pij E Z. We can turn the problem of 
finding the Pij (i.e., the problem of finding the minimal integral dependence among 
the ajO' for 0 < j < d - 1 and 0 < i < m) into a lattice problem in exactly the 
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same way as we turned the problem of finding the minimal integral dependence 
among a& for 0 < j < d into a lattice problem in the preceding section. In the 
interest of space we do not elaborate. 

Suppose that a is algebraic over Q of degree d, and ,3 is another algebraic number 
whose degree over Q(a) is m, where d and m are determined as described above. 
The field Q(a,,3) obtained by adjoining a and ,3 to the set of rationals is the set of 
all complex numbers expressible as polynomials in a and ,3 with rational coefficients. 
It is known that this field has a primitive element -y, i.e., an element -y with the 

property that Q(a,,B) = Q(-y), and indeed -y = a + I ,B, where I is a nonnegative 
integer at most d m. It is also easy to see that if the degree of a + I .,B is d . m over 
Q, then Q(a + I .,3) must be equal to Q(a,,3). Thus we can use the algorithm of 
Section 1 to find the degree of a+1 ,3 over Q for I = 0, 1, .. ., d m, given sufficiently 
close approximations to a and ,B, and thereby find the primitive element. It would 
be interesting to cast the entire algorithm for testing solvability by radicals into 
one that deals with explicit approximations to the algebraic numbers involved. 

The idea of computing with algebraic numbers in this fashion needs to be ex- 
plored further. While it is too early to say if the algorithms will be better in 
practice, they should yield good theoretical and/or empirical insights. 

The method of finding the minimal polynomial of ,3 over Q(a) can be ex- 
tended to finding algebraic dependence between any number of complex num- 
bers. More exactly, let a1, a2,... , at be (possibly transcendental) complex num- 
bers given by sufficiently good approximations. Assume that we know an upper 
bound d on the degree and an upper bound H on the coefficients of a polynomial 
f E Z[Xl,X2,.. ,Xt] with f(a1,a2,...,at) = 0. Then we can compute such a 
polynomial f in time polynomial in log H and (d+dj 1). (This latter number is poly- 
nomial in d for fixed t and in t for fixed d.) The precision to which the numbers ai 
must be known is also a polynomial number of bits in log H and (d+d-1). 

This yields a factorization algorithm for multivariate polynomials: Given f E 
Z[X1,X2,... , Xt], substitute sufficiently large random numbers 2, S3,... ,St for 

X2,X3,... ,Xt, compute an si such that f(8l,S2,. . -,St) 0, and then find an 
algebraic dependence between 81, 82,.... I, st. For t = 2, a slight variant of this idea 
is worked out in detail in [12]. 

Applications to Some Transcendental Numbers. The same technique can be ap- 

plied to transcendental numbers of the form cos-1 (a), sin-1 (ce), log(a) etc., where 

a is an algebraic number. The number ir is included in this class since it is the 

principal value (i.e., the value belonging to the interval (0, ir]) of cos-1 (-1). 

Suppose ,3 is the principal value of cos-1(a) for some unknown a, which is, 
however, known to be algebraic of degree and height at most d and H, respectively. 
The question is: Can we infer (in deterministic polynomial time) the minimal 

polynomial of a from an approximation ,B to ,3? We show that if ,B3 - AI is at most 
E = 2-8/(24d), this can be done, where s is such that 

29 > 2d2/2 . (d + 1)(3d+4)/2 . g2d 
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as usual. The argument is as follows. First we show that a good approximation to 
,B gives us a good approximation to a = cos(,): 

I cos(3) - cos(,3)1 ?5 emax{ [ + cos(z)] : between 3 and _ 
< E 

This can be utilized if we can compute cos(,3) at least approximately. To do this, 
we employ the Taylor series expansion of the cosine function and the argument that 
the tail of the series is small, once we consider several terms of the series. For all y 
with 0 < y < 2wr we have 

cos(y) = 1-y2/2! + y4/4!-y6/6! + y8/8!. - 

and further 

cos(y) - (1 - y2/2! + y4/4! - + y4k/(4k)!)I 

< 4k+1 max d4k+l cos(z) 1 z between 0 and y 
-(4k + 1)! 

'm 
dz4k~+l 

< (27r)4k+l/(4k + 1)! 

Let k equal the maximum of [-(loge)/41 and [7re2/21. Then using Stirling's for- 
mula, we see that (27r)4k+l/(4k + 1)! < E. Denoting 

g(y) = 1 - y2/2! + y4/4! - ...+ y4k/(4k)! 

we find that 

IgC@) - cos(,3)I < Ig(3) - cos(,3)1 + I cos(,) - cos(,B3)1 < 2 E. 

Thus, in polynomial time we can compute from ,B an approximation a to an un- 
known algebraic number a such that Ia -a1 <? 2 E = 2-8/(12d), with s as above. 
Now Theorem (1.19) guarantees that we can find the minimal polynomial of a in 
polynomial time. This argument can be extended to the inverses of functions that 
satisfy the following two definitions. 

(2.1) Definition. A complex-valued function f defined on a subset D of the 
complex numbers is approximable if there is a deterministic algorithm that, given 
a complex number x in D with rational real and imaginary parts and a natural 
number t, computes a complex number a satisfying Ia - f(x)I < 2-t in time 
bounded by a polynomial function of t and the number of bits of x. 

(2.2) Definition. A complex-valued function f defined on a subset D of the 
complex numbers satisfies the uniform Lip3chitz condition if there exist 6, M > 0 
such that If(x) - f(y)I < M Ix -yl for any x,y in D with Ix-yl < 6. 

(2.3) THEOREM. Suppose a complex-valuedfunction f defined on a subset D of 
the complex numbers is approximable and satisfies the uniform Lipschitz condition, 
for certain 6, M > 0. There is an algorithm which, given a complex number ,B 
in D with rational real and imaginary parts and two natural numbers d and H, 
determines whether or not there is a complex number,B in D satisfying 

(i) 1| -: /I < 6, with E = min((24d . 2d2/2M(d + l)(3d+4)/2H2d>1,6) and 
(ii) fC() is an algebraic number of degree at most d and height at most H. 

Further, if such a ,B exists, then f(3) is unique, and the algorithm determines the 
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minimal polynomial of f (C3). The algorithm works in time bounded by a polynomial 
function of d, log H, and the number of bits of f. 

Proof. First we show that if a B satisfying (i) and (ii) exists in D, then f(3) is 
unique. Suppose not; then let ,3 and -y satisfy (i) and (ii) and f(3) $ f(-Y). Because 

1-0 1 < 6, we have that If (d) - f(3)1 ' E M by the Lipschitz condition, and 
similarly If (-)-f ( 31 ) E M. But then, f (3) and f (a) are two algebraic numbers 
of degree at most d and height at most H with If () -f (-) I < 2e M, contradicting 
the fact that distinct algebraic numbers cannot come too close (cf. Remark (1.8)). 
This proves the uniqueness of fC(). 

By the approximability of f we can compute a such that a -f (3)I1 < E M. If a 
suitable ,3 exists, then the Lipschitz condition gives If (:) - f(3)1 < E M, so that 
If (p) - aI < 2e M. The proof now follows by Theorem (1.19). 

The exponential function, sine function, hyperbolic sine and cosine functions, 
etc., when restricted to a finite interval (note that we need such a restriction for 
the exponential function), satisfy both definitions, and thus the theorem can be 
applied to them. At present, the only interesting consequence is the statement that 
the bits of reals of the form cos-1 (a), sin-1 (a), log(a), where a is algebraic, do not 
form a pseudorandom sequence. 

Notice that complex numbers of the form log(a), where a is an algebraic number 
($ 0,1), cannot be algebraic. This follows from the famous theorem of A. Baker 
[1] (on log linear forms). 

3. Factorization of Polynomials. In this section we describe an algorithm 
to factor primitive polynomials over the integers in polynomial time. The first 
polynomial-time algorithm for this was provided in [16]. As described in the in- 
troduction, our algorithm is conceptually simple we find the roots of the given 
polynomial to a certain accuracy, and then find the minimal polynomials of the 
roots using the algorithm of Section 1. These must then be the irreducible factors 
of the given polynomial. Rabin [19, Section 3] first used such an idea to factor over 
finite fields, where it is possible to find the minimal polynomial of a root (which 
in general lies in an extension field) by solving a system of simultaneous linear 
equations. For polynomials with integral coefficients, an algorithm similar to ours 
is described in [5], without being polynomial-time, however. 

Throughout this section, f(X) E Z[X] is the given primitive polynomial to be 
factored, deg(f(X)) = d. Let H = (dG2) * If I In [18] it is shown that this H bounds 
the height of any factor in Z[X] of f (see also [14, Exercise 4.6.2.20]). The factoring 
algorithm now follows immediately from Algorithm (1.16). 

(3.1) ALGORITHM FACTOR. Let f, d and H be as above. If d < 1, then return 
that f is irreducible and terminate the execution of the algorithm. Otherwise, do 
the following as long as d > 2: 

- Let s be the smallest positive integer such that 

28 > 2d2/2 . (d + 1)(3d+4)/2 . H2d 

- Compute an approximation a to a root a of f such that la-Ia < 2-8/(12d) 
(this can be replaced by 2-8/(4d) if lal < 1, cf. Explanation (1.18)), apply 
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Algorithm (1.16) to determine the minimal polynomial h(X) of a, and 
return h as an irreducible factor of f. 

- Replace d by d - deg(h), put g(X) = f(X)/h(X) and return g as an 
irreducible factor of f if d = 1. Terminate the execution of the algorithm 
if d < 1; otherwise, replace f by g and go on. 

This finishes the description of Algorithm (3.1). 
It follows from Explanation (1.18), Theorem (1.19) and the definition of H that 

all application of Algorithm (1.16) together can be done in O(d5 . (d+log If I)) arith- 
metic operations on O(d2 (d+log If I))-bit integers. A. Schonhage's observation (cf. 
Remark (1.20)) even brings this down to O(d4. (d + log If I)) arithmetic operations 
on O(d. (d + log If I))-bit integers. 

It remains to analyze the cost of the computation of an approximation to a root 
of f. In [21] it is shown that the cost of computing approximations to all roots 
of f simultaneously, up to the precision needed in Algorithm (3.1), is dominated 
by the cost of the applications of Algorithm (1.16). This paper is however not yet 
published, and therefore we sketch how an approximation to a root of f E Z[X] 
of degree d can be found in time polynomial in d, log If I and the number of bits 
needed. The algorithm is due to A. Schonhage and is considerably slower than 
his method in [21]; we only include it to show that the problem can be solved in 
polynomial time. We need the following lemma, which follows from [10, Theorems 
6.4b and 6.4e]. 

(3.2) LEMMA. Let g(X) = Ed o g9iX E C[X], and let a be the root of g which 
is smallest in absolute value. If R(g) = min{Igo0 /g1I/m: m > 1, gm :A 0}, then 

2R(g) < lal < d R(g). 1 

Proof. If go = 0, then X = 0 is a root, and the lemma is obviously true. So 
assume go $ 0. First, suppose that the lower bound on lal is violated. Then 

<1 go 1/rn 
II 2 gm 

for all m with gm $ 0. So 

d d d 

E m < E Igmllalm < Igol 'E <l 
m=1 m=1 m=l 

This implies that we cannot have d giai = 0, a contradiction. 
Now suppose that lal > d R(g). Let a = a1, a2,. . . Xad be the roots of g. Then 

gm =g9d Z ai1a(R2.*- --td-m 

.m .g'al..,-d-m 

for m = 0, 1, ... , d - 1, and in particular 

d 

9o = g fJ ai. 
i=1 
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So, 

9 E a1 1 1 

90 i 
a 

i, il 2 aim 

form= 0,1,...,d-1,d. Since ai > d R(g) for i= 1,2,...A,d, we have 

(md" (i1 1 

90go m d R(g) R(g)m 

for any m. It follows that 

gm >R(g) 

for all m with gm $ 0. This is in contradiction with the definition of R(g). This 
proves Lemma (3.2). 

We now show how to approximate a root in polynomial time. We may assume 
that among the roots al,a2, ... , ad E C of f there is an ai satisfying Iail < 1 
(otherwise, replace f (X) by Xd .f (1/X)). Let t E Z>o and at E 2-tZ [V/T] such 
that 

(3.3) min lat - iI < 4d 2-t. 

Initially, this condition is satisfied for t = 0 and ao 0. We show how to compute 
at+i E 2-(t+l)Z ['VXT such that (3.3) holds with t replaced by t + 1. 

For all a E 2-(t+1)Z [X/<] such that 

(3.4) la - atl < 4d . 2-t + 2-(t+l) 

we compute the coefficients of ga(X) = f (X + a) and an approximation r(ga) to 
d R(ga) such that 

(3.5) d R(ga) < r(ga) < 2d R(ga), 

where R(ga) is defined as in Lemma (3.2). Define at+i as the a for which r(ga) is 
minimal. 

To prove that at+i satisfies (3.3) with t replaced by t + 1, notice that the roots 
of ga(X) are the ai - a, and that it follows from (3.3) and (3.4) that there is an a' 
among the a such that mini la' - ail < 2-(t+1). This yields: 

min lat+1 - ail < r(gat,,) (Lemma (3.2) and (3.5)) 

< r(ga) (choice of at+,) 

< 2d R(ga) (due to (3.5)) 

< 4d min Ia' - ai (Lemma (3.2)) 

< 4d 2-(t+1) (choice of a'). 

It is clear that the computation of at+i can be done in time polynomial in d, t, 
and log If I. It follows that an approximation to a root of f can be found in time 
polynomial in d, log If I and the number of bits needed. 

We have shown the following theorem. 
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(3.6) THEOREM. A primitive polynomial f of degree d in one variable with 
integral coefficients can be completely factored over the integers in time polynomial 
ind andloglfl. 

Using A. Schonhage's observation mentioned in Remark (1.20) and his improved 
version of the polynomial-time root finding algorithm described above (cf. [21]), we 
get the following theorem. 

(3.7) THEOREM. A primitive polynomial f of degree d in one variable with 
integral coefficients can be completely factored over the integers in O(d4 (d+log If I)) 
arithmetic operations on O(d. (d + log If I))-bit integers. 

As mentioned in Remark (1.20), the number of operations can be reduced to 
O(d3. (d + log If I)) if we use Schonhage's improved basis reduction algorithm. The 
description of the algorithm should in that case be slightly modified; we refer to 
[22] for details. 
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Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 2
LLL Algorithm

Lecturer: Oded Regev
Scribe: Eyal Kaplan

In this lecture1 we describe an approximation algorithm to the Shortest Vector Problem (SVP).
This algorithm, developed in 1982 by A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, usually called
the LLL algorithm, gives a ( 2√

3
)

n approximation ratio, where n is the dimension of the lattice. In
many of the applications, this algorithm is applied for a constant n; in such cases, we obtain a
constant approximation factor.

In 1801, Gauss gave an algorithm that can be viewed as an algorithm for solving SVP in two
dimensions. The LLL algorithm is, in some way, a generalization of Gauss’s algorithm to higher
dimensions. In 1987, Schnorr presented an improved algorithm for the SVP. This improved algo-
rithm obtains an approximation factor that is slightly subexponential, namely 2O(n(log log n)2/ log n).

The LLL algorithm has many applications in diverse fields of computer science. Some of these
will be described in the following lectures. Here is a brief description of some of these applications.

1. Factoring polynomials over the integers or the rational numbers. For example, given x2 − 1
factor it into x + 1 and x− 1.

2. Finding the minimal polynomial of an algebraic number given to a good enough approxima-
tion. For example, given 1.414213 output x2− 2 = 0 and given 0.645751 output x2 + 4x− 3 =
0.

3. Finding integer relations. A set of real numbers {x1, . . . , xn} is said to posses an integer
relation if there exist integers {a1, . . . , an} such that a1x1 + . . . + anxn = 0, with not all ai = 0.
As an example, try to find an integer relation among arctan(1) ≈ 0.785398, arctan( 1

5 ) ≈
0.197395, and arctan( 1

239 ) ≈ 0.004184. It turns that an integer relation exists:

arctan(1)− 4 arctan(1/5) + arctan(1/239) = 0

(this equality is known as Machin’s formula).

4. Integer Programming. This is a well-known NP-complete problem. Using LLL, one can
obtain a polynomial time solution to integer programming with a fixed number of variables.

5. Approximation to the Closest Vector Problem (CVP), as well as other lattice problems.

6. Various applications in cryptanalysis (i.e., breaking cryptographic protocols). For example,
there are many attacks on knapsack based cryptographic systems. Moreover, there are some
more recent attacks on some special cases of RSA such as the low public exponent attack.

For simplicity, we describe the LLL algorithm for full-rank lattices; it is easy to remove this
restriction. Moreover, our description only applies to the `2 norm. Extensions to other norms are
known.

Let us now turn to describe LLL. The exposition is divided into three stages.

1. Define an LLL reduced basis.

2. Present an algorithm to find such a basis.

3. Analyze its running time.

1Last updated: 2013/2/5

1



1 Reduced basis

We first recall the Gram-Schmidt orthogonalization process.

DEFINITION 1 Given n linearly independent vectors b1, . . . , bn ∈ Rn, the Gram-Schmidt orthogonal-

ization of b1, . . . , bn is defined by b̃i = bi −∑i−1
j=1 µi,jb̃j, where µi,j =

〈bi ,b̃j〉
〈b̃j,b̃j〉

.

DEFINITION 2 A basis B = {b1, . . . , bn} ∈ Rn is a δ-LLL Reduced Basis if the following holds:

1. ∀1 ≤ i ≤ n, j < i.|µi,j| ≤ 1
2 ,

2. ∀1 ≤ i < n. δ‖b̃i‖
2 ≤ ‖µi+1,i b̃i + b̃i+1‖

2.

REMARK 1 It is always possible to transform a basis to a reduced basis. Actually, this is what the
LLL algorithm does.

REMARK 2 It is helpful to consider the case δ = 3
4 . The algorithm works with any 1

4 < δ < 1.

REMARK 3 The second property in Definition 2 can be written as:

δ‖b̃i‖
2 ≤ ‖µi+1,i b̃i + b̃i+1‖

2
= µ2

i+1,i‖b̃i‖
2
+ ‖b̃i+1‖

2

where the second equality follows since b̃i and b̃i+1 are orthogonal. It follows that

‖b̃i+1‖
2 ≥ (δ− µ2

i+1,i)‖b̃i‖
2 ≥ (δ− 1

4
)‖b̃i‖

2

Put this way, the second property reads “b̃i+1 is not much shorter than b̃i”.

To better understand this definition, consider the orthonormal basis obtained by normalization
the Gram-Schmidt vectors b̃1, . . . , b̃n. In this basis, B can be written as

‖b̃1‖ ∗ · · · ∗
0 ‖b̃2‖ · · · ∗
...

. . .
...
∗

0 · · · ‖b̃n‖


where column i shows the coordinates of bi in this orthonormal basis. The first condition in the
definition of an LLL-reduced basis guarantees that the absolute value of any off-diagonal element
is at most half the value written in the diagonal element on the same row. This can be written as

‖b̃1‖ ≤ 1
2‖b̃1‖ · · · ≤ 1

2‖b̃1‖
0 ‖b̃2‖ · · · ≤ 1

2‖b̃2‖
...

. . .
...

≤ 1
2‖b̃n−1‖

0 · · · ‖b̃n‖
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where ≤ 1
2‖b̃j‖ indicates that the absolute value of this coordinate is at most 1

2‖b̃j‖. For the second
property, consider the 2× 2 submatrix of the above matrix, with the upper left entry indexed at
(i, i). (

‖b̃i‖ µi+1,i‖b̃i‖
0 ‖b̃i+1‖

)
Then the second property requires that the second column of this matrix is almost as long as its
first column. Let us mention that in Schnorr’s improvement to the LLL algorithm, this second
property is replaced with some condition on k× k submatrices for some k > 2.

One important property of LLL-reduced basis is that its first vector is relatively short, as shown
in the next claim.

CLAIM 1 Let b1, . . . , bn ∈ Rn be a δ-LLL-reduced basis. Then ‖b1‖ ≤ ( 2√
4δ−1

)
n−1

λ1(L).

REMARK 4 For δ = 3
4 this gives ‖b1‖ ≤ 2(n−1)/2λ1(L).

PROOF: Since for any basis b1, . . . , bn, λ1(L) ≥ mini ‖b̃i‖, we get that

‖b̃n‖
2 ≥ (δ− 1

4
)‖b̃n−1‖

2 ≥ . . . ≥ (δ− 1
4
)n−1‖b̃1‖

2
= (δ− 1

4
)n−1‖b1‖2

where the last equality follows by the definition b̃1 = b1. Then, for any i,

‖b̃1‖ ≤
(

δ− 1
4

)−(i−1)/2
‖b̃i‖ ≤

(
δ− 1

4

)−(n−1)/2
‖b̃i‖.

Hence,

‖b1‖ ≤
(

δ− 1
4

)−(n−1)/2
min

i
‖b̃i‖ ≤

(
δ− 1

4

)−(n−1)/2
· λ1(L)

�

REMARK 5 LLL-reduced bases have many other good properties; some are mentioned in the
homework.

Claim 1 provides us with an approximation to the SVP problem. Assuming we can generate a
δ-LLL-reduced basis from our input basis, we can then return b1 as our answer. For δ = 3/4 we
obtain a 2(n−1)/2 approximation. In what follows, we describe how to transform an arbitrary basis
into a δ-LLL-reduced one.

2 The LLL Algorithm

INPUT: Lattice basis b1, . . . , bn ∈ Zn

OUTPUT: δ-LLL-reduced basis for L(B)
Start: compute b̃1, . . . , b̃n
Reduction Step:

for i = 2 to n do
for j = i− 1 to 1 do

bi ← bi − ci,jbj where ci,j = d〈bi, b̃j〉/〈b̃j, b̃j〉c
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Swap Step:
if ∃i s.t. δ‖b̃i‖

2
> ‖µi+1,i b̃i + b̃i+1‖

2 then
bi ↔ bi+1
goto start

Output b1, . . . , bn

REMARK 6 We use d·c to denote rounding to the nearest integer, e.g., d3.3c = 3, d3.8c = 4.

Let us make some important observations on this procedure. It is easy to see that the swap
step takes care of the second property of an LLL-reduced basis. Indeed, if the algorithm ever
terminates, then its output must satisfy the second property. The reduction step takes care of
the first property. In order to see this, first notice that throughout the reduction step, the Gram-
Schmidt basis does not change (hence the vectors b̃1, . . . , b̃n need not be recomputed). This holds
since we only perform column operations of the form bi ← bi + abj for i > j and a ∈ Z. Such
operations to not change the Gram-Schmidt orthogonalization. In the ith iteration of the outer
loop, the reduction step makes sure that the projection of bi on b̃j for any j < i is at most 1

2‖b̃j‖.
It does so by subtracting from column i the right integer multiple of column j such that the jth
coordinate becomes at most 1

2‖b̃j‖ in absolute value. Notice that it is crucial that the inner loop
goes from i− 1 down to 1.

To demonstrate the reduction step, let us write B in the orthonormal basis obtained by normal-
izing the Gram-Schmidt vectors. Consider, for example, the ith iteration of the outer loop and the
j = 2 iteration of the inner loop. Then at this point, the matrix B looks like

‖b̃1‖ ≤ 1
2‖b̃1‖ ≤ 1

2‖b̃1‖ · · · ∗ ∗ · · ·
0 ‖b̃2‖ ≤ 1

2‖b̃2‖ · · · ∗ ∗ · · ·
0 ‖b̃3‖ · · · ≤ 1

2‖b̃3‖ ∗ · · ·
...

. . .
...

≤ 1
2‖b̃i−1‖ ∗

0 · · · ‖b̃i‖ ∗ · · ·
0 ‖b̃i+1‖ · · ·

...
...

. . .


At this iteration, we subtract some integer multiple of the second column from column i to make
the second entry in the ith column at most 1

2‖b̃2‖ in absolute value. Similarly, in the last iteration
of the inner loop, we subtract some integer multiple of the first column from column i.

LEMMA 3 (CORRECTNESS) If the LLL procedure described above ever terminates, then its output is a
δ-LLL-reduced basis for the lattice spanned by the input basis b1, . . . , bn.

PROOF: We need to prove that the output of the LLL algorithm is a basis forL(B) that satisfies both
properties of a δ-LLL-reduced basis. The second property of a δ-LLL-reduced basis is enforced by
the check during the swap step. The reason that the output of the algorithm is indeed a basis for
L(B), is that we only perform column operations of the form bi ← bi + abj for i 6= j, and a ∈ Z.

We next show that after the reduction step, b1, . . . , bn satisfy |µi,j| ≤ 1
2 , for all i > j. First, notice

that throughout the reduction step, the Gram-Schmidt basis does not change. Now, consider some
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i > j, and consider the jth iteration of the inner loop in the ith iteration of the outer loop. Then
|µi,j| can be written as

|µi,j| =
∣∣∣ 〈bi − ci,j · bj, b̃j〉

〈b̃j, b̃j〉

∣∣∣ = ∣∣∣ 〈bi, b̃j〉
〈b̃j, b̃j〉

−
⌈ 〈bi, b̃j〉
〈b̃j, b̃j〉

⌋
·
〈bj, b̃j〉
〈b̃j, b̃j〉

∣∣∣ ≤ 1
2

where the first equality follows from the definition of the reduction step and the last inequality
follows from the fact that 〈bj, b̃j〉 = 〈b̃j, b̃j〉. �

3 Analyzing the Running Time

Our analysis consists of two steps. First, we bound the number of iterations. Second, we bound
the running time of a single iteration.

We show that the overall running time of the algorithm is polynomial in the input size. A
rough lower bound on the latter is given by M := max{n, log(maxi ‖bi‖)} (because each of the n
vectors requires at least one bit to represents and a vector of norm r requires at least log r bits to
represent). In the following, we show that the running time of the algorithm is polynomial in M.

LEMMA 4 The number of iterations is polynomial in M.

PROOF: Our first step is to define a function mapping a lattice basis to some positive number. This
function can be thought of as a ‘potential function’.

DEFINITION 5 Let B = {b1, . . . , bn} be a lattice basis. The potential of B, denoted DB, is defined by

n

∏
i=1
‖b̃i‖

n−i+1
=

n

∏
i=1
‖b̃1‖‖b̃2‖ · · · ‖b̃i‖ =

n

∏
i=1
DB,i

where DB,i := det Λi and Λi is defined as the lattice spanned by b1, . . . , bi

REMARK 7 Notice that more weight is given to the first vectors.

Our aim is to show that the initial value of DB is not too large, and that it decays quickly. Since
‖b̃i‖ ≤ ‖bi‖, the initial value of DB can be bounded from above by (maxi ‖bi‖)n(n+1)/2. Note that
the logarithm of this value is polynomial in M.

During the reduction step, DB does not change, because the Gram-Schmidt basis does not
change. Now consider the swap step. Suppose that bi is swapped with bi+1. For all k 6= i, Λk does
not change, and so DB,k does not change; only DB,i changes. Let Λ′i, D′B,i denote the new values of
Λi and DB,i, respectively. We have that

D′B,i

DB,i
=

det Λ′i
det Λi

=
detL(b1, . . . , bi−1, bi+1)

detL(b1, . . . , bi)

=
(∏i−1

j=1 ‖b̃j‖)‖µi+1,i b̃i + b̃i+1‖

∏i
j=1 ‖b̃j‖

=
‖µi+1,i b̃i + b̃i+1‖

‖b̃i‖
<
√

δ
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where the last inequality follows from the condition in the swap step.
As shown above, in each iteration, DB decreases by a multiplicative factor,

√
δ. Let DB,0 be the

initial value of DB. Since DB is a nonzero integer, and in particular at least 1, this means that we
can bound from above the number of iterations by

log 1√
δ

DB,0 =
logDB,0

log 1√
δ

≤ 1
log 1√

δ

· n(n + 1)
2

log(max
i
‖bi‖).

For any constant δ < 1, this is polynomial in M. �

REMARK 8 A somewhat tedious calculation shows that even for δ = 1
4 + ( 3

4 )
n

n−1 , which is closer to
1 than any constant, the running time is polynomial. For such δ the approximation factor is ( 2√

3
)n.

This approximation factor is essentially the best one can obtain with the LLL algorithm. For better
approximation factors, one needs to apply Schnorr’s algorithm.

LEMMA 6 The running time of each iteration is polynomial in M.

PROOF: It is not difficult to see that in each iteration we perform only a polynomial number
of arithmetic operations (i.e., additions, multiplications, etc.). Hence, in the rest of the proof,
it is enough to show that the numbers that arise in each iteration can be represented using a
polynomial number of bits.

To demonstrate why this is necessary, consider a repeated squaring algorithm that given a
number x, squares it n times. Even though the number of arithmetic operations is only n, the
number of bits required to represent the resulting numbers quickly grows to 2O(n). Hence, the
actual running time of the algorithm (measured in bit operations) is exponential in n.

We establish the bound on numbers arising during an iteration using two claims. The first
concerns the Gram-Schmidt vectors b̃1, . . . , b̃n, which are somewhat simpler to bound, as they do
not change during the reduction step. The second concerns the basis vectors b1, . . . , bn.

CLAIM 2 The Gram-Schmidt vectors b̃1, . . . , b̃n can be computed in polynomial time in M. Moreover, for
every 1 ≤ i ≤ n, we have that D2

Bb̃i ∈ Zn and that ‖b̃i‖ ≤ D2
B.

REMARK 9 Notice that these two properties of the Gram-Schmidt vectors imply that they can be
represented in space polynomial in M. Indeed, the bound on the norm implies that each coor-
dinate of b̃i contains a number of absolute value at most D2

B. Moreover, since D2
Bb̃i ∈ Zn we

know that the denominators cannot be larger than D2
B. Hence, each coordinate requires at most

O(logDB) bits to represent and there are n2 of them. Since the initial value of logDB is poly-
nomial in M and later on it can only decrease, we obtain that the Gram-Schmidt vectors can be
represented in space polynomial in M.

PROOF: The calculation of the Gram-Schmidt basis may be performed as follows. Since b̃i − bi ∈
span(b1, . . . , bi−1), we can write b̃i = bi + ∑i−1

j=1 ajbj, for some a1, . . . , ai−1 ∈ R. We are looking for
a1, . . . , ai−1 such that b̃i is orthogonal to each of b1, . . . , bi−1. For any 1 ≤ l ≤ i− 1, 〈b̃i, bl〉 = 0 can
be written as

〈b̃i, bl〉 = 〈bi +
i−1

∑
j=1

ajbj, bl〉 = 〈bi, bl〉+ a1〈b1, bl〉+ a2〈b2, bl〉+ . . . + ai−1〈bi−1, bl〉 = 0.
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Hence, we obtain the following system of i− 1 linear equations in i− 1 variables:

a1〈b1, b1〉+ a2〈b2, b1〉+ . . . + ai−1〈bi−1, b1〉 = −〈bi, b1〉
a1〈b1, b2〉+ a2〈b2, b2〉+ . . . + ai−1〈bi−1, b2〉 = −〈bi, b2〉

...
a1〈b1, bi−1〉+ a2〈b2, bi−1〉+ . . . + ai−1〈bi−1, bi−1〉 = −〈bi, bi−1〉.

It is possible to solve such a system in polynomial time.
For the second part of the claim, notice that using Cramer’s rule we can write

aj =
det(some integer matrix)

det

 〈b1, b1〉 . . . 〈bi−1, b1〉
...

. . .
...

〈b1, bi−1〉 . . . 〈bi−1, bi−1〉


=

some integer
det BT

i−1Bi−1
=

some integer
(det Λi−1)2 .

Hence b̃i = bi + ∑i−1
j=1 ajbj for some rational numbers aj whose denominator is (det Λi−1)

2. This
implies that D2

B,i b̃i and in particular also D2
Bb̃i are integer vectors.

Now we show that the norm of the b̃i’s is not too large. By Definition 5,

DB,i = (
i−1

∏
j=1
‖b̃j‖) · ‖b̃i‖

and so

‖b̃i‖ =
DB,i

∏i−1
j=1 ‖b̃j‖

≤ DB,i

i−1

∏
j=1
D2

B,j ≤ D2
B

where the first inequality follows since ‖b̃j‖ ≥ 1
D2

B,j
. �

In the next claim we show that the basis vectors bi do not become too large. This is necessary
since these basis vectors change during the reduction step (and in fact, it is possible for vectors to
become longer by the reduction step). We first bound the length of each bi after the ith iteration of
the outer loop is done (i.e., once vector bi is reduced). We then bound the length of bi during the ith
iteration of the outer loop. For this we use the observation that to vector bi we only add vectors bj
for j < i; these vectors are already reduced and hence our first bound applies.

CLAIM 3 All vectors bi appearing during an iteration can be represented using poly(M) bits.

PROOF: First, we show that after the reduction step, the length of the bi’s is not too large. For each
1 ≤ i ≤ n,

‖bi‖2 = ‖b̃i‖2 +
i−1

∑
j=1

µ2
i,j‖b̃j‖2 ≤ D4

B +
n
4
· D4

B ≤ nD4
B

The first equality holds because b̃1, . . . , b̃n are orthogonal. The first inequality follows from the
bound on b̃1, . . . , b̃n proven in Claim 2, and using the fact that |µi,j| ≤ 1

2 .
Our bound on the norm implies that each coordinate contains an integer of size at most

√
nD2

B.
For an integer vector, this means that it can be represented in log(

√
nD2

B) bits. Our bi’s remain
integer vectors throughout the procedure – they are such as inputs, and we change their values
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by adding integers. This means that after the reduction step, we can represent the bi’s in poly(M)
space.

Lastly, we need to show that during the reduction step, the bi’s are not too large. Consider a
vector bi, that is manipulated in the inner loop of the reduction step.

|ci,j| =
∣∣∣⌈ 〈bi, b̃j〉
〈b̃j, b̃j〉

⌋∣∣∣ ≤ ‖bi‖‖b̃j‖
‖b̃j‖2

+ 1 =
‖bi‖
‖b̃j‖

+ 1 ≤ ‖bi‖
1/D2

B
+ 1 ≤ 2D2

B‖bi‖

where the first inequality follows by applying Cauchy-Schwartz and using the definition of the
rounding operator, and the second inequality uses Claim 2. Therefore,

‖bi − ci,jbj‖ ≤ ‖bi‖+ |ci,j|‖bj‖
≤ (1 + 2D2

B‖bj‖)‖bi‖
≤ (1 + 2D2

B
√

nD2
B)‖bi‖

≤ (4nDB)
4‖bi‖

where the first inequality follows by the triangle inequality, the second inequality by plugging in
the bound for |ci,j|, and the third inequality by plugging in the bound on the length of ‖bj‖ after
the reduction step. Indeed, during the reduction step of bi, vectors bj, for j < i, have already
finished their reduction step, so we can use this bound. After at most n iterations of the inner
loop, the norm of bi has increased by a factor of at most (4nDB)

4n. This is of course representable
in poly(M) size. �

By Claims 2 and 3 we have, that it is possible to represent the numbers in a polynomial number
of bits. This, together with the fact that in each iteration we perform a polynomial number of
arithmetic operations, proves the lemma. �

REMARK 10 The only place where we used that |µi,j| ≤ 1
2 for all j < i was in the proof of Claim 3.

For the rest of the proof, the weaker condition that |µi+1,i| ≤ 1
2 for all i is enough. This suggests that

we might improve the running time by performing the reduction step only on pairs of consecutive
vectors so as to obtain the weaker condition. The number of iterations in this modified algorithm
is still polynomial, since all of our arguments above hold. However, it is not clear if this modified
algorithm still runs in polynomial time because Claim 3 does not seem to hold.

We combine Lemma 4 with Lemma 6 to conclude that the running time of the LLL algorithm
is polynomial in the input size. This completes our analysis of LLL.

Open questions

The worst-case behavior of LLL and its generalization BKZ are reasonably well understood [1],
and it turns out that the analysis above is tight in the worst-case. However, according to extensive
experiments done by Gama and Nguyen [2], for “typical” lattices, the LLL algorithm (and its gen-
eralizations) appear to behave much better than the worst-case analysis suggests. Although the
dependence on the dimension is still exponential, the base of the exponent is much smaller than
the (δ− 1/4)−1/2 we obtained above. Explaining this phenomenon, even heuristically, is still an
open question. Another outstanding open question is to improve on LLL and its generalizations
for special families of lattices (e.g., rotations of Zn or so-called ideal lattices).
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CSE 206A: Lattice Algorithms and Applications Winter 2012

3: The LLL Algorithm
Instructor: Daniele Micciancio UCSD CSE

No efficient algorithm is known to find the shortest vector in a lattice (in arbitrary di-
mension), or even just computing its length λ1. A central tool in the algorithmic study of
lattices (and their applications) is the LLL algorithm of Lenstra, Lenstra and Lovasz. The
LLL algorithm runs in polynomial time and finds an approximate solution x to the shortest
vector problem, in the sense that the length of the solution x found by the algorithm is at
most γ · λ1, for some approximation factor γ. The approximation factor γ = 2O(n) achieved
by LLL is exponential in the dimension of the lattice. Later in the course, we will study
polynomial time algorithms that achieve (slightly) better factors. Still, the approximate
solutions found by LLL are enough in many applications. We design and analyze the LLL
algorithm in two steps:

(1) We first define a notion of “reduced” basis, and show that the first vector of a reduced
basis is an approximately shortest vector in the lattice.

(2) Next, we give an efficient algorithm to compute a reduced basis for any lattice.

1. Reduced basis

Remember the Gram-Schmidt orthogonalization process:

b∗i = bi −
∑

j<i µi,jb
∗
j where µi,j =

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

Define the orthogonal projection operations πi from Rm onto
∑

j≥iRb∗jby

πi(x) =
n∑
j=i

〈x,b∗j〉
〈b∗j ,b∗j〉

b∗j .

Notice that the Gram-Schmidt orthogonalized vectors can be expressed as b∗i = πi(bi).
We can now define LLL-reduced basis. For reasons that will be clear in the running time

analysis of the algorithm, we introduce a real parameter 1/4 < δ < 1 and define LLL-reduced
basis with respect to δ.

Definition 1. A basis B = [b1, . . . ,bn] ∈ Rm×n is δ-LLL reduced if:
• |µi,j| ≤ 1

2
for all i > j

• for any any pair of consecutive vectors bi,bi+1, we have

δ‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2.

The first condition (usually called “size reduction”) is easy to achieve using an integer
variant of the Gram-Schmidt orthogonalization procedure, and it is discussed in the next
section. In order to understand the second condition it is useful to consider the case when
i = 1 and δ = 1. For i = 1, the projection π1 is just the identity function (over the linear
span of the lattice) and the condition becomes simply ‖b1‖ ≤ ‖b2‖, i.e., the first two vectors
in an LLL reduced basis are sorted in order of nondecreasing length. (Introducing a factor
δ < 1 relaxes the nondecreasing condition to allow a small decrease δ in the norm.) For



i > 1, the LLL reduced basis definition requires a similar condition to hold for the projected
basis πi(B).

Another geometric interpretation of the second condition is the following. Notice that
‖πi(bi+1)‖2 = ‖b∗i+1 + µi+1,ib

∗
i ‖2 = ‖b∗i+1‖2 + ‖µi+1,ib

∗
i ‖2 = ‖b∗i+1‖2 + (µi+1,i)

2‖b∗i ‖2.
So, the second condition in the definition of LLL-reduced basis can be equivalently rewritten
as

(δ − µ2
i+1,i)‖b∗i ‖2 ≤ ‖b∗i+1‖2.

So, although the Gram-Schmidt vectors b∗i can get shorter and shorter, their length cannot
decrease too quickly. Specifically, for any 1/4 < δ < 1, if we set α = 1

δ− 1
4

, then

(1.1) ‖b∗i ‖2 ≤ α‖b∗i+1‖2.
For example, if δ = 3/4, then α = 2 and each ‖b∗i+1‖2 is least 1

2
‖b∗i ‖2. Using (1.1) repeatedly,

we get

(1.2) ‖b∗1‖2 ≤ αi−1‖b∗i ‖2 ≤ αn−1‖b∗i ‖2.
Since this is true for all i = 1, . . . , n, the first vector in an LLL reduced basis satisfies

‖b1‖ ≤ α(n−1)/2min ‖b∗i ‖ ≤ α(n−1)/2λ1

where we have used the lower bound λ1 ≥ mini ‖b∗i ‖ on the length of the shortest vector in
a lattice. In particular, if δ = 3/4, the first vector in an LLL reduced basis is a γ = 2(n−1)/2

approximate solution to SVP. Simiarly, one can also show that the set of vectors in an LLL
reduced basis are a solution to the approximate SIVP.

Exercise 2. Prove that if B is a δ-LLL reduced basis, then maxi ‖bi‖ ≤ α(n−1)/2λn where
α = (1− 1/δ)−1.

In many applications, the length of the shortest lattice vector λ1 is not known, but it can
be estimated using Minkowski’s theorem λ1 ≤

√
n det(B)1/n. Combining the bound ‖b1‖ ≤

α(n−1)/2λ1 with Minkowski’s theorem we get ‖b1‖ ≤
√
nα(n−1)/2 det(B)1/n. A stronger bound

can be obtained relating the length of b1 in an LLL reduced basis directly to the determinant
of the lattice as follows. Take the product of (1.2) for i = 1, . . . , n, to get

‖b1‖n ≤
∏
i

α(i−1)/2‖b∗i ‖ = αn(n−1)/4 det(B).

So, we have
‖b1‖ ≤ α(n−1)/4 det(B1/n),

which can be interpreted as a weak (but algorithmic) version of Minkowski’s theorem.

Remark 3. Even if Minkowski’s bound can be efficiently computed given a lattice basis, no
efficient algorithm is known to find lattice vectors achieving the bound, even approximately
for approximation factors that are significantly better than exponental in the dimension of
the lattice.

Our analysis of LLL reduced basis is summarized in the following theorem.

Theorem 4. For any 1/4 < δ ≤ 1, if B is a δ-LLL reduced basis, then
• ‖b1‖ ≤ α(n−1)/2λ1



• maxi ‖bi‖ ≤ α(n−1)/2λn
• ‖b1‖ ≤ α(n−1)/4 det(B)1/n

where α = 1/(δ − 1/4) ≥ 4/3.

In the following sections we give an algorithm to compute a δ-LLL reduced basis for any
lattice in time polynomial in the input size and (1− δ)−1. It is not known whether the LLL
algorithm runs in polynomial time when δ = 1, which is the value that gives the best results.
Still, we can achieve essentially the same result by setting δ = 1− 1/nc = 1− o(1) and still
maintain polynomial running time. This gives polynomial time solutions to SVP and SIVP
for exponential approximation factors.

Corollary 5. There is a polynomial time algorithm that solves SVP and SIVP within ap-
proximation factor γ(n) = (2/

√
3)n. The algorithm also produces nonzero lattice vectors of

length at most (2/
√
3)n/2 · det(L(B))1/n.

The LLL algorithm is designed to work in the Euclidean norm. Still, since all norms are
within a factor n from the Euclidean norm, is also provides solutions to lattice problems in
other norms within essentially the same approximation factor.

2. The Nearest Plane Algorithm

The size reduction condition (|µi,j| ≤ 1/2) in the definition of LLL reduced basis can be
achieved using an integer variant of the Gram-Schmidt orthogonalization procedure. Both
the size reduction condition and the associated algorithm have nice geometric interpretations
which we are going to explain first.

It is easy to see that any point in the linear span of a lattice can be written as the sum of
a lattice point x ∈ L(B) plus a vector in the fundamental parallelepiped

y ∈ P(B) = {Bx : 0 ≤ x < 1}.
Moreover, such a decomposition is unique. In other words, the sets x + P(B) (indexed by
x ∈ L(B)) form a partition of span(B). A subset S ⊆ span(B) such that {x+S : x ∈ L(B)}
form a partition of span(B) is called a fundamental region for the lattice, and P(B) is an
example of fundamental region. There are many other examples of interesting fundamental
regions. For example, one can consider the centered half open parallelepiped

C(B) =

{
Bx : − 1

2
≤ x < +

1

2

}
.

Another important fundamental region is the Voronoi cell of the lattice V(B), i.e., the set of
all points that are closer to the origin than to any other lattice point.1

Notice that the partition associated to P(B) can be easily computed, in the sense that
given a target point t ∈ span(B), one can efficiently find the lattice point Bx such that
t ∈ Bx + P(B). (Just solve By = t and round the solution to the lattice point Bbyc.)
The partition associated to the centered parallepiped C(B) can also be computed similarly,

1In order to get a partition, one needs also to include boundary points, with some care to avoid including
the same point in multiple regiones. For example, the norm relation ‖x‖ ≤ ‖y‖ can be extended to a total
order by defining x < y if and only if ‖x‖ < ‖y‖ or ‖x‖ = ‖y‖ and the first nonzero coordinate of x− y is
negative. Then, the half-open Voronoi cell can be defined as the sef of all points x such that x ≤ (x−y) for
any lattice point y ∈ L(B).



Algorithm 1 Nearest Plane Algorithm. On input a lattice basis B and a target vector t,
output a lattice point v ∈ L(B) such that 〈t−v,b∗i 〉/‖b∗i ‖2 ∈ [−1/2, 1/2) for all i = 1, . . . , n.

NearestPlane(B = [b1, . . . ,bn],t):
if n = 0 then return 0
else B∗ ← GramSchmidt(B)

c←
⌊
〈t,b∗n〉
‖b∗n‖2

⌉
return cbn + NearestPlane([b1, . . . ,bn−1], t− cbn)

rounding to the closest integers Bbye. On the other hand, the partition associated to the
Voronoi cell seems hard to compute: by definition, finding which Voronoi cell Bx + V(B)
contains a given target point t is equivalent to finding the lattice point Bx closest to t, and
instance of the CVP.

The size reduction condition in the definition of LLL reduced basis can be easily interpreted
as partitioning the space according to still another fundamental region: the orthogonalized
centered parallelepiped C(B∗), where B∗ is the Gram-Schmidt matrix of B.

Exercise 6. Prove that C(B∗) is a fundamental region for lattice L(B).

The cell Bx + C(B∗) containing a given target t can be easily found using the Nearest
Plane algorithm, a simple variant of the Gram-Schmidt algorithm given as Algorithm 1.

Algorithm 1, on input a rank n > 0 lattice B and a target t proceeds as follows. Let
B′ = [b1, . . . ,bn−1] be the sublattice generated by the first n− 1 basis vectors. The lattice
L(B) can be decomposed into hyperplanes of the form

L(B) = cbk + L(B′) ⊂ cb∗k + span(B′).

The algorithm selects the hyperplane c = b〈t,b∗k〉/‖b∗k‖2e closest to the target, and recur-
sively search for a lattice point in cbk + L(B′) close to t, or equivalently, a lattice point in
the lower dimensional sublattice L(B′) close to t − cbk. The base case of the algorithm is
when the rank of the lattice is reduced to 0 and the only possible output is the origin 0.

Lemma 7. On input a lattice basis and a target vector t, Algorithm 1 outputs a lattice vector
v ∈ L(B) such that 〈t − v,b∗i 〉/‖b∗i ‖2 ∈ [−1/2, 1/2) for all i = 1, . . . , n. In particular, if
t ∈ span(B), thent ∈ v + C(B∗).

Proof. For the base case, the property is vacuously true. So assume n > 0 and that the
lemma holds for lower rank lattices. LetB = [C|b] whereC = [b1, . . . ,bn−1], and notice that
B∗ = [C∗|b∗n]. By inductive hypothesis, the recursive call returns a lattice point v ∈ L(C)
such that (t − cbn) − v = C∗z for some z such that zi ∈ [−1/2,+1/2]. The output of the
algorithm v + cbn satisfies

〈t− (v + cbn),b
∗
i 〉 = 〈(t− cbn)− v,b∗i 〉 ∈ [−1/2, 1/2) · ‖b∗n‖2

for all i = 1, . . . , n− 1 and

〈t− (v + cbn),b
∗
n〉 = 〈t,b∗n〉 − c〈bn,b∗n〉 ∈ [−1/2, 1/2) · ‖b∗n‖2

where we have used the fact that 〈bn,b∗n〉 = ‖b∗n‖2. �



Algorithm 2 Size Reduce
SizeReduce(B):
for i=2 to n

x← NearestPlane(B,bi − b∗i )
bi ← bi −Bx

output B

Algorithm 3 The LLL basis reduction algorithm
LLL(B,δ):
SizeReduce(B)
if δ‖πi(bi)‖2 > ‖πi(bi+1)‖2 for some i
then swap(bi,bi+1); return LLL(B,δ)
else return B

Remark 8. The fundamental region C(B∗) contains a sphere centered in 0 of radiusmini ‖b∗i ‖/2 ≤
λ(L(B))/2. Since NearestPlane maps all points in v + C(B∗) to v ∈ L(B), if t is within
distance mini ‖b∗i ‖/2 from the lattice, then NearestPlane(B, t) returns the lattice point
v ∈ L(B) closest to t.

Observe that if bi − b∗i ∈ Bx + C(B∗), then −1/2 ≤ µi,j < 1/2 for all j < i. So, given
a lattice basis B, a size reduced basis for the same lattice can be easily obtained using
Algorithm 2.

It is clear that the final B is a basis for the original lattice because we only executed
elementary integer column operations in step 3. Moreover, it is easy to verify that after
iteration i, the size reduction condition holds for all j < i. Finally, at iteration i, the Gram-
Schmidt coefficients µi′,j with j < i′ < i do not change. So, upon termination, the basis is
size reduced.

3. The LLL algorithm

The LLL algorithm alternates two steps, aimed at achieving the two properties of an
LLL reduced basis. Once we have size-reduced the input basis B, there is only one way
B can fail to be LLL reduced: violate the second condition, i.e., δ‖πi(bi)‖2 > ‖πi(bi+1)‖2
for some index i. If this happens, the algorithm swaps bi and bi+1. Several pairs might
violate the second property. Which one is selected for the swapping does not matter. In the
original LLL algorithm i was chosen to be the smallest unordered pair, but any selection is
equally good. In fact, one can even swap several disjoint pairs at the same time, leading
to a parallel variant of the LLL algorithm. After the swap, the basis is not necessarily size
reduced anymore. So, one must repeat the whole process from the reduction step. The LLL
algorithm is summarized as Algorithm 3.

Cleary, upon termination the basis is LLL-reduced because it is size reduced and no pairs
need to be swapped. So, if the algorithm terminates, then it is correct. We now prove that
the algorithm terminates and it is actually polynomial time.

In order to show that the algorithm is polynomial time, we have to prove that the number
of iterations is polynomial in the input size, and each iteration takes polynomial time. We
first bound the number of iterations.



3.1. Bounding number of iterations. We now bound the number of iterations performed
by the algorithm, i.e., we analyze the maximum number of swaps that can occur. This is
accomplished by associating a positive integer to the basis B, and showing that each time
we swap two vectors this integer decreases by at least a constant factor.

Remember the definition of determinant

det(B) =
∏
‖b∗i ‖ =

√
det(B>B).

From the second formula it is clear that if B is an integer matrix, then the square of the
determinant is an integer.

Lemma 9. For every integer basis B ∈ Zm×n, we have det(L(B))2 ∈ Z

Therefore, we can associate to the basis B the following positive integer

D =
n∏
k=1

det(L(b1, · · · ,bk))2 ∈ Z

We want to show that D decreases at least by a factor δ at each iteration. First we will show
that Size Reduction does not change D. Then we will show that each swap decreases D at
least by δ.

To prove that Size Reduction doesn’t change D we remember that SizeReduce does not
affect the b∗i ’s. Since D can be expressed as a function of the b∗i ’s, the potential D is
unchanged by the size reduction operation.

At this point we need to look at the effect that a swap has on D. Let us look at the effect
of a single swap say between bi and bi+1. Let D be the integer associated to the basis B
before a swap, and D′ the corresponding integer after the swap.

Notice that for all j 6= i the lattice L(b1, · · · ,bj) is not changed by the swap. To prove
this look at the two cases j < i and j > i. When j < i then there is no change in the
basis [b1, · · · ,bj], so the value of det(L(b1, · · · ,bj)) remains the same. On the other hand,
if j > i the only change is that two basis vectors in [b1, · · · ,bj] are swapped, so the lattice
L(b1, · · · ,bj) does not change and the determinant det(L(b1, · · · ,bj)) stays also the same.

So, the only factor in D that is affected by the swap is the one corresponding to lattice
L(b1, · · · ,bi). Here we are replacing the last vector bi by bi+1. Therefore

D
D′

=

∏
j≤i ‖b∗j‖2

(
∏

j<i ‖b∗j‖2) · ‖πi(bi+1)‖2
=
‖πi(bi)‖2

‖πi(bi+1)‖2
≥ 1

δ

because swaps are performed only when ‖πi(bi+1)‖2 < δ‖πi(bi)‖2.
This proves that

D′ ≤ δD
and by induction on n,

D(n) ≤ δnD
where D is the value associated to the initial basis and D(n) is the value after n iterations.
Since D is a positive integer, D ≥ 1 and (1

δ
)n ≤ D or equivalently

(3.1) n ≤ log 1
δ
D

This proves an upper bound on the number of iterations as a function of the initial value
of D. Since D is computable in polynomial time from the input basis, then its size must



be polynomial in the input size. An estimate of how big D is can be easily obtained using
Hadamard inequality.

3.2. Bounding the numbers. We proved that the number of iterations is bounded by a
polynomial in the input size. In order to bound the running time of the algorithm we still need
to show that each iteration also takes polynomial time. The number of arithmetic operations
performed at each iteration is clearly polynomial. So, in order to prove a polynomial bound
on the running time we only need to show that the size of the numbers involved in the entire
computation also is polynomially bounded.

The LLL algorithm uses rational numbers, so we need to bound both the precision required
by this number and their magnitude. In the analysis of the Gram-Schmidt algorithm we have
already shown that the denominators in the µi,j coefficients must divide Dj. Notice that
D =

∏
Dj and therefore all entries in µi,j and b∗i can be written as integers divided by D.

By definition, after size reduction, the µi,j are at most 1/2 in absolute value, so their bit-size
is bounded by logD. We now bound the length of the vectors. Using Di =

∏i
j=1 ‖b∗i ‖2, we

get

‖b∗i ‖2 =
Di

Di−1
≤ Di ≤ D.

Finally,
‖bi‖2 = ‖b∗i ‖2 +

∑
j<i

µ2
i,j‖b∗j‖2 ≤ D + (n/4)D ≤ nD.

So, all numerators and denominators of the numbers occurring in the execution of the algo-
rithm have bit-size polynomial in logD.

4. A Simple Application in Number Theory

We give a simple application of LLL to algorithmic number theory: showing that we can
efficiently write any prime p ≡ 1 (mod 4) as the sum of two squares. Remember the proof
that any such prime is the sum of two squares: all vectors [a, b]> in the lattice

B =

[
1 0
i p

]
have the property that a2 + b2 is a multiple of p. So if we can find a nonzero lattice vector
of squared norm less than 2p, it must be a2 + b2 = p. Minwoski’s theorem assures us that
such short vectors exist. The question is: how can we find it? Answer: using LLL!

Run the LLL algorithm on the lattice basis, to obtain a reduced basis b1,b2 for the
same lattice. We know, from Theorem 4 that ‖b1‖ ≤ α1/4 det(B)1/2. Squaring, and using
det(B) = p, we get ‖b1‖2 ≤

√
αp < 2p as desired, provided δ > 3/4.

5. The Closest Vector Problem

The LLL algorithm can be used also to solve the approximate CVP. No new algorithm is
needed: we will show that preprocessing the lattice basis using the LLL algorithm and then
applying the NearestPlane algorithm to the target vector produces approximate solutions to
CVP within essentially the same approximation factor as the LLL algorithm for SVP. (See
Algorithm 4.)

Theorem 10. Algorithm 4 solves CVP within a factor γ(n) = (2/
√
3)n



Algorithm 4 Approximate CVP algorithm
ApproximateCVP(B,t) :
B← LLL(B)
return NearestPlane(B, t)

Proof. The algorithm runs in polynomial time because it involves just two polynomial time
computations. Proving that the algorithm is correct requires to look again into the details
of LLL basis reduction and the Nearest Plane algorithm. We want to prove that if B is
LLL reduced, then NearestPlane solves the approximate CVP. The proof is by induction on
the rank of B. The base case when the rank is n = 0 is trivial. So, assume B is an LLL
reduced basis of rank n > 0. NearestPlane selects a hyperplane index c = b〈t,b∗n〉/‖b∗n‖2e
and makes a recursive call on input the sublattice C = [b1, . . . ,bn−1] and target t − c · bn.
First of all notice that if B is LLL reduced, then C is also LLL reduced. So, we can invoke
the inductive hypothesis on the recursive call. Let v ∈ L(B) be a lattice vector closest to t.
We distinguish two cases:
Case 1. If v ∈ cbn + L(C), then the correctness of the final output follows by induction.

Specifically, on input C and t−cbn, the recursive call to NearestPlane returns a lattice point
w ∈ L(C) such that

‖(t− cbn)−w‖ ≤ γ(n− 1) · ‖(t− cbn)− (v − cbn)‖ ≤ γ(n) · ‖t− v‖.
So, Algorithm 4 returns a lattice vector cbn + w at a distance from the target t which is
within a factor γ(n) from optimal.
Case 2. Otherwise, it must be v ∈ c′bn + L(C) for some c′ 6= c. Let t = t′ + t′′,

where t′ ∈ span(B) and t′′⊥span(B). Then the distance between t and v is at least√
‖t′′‖2 + ‖b∗n‖2/4. On the other hand, NearestPlane returns a lattice vector w within

distance
√
‖t′′‖2 +

∑
i ‖b∗i ‖2/4 from t.Using the property (1.1) of LLL reduces basis we get

‖t−w‖
‖t− v‖

≤

√
‖t′′‖2 +

∑
i ‖b∗i ‖2/4

‖t′′‖2 + ‖b∗n‖2/4
≤

√∑
i ‖b∗i ‖2/4
‖b∗n‖2/4

≤
√∑

i

αn−i.

Setting γ =
√∑

i α
n−i =

√
(αn − 1)/(α− 1) ≤

√
3(2/
√
3)n concludes the proof.

�
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Lecture 20 
Lecturer: Jonathan Kelner 

Brief Review of Gram-Schmidt and Gauss’s Algorithm 

Our main task of this lecture is to show a polynomial time algorithm which approximately solves the Shortest 
Vector Problem (SVP) within a factor of 2O(n) for lattices of dimension n. It may seem that such an algorithm 
with exponential error bound is either obvious or useless. However, the algorithm of Lenstra, Lenstra and 
Lovász (LLL) is widely regarded as one of the most beautiful algorithms and is strong enough to give some 
extremely striking results in both theory and practice. 

Recall that given a basis b1, . . . , bn for a vector space (no lattices here yet), we can use the Gram-Schmidt 
process to construct an orthogonal basis b1

∗, . . . , b∗ 
n such that b∗ 

1 = b1 and 
b∗ 
k = bk − [projection of bk onto span(b1, . . . , bk−1)] for all 2 ≤ k ≤ n (note that we do not normalize b∗ 

k). In 
particular, we have that for all k: 

• span(b1, . . . , bk) = span(b1
∗, . . . , bk

∗ ), 

• bk = 
∑k

i=1 μkib
∗ 
i , and 

• μkk = 1.  

The above conditions can be rewritten as B = MB∗, where basis vectors are rows of B and B∗, and 
⎡ 

μ11 0 0 . . .  0 
⎤ ⎡ 

1 0 0 . . .  0 
⎤ 

⎢ μ21 μ22 0 . . .  0 ⎥ ⎢ μ21 1 0 . . .  0 ⎥ 
M = ⎢ ⎢ ⎣ 

. . . 
. . . 

⎥ ⎥ ⎦ 
= ⎢ ⎢ ⎣ 

. . . 
. . . 

⎥ ⎥ ⎦ 
. 

μn1 μn2 μn3 . . .  μnn μn1 μn2 μn3 . . .  1 

Obviously det(M) = 1, and thus vol(B) = vol(B∗). However, the entries of M are not integers, and thus 
L(B) � ∗). We have proved last time that = L(B

for any b ∈ L, ||b|| ≥ mini{||b∗||}.i 

We’ll use this to prove useful bound for the shortest vector on lattice. 
Recall also that last time we saw the Gauss’s algorithm which solves SVP for d = 2. There are two key 

ingredients of the algorithm. The first is a definition of “reduced basis” which characterizes the discrete 
version of bases being orthogonal: namely, 

a basis {u, v} for a 2-d lattices is said to be reduced, if  |u| ≤ |v| and |u · v| ≤  |u|
2 

.2 

The second is an efficient procedure that produces a reduced basis. The procedure consists of two stages: 
First is a Euclid-like process which subtracts a multiple of the shorter vector from the longer one to get a 
vector as short as possible. The second stage is, if the length ordering is broken, we swap the two vectors 
and repeat, otherwise (i.e., |u| ≤ |v|) the procedure ends. To make the above procedure obviously terminate 
in polynomial time, we change the termination criterion to be (1 − ε)|u| ≤ |v|. This only gives us a (1 − ε)
approximation, but is good enough. The basic idea of LLL algorithm is to generalize Gauss’s algorithm to 
higher dimensions. 
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2 LLL Algorithm 

2.1	 Reduced Basis 

In order to find a short vector in the lattice, we would like to perform a discrete version of GS procedure. 
To this end, we need to formalize the notion of being orthogonal in lattice problems. One way to do this 
is to say that the result of our procedure is “almost orthogonalized” so that doing Gram-Schmidt does not 
change much. 

Definition 1 (Reduced Basis) Let {b1, . . . , bn} be a basis for a lattice L and let M be its GS matrix 
defined in Section 1. {b1, . . . , bn} is a reduced basis if it meets the following two conditions: 

• Condition 1: all the non-diagonal entries of M satisfy |μik| ≤  1/2. 

• Condition 2: for each i, ||πSi bi||2 ≤ 4 ||πSi bi+1||2, where Si is the orthogonal complement of (i.e., the 3 
subspace orthogonal to) span(b1, . . . , bi−1), and πSi is the projection operator to Si. 

Remark The constant 4/3 here is to guarantee polynomial-time termination of the algorithm, but the 
choice of the exact value is somewhat arbitrary. In fact, any number in (1, 4) will do. 

Remark Condition 2 is equivalent to ||b∗ + μi+1,ib
∗ 
i ||2 ≥ 3 ||b∗ 

i ||2 and one may think it as requiring i+1	 4 
that the projections of any two successive basis vectors bi and bi+1 onto Si satisfy a gapped norm ordering 
condition, analogous to what we did in Gauss’s algorithm for 2D case. 

2.2	 The algorithm 

Given {b1, . . . , bn}, the LLL algorithm works as below. 

LLL Algorithm for SVP 

Repeat the following two steps until we have a reduced basis 

Step 1: Gauss Reduction 

Compute the GS matrix M


for i = 1  to  n


for k = i− 1 to 1 


m← nearest integer to μik


bi ← bi − mbk


end 

end 

Step 2: Swapping 

if exists i s.t. ||πSi bi||2 > 4 ||πSi bi+1||2 
3 

then	 swap bi and bi+1


go to Step 1


Analysis of LLL Algorithm 

The LLL algorithm looks pretty intuitive, but it is not obvious at all that it converges in polynomial number 
of steps or gives a good answer to SVP. We’ll see that it indeed works. 

20-2 

3 



∏ 

3.1 LLL produces a short vector 

We first show that reduced basis gives a short vector. 
n−1 

2Claim 2 If b1, . . . , bn is a reduced basis, then ||b1|| ≤ 2 λ1(L). 

Proof Note that 

4 ||b ∗ 
i ||2 = ||πSi bi||2 ≤ ||πSi bi+1||2 

3 
4 4 4 

= ||bi
∗ 
+1 + μi+1,ibi 

∗ ||2 = ||bi
∗ 
+1||2 + μi

2
+1,i||bi 

∗ ||2 

3 3 3 
4 1 ≤ ||b ∗ 

i+1||2 + ||bi 
∗ ||2 ,

3 3 

which gives ||bi
∗ 
+1||2 ≥ 1 ||bi 

∗||2 . By induction on i, we have  2 

1 1 ||bi 
∗ ||2 ≥ ||b1

∗ ||2 = ||b1||2 .
2i−1 2i−1 

Recall that ∀b ∈ L, ||b|| ≥ mini ||b∗||. Therefore λ1(L) ≥ mini ||b∗||, which combined with the inequality i	 i 
above yields 

||b1||2 ≤ min{2i−1||bi 
∗ ||2} ≤  2n−1 min{||bi 

∗ ||2} ≤  2n−1λ1(L)2 

i	 i 

as desired. 

3.2 Convergence of LLL 

Now we show that the LLL algorithm terminates in polynomial time. Note that in each iteration of LLL, 
Step 1 takes polynomial time and Step 2 takes O(1) times. What we need to show is that we only need 
to  repeat  Step 1 and  Step 2 a polynomial number of times. To this end, we define a potential function as 
follows: 

n 

D(b1, . . . , bn) =  ||bi 
∗ ||n−i . 

i=1 

It is clear that Step 1 does not change D since we do not change the Gram-Schmidt basis. 
We are going to show that each iteration of Step 2 decreases D by a constant factor. In Step 2, we swap i 

and i+ 1 only when ||b∗||2 > 4/3||πSi bi+1||2 ≥ 4/3||b∗ ||2 . Therefore each swapping decreases D by a factor √ i	 i+1

of at least 2/ 3, as desired. 
It is left to show that D can be upper- and lower-bounded. Since ||b∗|| ≤ ||bi||, the initial value of D cani ∏

be upper bounded by (maxi ||bi||)n(n−1)/2 . On the other hand, we may rewrite D as n |det(Λi)|, where i=1 
Λi is the lattice spanned by b1, . . . , bi. Since we assume that the lattice basis vectors are integer-valued, so 
D is at least 1. 

In sum, the algorithm must terminate in log √ (maxi ||bi||)n(n−1)/2 = poly(n) iterations. 2/ 3

4	 Application of LLL–Lenstra’s Algorithm for Integer Program
ming 

4.1 Applications of LLL 

LLL algorithm has many important applications in various fields of computer science. Here are a few (many 
taken from Regev’s notes): 

1. Solve integer programming in bounded dimension as we are going to see next. 

20-3 



2. Factor polynomials over the integers or rationals. Note that this problem is harder than the same task 
but over reals, e.g. it needs to distinguish x2 − 1 from x2 − 2. 

3. Given an approximation of an algebraic number, find its minimal polynomial.	 For example, given 
0.645751 outputs x2 + 4x− 3. 

4. Find integer relations among a set of numbers. A set of real numbers {x1, . . . , xn} is said to have an 
integer relation if there exists a set of integers {a1, . . . , an} not identically zero such that a1x1 + · · ·+ 
anxn = 0. As an example, if we are given arctan(1), arctan(1/5) and arctan(1/239), we should output 
arctan(1) − 4 arctan(1/5) + arctan(1/239) = 0. How would you find this just given these numbers as 
decimals? 

5. Approximate to SVP, CVP and some other lattice problems. 

6. Break a whole bunch of cryptosystems. For example, RSA with low public exponent and many knapsack 
based cryptographic systems. 

7. Build real life algorithms for some NP-hard problems, e.g. subset sum problem. 

4.2 Integer Programming in Bounded Dimension 

4.2.1 Linear, Convex and Integer Programming 

Consider the following feasibility version of the linear programming problem: 

•	 Linear Programming (feasibility)


Given: An m× n matrix A and a vector b ∈ R
n


Goal: Find a point x ∈ R
n s.t. Ax ≤ b, or determine (with a certificate) that none exists


One can show that other versions, such as the optimization version, are equivalent to feasibility version. 
If we relax the searching regions from polytopes to convex bodies, we get convex programming. 

•	 Convex Programming (feasibility)


Given: A separation oracle for a convex body K and a promise that


–	 K is contained in a ball of singly exponential radius R 

– if K is non-empty, it contains a ball of radius r which is at least 1/(singly exponential) 

Goal: Find a point x ∈ R
n that belongs to K, or determine (with a certificate) that none exists 

Integer programming is the same thing as above, except that we require the program to produce a point 
in Zn, not just Rn . Although linear programming and convex programming are known to be in P, integer 
programming is a well-known NP-complete problem. 

4.2.2 Lenstra’s algorithm 

Theorem 3 (Lenstra) If our polytope/convex body is in Rn for any constant n, then there exists a poly
nomial time algorithm for integer programming. 
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Remark. 

•	 For linear programming (LP), the running time of the algorithm will grow exponentially in n, but 
polynomially in m (the number of constrains) and the number of bits in the inputs. 

•	 For convex programming, the running time is polynomial in log(R/r). 

•	 As before, we could also ask for maximum of c · x over all x ∈ K ∩ Zn, which is equivalent to the 
feasibility problem, as we can do a binary search on the whole range of c · x. 

The main idea of Lenstra’s algorithm is the following. The main difficulty of integer programming comes 
from the fact that K may not be well-rounded, therefore it could be exponentially large but still contain no 
integral point, as illustrated in the following figure: 

Figure 1: A not-well-rounded convex body 

Our first step is thus to change the basis so that K is well-rounded, i.e., K contains a ball of radius 1 
and is contained in a ball of radius c(n) for some function that depends only on n. Such a transformation 
will sends Zn to some lattice L. Now our convex body is well-rounded but the basis of lattice L may be 
ill-conditioned, as shown in the following figure: 

Figure 2: A well-rounded convex body and an ill-conditioned lattice basis 
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It turns out that the lattice points are still well-separated and we can remedy the lattice basis by a basis 
reduction procedure of LLL (i.e., discrete Gram-Schmidt). Finally we chop the lattice space up in some 
intelligent way and search for lattice points in K. 

Note that in the first step of Lenstra’s algorithm, what we need is an algorithmic version of Fritz John’s 
theorem. As we saw in the problem set, there is an efficient algorithm which, for any convex body K specified 
by a separation oracle, constructs an ellipsoid E such that 

E(P ′) ⊆ K ⊆ O(n 3/2)E(P ′). 

Next let T : Rn → Rn be the linear transformation such that E(P ′) is transformed to B(P, 1). Now K is 
sandwiched between two reasonably-sized balls: 

B(P, 1) ⊆ TK  ⊆ B(P,R), 

where R = O(n3/2) is the radius of the outer ball. 
Let L = TZ

n with basis Te1, . . . , T en. Our goal is to find a point (if it exists) in TK  ∩ TZ
n = TK  ∩ L. 

Our next step is to apply the basis reduction in LLL algorithm. We will need the following two lemmas in 
analyzing Lenstra’s algorithm. The proofs of the lemmas are left as exercises. 

Lemma 4 Let b1, . . . , bn be any basis for L with ||b1||2 ≤ · · ·  ≤ ||bn||2 . Then for every x ∈ Rn, there exists 
a lattice point y such that 

1 ||x− y||2 ≤ (||b1||2 + · · ·  + ||bn||2)4 
1 ≤ n||bn||2 .
4 

Lemma 5 For a reduced basis b1, . . . , bn ordered as above, 
n 

||bi|| ≤ 2n(n−1)/4det(L). 
i=1 

Consequently, if we let H = span(b1, . . . , bn−1), then 

2−n(n−1)/4||bn|| ≤ dist(H, bn) ≤ ||bn||. 

√Let b1, . . . , bn be a reduced basis for L. Applying Lemma 4 gives us a point y ∈ L such that ||y − P || ≤ 
1 n||bn||.2 

• case 1: y ∈ TK. We find a point in TK  ∩ L. 

• case 2: y /∈ TK, hence y /∈ B(P, 1). Consequently, ||y − P || ≥ 1 and ||bn|| ≥ √2 . 
n 

This means that the length of bn is not much smaller than R. In the following we partition L along the 
sublattice “orthogonal” to bn and then apply this process recursively. ⋃ 

Let L′ be the lattice spanned by b1, . . . , bn−1 and let Li = L′ + ibn for each i ∈ Z. Clearly L = i∈Z Li. 
From Lemma 5 the distance between two adjacent hyperplanes is at least 

dist(bn, span(b1, . . . , bn−1)) ≥ 2−n(n−1)/4||bn||
2 ≥ √ 2−n(n−1)/4||bn|| = c1(n), 
n 

where c1(n) is some function that depends only on n. This implies that the convex body TK  can not 
intersect with too many hyperplanes. That is 

|{i ∈ Z : Li ∩ B(P,R) �= ∅}| ≤ 2R/c1(n) =  c2(n) 

for some function c2(n) that depends only on n. Now we have reduced our original searching problem in 
n-dimensional space to c2(n) instances of searching problems in (n − 1)-dimensional space. Therefore we 
can apply this process recursively and the total running time will be a polynomial in the input size times a 
function that depends only on n. 
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1 Lattice

1.1 Introduction

Since the LLL lattice reduction basis algorithm operates on a lattice it is
important to understand what is it. Many concepts in Lattice theory are
related with linear algebra : a lattice can be represented with the matrix
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of its basis, it has a determinant, and so on. Later we will need linear
algebra methods and matrix properties for the LLL algorithm. I won’t give
a complete and precise view of the lattice theory but favor the geometrical
point of view and focus on the elements that are needed to understand LLL
basis reduction.

1.2 Definition

A lattice is a discrete subgroup of an Euclidean vector space. In general
the vector space is Rn or a subspace of Rn. It is conveniant to describe a
lattice using its basis. The basis of a lattice is a set of linearly independent
vectors in Rn which can generate the lattice by combining them. Notice
that different bases can generate the same lattice (cf. figure 1).

Definition 1. A set of vectors {b1,b2, . . . ,bm} in Rn is linearly indepen-
dent if the equation

c1b1 + c2b2 + · · ·+ cmbm = 0 where ci ∈ R (1)

accepts only the trivial solution c1 = c2 = · · · = cm = 0

Theorem 1. If a set of vectors in Rn contains more vectors than n (if
m > n), then this set of vectors is not linearly independent.

Definition 2. A subspace of Rn is a an arbitrary set H that has the following
properties :

1. the nul vector 0 is an element of H

2. H is close under addition : for every u and v in H, their sum u + v
is an element of H

3. H is close under scalar multiplication : for every u in H and scalar c,
the vector cu is an element of H

Notice that Rn is a subspace of Rn

Definition 3. A basis B of a subspace H of Rn is a set of linearly indepen-
dent vectors in Rn that generates H.

B = {b1,b2, ...,bm} where bi ∈ Rn (2)

H =
m∑
i=1

Rbi =

{
m∑
i=1

cibi where ci ∈ R, bi ∈ Rn
}

(3)

Definition 4. A lattice Λ is a discrete subgroup of H generated by all the
integer combinations of the vectors of some basis B :

Λ =

m∑
i=1

Zbi =

{
m∑
i=1

zibi where zi ∈ Z, bi ∈ Rn
}

(4)
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Definition 5. The rank m of a lattice Λ generated by a basis B of a subspace
H of Rn is the number of vectors in B.

Theorem 1 implies that m ≤ n. If m = n then H is Rn and Λ is a full
rank lattice.

b1

b2

b1

b2 b2

b1

b1

Figure 1: Examples of lattices generated with different bases in R2. The
first and the second lattice are the same. The first three lattices are rank 2
and the fourth is rank 1.

1.3 Determinant

The determinant of a lattice Λ (det Λ) is an important numerical invariant
of Λ. Geometrically speaking, det Λ is the volume of the parallelepiped
spanned by the basis. The determinant does not depend on the choice of
the basis.

Another more general perspective is to consider det Λ as the inverse of
the volume density of elements in Λ.

Definition 6. The volume of a n-dimensional ball B of radius r is given by
proposition

volB(r, n) = rnvolB(1, n) =
rnπn/2

n
2 !

(5)

where n
2 ! is inductively defined by 0! = 1, 1

2 ! =
√
π
2 , and n

2 ! = n
2
n−2
2 !

Definition 7 (Determinant definition). det Λ is the volume of the m-dimensional
ball B, where m is the rank of Λ, divided by the number of elements belonging
to Λ in B when radius of B tends to infinity.

det Λ = lim
r→∞

volB(r,m)

# {y ∈ Λ where ‖y‖ ≤ r}
(6)

Theorem 2. Given a lattice Λ with a basis {b1,b2, . . . ,bi} then the deter-
minant is equal to the volume of the parallelepiped spanned by b1,b2, . . . ,bm.

Proof. Argument : It is coherent with our definition because when the ra-
dius of the ball r is big then volB(r, n) ≈ # {y ∈ Λ where ‖y‖ ≤ r} times
the volume of the parallelepiped. Figure 2 is an illustration of this approxi-
mation.
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Notice that for a full rank lattice, from linear algebra we know that
| det [b1 b2 . . . bn] | is the volume of the parallelepiped spanned by the basis
vectors b1,b2, . . . ,bn, so

det Λ = |det [b1 b2 . . . bn] |

Theorem 3 (Hadamard’s inequality). The determinant is less than or equal
to the product of the norm of the basis vectors.

det Λ ≤
m∏
i=1

‖bi‖ (7)

Equality holds if and only if the vectors bi are pairwise orthogonal (if
bi · bj = 0 when i 6= j and · is the scalar product).

Figure 2: Illustration with a lattice of rank 2 that the volume of the ball
approximates det Λ times the number of elements in Λ lying inside the ball.
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r

Figure 3: A lattice Λ of rank 3. On the left det Λ is represented as the
ball and the elements of Λ inside. On the right det Λ is represented as the
volume of the parallelepiped spanned by a basis of Λ.

1.4 Shortest vector problem

The shortest vector is the following : given a lattice Λ find a shortest vector
v among the set of vectors going from the zero element to any non-zero
element x in Λ. Notice that −v is also a shortest vector. In an algorithmic
context, one may take ’shortest possible’ to mean : shortest possible given
the time one is willing to spend. The main theoretical result about this is
the Minkowski’s theorem which gives us an upper bound for the shortest
vector.

Theorem 4 ( Minkowski’s theorem ). Given a lattice Λ of rank m, if λ is
the norm of the shortest vector then :

λ ≤ 2√
π

m

2
!
1
m

det Λ
1
m (8)

Proof. Argument : If we place a m-dimensional ball of radius λ
2 on each

element of Λ one can see that the balls are pairwise disjoint (cf Figure 4).
From that one deduces that the volume of the ball is less than or equal than
the determinant and the theorem follows :

volB(
λ

2
,m) ≤ det Λ

λ
2

m
πm/2

m
2 !

≤ det Λ
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λ

2

m

≤
m
2 ! det Λ

π
m
2

λ ≤ 2√
π

m

2
!
1
m

det Λ
1
m

Equality holds only with lattices of rank 1.

λ
2

Figure 4: Illustration of a rank 2 lattice. One can see that the balls of radius
λ
2 are pairwise disjoint. From that and the fact that the determinant is the

inverse of the volume density of elements one concludes that det Λ < πλ2

4 .

2 Basis reduction

2.1 Introduction

The idea of the basis reduction is to change a basis B of a lattice Λ into a
shorter basis B’ such that Λ remains the same. To do this we can use these
following operations :

1. Swapping 2 vectors of the basis. As the swapping changes only the
order of vectors in the basis it is trivial that Λ is not affected.

2. Replacing bj by −bj. It is trivial that Λ is not affected.

3. Adding (or substracting) to a vector bj a linear and discrete combina-
tion of the other vectors of the basis. The lattice is not affected because
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if we take an arbitrary vector v which belongs to Λ we can express it as
a discrete combination of the vectors of the basis : v =

∑m
i=1 zibi and if

then we replace bj by a discrete combination of the other vectors of the
basis : bj ← bj+

∑
i 6=j yibi we can still express v as a discrete combina-

tion of the vectors of the new basis : v =
∑

i 6=j zibi+zj(bj−
∑

i 6=j yibi).
In a similar way we can show that if v belongs not to Λ, then we can-
not express it with a discrete combination of the new basis. It follows
that the 2 bases generate the exact same lattice.

Basis reduction can be used to solve the shortest vector problem in the sense
that the shortest vector of the basis (b1 in the basis reduction algorithms
we will see) is very short. In rank 2 for a reduced basis we have that b1

is the shortest vector of Λ and we can get it in polynomial time. But for
higher ranks there is no known algorithms that finds the shortest vector in
polynomial time. The LLL basis reduction algorithm finds a fairly short
vector in polynomial time and it is often sufficient for applications.

(7, 9)
(3, 5)

(−1, 1) (4, 4)

Figure 5: A lattice of rank 2 with two different bases. The determinant is
depicted as the area of the parallelogram defined by the basis. The second
basis is reduced and orthogonal.

2.2 Rank 2 basis reduction

Basis reduction of rank 2 lattices is easy to understand and plays a pivotal
role in LLL basis reduction algorithm. We start with a basis {b1,b2} and
we try to reduce it. If b1 is shorter than b2 the intuitive approach is to
substract from b2 an integer multiple z of b1. We want to choose z such
that the new vector b2 − zb1 is as short as possible. To solve this problem
we take for z the coefficient u of the orthogonal projection of b2 on b1 (cf
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figure 6) rounded to the nearest integer. We repeat this process until we
can no longer reduce the basis.

Definition 8 (Reduced basis in rank 2). A basis {b1,b2} is said to be
reduced if and only if the norm of b1 is less than or equal to the norm of b2

and the absolute value of the orthogonal projection coeffecient u = b1·b2
b1·b1

is

less than or equal to 1
2 .

{b1,b2} is reduced ⇐⇒ ‖b1‖ ≤ ‖b2‖ and
|b1 · b2|
b1 · b1

≤ 1

2
(9)

To picture this observe that in figure 7 given an arbitrary b1 the basis
is reduced if and only if b2 lies on the shaded area.

Theorem 5. Given a lattice Λ of rank 2, if λ is the norm of the shortest
vector then :

λ ≤

√
2√
3

det Λ (10)

Proof. Suppose that we have a reduced basis {b1,b2} of Λ. Using orthog-
onal projection and the properties of reduced bases we get :

b2 = b∗2 + ub1

‖b2‖2 = ‖b∗2‖2 + u2‖b1‖2

‖b∗2‖2 = ‖b2‖2 − u2‖b1‖2 ≥ ‖b1‖2 −
1

4
‖b1‖2 =

3

4
‖b1‖2

‖b∗2‖ ≥
√

3

2
‖b1‖

‖b∗2‖‖b1‖ = det Λ ≥
√

3

2
‖b1‖2√

2√
3

det Λ ≥ ‖b1‖

It gives us for rank 2 lattice a new bound for λ which is better than the
bound given by the Minkowski’s theorem (cf theorem 4).

Theorem 6. If a basis {b1,b2} of Λ is reduced then b1 is a shortest vector
of Λ.

{b1,b2} is reduced ⇒ b1 is a shortest vector. (11)

Proof. Let x be a shortest vector of Λ − {0}. We can express it with the
reduced basis : x = z1b1 +z2b2. We have ‖x‖2 = ‖z1b1 +z2(b

∗
2 +ub1)‖2 =

(z1 − z2u)2‖b1‖2 + z22‖b∗2‖ ≥ (z1 − z2u)2‖b1‖2 + 3
4z

2
2‖b1‖2.

‖x‖2 ≥ (z1 − z2u)2‖b1‖2 +
3

4
z22‖b1‖2
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1. for z2 = 0 and z1 6= 0 : ‖x‖2 ≥ z21‖b1‖2 ≥ ‖b1‖2

2. for |z2| = 1 : ‖x‖2 ≥ (z1 ± u)2‖b1‖2 + 3
4‖b1‖2 ≥ u2‖b1‖2 + 3

4‖b1‖2 ≥
1
4‖b1‖2 + 3

4‖b1‖2 = ‖b1‖2

3. for |z2| ≥ 2 : ‖x‖2 ≥ (z1 − z2u)2‖b1‖2 + 3
44‖b1‖2 > ‖b1‖2

So we have ‖x‖2 ≥ ‖b1‖2 and as x is a shortest vector only equality can
hold : ‖x‖2 = ‖b1‖2. We conclude that b1 is also a shortest vector.

0

b1

b2

b∗2

−ub1

u = b1·b2
b1·b1

Figure 6: Orthogonal projection. The vector ub1 is called the orthogonal
projection of b2 on b1. The set {b1,b

∗
2} is an orthogonal basis for the

subspace generated by {b1,b2}. Notice that the lattice Λ generated by
{b1,b2} has det Λ = ‖b1‖‖b∗2‖.
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b1

0

1
2

√
3
2

b2

b∗2

Figure 7: If the basis is reduced then b2 lies on the shaded area. We can

see that for a reduced basis we have ‖b∗2‖ ≥
√
3
2 ‖b1‖.

Algorithm 1: Rank 2 basis reduction.

input : basis { b1, b2 }
output: reduced basis { b1, b2 }
if ‖b1‖ > ‖b2‖ then

swap(b1,b2)

while ‖b1‖ < ‖b2‖ do
u = (b1 · b2)/(b1 · b1)
b2 = b2 − round(u)b1

swap(b1,b2)

swap(b1,b2) // to have ‖b1‖ ≤ ‖b2‖

2.3 LLL basis reduction

The LLL-reduction algorithm (Lenstra Lenstra Lovász lattice basis reduc-
tion) is a polynomial time lattice reduction algorithm invented by Arjen
Lenstra, Hendrik Lenstra and László Lovász in 1982. Since no efficient
(polynomial time) algorithm is known to solve the shortest vector problem
exactly in arbitrary high dimension, LLL is used to get an approximation of
the shortest vector. This approximation is sufficient for many applications.

Roughly speaking, LLL performs successives orthogonal projections, if
necessary swapping 2 consecutives vectors of the basis, in order to get a
reduced or near orthogonal basis.

Theorem 7. Gram-Schmidt orthogonalization method. Given a basis {b1,b2, . . . ,bm}
of a subspace Hm of Rn, we define :

b∗1 = b1
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b∗2 = b2 −
b2 · b∗1
b∗1 · b∗1

b∗1

b∗3 = b3 −
b3 · b∗1
b∗1 · b∗1

b∗1 −
b3 · b∗2
b∗2 · b∗2

b∗2

...

b∗m = bm −
bm · b∗1
b∗1 · b∗1

b∗1 −
bm · b∗2
b∗2 · b∗2

b∗2 − · · · −
bm · b∗m−1

b∗m−1 · b∗m−1
b∗m−1

Then for 1 ≤ k ≤ m and Hk the subspace generated by the basis {b1,b2, . . . ,bk}

{b∗1,b∗2, . . . ,b∗k} is an orthogonal basis of Hk (12)

Proof. 1. For k = 1 : It is trivial because b∗1 = b1.

2. For k = 2 :

� {b∗1,b∗2} is orthogonal because b∗2 is constructed using the or-
thogonal projection of b2 on b∗1.

� As b∗2 is obtained substracting from b2 a multiple of b∗1 or equally
a multiple of b1 since b∗1 = b1 and the fact that substracting from
a vector of a basis a linear combination of the other vectors of the
basis do not modify the subspace then it follows that {b∗1,b∗2} is
a basis of H2.

3. For 2 < k ≤ m :

� {b∗1,b∗2, . . . ,b∗k} is orthogonal because {b∗1,b∗2, . . . ,b∗k−1} is an
orthogonal basis by induction hypothesis and b∗k is constructed
using successive orthogonal projections of b∗k on the vectors
b∗1,b

∗
2, . . . ,b

∗
k−1 such that b∗k is pairwise orthogonal with them.

� As b∗k is obtained substracting from bk a linear combination of
the vectors b∗1,b

∗
2, . . . ,b

∗
k−1 or equally a linear combination of the

vectors b1,b2, . . . ,bk−1 since by induction hypothesis we have
that {b∗1,b∗2, . . . ,b∗k−1} is a basis of Hk−1 and the fact that sub-
stracting from a vector of a basis a linear combination of the other
vectors of the basis do not modify the subspace then it follows
that {b∗1,b∗2, . . . ,b∗k} is a basis of Hk.

QR matrix factorisation : If we define the matrices B = [b1 b2 . . . bm],
Q = [b∗1 b∗2 . . . b∗m], and R = [u1 u2 . . . uj] such that ui ∈ Rm and the jth

element of ui is defined as follows :

� ui [j] = (bi · b∗j )/(b∗j · b∗j ) if j < i
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� ui [j] = 1 if j = i

� ui [j] = 0 if j > i

One has B = QR. Doing the matrix multiplication one notices that this is an
equivalent way of expressing the Gram-Schmidt orthogonalization method.
Since R is an upper triangular matrix with only 1’s on the diagonal then
detR = 1.

Theorem 8. Given a lattice Λ generated by the basis {b1,b2, . . . ,bm}
and the orthogonal basis {b∗1,b∗2, . . . ,b∗m} obtained using the Gram-Schmidt
method, then :

det Λ =

m∏
i=1

‖b∗i ‖ (13)

Proof. First notice that Λ and the lattice generated by {b∗1,b∗2, . . . ,b∗m}
are not the same. The proof come from the fact that one can transform
the basis {b1,b2, . . . ,bm} into the orthogonal basis {b∗1,b∗2, . . . ,b∗m} using
only the operation that consists of substracting from a vector of the basis
a linear combination of the other vectors of the basis, which do not modify
the volume of the parallelepiped spanned by the basis. Such transformation
is done by rewriting the Gram-Schmidt method as follows :

b1 ← b1

b2 ← b2 −
b2 · b1

b1 · b1
b1

b3 ← b3 −
b3 · b1

b1 · b1
b1 −

b3 · b2

b2 · b2
b2

...

bm ← bm −
bm · b1

b1 · b1
b1 −

bm · b2

b2 · b2
b2 − · · · −

bm · bm−1
bm−1 · bm−1

bm−1

As det Λ is equal to the volume of the parallelepiped spanned by
{b1,b2, . . . ,bm}, which is equal to the volume of the other parallelepiped
spanned by {b∗1,b∗2, . . . ,b∗m}, which is a parallelepiped rectangle whose
volume is equal to the product of its edges, one concludes that det Λ =∏m
i=1 ‖b∗i ‖.

Notice that if Λ is of a full rank lattice then using the QR factorisation we
have that B = QR which implies that det Λ = |detB| = | detQ||detR| =
|detQ| =

∏m
i=1 ‖b∗i ‖.
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Definition 9. c-Reduced basis. A basis {b1,b2, . . . ,bm} is said to be c-
reduced if and only if its orthogonal basis obtained with the Gram-Schmidt
method {b∗1,b∗2, . . . ,b∗m} verifies the following inequality for i = 1 to m− 1
:

‖b∗i+1‖2 ≥
‖b∗i ‖2

c
(14)

A small value for c means a good reduction. Not every basis is 1-

reducable, but each basis is 4
3 -reducable. The 4

3 comes from the
√
3
2 one

can see in figure 7. Figure 8 shows c-reduced basis in rank 2. Notice from
Gram-Schmidt method that b∗1 = b1.

Theorem 9. Near-orthogonality of c-reduced basis. Given a lattice Λ and
its c-reduced basis {b1,b2, . . . ,bm} with c ≥ 4

3 then it is near-orthogonal in
the sense that :

m∏
i=1

‖bi‖ ≤ c(m(m−1))/4 det Λ (15)

Proof. Multiplying for i = 1 to m the following inequality

‖bi‖2 ≤ ci−1‖b∗i ‖2

and then taking the square root and using det Λ =
∏m
i=1 b∗i we conclude

m∏
i=1

‖bi‖ ≤ c(m(m−1))/4 det Λ

13



b1

0

1√
c

Figure 8: c-reduced basis in rank 2. Given an arbitrary b1, the basis is
c-reduced if and only if b2 lies on the shaded area. Here c = 4

3 which is the
minimal value for c.

Theorem 10. Shortest vector approximation with a c-reduced basis. If the
basis {b1,b2, . . . ,bm} is c-reduced and λ is the shortest vector norm then :

‖b1‖ ≤ c(m−1)/4det Λ
1
m (16)

‖b1‖ ≤ c(m−1)/2λ (17)

Proof. 1. From the definition of a c-reduced basis we have that for i = 1
to m

‖b1‖2 = ‖b∗1‖2 ≤ ci−1‖b∗i ‖2.

Multiplying together all this inequalities we get

‖b1‖2m ≤ c0+1+2+···+(m−1)
m∏
i=1

‖b∗i ‖2.

As from theorem 8 we have det Λ =
∏m
i=1 ‖b∗i ‖ and that

∑m−1
i=0 i =

m(m−1)
2 we get

‖b1‖2m ≤ cm(m−1)/2 det Λ2.

14



Passing the inequality to the power 1
2m we get

‖b1‖ ≤ c(m−1)/4det Λ
1
m .

2. Let x ∈ Λ − 0, and let i be minimal such that x ∈ Λi which is the
sublattice of Λ generated by {b1,b2, . . . ,bi}. Notice that ‖x‖ is at
least ‖b∗i ‖ then it follows that

λ2 ≥ ‖x‖2 ≥ ‖b∗i ‖2 ≥
‖b∗1‖2

c(i−1)
≥ ‖b1‖2

c(m−1)
.

Multiplying by cm−1 and passing to the power 1
2 we prove that

c(m−1)/2λ ≥ ‖b1‖.

Theorem 11. For c > 4
3 LLL finds a c-reduced basis in polynomial time

Proof. We define the size of the orthogonal basis {b∗1,b∗2, . . . ,b∗m} as

s = ‖b∗1‖m ‖b∗2‖m−1 . . . ‖b∗m‖

and sinitial as the size of the basis orthogonal at the initialization of LLL
and sfinal the size of the orthogonal basis at termination of LLL. It will be
usefull to analyse the effect of swapping b∗i and b∗i+1 when ‖b∗i ‖2 > c‖b∗i+1‖2
on the new orthogonal basis {a∗1,a∗2, . . . ,a∗m} and especially on s. Let sb be
the size before and sa the size after the swapping and compare them :

1.
sb = ‖b∗1‖m ‖b∗2‖m−1 . . . ‖b∗i ‖m−i+1 ‖b∗i−1‖m−i . . . ‖b∗m‖

sb = ‖b∗1‖m ‖b∗2‖m−1 . . . ‖b∗i ‖ (‖b∗i ‖ ‖b∗i+1‖)m−i . . . ‖b∗m‖

2.
sa = ‖a∗1‖m ‖a∗2‖m−1 . . . ‖a∗i ‖m−i+1 ‖a∗i+1‖m−i . . . ‖a∗m‖

As we can notice it in the algorithm the swapping only affects the b∗i
and b∗i+1 (for the vectors before the ith it is trivial and for the ones

after the (i+1)th it comes from the fact that b∗i+2 is constructed using
the orthogonal projection of bi+2 on the subspace {b∗1,b∗2, . . . ,b∗i+1}
which is not affected by the swapping and so on for b∗i+3, . . . ,b

∗
m) and

we get :

sa = ‖b∗1‖m ‖b∗2‖m−1 . . . ‖a∗i ‖ (‖a∗i ‖ ‖a∗i+1‖)m−i . . . ‖b∗m‖

15



Algorithm 2: LLL basis reduction.

Input: basis { b1, b2, . . . , bm } and c such that bi ∈ Rn and c ≥ 4
3

Data: orthogonal basis { b∗1, b∗2, . . . , b∗m } and orthogonal
projection coefficent vectors { u1, u2, . . . , um } such that
b∗i ∈ Rn and ui ∈ Rm

Output: c-reduced basis { b1, b2, . . . , bm}
for i← 1 to m do // initialization

ui = 0
ui [i] = 1
b∗i = bi

for j ← 1 to i− 1 do
ui [j] = (bi · b∗j )/(b∗j · b∗j )
b∗i = b∗i − ui [j] b∗j

reduce(i)

while i← 1 < m do
if ‖b∗i ‖2 ≤ c‖b∗i+1‖2 then // {b1, . . . ,bi+1} is c-reduced

i = i + 1
else

/* modify Q and R in order to keep the relation B =

QR after the swapping */

b∗i+1 = b∗i+1 + ui+1 [i] b∗i
ui [i] = (bi · b∗i+1)/(b∗i+1 · b∗i+1)

ui [i+ 1] = 1
ui+1 [i] = 1
ui+1 [i+ 1] = 0
b∗i = b∗i − ui [i] b∗i+1

swap(ui,ui+1)
swap(b∗i ,b

∗
i+1)

swap(bi,bi+1)
for k ← i+ 2 to m do

uk [i] = (bk · b∗i )/(b∗i · b∗i )
uk [i+ 1] = (bk · b∗i+1)/(b∗i+1 · b∗i+1)

if |ui+1 [i] | > 1
2 then reduce(i+ 1)

i = max(i− 1, 1)

Subroutine: reduce
Input: i such that (i ≤ m)

while j ← (i− 1) > 0 do
bi = bi−round(ui [j])bj

ui = ui−round(ui [j])uj

j = j − 1

16



From theorem 8 we have det Λ =
∏m
k=1 ‖b∗k‖ =

∏k
i=k ‖a∗k‖ and it

implies that ‖b∗i ‖ ‖b∗i+1‖ = ‖a∗i ‖ ‖a∗i+1‖ and we get :

sa = ‖b∗1‖m ‖b∗2‖m−1 . . . ‖a∗i ‖ (‖b∗i ‖ ‖b∗i+1‖)m−i . . . ‖b∗m‖

As we can notice it from the algorithm a∗i = b∗i+1 + ui+1 [i] b∗i which
is simply b∗i+1 without the projection component on b∗i . So ‖a∗i ‖2 =

‖b∗i+1‖2 + ui+1 [i]2 ‖b∗i ‖2 and we get :

sa = ‖b∗1‖m‖b∗2‖m−1 . . . (‖b∗i+1‖2+ui+1 [i]2 ‖b∗i ‖2)
1
2 (‖b∗i ‖‖b∗i+1‖)m−i . . . ‖b∗m‖

Combining together sb and sa we get :

sb =
sa (‖b∗i+1‖2 + ui+1 [i]2 ‖b∗i ‖2)

1
2

‖b∗i ‖

Finally using ui+1 [i]2 ≤ 1
4 and multiplying by ‖b∗i ‖ and as ‖b∗i ‖2 > c‖b∗i+1‖2

we conclude :

sb ≤

(
‖b∗i+1‖2

‖b∗i ‖2
+

1

4

) 1
2

sa <

(
1

c
+

1

4

) 1
2

sa

From this result we observe that the number of times swapping happens in
LLL is at most

2 log (sinitial/sfinal)

| log (1c + 1
4)|

Notice that this expression is not defined for c = 4
3 because a division by

0 occurs. So it suffices to take c > 4
3 and a good lower bound for sfinal to

prove that LLL runs in polynomial time.

3 LLL basis reduction for solving RSA problem

In this section, we will show how we can use Coppersmith’s algorithm for
finding small roots of univariate modular polynomials, which uses LLL, in
order to attack the RSA cryptosystem under certain conditions.

3.1 RSA

Rivest Shamir Adleman or RSA is a very well known asymetric public key
cryptographic algorithm used to exchange confidential information over the
Internet. Here is how it works :

� Keys generation :

1. Choose 2 prime numbers p and q.
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2. Denote n as the product of p and q : n = pq.

3. Calculate Euler’s totient function of n : φ(n) = (p− 1)(q − 1) .

4. Choose an integer e coprime with φ(n) : gcd (e, φ(n)) = 1.

5. Compute d as the inverse modulo φ(n) of e : ed ≡ 1 mod φ(n).

� Encryption : C = M e mod n where M is the message and C the
message encrypted.

� Decryption : M = Cd mod n where M is the message and C the
message encrypted.

Definition 10 (RSA problem). Given M e mod N find M ∈ ZN .

Definition 11 (Relaxed RSA problem : Small e, High Bits Known). Given

M e, M̃ with |M − M̃ | ≤ N
1
e find M ∈ ZN .

3.2 Coppersmith

In this section we present the Coppersmith method to find small roots of a
monic univariate polynomial : We want to efficiently find all the solutions
x0 satisfying

f(x0) = 0 mod N with |x0| ≤ X (18)

Theorem 12 (Howgrave-Graham). Let g(x) be an univariate polynomial of
degree δ. Further, let m be a positive integer. Suppose that

g(x0) = 0 mod Nm where |x0| ≤ X (19)

‖g(xX)‖ < Nm

√
δ + 1

(20)

Then g(x0) = 0 holds over the integers.

Proof. |g(x0)| = |
∑δ

i=0 cix
i
0| ≤

∑δ
i=0 |cixi0| ≤

∑n
i=0 |ci|Xi ≤

√
δ + 1‖g(xX)‖ <

Nm. But g(x0) is a multiple of Nm and therefore it must be zero.

Given the Howgrave-Graham theorem, the idea is to construct a collec-
tion f1(x), ..., fn(x) of polynomials that all have the desired roots x0 modulo
Nm. Notice that for every integer linear combination g we have

g(x0) =

n∑
i=1

aifi(x0) = 0 mod Nm where ai ∈ Z. (21)

Then, using LLL basis reduction on the coefficient vectors of fi(xX), we
might find a small coefficient vector v such that v respects the second condi-
tion of the Howgrave-Graham theorem : ‖v‖ < Nm

√
n

where n is the dimension

of the coefficient vector v.

18



Theorem 13 (Coppersmith). Let f(x) be a univariate monic polynomial of
degree δ. Let N be an integer of unknown factorization. And let ε > 0 .
Then we can find all solutions x0 for the equation

f(x) = 0 mod N with |x0| ≤
1

2
N

1
δ
−ε. (22)

Proof. To prove this we apply the coppersmith method. First we set m =
d1/(δε)e and X = 1

2N
1
δ
−ε. Then we construct a collection of polynomials,

where each polynomial has a root x0 modulo Nm whenever f(x) has the
root x0 modulo N . Here is the collection of polynomials we choose :

Nm xNm x2Nm . . . xδ−1Nm

Nm−1f xNm−1f x2Nm−1f . . . xδ−1Nm−1f
Nm−2f2 xNm−2f2 x2Nm−2f2 . . . xδ−1Nm−2f2

...
...

...
...

Nfm−1 xNfm−1 x2Nfm−1 . . . xδ−1Nfm−1

Or more compactly :

gi,j(x) = xjN ifm−i(x) for i = 1, . . . ,m and j = 0, . . . , δ − 1

We can see that gi,j(x0) = 0 mod Nm if f(x0) = 0 mod N noticing that
N i is divisible i times by N and f(x0)

m−i is divisible m − i times by N .
Then we construct the lattice Λ that is spanned by the coefficent vectors of
gi,j(xX) :



0 0 0 0 0 NXδm−1

...
...

...
...

... . .
.

−
...

...
... 0 NXδm−δ+1

...
...

...
... NXδm−δ −

...
...

...
... . .

.
−

...
...

...
... 0 . .

.
. .
. ...

...
...

...
... NmXδ−1 . .

.
. .
. ...

...
...

... 0 . .
.

0 . .
.
. .
. ...

...
...

0 NmX
... . .

.
. .
. ...

...
...

Nm 0 0 . .
.
. .
.

− − −


Notice that the rank of the lattice is δm. A nice thing about the matrix
is that it is triangular. So we can easily compute the determinant of the
lattice multiplying the terms on the diagonal :

det Λ = N
1
2
δm(m+1)X

1
2
δm(δm−1).
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Then we reduce the lattice with LLL choosing c = 2 and we obtain a 2-
reduced basis. We want the first vector of the basis b1 to satisfy the condi-
tion

‖b1‖ <
Nm

√
δm

in order to apply the Howgrave-Graham theorem. Let’s see if it does : After
the LLL basis reduction we are guaranteed to have

‖b1‖ ≤ 2
δm−1

4 det Λ
1
δm .

So we need to prove that

2
n−1
4 det Λ

1
δm ≤ Nm

√
δm

.

Using the fact that det Λ = N
1
2
δm(m+1)X

1
2
δm(δm−1), we obtain the new

condition :
N

δm(m+1)
2δm X

δm−1
2 ≤ 2

−(δm−1)
4 (δm)

−1
2 Nm.

This gives us a condition on the size of X :

X ≤ 2
−1
2 (δm)

−1
δm−1N

2m
δm−1

− δm(m+1)
δm(δm−1) .

Notice that (δm)
−1

δm−1 = 2
− log(δm)
δm−1 ≥ 2

−1
2 for n > 6. Therefore, our condition

simplifies to

X ≤ 1

2
N

2m
δm−1

− m+1
δm−1 .

Remember that we made the choice X = 1
2N

1
δ
−ε. Hence in order to finish

the proof of the theorem, it suffices to show that

2m

δm− 1
−
m(1 + 1

m)

δm− 1
≥ 1

δ
− ε.

Then multiplying by δm−1
δm we get :

2

δ
− 1

δ
(1 +

1

m
) ≥ 1

δ
− ε.

This simplifies to
−1

δ

1

m
≥ −ε.

and finally it gives us the condition

m ≥ 1

δε
,

which holds because we made the choice m = d1/(δε)e.
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Algorithm 3: Coppersmith method.

Input: Polynomial f(x) of degree δ, modulus N of unknown
factorization and 0 < e < 1

7
Output: Set R, where x0 ∈ R whenever f(x0) = 0 mod N for an

|x0| ≤ X
m = d1/(δε)e
X = 1

2N
1
δ
−ε

for i← 1 to m do
for j ← 0 to δ − 1 do

gi,j(x) = xjN ifm−i(x)

Construct the lattice basis B, where the basis vectors of B are the
coefficient vectors of gi,j(xX).
v = LLL(B , c = 2).get column(0)
Construct g(x) from v.
Find the set R of all roots of g(x) over the integers using standart
methods. For every root x0 ∈ R check wether gcd (N, f(x0)) ≥ N . If
it is not the case then remove x0 from R.

3.3 Application

We can use the coppersmith method in order to attack RSA under certain
conditions. We can use it to solve the Relaxed RSA problem where e is
small and we have an approximation M̃ of M such that M = M̃ + x0 for
some unknown part |x0| ≤ N

1
e . To solve this problem using Coppersmith

method we define

f(x) = (M̃ + x)e −M e mod N.

And we can recover x0 applying the coppersmith method to f(x) as long as

x0 ≤ N
1
e .

4 Implementation and examples

To implement and test the algorithms (LLL & Coppersmith), I used Sage.
Sage is a free open-source mathematics software system licensed under the
GPL. It combines the power of many existing open-source packages into a
common Python-based interface. Its goal is to create a viable free open
source alternative to Magma, Maple, Mathematica and Matlab. Website :
http://www.sagemath.org/
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4.1 LLL

As python is an interpreted language (it is not compiled), we don’t expect
to have good performance with our implementation of LLL. When a lot of
computation are required, we prefer the native and optimized sage imple-
mentation that is much faster.

Code 1: Computes the Gram-Schmidt orthogonalization and then test if the
matrix B is c-reduced or not.

def is_LLL_reduced(B, c = 2):

n = B.nrows()

m = B.ncols()

U = matrix(RR , m, m)

O = matrix(RR , n, m)

for i in range(0, m) :

U[i,i] = 1

O.set_column(i, B.column(i))

for j in range(0, i) :

U[j,i] = (B.column(i)*O.column(j))/ \

(O.column(j)*O.column(j))

O.set_column(i, O.column(i) - U[j,i]*O.column(j))

for i in range(0, m-1) :

if O.column(i)*O.column(i) > \

c*O.column(i+1)*O.column(i+1) :

return False

return True

Code 2: LLL.

def reduce(i, B, U):

j = i-1

while j >= 0 :

B.set_column(i, B.column(i) - \

round(U[j,i])*B.column(j))

U.set_column(i, U.column(i) - \

round(U[j,i])*U.column(j))

j = j - 1

def LLL(B, c = 2):

n = B.nrows()

m = B.ncols()

U = matrix(RR , m, m)

O = matrix(RR , n, m)

for i in range(0, m) :

U[i,i] = 1

O.set_column(i, B.column(i))

for j in range(0, i) :

U[j,i] = (B.column(i)*O.column(j))/ \
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(O.column(j)*O.column(j))

O.set_column(i, O.column(i) - U[j,i]*O.column(j))

reduce(i, B, U)

i = 0

while i < m-1 :

if O.column(i)*O.column(i) <= \

c*O.column(i+1)*O.column(i+1) :

i = i + 1

else :

O.set_column(i+1, O.column(i+1) + \

U[i,i+1]*O.column(i))

U[i,i] = (B.column(i)*O.column(i+1))/ \

(O.column(i+1)*O.column(i+1))

U[i+1,i] = 1

U[i, i+1] = 1

U[i+1,i+1] = 0

O.set_column(i, O.column(i)-U[i,i]*O.column(i+1))

U.swap_columns(i,i+1)

O.swap_columns(i,i+1)

B.swap_columns(i,i+1)

for k in range(i+2, m) :

U[i,k] = (B.column(k)*O.column(i))/ \

(O.column(i)*O.column(i))

U[i+1, k] = (B.column(k)*O.column(i+1))/ \

(O.column(i+1)*O.column(i+1))

if abs(U[i,i+1]) > 0.5 : reduce(i+1, B, U)

i = max(i-1,0)

return B

In order to test if the implementation of LLL works properly, and to have
an idea of the running time, we run it several times on random matrices of
different sizes with the following code :

Code 3: LLL running time test

runtimes = []

for i in range(0, 39) :

runtimes.append(0.0)

for k in range(0, 10) :

r = 0

while r != i+2 :

A = random_matrix(ZZ, i+2)

r = A.rank()

t = cputime()

res = LLL(A)

runtimes[i] = runtimes[i] + cputime(t)*0.1

if is_LLL_reduced(res) == False :

print("LLL FAILURE")

print(runtimes)
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With the runtimes list we can plot the running time. Here is the result
I got on my computer :

N

cpu time (s)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Figure 9: LLL execution time with random matrices of size NxN

We can clearly notice that the runtime is polynomial with respect to the
matrix size. The runtime depends also on the basis vectors. For example it
is possible that we generate a random matrix that is already reduced, then
LLL has nothing to do. Here we compute the running time for each size N
doing the average on 10 different matrices of size N. Because 10 is small, it
explains why we can get that the running time for a 39x39 matrix is shorter
than the one for a 38x38 matrix.

4.2 Coppersmith

Code 4: Coppersmith method

def coppersmith(f, N, epsilon = 0.1, fastLLL = False \

, debug = False) :

if epsilon > 1/7.0 or epsilon <= 0 :
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print("invalid epsilon")

return None

f.change_ring(Integers(N))

delta = f.degree()

m = ceil(1/delta/epsilon)

R.<x> = ZZ[]

#construction of the g[i,j](x)

g = []

for j in range(0, delta) :

g.append([])

for i in range(1, m+1) :

g[j].append(x^j*N^(i)*f^(m-i))

X = ceil(0.5*N^(1/delta - epsilon))

if debug : print("X = " + str(X))

size = m*delta

#construct B from g[i,j](X*x)

B = matrix(ZZ , size , size)

compteur = 0

for i in range(-m+1, 1) :

for j in range(0, delta) :

polylist = g[j][-i](X*x).list()

vector = [0]*size

vector[0:len(polylist)] = polylist

vector.reverse()

B.set_column(compteur , vector)

compteur = compteur + 1

if debug : show(B)

if debug : print "LLL starts"

coeffs = []

#computes a small combination of g[i,x](X*x) with LLL

if fastLLL : #use native sage implementation

coeffs = B.transpose().LLL().transpose().\

column(0).list()

else : #use our python implementation

coeffs = LLL(B).column(0).list()

coeffs.reverse()

#construct g(x)

g = 0*x

for i in range(0, size) :

g = g + Integer(coeffs[i]/X^i) * x^i

#get the roots of g(x) over the integers

roots = g.roots(multiplicities=False)

result = []

#test if the roots x_i respect f(x_i) = 0 mod N

for i in range(0, len(roots)) :

if gcd(N, f(roots[i])) >= N :

result.append(roots[i])

return result
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Code 5: Coppersmith method example

R.<x> = ZZ[]

f = (x-1)*(x-2)*(x-3)*(x-4)*(x-40)

print coppersmith(f, 10000)

In this example X = 2 and the Coppersmith method outputs the list
[2,1].

4.3 RSA attack

To test an attack on RSA using the Coppersmith method, we first need to
create RSA keys.

Code 6: RSA key creation : Computes d from p, q, and e.

def generate_d(p, q, e) :

if not is_prime(p) :

print "p is not prime"

return None

if not is_prime(q) :

print "q is not prime"

return None

euler = (p-1)*(q-1)

if gcd(e, euler) != 1 :

print "e is not coprime with (p-1)(q-1)"

return None

return inverse_mod(e, euler)

Code 7: Simple example of an attack

p = 17

q = 37

n = p*q

e = 7

d = generate_d(p,q,e)

M = 21

C = power_mod(M, e, n)

MA = 20 #Approximation of M

R.<x> = ZZ[]

f = (MA + x)^e - C

print coppersmith(f, p*q)

In this example X = 1 and the coppersmith method outputs [1]. It
follows that we can recover the message M : M = MA+ 1

Code 8: Example of an attack

p = 955769

q = 650413
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n = p*q

e = 5

d = generate_d(p,q, e)

M = 423909

C = power_mod(M, e, n)

MA = 423919 #Approximation of M

R.<x> = ZZ[]

f = (MA + x)^e - C

print coppersmith(f, p*q, 0.1,True)

In this example X = 8 and the method coppersmith method outputs
[-10]. Notice that since 8 < 10, it could have failed. In this case we use
the LLL implementation of sage, because the coefficients of the g[i, j](X ∗x)
vectors seem to be too large for our naive LLL implementation.
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Introduction

In 1982 Arjen Lestra, Hendrik Lenstra Jr. and Laszlo Lovasz published the LLL-
reduction-algorithm. It was originally meant to find ”short” vectors in lattices, i.e. to
determine a so called reduced Basis for a given lattice. This algorithm also helped
finding solutions to two other major problems: the factorization of polynomials and
the search for integer relations.
On the following pages we will first describe the LLL-Algorithm and derive all its steps.
We will then determine the relation between lattice reduction and the problem of factor-
ing polynomials, and the relation between lattice reduction and finding integer relations.
We will closely follow the layout of the original paper of Lenstra, Lenstra and Lovasz (see
[8]). As an application of integer relation, we are going to discuss BBP-type formu-
lae (which have actually not been obtained by the LLL-Algorithm but a more efficient
Algorithm, the PSLQ-Algorithm).

1 The LLL-algorithm

In this first chapter we will define some expressions and recall the Gram-Schmidt or-
thogonalization process since it is crucial in the algorithm.
We will then present the LLL-Algorithm and derive all the associated steps. Finally we
present a theorem that will give us a few properties on reduced basis of lattices that we
will need in chapter two and three.

1.1 Lattices, Gram-Schmidt and some properties

Definition 1.1: A subset L of the real vector space Rn is called a lattice if there exist
a basis b1, b2, ...bn of Rn such that

L =
{ n∑
i=1

ribi
∣∣ri ∈ Z for i ∈ {1, ..., n}

}
We call b1, ...bn a basis for L and n the rank of L.
Moreover we define d(L) := | det(b1, b2, ...bn)| to be the determinant of the lattice.

Gram-Schmidt orthogonalization process: Let b1, ..., bn be some linear independent
vectors in Rn.
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We define inductively:

b∗1 = b1

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j for 1 ≤ i ≤ n (1)

µi,j =
(bi, b∗j )
|b∗j |2

for 1 ≤ j < i ≤ n (2)

This process produces vectors b∗1, b
∗
2, ..., b

∗
n that form an orthogonal basis of Rn

Definition 1.2: We call a basis b1, b2, ...bn of a lattice L reduced if

|µi,j | ≤
1
2

for 1 ≤ j < i ≤ n (3)

and
|b∗i + µi,i−1b

∗
i−1|2 ≥

3
4
|b∗i−1|2 for 1 < i ≤ n (4)

The second condition can be rewritten as |b∗i | ≥ (3
4 − µ

2
i,i−1)|b∗i−1|2, which is known as

the Lovasz’s condition.
Note that the constant 3

4 in the definition is arbitrary chosen. Indeed, we could take any
other constant between 1

4 and 1.

1.2 The algorithm

We are now going to present an algorithm that takes an arbitrary basis of a lattice as
an input and returns a reduced basis of the same lattice. As we see by the definition, we
will need an orthogonal basis to check the two properties of reduced bases. So we will
first apply Gram-Schmidt orthogonalization process to the basis given. The algorithm
then modifies the basis elements such that they fulfill the desired properties. These
modifications will be described in detail in the next section.

1.2.1 Implementation of the algorithm

1. for i = 1 : n

2. b∗i := bi;

3. for j = 1 : i− 1
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4. µij := (bi, b∗j )/(b
∗
j , b
∗
j );

5. b∗i := b∗i − µijb∗j ;

6. end

7. end

8. k := 2;

9. l := k − 1;

10. if |µkl| > 1
2

11. r := integer nearest to µkl;

12. bk := bk − rbl;

13. for j = 1 : l − 1

14. µkj := µkj − rµlj ;

15. end

16. µkl := µkl − r;

17. end

18. if |b∗k + µk,k−1b
∗
k−1|2 ≥

3
4 |b
∗
k−1|2

19. go to (10) and perform for l = k − 2 : 1;

20. if k = n, terminate

21. else k := k + 1; go to (9);

22. end

23. else

5



24.
(
bk−1

bk

)
:=
(

bk
bk−1

)
;

25. Bk−1 := b∗k−1;

26. Bk := b∗k;

27. µ := µk,k−1;

28. b∗k−1 := Bk + µBk−1;

29. µk,k−1 := µ
|Bk−1|2
|b∗k−1|2

;

30. b∗k := Bk−1 − µk,k−1b
∗
k−1;

31. for j = k + 1 : n

32.
(
µj,k−1

µjk

)
:=

(
µj,k−1µk,k−1 + µjk

|Bk|2
|Bk−1|2

µi,k−1 − µikµ

)

33. end

34. for j = 1 : k − 2

35.
(
µk−1,j

µkj

)
:=
(

µkj
µk−1,j

)
36. end

37. if k > 2, k := k − 1;

38. go to (9)

39. end

1.2.2 Derivation of the steps

Let {b1, b2, ..., bn} be a basis of the lattice L. The procedure to receive a reduced basis
for L out of {b1, b2, ..., bn} is as follows:

For the initialization we first need to calculate all the {b∗1, b∗2, ..., b∗n} and µij for 1 ≤ j <
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i ≤ n with the Gram-Schmidt process.
This is an iteration process, therefore we assume the basis is already reduced for b1, b2, ..., bk−1

for some k < n, i.e. the conditions (3) and (4) are fulfilled for this set. The aim is now
to modify bk (and if necessary b1, ..., bk−1) in such a way that we can get a new set
{b′1, b′2, ..., b′k} which fulfil the conditions of a reduced basis. We will also have to adapt
the b∗i ’s and µij , such that (1) and (2) remains valid.
In every loop we will have to check the two conditions (3) and (4) for the current bk.

1. Check if |µk,k−1| ≤ 1
2

• If |µk,k−1| ≤ 1
2 , continue with point 2.

• If |µk,k−1| > 1
2

Define r to be the nearest integer to µk,k−1.
Set b′k := bk − rbk−1

Obviously we now have to modify all the µkj , 1 ≤ j < k as well.

Note: µkj =
(bk,b

∗
j )

|b∗j |2
and therefore for the new µ′kj ’s we have:

µ′kj =
(bk − rbk−1, b

∗
j )

|b∗j |2
=

(bk, b∗j )
|b∗j |2

− r
(bk−1, b

∗
j )

|b∗j |2

hence:

µ′kj := µkj − rµk−1,j , for 1 ≤ j < k − 1 and

µ′k,k−1 := µk,k−1 − r

If we define r this way, we get that |µk,k−1| ≤ 1
2 .

We do not have to modify the b∗i ’s for i ∈ {1, ..., n}. One can see this with
the following equation:

b∗i = bi −
i−1∑
j=1

µijb
∗
j

Now only bk has been modified, so we only have to check for b∗k (and b∗i for
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i ∈ [k + 1, . . . , n]):

b
′∗
k = b′k −

k−1∑
j=1

µ′kjb
′∗
j

= bk − rbk−1 −
k−1∑
j=1

(µkj − rµk−1,j)b∗j

= bk −
k−1∑
j=1

µkjb
∗
j − r

(
bk−1 −

k−1∑
j=1

µk−1,jb
∗
j

)
= b∗k − r(b∗k−1 − µk−1,k−1b

∗
k−1)

= b∗k

Since the b∗i ’s are not changed, also the µjk for j > k are not changed. We
see this with the definition of µ′jk.

µ′jk :=
(b′j , b

′∗
k )

|b′∗k |2
=

(bj , b∗k)
|b∗k|2

= µjk

Note: It is still not guaranteed that µkj ≤ 1
2 , for j smaller than k − 1.

2. Check if |b∗k + µk,k−1b
∗
k−1|2 ≥

3
4 |b
∗
k−1|2

• If |b∗k + µk,k−1b
∗
k−1|2 ≥

3
4 |b
∗
k−1|2, focus on the µkj , 1 ≤ j < k − 1

Let l be the largest index, s.t. µkl > 1
2 .

Define r to be the nearest integer to µkl.
Set bk := bk − rbl.
As in point 1 we now have to modify the µkj , 1 ≤ j ≤ l. With the same
calculation we get:

µ′kj := µkj − rµl,j , for 1 ≤ j < l − 1 and

µ′k,l := µk,l − r

8



Note: We don’t have to modify µkj , l < j < k because:

µ′kj =
(bk − rbl, b

′∗
j )

|b′∗j |2

=
(bk, b∗j )
|b∗j |2

− r
(bl, b∗j )
|b∗j |2

= µkj − r
(b∗l −

∑l−1
i=1 µlib

∗
i , b
∗
j )

|b∗j |2

= µkj − r
((b∗l , b

∗
j )

|b∗j |2
+

l−1∑
i=1

µli
(b∗i , b

∗
j )

|b∗j |2
)

= µkj .

because of the orthogonality of the b∗i ’s, and j > l.

Since this is not going to change the b∗i ’s, (4) remain valid and we can repeat
this procedure until µkj ≤ 1

2 for all 1 ≤ j < k − 1. Now we can replace k by
k + 1 and continue with the first step.

• If |b∗k + µk,k−1b
∗
k.1|2 <

3
4 |b
∗
k−1|2, we need to modify the bi’s.

Interchange bk and bk−1, i.e. set b′k := bk−1 and b′k−1 := bk.
We now have to modify b∗k and b∗k−1 (the b∗i for i 6= k, k − 1 do not change):

b
′∗
k−1 = b′k−1 −

k−2∑
j=1

µ′k−1,jb
′∗
j

= bk −
k−2∑
j=1

µk,jb
∗
j

= bk −
k−1∑
j=1

µkjb
∗
j + µk,k−1b

∗
k−1

= b∗k + µk,k−1b
∗
k−1

(5)
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b
′∗
k = b′k −

k−1∑
j=i

µ′kjb
′∗
j

= bk−1 −
k−2∑
j=1

µk−1,jb
∗
j − µ′k,k−1b

′∗
k−1

= b∗k−1 − µ′k,k−1b
′∗
k−1

= b∗k−1 −
(b′k, b

′∗
k−1)

|b′∗k−1|2
b
′∗
k−1

= b∗k−1 −
(bk−1, b

∗
k + µk,k−1b

∗
k−1)

|b′∗k−1|2
b
′∗
k−1

= b∗k−1 −
(b∗k−1 +

∑k−2
i=1 µk−1,ib

∗
i , b
∗
k + µk,k−1b

∗
k−1)

|b′∗k−1|2
b
′∗
k−1

= b∗k−1 −
(b∗k−1, µk,k−1b

∗
k−1)

|b′∗k−1|2

= b∗k−1 − µk,k−1

|b∗k−1|2

|b′∗k−1|2
b
′∗
k−1

= b∗k−1 − µ′k,k−1b
′∗
k−1 (6)

Where in the seventh line of the calculation of b
′∗
k we used the orthogonality

of the b∗i ’s.

Now we need to modify µi,k−1 and µi,k for i > k, µk−1,i and µki for 1 ≤ i <
k − 1.
First note that bi = b′i for i > k, hence with (1) we have:

bi = b∗i +
i−1∑
j=1

µijb
∗
j = b

′∗
i +

i−1∑
j=1

µ′ijb
′∗
j = b′i

Since b
′∗
j = b∗j for j 6= k, k − 1 we can subtract the common terms on both

sides of the equation to get:

µi,k−1b
∗
k−1 + µikb

∗
k = µ′i,k−1b

′∗
k−1 + µ′ikb

′∗
k (7)

From (6) we have:
b∗k−1 = b

′∗
k + µ′k,k−1b

′∗
k−1

and from (5),
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b∗k = b
′∗
k−1 − µk−1b

∗
k−1

= b
′∗
k−1 − µk,k−1(b

′∗
k + µ′k,k−1b

′∗
k−1)

= (1− µk,k−1µ
′
k,k.1)b

′∗
k−1 − µk,k−1b

′∗
k

=
(

1− µ2
k,k−1

|b∗k−1|2

|b′∗k−1|2
)
b
′∗
k−1 − µk,k−1b

′∗
k

=
(

1−
(bk, b∗k−1)2

|b∗k−1|4
|b∗k−1|2

|b′∗k−1|2
)
b
′∗
k−1 − µk,k−1b

′∗
k

=
(

1−
(bk, b∗k−1)2

|b∗k−1|2|b
′∗
k−1|2

)
b
′∗
k−1 − µk,k−1b

′∗
k

=
(

1−
(b∗k +

∑k−1
i=1 µkib

∗
i , b
∗
k−1)2

|b∗k−1|2|b
′∗
k−1|2

)
b
′∗
k−1 − µk,k−1b

′∗
k

=
(

1−
(µk,k−1b

∗
k−1, b

∗
k−1)2

|b∗k−1|2|b
′∗
k−1|2

)
b
′∗
k−1 − µk,k−1b

′∗
k

=
(

1−
µ2
k,k−1|b∗k−1|4

|b∗k−1|2|b
′∗
k−1|2

)
b
′∗
k−1 − µk,k−1b

′∗
k

=
( |b′∗k−1|2 − µ2

k,k−1|b∗k−1|2

|b′∗k−1|2
)
b
′∗
k−1 − µk,k−1b

′∗
k

(5)
=

( |b∗k + µk,k−1b
∗
k−1|2 − µk,k−1|b∗k−1|2

|b′∗k−1|2
)
b
′∗
k−1 − µk,k−1b

′∗
k

=
( |b∗k|2 + µ2

k,k−1|b∗k−1|2 − µ2
k,k−1|b∗k−1|2

|b′∗k−1|2
)
b
′∗
k−1 − µk,k−1b

′∗
k

=
|b∗k|2

|b′∗k−1|2
b
′∗
k−1 − µk,k−1b

′∗
k

So with (7) we have :

µi,k−1(b
′∗
k + µ′k,k−1b

′∗
k−1) + µik

( |b∗k|2
|b′∗k−1|2

− µk,k−1b
′∗
k

)
= µ′i,k−1b

′∗
k−1 + µ′ikb

′∗
k

⇐⇒ (µi,k−1 − µikµk,k−1)b
′∗
k + (µi,k−1µ

′
k,k−1 + µik

|b∗k|2

|b∗k−1|2
)b
′∗
k−1 = µ′i,k−1b

′∗
k−1 + µ′ikb

′∗
k

=⇒

{
µ′i,k−1 = µi,k−1µ

′
k,k−1 + µik

|b∗k|
2

|b∗k−1|2

µ′ik = µi,k−1 − µikµk,k−1
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For µ′k−1,j and µ′kj , 1 ≤ j < k − 1 one can easily see that:

µ′k−1,j = µkj

µ′kj = µk−1,j

Now we can replace k by k − 1 and continue with the first step.

1.2.3 Proof

Claim: The algorithm described above terminates and it returns a reduced basis b′1, b
′
2, ..., b

′
n

of L.

Proof. Obviously the vectors b′1, b
′
2, ..., b

′
k are reduced after every loop, so we only have

to prove that the algorithm terminates.
We had that every time we interchanged bk and bk−1 we lowered the current index by
one. In every other case we increased it by one. So we need to show that there are only
finitely many times where we need to interchange bk and bk−1.
In order to show this, we define

di := det(Di) with Di := (bj , bl)1≤j,l≤i

D :=
n−1∏
i=1

di

We now need to compute the effect of the changes of the bi’s in the algorithm on the
two quantities di and D.
We first derive that di =

∏i
j=1 |b∗j |2, for all i ∈ {1, ..., n}.

One can see this by applying the Gaussian elimination procedure to Di. As we know,
the determinant will not change under these operations.
We have:

di = det(Di) = det


(b1, b1) (b1, b2) . . . (b1, bi)
(b2, b1) (b2, b2) . . . (b2, bi)

...
...

(bi, b1) . . . (bi, bi)

 (8)

The first step is to subtract (bj ,b1)
(b1,b1) times the first row from the j-th row, for all j ∈

{2, ..., i}. As a property of the Gaussian elimination we get zeros on each entry of the
first column except in the first row. The first row remains unchanged and for the k-th
entry (k ∈ {2, ...i}) of the j-th row we then get:

(bj , bk)−
(bj , b1)
(b1, b1)

(b1, bk) = (bj −
(bj , b∗1)
|b∗1|2

b∗1, bk) = (bj − µj1b∗1, bk)
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Since we have b2 − µ21b
∗
1 = b∗2 and (b∗j , bj) = (b∗j , b

∗
j +

∑j−1
i=1 µjib

∗
i ) = |b∗j |2 we get:

di = det


|b∗1|2 (b∗1, b2) (b∗1, b3) . . . (b∗1, bi)

0 |b∗2|2 (b∗2, b3) . . . (b∗2, bi)
0 (b3 − µ31b

∗
1, b2) (b3 − µ31b

∗
1, b3) . . . (b3 − µ31b

∗
1, bi)

...
...

0 (bi − µi1b∗1, b2) . . . (bi − µi1b∗1, bi)


The second step is then to subtract (bj−µj1b

∗
1,b2)

|b∗2|2
times the second row from the j-th row

(j ∈ {3, ..., i}).
For the k-th entry (k ∈ {3, ..., i}) of the j-th row we then get:

(bj − µj1b∗1, bk)−
(bj − µj1b∗1, b2)

|b∗2|2
(b∗2, bk)

= (bj − µj1b∗1 −
(bj − µj1b∗1, b2)

|b∗2|2
b∗2, bk)

= (bj − µj1b∗1 −
(bj − µj1b∗1, b∗2 + µ21b

∗
1)

|b∗2|2
b∗2, bk)

= bj − µj1b∗1 −
(

(bj , b∗2)
|b∗2|2

− (µj1b∗1, b
∗
2)

|b∗2|2
+

(bj , µ21b
∗
1)

|b∗2|2
− (µj1b∗1, µ21b

∗
1)

|b∗2|2

)
b∗2, bk)

= bj − µj1b∗1 −

µj2 +
(bj , µ21b

∗
1)

|b∗2|2
−

( (bj ,b
∗
1)

|b∗1|2
b∗1, µ21b

∗
1)

|b∗2|2

 b∗2, bk)

= bj − µj1b∗1 −

µj2 +
(bj , µ21b

∗
1)

|b∗2|2
−

(bj ,b
∗
1)

|b∗1|2
µ21(b∗1, b

∗
1)

|b∗2|2

 b∗2, bk)

= bj − µj1b∗1 −
(
µj2 +

(bj , µ21b
∗
1)

|b∗2|2
− (bj , b∗1)µ21

|b∗2|2

)
b∗2, bk)

= (bj − µj1b∗1 − µj2b∗2, bk)

Hence,

di = det



|b∗1|2 (b∗1, b2) (b∗1, b3) . . . (b∗1, bi)
0 |b∗2|2 (b∗2, b3) . . . (b∗2, bi)
0 0 |b∗3|2 . . . (b∗3, bi)
0 0 (b4 − µ41b

∗
1 − µ42b

∗
2, b3) . . . (b4 − µ41b

∗
1 − µ42b

∗
2, bi)

...
...

0 0 (bi − µi1b∗1 − µi2b∗2, b3) . . . (bi − µi1b∗1 − µi2b∗2, bi)
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Apparently by proceeding with the Gaussian elimination, we get

di = det


|b∗1|2 (b∗1, b2) (b∗1, b3) . . . (b∗1, bi)

0 |b∗2|2 (b∗2, b3) . . . (b∗2, bi)
0 0 |b∗3|2 . . . (b∗3, bi)
...

...
0 . . . |b∗i |2

 =
i∏

j=1

|b∗j |2.

Now, only in the case when |b∗k + µk,k−1b
∗
k−1|2 < |b∗k−1|2 we had to modify some of

the b∗i ’s (namely b∗k−1 and b∗k). We had |b′∗k−1|2 = |b∗k + µk,k−1b
∗
k−1|2 <

3
4 |b
∗
k−1|2, hence

dk−1 decrease by a factor < 3
4 with every such change being made. All the other dj ,

j ∈ {1, ..., i} \ {k − 1} remain unchanged as we see with (8).
Since we lower the current index of the algorithm if and only if such a change is made,
there is a one-to-one correspondence between the lowering of the current index and the
quantity D. That is, if the determinant defined above after one modification of the b∗i ’s
is denoted by D′, then we have D′ < 3

4D.

Claim: There is a positive lower bound for di depending only on L.

Proof. We define m(L) := min{|x|2;x ∈ L, x 6= 0}, which is a positive, real number.
Note that it is not claimed that the LLL-algorithm does find such a shortest vector. For
the determinant of the lattice we have

d(L) = | det(b1, b2, ...bn)| = |det(b∗1, b
∗
2, ...b

∗
n)| =

n∏
i=1

|b∗i |

since the b∗i are pairwise orthogonal, so dn = det(L)2 and di for 1 ≤ i < n is equal to de
determinant of the lattice spanned by b1, . . . , bi. As a property of lattices there exists a
vector x 6= 0 such that |x| ≤ 4

3

(i−1)/2
d

1/i
i (see [5, lemma 4, pp. 21 and theorem 1, pp.

31]) and therefore

di ≥
3
4

(i−1)i/2

|x|2i ≥ 3
4

(i−1)i/2

m(L)i,

which is what we wanted.

So since we lower D by 3
4 every time we interchange bk and bk−1 and there is a lower

bound for D, we conclude that there can only be finitely many interchanges during the
algorithm and therefore the algorithm terminates.
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1.3 Properies of reduced bases

Theorem 1.1: If b1, b2, ..., bn is some reduced basis for a lattice L in Rn, then

1. |bj |2 ≤ 2i−1|b∗i | for 1 ≤ j ≤ i ≤ n

2. d(L) ≤
∏n
i=1 |bi| ≤ 2n(n−1)/4d(L)

3. |b1| ≤ 2(n−1)/4d(L)1/n

4. For any linearly independent set of vectors x1, x2, ..., xt ∈ L we have
|bj | ≤ 2(n−1)/2 max(|x1|, |x2|, ..., |xt|) for 1 ≤ j ≤ t.

Proof. 1. First note:

|bi|2 =
∣∣∣b∗i +

i−1∑
j=1

µi,jb
∗
j

∣∣∣2 = |b∗i |2 +
i−1∑
j=1

µ2
i,j |b∗j |2 (9)

from (1) and since the b∗i ’s are orthogonal for 1 ≤ i ≤ n.
So we have the following inequality:

|bi|2 = |b∗i |2 + µ2
i,i−1|b∗i−1|2 + ...+ µ2

i,1|b∗1|2

≤ |b∗i |2 +
1
4
|b∗i−1|+ ...+

1
4
|b∗1|2

Moreover we have |b∗j |2 ≥ 1
2 |b
∗
j−1|2 by Lovasz’s condition, hence |b∗j |2 ≤ 2i−j |b∗i |2

for all j ≤ i. Hence for all i:

|bi|2 ≤
(
1 +

1
4

(2 + 22 + ...+ 2i−1)
)
|b∗i |2

=
(
1 +

1
4

i−1∑
j=i

2i
)
|b∗i |2

=
(
1 +

1
4

(2 · 2i−1 − 2)
)
|b∗i |2

=
2i−1 + 1

2
|b∗i |2

≤ 2i−1|b∗i |2

Therefore:
|bj |2 ≤ 2j−1|b∗j |2 ≤ 2i−j2j−1|b∗i |2 = 2i−1|b∗i |2 (10)

For 1 ≤ j < i ≤ n. This proves part 1.
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2. For the second part we need that d(L) =
∏n
i=1 |b∗i | as shown above. From (9) we

have that |b∗i | ≤ |bi| and hence

d(L) =
n∏
i=1

|b∗i | ≤
n∏
i=1

|bi| ≤
n∏
i=1

2(i−1)/2|b∗i | = 2n(n−1)/4
n∏
i=1

|b∗i | = 2n(n−1)/4d(L),

where we used the calculations from the proof of the first point of the theorem and
that

∏n
i=1 2(i−1)/2 = 2

∑n
i=1(i−1)/2 = 2n(n−1)/4.

This proves part 2.

3. For part 3, we use the equation |b∗j |2 ≤ 2i−j |b∗i |2 with j = 1 (i.e |b∗1|2 = |b1|2 ≤
2i−1|b∗i |2) to get:

|b1|n ≤
n∏
i=1

2(i−1)/2|b∗i | = 2n(n−1)/4d(L)

Hence |b1| ≤ 2(n−1)/4d(L)1/n.

4. Note that we can write xj =
∑n

i=1 rijbi =
∑n

i=1 r
′
ijb
∗
i with rij ∈ Z since xj ∈ L

and the bi’s are a lattice basis of L. Let 1 ≤ j ≤ n be fixed and let k be the largest
index such that rkj 6= 0.
Then we have that rkj = r′kj . To see this consider the following calculation:

xj =
k∑
i=1

rijbi =
k∑
i=1

r′ij(bij −
i−1∑
l=1

µilb
∗
l )

Where in the second term of the RHS bk does not appear in the summation and
since the bi’s are linearly independent we need r′kj to be rkj .
By the orthogonality of the b∗i ’s we have that |xj | =

∑k
i=1 |r′ij ||b∗i | ≥ |r′lj ||b∗l | for all

l ∈ {1, ..., k}, hence
|xj |2 ≥ |r′kj |2|b∗k|2 ≥ |b∗k|2.

since r′kl = rkl and rkl is an integer. So with (10) we have

|bi|2 ≤ 2k−1|b∗k|2 ≤ 2k−1|xj |2 ≤ 2n−1max(|x1|2, |x2|2, ..., |xt|2) (11)

for i ∈ {1, ..., k} since k ≤ n. Moreover since t ≤ k this inequality holds for all
i ∈ {1, ..., t}, which is what we wanted.

2 Factorization of polynomials

By the use of the LLL-Lattice reduction Algorithm we can now create an algorithm to
factor arbitrary polynomials f ∈ Z[X].
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A first observation will be that the algorithm only works for polynomials with no multiple
roots. So in the final algorithm we will first have to check that property and modify
the polynomial such that it has no multiple roots. This will be done by the use of
resultants. As a second step we need to know all the irreducible factors of f mod p
where p is some prime. These factors can be determined with the use of Berlekamp’s
Algorithm.
We are going to show some properties of factors of f and f mod p that will allow us
to determine one irreducible factor h0 by knowing one irreducible factor h mod p of f
mod p.

2.1 The setting

In this section we will have a fixed polynomial f ∈ Z[X] of degree n, which will be the
polynomial we want to factor out. Moreover we have a polynomial h ∈ Z[X] which is
an irreducible divisor of f if taken modulo some integer (for the exact definition of h
see below). Out of h we are going to find an irreducible factor h0 of f by use of the
LLL-algorithm. So we are also going to need a lattice where every polynomial can be
represented by an element of that lattice.

We define h the following way: deg(h) = l where l < n and h fulfills:

h is monic (i.e has leading coefficient one) (12)

(h mod pk) divides (f mod pk) in (Z/pkZ)[X] (13)
(h mod p) is irreducible in (Z/pZ)[X] (14)

(h mod p)2 does not divide (f mod p) in (Z/pZ)[X] (15)

Note: From (13) we get that (h mod p) divides (f mod p). We see this by considering
that if x divides y ⇒ (x mod p) divides (y mod p) and ((h mod pk) mod p) = (h
mod p).

Proposition 2.1: Let f and h be as above. Then there is a polynomial h0 ∈ Z[X] such
that h0 is an irreducible factor of f , (h mod p) divides (h0 mod p) and h0 is unique up
to sign.
Moreover if g divides f in Z[X], then the following are equivalent:

1. (h mod p) divides (g mod p) in (Z/pZ)[X]

2. (h mod pk) divides (g mod pk) in (Z/pkZ)[X]

3. h0 divides g in Z[X]
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Proof. The existance of such an h0 follows from (14) and the note above. If h itself is a
divisor of f , then h0 = h, and irreducibility follows form (14). If h does not divide f in
Z[X], then there is a irreducible factor h0 such that (h0 mod p) factors into (h mod p)
and (h̃ mod p) in Z/pZ. From (15) we get uniqueness.

2 ⇒ 1: Obvious for the same reason as in the note above.

3 ⇒ 1: h0 divides g ⇒ (h0 mod p) divides (g mod p)⇒ (h mod p) divides (g mod p)

1 ⇒ 3: Since (h mod p) divides (g mod p) and (h mod p) is no multiple divisor of
(f mod p) we have that (h mod p) does not divide (f/g mod p) in Z/pZ[X]. We have
that (h mod p) is a factor of (h0 mod p), therefore also (h0 mod p) does not divide
(f/g mod p) and h0 does not divide f/g. Hence h0 has to be a divisor of g.

3 ⇒ 2: From the fact that h0 divides g we have that (h0 mod p) divides (g mod p)
and hence (h mod p) divides (g mod p). From (14) it follows that (h mod p) and (f/g
mod p) have no common divisor in Z/pZ.
Recall that for two numbers a and b with gcd(a, b) = 1 we have that there exists integers
λ and µ such that aλ+ bµ = 1. We can apply this to (h mod p) and (f/g mod p), i.e.
there exists λ and µ ∈ Z[X] such that:

(λ mod p)(h mod p) + (µ mod p)(f/g mod p) = 1

=⇒ λh+ µf/g = 1 + νp

with ν ∈ Z[X].
By multiplying boths sides with g and v(ν) = 1 + pν + p2ν2 + . . .+ pk−1νk−1 we get:

λgv(ν)h+ µv(ν)f = (1− pν)v(ν)g = (1− pkνk)g(
λ̃h+ µ̃f

)
mod pk = g mod pk

Now since we know that (f mod pk) is divisible by (h mod pk), the left hand side is
divisible by (h mod pk) then so is the right hand side, i.e. (g mod pk) is divisible by
(h mod pk) which is what we wanted.

Note that if we choose g to equal h0, the third statement is true and by the equivalence
of the three stratements we get that (h mod pk) divides (h0 mod pk).

With all the quantities defined as above, our goal is now to find a way to calculate
h0. This is where the lattice reduction algorithm comes into play.

Defining the lattice: In order to apply the results from the last preceding chapter we
need to introduce a lattice L representing all possible polynomials for h0. Let m be the
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dimension of the lattice. Clearly m ≥ l because the degree of h0 is greater or equal to
the degree of h. An upper bound for m would be n−1 since a (not necessary irreducible)
factor of a polynomial has at most degree one less that the polynomial itself. We are
going to set the actual value of m later, but anyway we consider it fixed.
We set L to be the set of all polynomials in Z[X] with the property that if taken
modulo p then they are divisible by (h mod p) in Z/pZ. Recall that we can identify a
polynomial of degree m with a vector in Rm+1 (p(x) = pmx

m+pm−1x
m−1 + . . .+p0 ←→

(p0, p1, . . . , pm)T ).
A basis of L is given by: {pkXi; 0 ≤ i < l} ∪ {hXj ; 0 ≤ j ≤ m− l}.
One can see this by considering that (h mod p) has to divide each of these polynomials
modulo p. Obviously h divides hXj , hence (h mod p) divides (hXj mod p) as well.
The polynomial in the first set are zero when taken modulo p and zero can be divided
by everything. Certainly also linear combinations of these basis elements then fulfil the
desired property. To see that these two sets indeed cover all the polynomials note that
there are l + (m− l + 1) = m+ 1 elements in that basis of L and that they are linearly
independent.
Furthermore we can calculate the determinant of the lattice L:

d(L) = det



pk 0 . . . 0 h0 0 . . . 0
0 pk . . . 0 h1 h0 . . . 0
...

...
. . .

...
...

...
0 0 . . . pk hl−1 hl−2 . . .
0 0 . . . 0 1 hl−1 . . .
...

... 0 0 1 . . .
...

...
. . .

0 0 . . . 0 0 . . . 1


= pkl

We now going to show that h0 can be calculated as the greatest common divisor of some
basis elements of a reduced basis of L. For this we first need three propositions.

Proposition 2.2: Let b ∈ L such that pkl > |f |m|b|n.
Then we have that h0 divides b in Z[X] and therefore gcd(f, b) 6= 1.

Proof. Define g := gcd(f, b). We claim that (h mod p) divides (g mod p), hence with
proposition 1.2 it follows that h0 divides g and hence h0 divides b.
To prove the claim, assume in contrary that (h mod p) does not divide (g mod p).
Since (h mod p) is irreducible in Z/pZ we have that (h mod p) and (g mod p) are
relatively prime in Z/pZ and therefore

λh+ µg = 1 + νp (16)
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for some λ, µ, ν ∈ Z[X].
Let now deg(g) = e and deg(b) = e′ and define M to be the set:

M = {λf + µb;λ, µ ∈ Z[X], deg(λ) < e′ − e,deg(µ) < n− e}

Obviously M is a subset of the set of all polynomial with integer coefficients and degree
lesser or equal to n+ e′− e− 1, i.e M ⊂ (Z + ZX + . . .+ ZXn+e′−e−1). Furthermore we
can see that we can define a basis for M such that it is a lattice of rank n+ e′ − 2e by
a projection as follows:
Define M ′ to be the projection of M on (ZXe + ZXe+1 + . . .+ ZXn+e′−e−1).
Now we can show that the kernel of this projection is trivial and therefore its image has
the same rank as M itself. Suppose (λf + µb) ∈ M projects to 0 in M ′. Then we have
that deg(λf + µb) < e. Since g divides f and b, it also divides (λf + µb) and we get
that (λf + µb) = 0 and hence λ(f/g) = −µ(b/g). From g = gcd(f, b) it follows that
(f/g) and (b/g) has no common divisor and thus (f/g) has to divide µ. Again with an
analysis of the degrees of (f/g) and µ we see that µ needs to be zero, and also λ needs
to be zero, which proves that the kernel is trivial.
We then have that the projections of

{Xif ; 0 ≤ i < e′ − e} ∪ {Xjb; 0 ≤ j < n− e}

on M ′ are linearly independent and span M ′. Furthermore M ′ is a lattice of dimension
n+ e′ − 2e and from the second point of Theorem 1.1 we get that:

d(M ′) ≤
e′−e−1∏
i=0

|Xif |
n−e−1∏
j=0

|Xjb| = |f |e′−e|b|n−e ≤ |f |m|b|n < pkl (17)

In order to derive a contradiction we are now going to observe that the set {θ ∈
M ; deg(θ) < e+ l} is a subset of pkZ[X].
We choose θ to be an element of this set. By the definition of M , g divides θ. We can
multiply the equation (16) by (θ/g) and v(ν) = 1 + pν + p2ν2 + . . .+ pk−1νk−1 (see also
proof of Proposition 2.1) to receive

(λ̃h+ µ̃θ) mod pk = (θ/g) mod pk

With λ̃ = λ(θ/g)v(ν) and µ̃ = µv(ν) and hence both in Z[X]. Since θ ∈ M , it is the
sum of a multiple of f and a multiple of b, and b ∈ L (in particular (h mod pk) divides
b) we have that (h mod pk) divides θ. So with the equality above we also have that
(h mod pk) divides (θ/g) mod pk. By looking at the degrees, deg(h mod pk) = l and
deg((θ/g) mod pk) < e + l − e = l we see that ((θ/g) mod pk) has to be zero, hence
also (θ mod pk) has to be zero, which is what we wanted to show.

Now we choose a basis be, be+1, . . . , bn+e′−e−1 of M ′ such that deg(bi) = i. Then the ma-
trix representing M ′ has upper triangular form and we can calculate d(M ′) very easily
by just multiplying the leading coefficients. By the observation above ({θ ∈M ; deg(θ) <
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e + l} ⊆ pkZ[X]) we have that be, be+1, . . . , be+l−1 are all divisible by by pk and so are
the leading coefficients of be, be+1, . . . , be+l−1. Hence we get that d(M ′) ≥ pkl. Then
together with (17) this is a contradiction.

By the next proposition we are going to have a result to check if deg(h0) really is smaller
than m, i.e. if h0 ∈ L. This will be useful in the algorithm to determine the value of
m. Clearly one could define m := n− 1 to be sure that h0 ∈ L, but we can shorten the
running time of our algorithm if we can choose m as small as possible.

Proposition 2.3: Let b1, b2, . . . , bm+1 be a reduced basis for L and assume pkl >

2mn/2
(
2m
m

)n/2|f |m+n.
Then we have:

deg(h0) ≤ m ⇐⇒ |b1| <
(
pkl/|f |m

)1/n

Proof. We prove both directions:
”⇐”: |b1| <

(
pkl/|f |m

)1/n ⇒ pkl > |b1|n|f |m. Then we have that h0 divides b1 in Z[X]
by proposition 2.2 and since deg(b1) ≤ m we also have that deg(h0) ≤ m.
”⇒”: For this part we first need a Theorem of Landau and Mignotte (see [6, page 83]).

Theorem (Landau-Mignotte): Let f(x) ∈ Z[X] with degree n and g(x) ∈ Z[X] a
divisor of f(x) of degree m. Then we have that

|g| ≤
(

2m
m

)1/2

|f |

(proof see below)
Since deg(h0) ≤ m we have that h0 ∈ L and we can apply the fourth assertion of theorem
1.1 to b1 and h0 to get |b1| ≤ 2m/2|h0|. By the fact that h0 divides f , deg(h0) = l ≤ m

and with Landau-Mignotte we have |h0| ≤
(
2m
m

)1/2|f |. So we get:

|b1| ≤ 2m/2|h0|

≤ 2m/2
(

2m
m

)1/2

|f |

=

(
2mn/2

(
2m
m

)n/2
|f |n |f |

m

|f |m

)1/n

< pkl/n/|f |m/n

=
(
pkl/|f |m

)1/n
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Proof. (of Landau-Mignotte)
For the proof we will need the equation |(x − a)h| = |a||(x − a−1)h| for a ∈ C and
h ∈ C[X]. To see this, let h :=

∑n
i=0 hix

i and h−1 = hn+1 = 0 and calculate:

|(x− a)h|2 =
n+1∑
i=1

|hi−1 − ahi|2

=
n+1∑
i=0

(hi−1 − ahi)(hi−1 − ahi)

=
n+1∑
i=0

(hi−1 − ahi)(hi−1 − hia)

=
n+1∑
i=1

(
|hi−1|2 − ahihi−1 − ahihi−1 + |ahi|2

)
=

n+1∑
i=1

(
|hi| − ahihi−1 − ahihi−1 + |ahi−1|2

)
=

n+1∑
i=0

|ahi−1 − hi|2

= |(ax− 1)h|2

= |a|2|(x− a−1)h|2.

Where in the fifth line we used that
∑n+1

i=0 |hi|2 =
∑n+1

i=0 |hi−1|2 + |hn+1|2 − |h−1|2 =∑n+1
i=1 hi−1.

Now let a1, . . . , as be the set of roots of f inside the unit disk and as+1, . . . , an the set
of roots of f outside the unit disk ordered in decreasing absolute value and fn be the
leading coefficient of f . Then we have:

|f |2 = |fn
s∏
i=1

(x− ai)
n∏

i=s+1

(x− ai)|2

= |a1a2 . . . as|2|fn
s∏
i=1

(x− ai−1)
n∏

i=s+1

(x− ai)|2

= |a1a2 . . . as|2|fnxn + . . .+ fn

s∏
i=1

ai
−1

n∏
i=s+1

ai|2

≥ |a1a2 . . . as|2|fn
s∏
i=1

ai
−1

n∏
i=s+1

ai|2

= |fn
n∏

i=s+1

ai|2
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Let b1, . . . , bm be the roots of g(x) ordered such that bi ≥ bi+1 for all i ∈ [1, . . . ,m− 1]
and g(x) = gm

∏m
i=1(x − bi) =

∑m
i=0 gix

i. Let Si be the set of all subsets of b1, . . . , bm
with m− i elements. Then:

|gi| = |gm
∑
Si

 ∏
bj∈Si

bj

 |
Since there are

(
m
m−i
)

=
(
m
i

)
such subsets in Si and the absolute value of the product of

the elements of such a subset is at most |b1 . . . bm−i|, we get:

|gi| ≤ gm
(
m

i

)
|b1 . . . bm−i|

We have that g divides f , so |b1 . . . bm−i| ≤ |as+1 . . . as+m−i| and

|gi| ≤ gm
(
m

i

)
|as+1 . . . as+m−i| ≤ gm

(
m

i

)
|as+1 . . . an| ≤

(
m

i

)
|gm|
|fn|
|f |

Furthermore we have that gm divides fn because g divides f and therefore gm/fn ≤ 1
and we get

|gi| ≤
(
m

i

)
|f |

Finally we have

|g| =

(
m∑
i=0

|gi|2
)1/2

≤

(
n∑
i=0

(
m

i

)2

|f |2
)1/2

=
(

2m
m

)1/2

|f |

Where the last equality follows from the identity
∑m

i=0

(
m
i

)2 =
(
2m
m

)
.

Now we have the final proposition that tells us how to calculate h0:

Proposition 2.4: As in proposition 2.3, let b1, b2, . . . , bm+1 be a reduced basis for L and
pkl > 2mn/2

(
2m
m

)n/2|f |m+n. Let t be the greatest integer in {1, 2, . . . ,m + 1} such that

|bt| <
(
pkl/|f |m

)1/n.
Then we have:

deg(h0) = m+ 1− t and h0 = gcd(b1, b1, . . . , bt).

Proof. Let J be the set of all indices j such that |bj | <
(
pkl/|f |m

)1/n. With proposition
2.2 we now have that h0 divides all the bj for j ∈ J . So we define h1 := gcd({bj ; j ∈ J})
and we will show later that h0 = h1. Clearly h0 divides h1.
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Moreover h1 divides all the bj (j ∈ J) and the degree of bj is smaller than m. So bj is
an element of the lattice L1 defined through the basis

{h1X
i; 0 ≤ i ≤ m− deg(h1)}.

By definition the bj ’s are linearly independent and there are at most m + 1 − deg(h1)
linearly independent elements in the lattice L1, so there are at most m + 1 − deg(h1)
elements in J .
Furthermore we have h0X

i ∈ L for i ∈ {0, . . . ,m− deg(h0)} and by the fourth assertion
of theorem 1.1 we get:

|bk| ≤ 2m/2 max{|xi|; 0 ≤ i ≤ m− deg(h0)} = 2m/2|h0X
i| = 2m/2|h0|

By Landau-Mignotte we have |Xih0| ≤
(
2m
m

)1/2|f | for all i ∈ {0, . . . ,m − deg(h0)} , so
we get:

|bk| ≤ 2m/2
(

2m
m

)1/2

|f | <
(
pkl/|f |m

)1/n

for all k ∈ {1, . . . ,m+ 1− deg(h0)}.
Note that J was defined to be all the indices j such that exactly this inequality holds, so
{1, . . . ,m+ 1− deg(h0)} ⊂ J . Since deg(h0) ≤ deg(h1) and with the observation above
about the upper bound for the number of elements in J we get

#{1, . . . ,m+1−deg(h1)} = m+1−deg(h1) ≤ #{1, . . . ,m+1−deg(h0)} ≤ #J ≤ m+1−deg(h1)

so we get that deg(h0) = deg(h1) and J = {1, . . . ,m + 1 − deg(h0)} and therefore
t := m+ 1− deg(h0). From that last equality we receive that deg(h0) = m+ 1− t.
The only thing left to show is that h0 is indeed h1. We already know that they have
the same degree and that h0 divides h1, so we already know that they are equal up to a
factor in Z. We claim that this factor equals one, i.e. that h1 is primitive and therefore
its content is one. Then h0 = h1.
To see that the claim is true, choose some j ∈ J arbitrary and let cj be the content of
bj . We know that h0 divides all bj and h0 is primitive, so h0 also divides bj/cj . By the
definition of L we then have that bj/cj ∈ L. But bj was defined to be an element of a basis
of L, so cj = 1 for all j ∈ {1, . . . , t} and hence also the content of h1 = gcd(b1, . . . , bt) is
one, so h1 is primitive.

2.2 Determination of the setting

In order to use the above results for the factorization of polynomials, we need to find
all polynomials h such that (12), (13), (14) and (15) are true. Obviously also p and k
need to be specified. From (15) it follows that h2 is not allowed to divide f , hence no
multiple roots are allowed. For this chapter we therefore assume f has no multiple root
and we going to consider the case of multiple roots later.
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We first specify the prime p. We will see, that the choice of p will fix (15).
Then, we focus on the factorization of (f mod p) into irreducible factors in Z/pZ. The
factors we will find will fulfil (12) and (14).
At the end, we set k such that we can modify h (but not (h mod p)) in a way that (13)
is fulfilled.

2.2.1 Specification of p

To specify p we first need to calculate the resultant of f and its first derivative. The
resultant of two polynomials P and Q is defined to be:

R(P,Q) :=
∏

(x,y);P (x)=0=Q(y)

(x− y)

Note that R(f, f ′) is only zero if f and f ′ have one or more common roots, which would
then imply that f has multiple roots. Since we defined f to be squarefree R(f, f ′) 6= 0.

We can now define p to be the smallest prime not dividing R(f, f ′). This is reason-
able because of the following arguments:
We know that R(f, f ′) is up to sign equal to the product of the leading coefficient fn and
the discriminant D(f) of f . So since R(f, f ′) 6= (0 mod p), we also have fnD(f) 6= (0
mod p) and therefore fn 6= (0 mod p) and D(f) 6= (0 mod p).
We claim that there are no multiple roots in (f mod p).
We see this if we choose two roots of f arbitrary, say xi and xj . Because (xi − xj)
is a factor of D(f), we have that (xi − xj) 6= (0 mod p) and therefore the difference
of xi and xj is not a multiple of p. Hence (xi mod p) 6= (xj mod p) and ((x − xi)
mod p) 6= ((x − xj) mod p). But we would need (x − (xi mod p)) to be (x − (xj
mod p)) for some choice of xi and xj to have multiple roots in (f mod p), which proves
that there are none.

As mentioned before, this choice of p ensures that (15) holds for every h with (h mod p)
being a divisor of (f mod p).

2.2.2 Berlekamp’s algorithm

Our goal is now to find the complete factorization of (f mod p) into irreducible factors
in Z/pZ[X]. Assume that f(x) is already reduced modulo p and that f(x) is square free.
Moreover assume that there exists a polynomial f̃(x) =

∏
a∈Z/pZ(g(x) − a) ∈ Z/pZ[X]

such that f(x) divides f̃(x). Then every irreducible factor of f(x) also is a irreducible
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factor of f̃(x) and we get:

f(x) = gcd(f(x), f̃(x)) = gcd

f(x),
∏

a∈Z/pZ

(g(x)− a)

 =
∏

a∈Z/pZ

gcd(f(x), (g(x)− a))

Clearly not every such gcd will be an irreducible factor so we need to find enough (in
an appropriate matter) polynomials g(x) to factor out f(x) completely into irreducible
factors.
First note that

∏
a∈F (X − a) = Xp − X for a finite field F , so for f̃(x) we get∏

a∈Z/pZ(g(x)−a) = g(x)p−g(x). Since f̃(x) is divisible by f(x) we get that (g(x)p−g(x))
is divisible by f(x) and therefore:

g(x)p = g(x) mod f(x). (18)

So we can restrict the search of g(x) to the set with this property. This set is also called
the Berlekamp subalgebra and it has some nice property that will help us find g(x).
We now define the matrix Q = {qkl}0≤k,l≤n} with entries qkl given by the equation

xip =
(
qn,ix

n + qn−1,ix
n−1 + . . .+ q0,i

)
mod f(x) for i ∈ [0, . . . , n]

Claim: g(x) fulfills (18) if and only if g(x) is a eigenvector of Q with eigenvalue one.

Proof. Note first (X+Y )p = Xp+Y p in Z/pZ as a consequence of the binomial theorem.
Moreover bp = b for b ∈ Z/pZ. We see this with the equation

∏
a∈Z/pZ(b− a) = (bp− b).

Then obviously if b ∈ Z/pZ the left hand side is zero and so is the right hand side when
reduced modulo p, hence (bp − b) = 0 in Z/pZ.
Assume now that g(x) is an eigenvector of Q, i.e if g(x) = gnx

n + gn−1x
n−1 + . . . + g0,

then:

g(x) =
n∑
i=0

gix
i =

n∑
i=0

 n∑
j=0

qijbj

xi =
n∑
j=0

bj

n∑
i=0

qijx
j

⇐⇒ g(x) =
n∑
j=1

bj(xjp mod f(x)) =
n∑
j=0

(bpjx
jp) mod f(x)

=

 n∑
j=0

bjx
j

p

mod f(x) = g(x)p mod f(x)

With this result we are now able to describe an algorithm that factors the polynomial
f(x) in Z/pZ[X]:
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• First we need to calculate Q. This can be done by calculating xip mod f(x) for
all i ∈ [0, 1, . . . , n].

• Then we need to calculate all the eigenvectors gj(x) for j ∈ [1, . . . , rank(Q− Id)].
(Since there are exactly rank(Q − Id) linearly independent vectors satisfying the
equation (Q− Id)g = 0)

• For all gj(x) and all a ∈ Z/pZ we now have to calculate gcd(f(x), (gj(x) − a)),
which can be done by the Euclidean Algorithm.
Note that as soon as the algorithm finds rank(Q−Id) different factors, it can stop.

• Repeat this procedure for all factors of f(x) we found so far, untill all factors are
irreducible.

2.2.3 Hensel’s Lift

It remains to specify the integer k. We need to specify k for every factor of (h mod p)
seperately. So we choose one of them and call it (h mod p).
First note that if we set k = 1, (12), (13), (14) and (15) are true for the prime p we
specified earlier and for the factor (h mod p) calculated by the Berlekamp’s Algorithm.
In order to be able to use the results form the beginning, we need the equation pkl >

2mn/2
(
2m
m

)n/2|f |m+n (see Proposition 2.3) to hold. Recall that m has to be greater than
deg(h0), otherwise h0 is not in the lattice we defined and we cannot find h0 with the
results above. Since in the worst case deg(h0) = n − 1 we set m := n − 1 in the above
inequality and define k to be the least integer such that the inequality holds, i.e:

k := min{k ∈ Z; pkl > 2n(n−1)/2

(
2n− 2
n− 1

)n/2
|f |2n−1}

Now (13) is not necessary true, therefore we need to modify h such that (h mod p)
does not change but (13) becomes true. This modification can be performed by Hensel’s
lift.

Theorem 2.5 (Hensel’s Lemma): Let f be a monic polynomial in Z[X] and (h mod pi−1)
a irreducible factor of (f mod pi−1) for an integer i ≥ 2. Then there exists a polyno-
mial h̃ (uniquely up to mod pi) such that (h̃ mod pi) divides (f mod pi) and (h̃
mod pi−1) = (h mod pi−1).

Proof. Since (h mod pi−1) divides (f mod pi−1) we have that there exists an polyno-
mial g(x) ∈ Z[X] such that (f mod pi−1 = (h mod pi−1)(g mod pi−1). Moreover (h̃
mod pi−1) has to be equal to (h mod pi−1), so h̃ = h + upi−1 for some u ∈ Z[X] with
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deg(u) ≤ deg(h).
Since (h̃ mod pi) has to divide (f mod pi) we have that there existst a g̃ ∈ Z[X] such
that (f mod pi) = (h̃ mod pi)(g̃ mod pi). Set g̃ = g+ vpi+1 for an appropriate choice
of v ∈ Z[X] with deg(v) ≤ deg(g). Then we have:

f mod pi = (h+ upi−1)(g + vpi−1) mod pi

⇒f mod pi = (hg + (ug + vh)pi−1 + uvp2i−2) mod pi

⇒f/pi−1 mod pi = (hg/pi−1 + (ug + vh)) mod pi

⇒
(
f − hg
pi−1

)
mod pi = (ug + vh) mod pi

We had f = hg mod pi−1, so f = hg+ cpi−1 where c ∈ Z, therefore f − hg = cpi−1 and
(f − hg)/pi−1 = c. Then:

(c mod pi) mod p =
(
(ug + vh) mod pi

)
mod p

⇒c mod p = (ug + vh) mod p

and hence there exists unique u and v so also h̃ and g̃.

Now we can apply Hensel’s Lift repeatedly for i = 2, . . . , k to get the desired modification
of h mod p.

2.3 The algorithm

We are now able to describe an algorithm that factors a given polynomial f(x) ∈ Z[X]
into irreducible factors in Z[X].
For the algorithm we need f(x) to be primitive, but note that if it is not, then we can
easily calculate the greatest common divisor of its coefficients and take f0(x) to be f(x)
divided through the greatest common divisor to get a primitive polynomial.
As already mentioned we also need polynomials with no multiple factors, so this is the
first thing the algorithm has to check for. We can do this with the calculation of the
resultant of f and its first derivative. As already said, f has multiple roots if and only
if R(f, f ′) is zero.
Assume R(f, f ′) is indeed zero. then we will calculate g := gcd(f, f ′), which is then the
set of multiple factors of f . Set f0(x) := f(x)/g(x), then obviously f0(x) has no multiple
factors. After factoring f0(x) it will then be easy to find the factorization of g(x) since
g(x) only has factors that appear in the factorization of f0(x) and there are only finitely
many factors in f0(x).
Now that we have a polynomial with no multiple factors, we determine the prime num-
ber p and the set F := {h mod p; (h mod p) is a irreducible factor of (f mod p)} with
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Berlekamp’s algorithm.
In order to factor out f(x) we now assume in each step that f = f1f2 where f1 is already
factored out in irreducible factors and we let F2 be the set of all irreducible factors of
f2 mod p. Then we choose one of the elements of F2 (say h), calculate k as above and
modify h as in Hensel’s Lift.
We can now calculate h0 with the result from Proposition 2.4. First we need to define m.
For this we just take m := n−1 because then we secured that h0 is an element of the lat-
tice. So we obtain a reduced basis for the lattice {pkXi; 0 ≤ i < l}∪{hXj ; 0 ≤ j ≤ m−l}
by the use of the LLL-Algorithm, and then calculate h0 as in proposition 24.
We now set f̃1 := f1h0 and f̃2 := f2/h0 and repeat the whole procedure for f̃2 until we
get f2 ≡ 1. Note that we only have to calculate the irreducible factors of f2 mod p once,
and not for every single loop. We can just delete all the factors that divide h0 mod p.

Note that we can choose m smaller such that the running time of the algorithm be-
comes shorter. This works the following way: Let u be such that l ≤ bn−1

2u c. Choose
mi = b n−1

2u−i c for 0 ≤ i ≤ u and check if deg(h0) ≤ mi by the result of proposition 2.3
for every value mi. As soon as deg(h0) ≤ mj for some j, calculate h0 as in proposition
2.4. So for every choice of mi we first determine a reduced basis b1, b2, . . . , bm+1 by the
LLL-Algorithm and then check if deg(h0) ≤ mi by checking if |b1| <

(
pkl/|f |m

)1/n. If
indeed the inequality holds, we can calculate h0 by the equation h0 = gcd(b1, . . . , bj), if
not, continue with the next value mj+1. Since m goes up to n− 1 it is guaranteed that
we will find h0 sooner or later. (if not then h0 = f)

Algorithm:

1. r := R(f, f ′);

2. g := 1;

3. if r = 0

4. g := gcd(f, f ′); f := f/g; r := R(f, f ′);

5. end

6. p := smallest prime number such that p does not divide R(f, f ′);

7. F := {h mod p; (h mod p) irreducible factor of (f mod p)} (by Berlekamp’s Al-
gorithm)
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8. f1 := 1; f2 := f :

9. while f2 6= 1

10. h := some arbitrary element of F ;

11. l := deg(h);

12. if l = n, h0 = f ; break

13. k := min{k ∈ N; pkl > n(n−1)n/2
(
2n−2
n−1

)n/2|f |2n−1};

14. Modify h by means of Hensel’s Lift;

15. m := n− 1;

16. Apply LLL-Algorithm to {pkXi; 0 ≤ i < l} ∪ {hXj ; 0 ≤ j ≤ m− l}

17. j := greatest integer such that |bj | <
(
pkl/|f |m

)1/n (see proposition 2.4)

18. h0 := gcd(b1, . . . , bj)

19. f1 := f1h0; f2 := f2/h0;

20. H0 := {h mod p; (h mod p) divides (h0 mod p)};

21. F := F \H0;

22. end

23. g1 = 1; g2 := g;

24. while g2 6= 1

25. Check all factors of f if they divide g2. Let f̃ divide g2.

26. g1 := g1f̃ ; g2 := g2/f̃ ;

27. end

If we use the observation above that we can optimize the running time of the algorithm
by some smaller value of m, we have to replace line 16 to 19 by the following algorithm:
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1. u := max{u ∈ N; l < (n− 1)/2u};

2. while m ≤ (n− 1)

3. m := b(n− 1)/2ub;

4. Apply LLL-Algorithm to {pkXi; 0 ≤ i < l} ∪ {hXj ; 0 ≤ j ≤ m− l}

5. if |b1| <
(
pkl/|f |

)1/n
6. h0 := gcd(b1, . . . , bj);

7. m := n;

8. end

9. u := u− 1;

10. end

3 Integer relation

Another application of the LLL-Algorithm is to search for integer relations.

Definition 3.1: Let α1, α2, . . . , αn be real numbers. Then the vectorm = (m1,m2, . . . ,mn)T ∈
Zn is called an integer relation for α1, α2, . . . , αn if

∑n
i=1miαi = 0.

Our goal is now to find integer relation to a given set of real numbers or show that
there are no integer relation.
In order to apply the LLL-Algorithm we clearly need to define a lattice first.
Since a computer cannot calculate with real numbers we need to approximate α1, α2, . . . , αn
by rationals α1, . . . , αn ∈ Q. This approximation requires to fulfill certain properties to
really get useful results with the reduction algorithm.
We define a basis of the lattice to be the vectors:

v1 =


1
0
...
0
cα1

 , v2 =


0
1
0
...
cα2

 , . . . , vn =


0
...
0
1
cαn
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where c is an appropriate large constant.
Then we apply the reduction algorithm to these vectors. Now b1 is of the form m1v1 +
. . .+mnvn with m1, . . . ,mn being integers.
By theorem 1.1 (fourth assertion) we have |b1| ≤ 2(n−1)/2|x| for every x ∈ L, so

|b1|2 = |m2
1 +m2

2 + . . .+m2
n + (c

n∑
i=1

miαi)2|

= |m|2 + c2(
n∑
i=1

miαi)2

≤ 2n−1|x|2

hence we have an upper bound for |b1|2. We can choose c and α1, α2, . . . , αn in such a
way, that if we have that |b1| is below a certain value we know that the last entry of b1
(
∑n

i=1miαi) is so small that we can conclude it is zero and hence m1, . . . ,mn a integer
relation. On the other hand also the converse is true, i.e. if |b1| is not below a certain
bound then m is no integer relation for α1, α2, . . . , αn (for the exact bounds and the
choice of c and α1, α2, . . . , αn see [7]).

4 BBP-Type formulae

Peter Borwein and Simon Plouffe observed in 1995, that with the well-known identity
log 2 =

∑∞
k=1

1
k2k one can calculate an arbitrary digit of log 2 in base 2 without knowing

the proceeding digits. So they started searching for other mathematical constants with
the same properties.
This search basically is a search for integer relations. They performed this task by us-
ing the PSLQ-Algorithm written by David H. Bailey and Helaman Ferguson in 1992.
The PSLQ-Algorithm is not a lattice-reduction algorithm, but one can perform integer
relation search faster than with the LLL-Algorithm.
In 1997, Bailey, Borwein and Plouffe finally introduced an algorithm to compute the
d’th hexadecimal digit of π using a identity for π they found by the PSLQ-Algorithm.
The fact that the digits of π were normal misled people into disbelieving the existence
of such an algorithm. In that sense, this result was pioneering, since now we have a
formula to calculate these digits without knowing the preceeding ones.
Although the new algorithm is not really faster than the preceeding algorithms calcu-
lating all the digits up to the desired one, it’s still very useful since one can execute it
on a normal personal computer, and its implementation is easier than that of all the
preceeding algorithms.
However, we don’t know yet whether there is a series for π or log 2 in base 10 or some
power of 10 or any other base than 16 or a power of 2 respectively. Calculations done
so far tell us that there are no such formulas for coefficients in certain ranges, but still
there is the possibility that such formulas exist.
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In this chapter we will first show the formula for π in hexadecimal basis and a proof
for that formula. Then some other BBP-Type formulae and finally the algorithm to
calculate the d’th digit of an arbitrary BBP-Type formula.

4.1 A formula for π

Claim: The following identity holds:

π =
∞∑
i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(19)

Note: There are several other formulas for π of this type. But since the formula written
above was the first one to be announced and hence the most popular one, we are just
going to prove this one. The proofs of the others are completely similar.
Moreover we have the equation:

0 =
∞∑
i=0

1
16i

(
− 8

8i+ 1
+

8
8i+ 2

+
4

8i+ 3
+

8
8i+ 4

+
2

8i+ 5
+

2
8i+ 6

− 1
8i+ 7

)
(20)

and it turned out that all the known formulas for π can be written as formula (19) plus
a multiple of (20).

Preparation for the proof: First note:

xk−1

1− x8
= xk−1

∞∑
i=0

x8i =
∞∑
i=0

xk−1+8i for 0 ≤ x < 1

(Geometric series)
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hence ∫ 1/
√

2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8idx

=
∫ 1/

√
2

0
lim
n→∞

n∑
i+1

xk−1+8idx

= lim
n→∞

∫ 1/
√

2

0

n∑
i=0

xk−1+8idx

= lim
n→∞

n∑
i=0

∫ 1/
√

2

0
xk−1+8idx

=
∞∑
i=0

∫ 1/
√

2

0
xk−1+8idx

=
∞∑
i=0

( 1
8i+ k

x8i+k
)1/

√
2

0

=
1
√

2
k

∞∑
i=0

1
16i(8i+ k)

.

We can interchange integral and limit in the third equality because of the monotone
convergence theorem.

Proof. From the calculation above,we have the following equality:

(19) =
∫ 1/

√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx

y:=
√

2x =
∫ 1

0

4− 2y3 − y4 − y5

1− y8

16

dy

=
∫ 1

0

16y − 16
y4 − 2y3 + 4y − 4

dy (21)

Where in the second equality we used the substitution y :=
√

2x and in the third equality
we cancelled the common factor (y4 + 2y3 + 4y2 + 4y+ 4) in nominator and denominator
of the fraction in the integral.
It is now easy to check with some Computer Algebra System (like Maple), that the
integral (21) equals π.
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4.2 BBP-Type formulae in general

There were other such sums discovered being equal to some transcendental constant
other than π.
In general we are searching for sums of the type

α =
∞∑
i=1

p(k)
bkq(k)

(22)

where α is a constant and p and q are polynomials (deg(p) < deg(q)) with integer
coefficients . The numerical basis b is a positive integer. Formulae of this type are
called BBP-type formulae. However there is no general algorithm to find a certain
combination of p, q and b such that the sum equals some constant. These combinations
are currently discovered via a combination of guessing and searching with the PSLQ
integer relation algorithm.

Some examples of BBP-type formulae for other constants:

1. The simplest formulae of this type were well-known even before BBP

log(2) =
∞∑
i=1

1
2kk

log(
9
10

) = −
∞∑
i=1

1
10kk

Both of them can easily be checked by expanding log(1 + 1) and log(1 − 1
10) as

Taylor series.

2. Less obvious are the identities:

π2 =
9
8

∞∑
i=0

1
16i

(
16

(6i+ 1)2
− 24

(6i+ 2)2
− 8

(6i+ 3)2
− 6

(6i+ 4)2
+

1
(6i+ 5)5

)

log2(2) =
1
8

∞∑
i=0

1
16i

(
−16
(6i)2

+
16

(6i+ 1)2
− 40

(6i+ 2)2
− 14

(6i+ 3)2
− 10

(6i+ 4)2
+

1
(6i+ 5)2

)

4.3 Computing the i-th digit

In the next section, we are going to show how one can actually compute the i-th digit
of a constant with a BBP-Type formulae. We will start with the an easy case, log 2.
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In all of these computations one has to compute a term of the form r = bn mod k.
So we will first describe an algorithm to do this calculation. Basically, we use the
binary expansion of n, and that one can compute bn very fast by successive squaring
and multiplication.

1. t := 2i for i ∈ N such that t ≤ n ≤ 2t

2. r := b mod k

3. n := n− t

4. t := t/2

5. while t ≥ 1

6. r := r2 mod k

7. if n ≥ t

8. r := br mod k

9. n := n− t

10. end

11. t := t/2

12. end

With this algorithm one can calculate the expression r = bn mod k very efficient on a
computer. Moreover this algorithm works on a normal personal computer since all the
numbers the algorithm calculates do not exceed k2 in size.

4.3.1 Computing binary digits of log 2

As we already know: log 2 =
∑∞

k=1
1
k2k

One can calculate the (d+ 1)’th digit in base 2 as follows:
We first calculate 2d log 2 such that the (d+ 1)’th digit is now at the first position of the
decimal part. Note that (2d log 2)mod 1 is the fractional part of 2d log 2.
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We have:

(2d log 2) mod 1 =
∞∑
k=1

2d

k2k
mod 1

=

(
d∑

k=1

2d−k

k
mod 1 +

∞∑
k=d+1

1
2k−dk

)
mod 1

=

((
d∑

k=1

2d−k mod k

k

)
mod 1 +

∞∑
k=d+1

1
2k−dk

)
mod 1

Where only the first summation is greater than one (in decimal system) and the ”mod
k” is justified because we are only interested in the fractional part.
The first summation consists of d terms, and each of them can be calculated on a
ordinary personal computer with the algorithm above and floating point arithmetic for
the division. For the second summation we only need a few terms to be evaluated since
they quickly become sufficiently small.
By this procedure one only has to look at the first digit of the number the computer
computed and we have the desired digit.
Note: The result we get by that procedure is a decimal number. One can calculate the
binary expansion of this in the following way:
The result of the algorithm is a number of the form 0.n1n2n3... where ni = 0, 1, ..., 9.
The first digit of that number in the base 2 is the integer part of 2∗0.n1n2n3... the second
number is the integer part of 2 ∗ ((2 ∗ 0.n1n2n3...)mod 1) and the j’th number is the
integer part of 2∗ ((2j−1 ∗0.n1n2n3...)mod 1). Clearly at some point the number is going
to be incorrect since the computer can only calculate decimal numbers up to a certain
accuracy as soon as the number gets too small. But the first few digits of the calculation
are always correct and since we can repeat this procedure for the d+ 2’th digit, it is not
even necessary that the computer calculates more than one digit correct.

4.3.2 Computing hexadecimal digits of π

We now apply the same procedure to the formula of π.
We have:

π =
∞∑
i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6
), (23)

and by multiplying with 16d and consider only the fractional part, we get:

(16dπ) mod 1 = (4(16dS1 mod 1)−2(16dS4 mod 1)−(16dS5 mod 1)−(16dS6 mod 1))mod 1
(24)

with

Si =
∞∑
k=0

1
16k(8k + i)
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and

(16dSi) mod 1 =

(
d∑

k=0

16d−k

8k + i
mod 1 +

∞∑
k=d+1

1
16k−d(8k + i)

)
mod 1

=

((
d∑

k=0

16d−k mod (8k + i)
8k + i

)
mod 1 +

∞∑
k=d+1

1
16k−d(8k + i)

)
mod 1

One does this for all (16dSi)mod 1, i = 1, 4, 5, 6 and combine these as in (5). Then add
or subtract integers such that the result is between 0 and 1.
Again, we get a decimal number. To translate that into a hexadecimal we use the same
strategy as in the case of the binary, i.e. we repeatedly multiply by 16, omit the fractional
part and then continue with (16 ∗ 0.n1n2n3...)mod 1.

4.3.3 The general case

Consider we have a constant defined by a series of the form:

S =
∞∑
k=0

1
bkq(k)

where b is a positive constant also called the base and q(k) a polynomial with integer
coefficients. Again the (d + 1)’th digit in base b expansion can be obtained by looking
at the fractional part of bdS.

bdS mod 1 =
∞∑
k=0

bd−k

q(k)
mod 1

=

(
d∑

k=0

bd−k mod q(k)
q(k)

)
mod 1 +

( ∞∑
k=d+1

1
bk−dq(k)

)
mod 1

Which can be calculated with the above algorithm and floating-point arithmetic on a
common personal computer.
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1 The LLL Algorithm

Recall the definition of an LLL-reduced lattice basis.

Definition 1.1. A lattice basis B is LLL-reduced if the following two conditions are met:

1. For every i < j, we have |µi,j | ≤ 1
2 . (Such a basis is said to be “sized reduced.”)

2. For every 1 ≤ i < n, we have 3
4‖b̃i‖2 ≤ ‖µi,i+1b̃i + b̃i+1‖2. (This is the “Lovász condition.”)

The LLL algorithm works as follows: given an integral input basis B ∈ Zn×n (the integrality condition is
without loss of generality), do the following:

1. Compute B̃, the Gram-Schmidt orthogonalized vectors of B.

2. Let B← SizeReduce(B).

(This algorithm, defined below, ensures that the basis is size reduced, and does not change L(B) or B̃.)

3. If there exists 1 ≤ i < n for which the Lovász condition is violated, i.e., 3
4‖b̃i‖2 > ‖µi,i+1b̃i+b̃i+1‖2,

then swap bi and bi+1 and go back to Step 1. Otherwise, output B.

The idea behind the SizeReduce(B) subroutine is, in the Gram-Schmidt decomposition B = B̃ ·U, to
shift the entries in the upper triangle of U by integers (via unimodular transformations), so that they lie in
[−1

2 ,
1
2). Because changing an entry of U may affect the ones above it (but not below it) in the same column,

we must make the changes upward in each column. Formally, the algorithm works as follows:

• For each j = 2, . . . , n (in any order) and i = j − 1 down to 1, let bj ← bj − bµi,je · bi, where
µi,j = 〈bj , b̃i〉/〈b̃i, b̃i〉 is the (i, j)th entry of the upper-unitriangular matrix in the Gram-Schmidt
decomposition of the current basis B. (Note that previous iterations can change this matrix.)

In matrix form, in the (i, j)th iteration we are letting B← B ·W, where W is the upper unitriangular
matrix with just one potentially nonzero off-diagonal entry −bµi,je, at position (i, j).

We make a few important observations about the SizeReduce algorithm. First, it clearly runs in time poly-
nomial in the bit length of the input basis B. Second, even though B may change, the Gram-Schmidt vectors
B̃ are preserved throughout, because the only changes to B are via multiplication by upper-unitriangular
matrices, i.e., if B = B̃ ·U is the Gram-Schmidt decomposition prior to some iteration, then B = B̃ · (UW)
is the decomposition afterward, since UW is upper unitriangular. Finally, the (i, j)th iteration ensures that
the value 〈bj , b̃i〉/〈b̃i, b̃i〉 ∈ [−1

2 ,
1
2) (by definition of µi,j), and following the iteration, that value never

changes, because bk is orthogonal to b̃i for all k < i. (This is why it important that we loop from i = j − 1
down to 1; bk may not be orthogonal to b̃i for k > i.) Putting these observation together, we have the
following lemma on the correctness of SizeReduce.

Lemma 1.2. Given an integral basis B ∈ Zn×n with Gram-Schmidt decomposition B = B̃ · U, the
SizeReduce algorithm outputs a basis B′ of L = L(B) having Gram-Schmidt decomposition B′ = B̃ ·U′,
where every entry u′i,j for i < j is in [−1

2 ,
1
2).

We now state the main theorem about the LLL algorithm.

Theorem 1.3. Given an integral basis B ∈ Zn×n, the LLL algorithm outputs an LLL-reduced basis of
L = L(B) in time poly(n, |B|), where |B| denotes the bit length of the input basis.

1
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The remainder of this section is dedicated to an (almost complete) proof of this theorem. First, it is clear
that the LLL algorithm, if it ever terminates, is correct: all the operations on the input basis preserve the
lattice it generates, and the algorithms terminates only when the basis is LLL-reduced.

We next prove that the number of iterations is O(N) for some N = poly(n, |B|). This uses a clever
“potential argument,” which assigns a value to all the intermediate bases produced by the algorithm. We show
three facts: that the potential starts out no larger than 2N , that it never drops below 1, and that each iteration
of the algorithm decreases the potential by a factor of at least

√
4/3 > 1. This implies that the number of

iterations is at most log√
4/3

2N = O(N).

The potential function is defined as follows: for a basis B = (b1, . . . ,bn), let Li = L(b1, . . . ,bi) for
each 1 ≤ i ≤ n. The potential is the product of these lattices’ determinants:

Φ(B) :=

n∏
i=1

det(Li) =

n∏
i=1

(
‖b̃1‖ · · · ‖b̃i‖

)
=

n∏
i=1

‖b̃i‖n−i+1.

Claim 1.4. The potential of the initial input basis B is at most 2N where N = poly(n, |B|), and every
intermediate basis the algorithm produces has potential at least 1.

Proof. The potential of the original basis B is clearly bounded by
∏n

i=1‖bi‖n ≤ maxi‖bi‖n
2

= 2poly(n,|B|).
Every intermediate basis is integral and has positive integer determinant, hence so do the lattices Li associated
with that basis. Therefore, the potential of that basis is at least 1.

We next analyze how the potential changes when we perform a swap in Step 3.

Claim 1.5. Suppose bi and bi+1 are swapped in Step 3, and let the resulting basis be denoted B′. Then
b̃′j = b̃j for all j 6∈ {i, i+ 1}, and b̃′i = µi,i+1b̃i + b̃i+1.

Proof. For j < i, the vector b̃′j is unaffected by the swap, because by definition it is the component of
b′j = bj orthogonal to span(b′1, . . . ,b

′
j−1) = span(b1, . . . ,bj−1). Similarly, for j > i+ 1, the vector b̃′j

is the component of b′j = bj orthogonal to span(b′1, . . . ,b
′
j−1) = span(b1, . . . ,bj−1), where the equality

holds because both bi and bi+1 are in the span. Finally, b̃′i is the component of b′i = bi+1 orthogonal to
span(b′1, . . . ,b

′
i−1) = span(b1, . . . ,bi−1), which is µi,i+1b̃i + b̃i+1 by construction.

Lemma 1.6. Suppose bi and bi+1 are swapped in Step 3, and let the resulting basis be denoted B′. Then
Φ(B′)/Φ(B) <

√
3/4.

Proof. Let Li = L(b1, . . . ,bi−1,bi) and L′i = L(b1, . . . ,bi−1,bi+1). By Claim 1.5, we have

Φ(B′)

Φ(B)
=

det(L′i)
det(Li)

=
‖b̃1‖ · · · ‖b̃i−1‖‖µi,i+1b̃i + b̃i+1‖

‖b̃1‖ · · · ‖b̃i−1‖‖b̃i‖
=
‖µi,i+1b̃i + b̃i+1‖

‖b̃i‖
<
√

3/4,

where the last inequality follows from the Lovász condition.

This completes the proof that the number of iterations is O(N) = poly(n, |B|). Moreover, each iteration
of the algorithm is polynomial time in the bit length of the current basis. However, this does not necessarily
guarantee that the LLL algorithm is polynomial time overall, since the bit length of the intermediate bases
could increase with each iteration. (For example, if the bit length doubled in each iteration, then by the end
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the bit length would be exponential in n.) To it suffices to show that the sizes of all intermediate bases are
polynomial in the size of the original basis. This turns out to be the case, due to the size-reduction step. The
proof of this fact is somewhat grungy and uninteresting, though, so we won’t cover it.

We conclude with some final remarks about the LLL algorithm. The factor 3/4 in the Lovász condition
is just for convenience of analysis. We can use any constant between 1/4 and 1, which yields a tradeoff
between the final approximation factor and the number of iterations, but these will still remain exponential
(in n) and polynomial, respectively. By choosing the factor very close to 1, we can obtain an approximation
factor of (2/

√
3)n in polynomial time, but we cannot do any better using LLL. We can get slightly better

approximation factors of 2O(n(log logn)2)/(logn) (still in polynomial time) using Schnorr’s generalization of
LLL, where the analogue of the Lovász condition deals with blocks of k ≥ 2 consecutive vectors.

2 Coppersmith’s Method

One nice application of LLL is a technique of Coppersmith that finds all small roots of a polynomial modulo
a given number N (even when the factorization of N is unknown). This technique has been a very powerful
tool in cryptanalysis, as we will see next time.

Theorem 2.1. There is an efficient algorithm that, given any monic, degree-d integer polynomial f(x) ∈ Z[x]
and an integer N , outputs all integers x0 such that |x0| ≤ B = N1/d and f(x0) = 0 mod N .

We make a few important remarks about the various components of this theorem:

1. When N is prime, i.e., ZN is a finite field, there are efficient algorithms that output all roots of a
given degree-d polynomial f(x) modulo N , of which there are at most d. Similarly, there are efficient
algorithm that factor polynomials over the rationals (or integers). Therefore, the fact that the theorem
handles a composite modulus N is a distinguishing feature.

2. For composite N , the number of roots of f(x) modulo N can be nearly exponential in the bit length
of N , even for quadratic f(x). For example, if N is the product of k distinct primes, then any
square modulo N has exactly 2k distinct square roots. (This follows from the Chinese Remainder
Theorem, since there are two square roots modulo each prime divisor of N .) Since k can be as large as
≈ logN/ log logN , the number of roots can be nearly exponential in logN . Therefore, in general no
efficient algorithm can output all roots of f(x) modulo N ; the restriction to small roots in the theorem
statement circumvents this problem.1

3. The size restriction appears necessary for another reason: knowing two square roots r1 6= ±r2 of a
square modulo a composite N reveals a nontrivial factor of N , as gcd(r1 − r2, N). So even if the
number of roots is small, finding them all is still at least as hard as factoring. However, it is easy
to show that a square cannot have more than one “small” square root, of magnitude at most N1/2.
Therefore, the theorem does appear to yield an efficient factoring algorithm.2

To highlight the heart of the method, in the remainder of the section we prove the theorem for a weaker
bound of B ≈ N2/(d(d+1)). (We prove the bound B ≈ N1/d next time.) The strategy is to find another
nonzero polynomial h(x) =

∑
hix

i ∈ Z[x] such that:

1Indeed, the theorem implies that the number of small roots is always polynomially bounded. Surprisingly, this fact did not
appear to be known before Coppersmith’s result!

2However, it can be used to factor when some partial information about a factor is known.
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1. every root of f(x) modulo N is also a root of h(x), and

2. the polynomial h(Bx) is “short,” i.e., |hiBi| < N/(deg(h) + 1) for all i.

For any such h(x), and for any x0 such that |x0| ≤ B, we have |hixi0| ≤ |hiBi| < N/(deg(h) + 1), which
implies that |h(x0)| < N . Hence, for every small root x0 (such that |x0| ≤ B) of f(x) modulo N , we have
that h(x0) = 0 over the integers (not modulo anything). To find the small roots of f(x) modulo N , we can
therefore factor h(x) over the integers, and test whether each of its (small) roots is a root of f(x) modulo N .

We now give an efficient algorithm to find such an h(x). The basic idea is that adding integer multiples of
the polynomials gi(x) = Nxi ∈ Z[x] to f(x) certainly preserves the roots of f modulo N . So we construct
a lattice whose basis corresponds to the coefficient vectors of the polynomials gi(Bx) and f(Bx), find a
short nonzero vector in this lattice, and interpret it as the polynomial h(Bx). The lattice basis is

B =



N a0
BN a1B

B2N a2B
2

Bd−1N ad−1B
d−1

Bd

 .

Note that the lattice dimension is d+ 1, and that det(B) = Bd(d+1)/2 ·Nd. By running the LLL algorithm
on this basis, we obtain a 2d/2-approximation v to a shortest vector in L(B). By Minkowski’s bound,

‖v‖ ≤ 2d/2
√
d+ 1 ·Bd/2 ·Nd/(d+1) = cd ·Bd/2 ·N1−1/(d+1),

where cd = 2d/2
√
d+ 1 depends only on the degree d.

Define h(Bx) to be the polynomial whose coefficients are given by v, i.e., h(x) = v0 + (v1/B)x+ · · ·+
(vd/B

d)xd. Notice that h(x) ∈ Z[X], because Bi divides vi for each i by construction of the lattice basis,
and that every root of f(x) modulo N is also a root of h(x) by construction. Finally, we see that

|hiBi| = |vi| ≤ ‖v‖ <
N

d+ 1
,

if we take B < N2/d(d+1)/c′d where c′d = (cd(d + 1))2/d = O(1) is bounded by a small constant. This
concludes the proof.
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INTEGER PROGRAMMING WITH A FIXED NUMBER
OF VARIABLES*

H. W. LENSTRA, JR.

Universiteit van Amsterdam

It is shown that the integer linear programming problem with a fixed number of variables is
polynomially solvable. The proof depends on methods from geometry of numbers.

The integer linear programming problem is formulated äs follows. Let n and m be
positive integers, A an m X «-matrix with integral coefficients, and b e T". The
question is to decide whether there exists a vector χ e /" satisfying the System of m
inequalities Ax < b. No algorithm for the solution of this problem is known which has
a running time that is bounded by a polynomial function of the length of the data. This
length may, for our purposes, be defined to be n · m · log(iz + 2), where a denotes the
maximum of the absolute values of the coefficients of A and b. Indeed, no such
polynomial algorithm is likely to exist, since the problem in question is NP-complete [3],
[12].

In this paper we consider the integer linear programming problem with a fixed value
of n. In the case n = l it is trivial to design a polynomial algorithm for the solution of
the problem. For n = 2, Hirschberg and Wong [5] and Kannan [6] have given
polynomial algorithms in special cases. A complete treatment of the case n = 2 was
given by Scarf [10]. It was conjectured [5], [10] that for any fixed value of « there exists
a polynomial algorithm for the solution of the integer linear programming problem. In
the present paper we prove this conjecture by exhibiting such an algorithm. The degree
of the polynomial by which the running time of our algorithm can be bounded is an
exponential function of n.

Our algorithm is described in §1. Using tools from geometry of numbers [1] we show
that the problem can be transformed into an equivalent one having the following
additional property: either the existence of a vector χ Eil" satisfying Ax < b is
obvious; or it is known that the last coordinate of any such χ belongs to an interval
whose length is bounded by a constant only depending on n. In the latter case, the
problem is reduced to a bounded number of lower dimensional problems.

If in the original problem each coordinate of χ is required to be in {0,1}, no
transformaüon of the problem is needed to achieve the condition just stated. This
suggests that in this case our algorithm is equivalent to complete enumeration. We
remark that the {0,1} linear programming problem is TV/'-complete.

In the general case we need two auxiliary algorithms for the construction of the
required transformation. The first of these, which "remodels" the convex set (x e R":
Ax < b}, is given in §2. L. Loväsz observed that my original algorithm for this could
be made polynomial even for varying n, by employing the polynomial solvability of
the linear programming problem [8], [4]. I am indebted to Loväsz for permission to
describe the improved algorithm in §2.

*Received November 13, 1981; revised My 2, 1982.
AMS 1980 subject classification. Primary: 68C25; Secondary: 90C10.
OR/MS Index 1978 subject classification. Primary: 625 Programming/integer/algorithms.
Key words. Integer programming, polynomial algorithm, geometry of numbers.
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The second auxihary algonthm is a leduction process for w-dimensional lattices.
Such an algonthm, also due to Loväsz, appeared m [9, §1], and a bnef sketch is given
m §3 of the present paper. This algonthm is polynomial even for varymg n. It
supersedes the much inferior algonthm that was described m an earher Version of this
paper.

In §4 we prove, followmg a Suggestion of P van Emde Boas, that the integer linear
programmmg problem with a fixed value of m is also polynomially solvable This is an
immediate consequence of our mam result.

§5 is devoted to the mixed integer linear programmmg problem. Combining our
methods with Khachiyan's results [8], [4] we show that this problem is polynomially
solvable for any fixed value of the number of integer variables This generahzes both
our mam lesult and Khachiyan's theorem

The algonthms presented in this paper were designed for theoretical purposes only,
and there are several modifications that might improve their practical performance. It
is to be expected that the practical value of our algonthms is restncted to small values
of n.

It is a pleasure to acknowledge my mdebtedness to P. van Emde Boas, not only for
permission to mclude §4, but also for suggestmg the problem solved m this paper and
for several inspmng and stimulating discussions.

1. Description of the algorithm. Let K denote the closed convex set

K = [xfER" · Ax < b]

The question to be decided is whether K Π Z" = 0 In the description of the algorithm
that follows, we make the followmg two simphfymg assumptions about Ä':

(1) K is bounded;
(2) K has positive volume.
The first assumpüon is justified by the followmg result, which is obtamed by

combmmg a theorem of Von zur Gathen and Sievekmg [12] with Hadamard's
determmant mequahty (cf. (6) below)· the set K Π T" is nonempty if and only if
K n 2" contams a vector whose coefficients are bounded by (n + \)n"/2a" m absolute
value, where a is äs in the mtroducüon. Adding these mequahties to the System makes
K bounded.

For the justification of condition (2) we refer to §2. Under the assumptions (1) and
(2), §2 describes how to construct a nonsmgular endomorphism τ of the vector space
R", such that τΚ has a "spherical" appearance. More precisely, let | denote the
Euchdean length m R", and put

B(p,z)= (x<=W .\x-p\ < z] for p e R", z G R > 0 ,

the closed ball with center p and radius z. With this notation, the τ constructed will
satisfy

B(p,f)CrKCB(p,R) (3)

for some p e r K, with r and R satisfymg

7 < c » (4)

where c, is a constant only dependmg on n.
Let such a τ be fixed, and put L = τϊ". This is a lattice in R", i e , there exists a basis

bj,b2, . , b„ of R" such that

(5)
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We can take, for example, b: = r(e;), with e, denotmg the Uh Standard basis vector of
R" We call bl,b2, . . , bn a basis for L if (5) holds. If b\,b'2, . . , b'n is another basis
for L, then ,̂' = 2"=im ; /^ f° r s o m e « X «-matrix M = (m!/)1<(>/<„ with integral
coefficients and det (Af)=±l . It follows that the positive real number |det(£,,
£2, . , b„)\ (the ft, being wntten äs column vectors) only depends on L, and not on
the choice of the basis; it is called the determmant of L, notation: d(L). We can
Interpret d(L) äs the volume of the parallelepiped Σ"=ι[°> 0 ' *,. where [0, 1) =
{ z E l R - 0 < z < l } . This Interpretation leads to the mequahty of Hadamard

d(L) < Π \b\. (6)
i = l

The equahty sign holds if and only if the basis b\,b2, . . . , bn is orthogonal. It is a
classical theorem that L has a basis b{,b2, . . . , b„ that is nearly orthogonal m the
sense that the followmg mequahty holds:

fl\b,\<c2-d(L) (7)
/ = !

where c2 is a constant only dependmg on n, cf. [l, Chapter VIII], [11]. In §3 we shall
mdicate a reduction process, i.e., an algonthm that changes a given basis for L mto one
satisfymg (7).

LFMMA. Let b\,b2, . . . ,bnbe any basis for L. Then

VxeR" : 3 7 e L : χ - y\2 <\(\b,\2 + ··· + \bf). (8)

PROOF We use mduction on n, the case n=\ (or n = 0) being obvious. Let
U = Σ7~ί Zfe,, this is a lattice m the (n - l)-dimensional hyperplane H = ̂ "=1 R*,·
Denote by A the distance of b„ to //. Clearly we have

h<\bn. (9)

Now to prove (8), let χ G R". We can find m G Z such that the distance of χ - mfc„ to
//is < i/z. Wnte χ - mb„ = x, + x2, with x, G // and x2 perpendicular to H. Then
\x2 <2h <2\b„ . By the mduction hypothesis there exists/, ε L' such that Χι -_y,|2

<i( |6 , 2 + · · · + |6„„_,|2). Since x2 is orthogonal t o / , the element y =y} + mbn of L
nowsaüsfies|x-j |2"= x, - J , | 2 + |x2

2 <i( |^ , |2 + · · · + |*„- i | 2 + ^„|2)· This proves
the lemma.

Notice that the proof gives an effective construction of the element y E. L that is
asserted to exist.

If we number the b, such that \b„\ = max{|^;| :\ < ι < n}, then (8) imphes

VxeW:3yeL:\x-y\<±Tln\b„\. (10)

Now assume that b},b2, . . . , bn is a reduced basis for L m the sense that (7) holds,
and let L' and A have the same meamng äs m the proof of the lemma. It is easily seen
that

d(L) = h · d(L'). (11)

From (7), (l 1) and (6), apphed to L', we get

fl \b,\ < c2 · d(L} = c2 · h · d(L') <c2-h- Π \b,\
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and therefore, with (9):

c 2 - ' \b„\<h<\ba. (12)

After these preparations we descnbe the procedure by which we decide whether
K n Z" — 0 01, equivalently, rK n L = 0. We assume that bi,b2, . . · , bn is a basis for
L for which (7) holds, numbered such that \bn\ — max{|Z>;| . l < / < « } .

Applymg (10) with χ = p we find a vector j ε L with p - y\ <,\^n\bn\. If 7 ε τ Κ
then TA" n L i= 0, and we are done. Suppose therefore that y & τΚ. Then/ & B(p,r),
by (3), so \p - y\> r, and this implies that r <±Jn\bn\. Let now H, L', h have the
same meanmg äs m the proof of the lemma. We have

L = L' + U„ C H + Un = U (// + fcin).

Hence L is contamed m the union of countably many parallel hyperplanes, which
have successive distances h from each other. We are only mterested m those hyper-
planes that have a nonempty mtersection with τΚ, these have, by (3), also a nonempty
mtersecüon with B (p, R). Suppose that precisely t of the hyperplanes H + kb„ mter-
sect B(p,R). Then we have cleaily / - l < IR/h. By (4) and (12) we have

so t - l < c\c2{n . Hence the number of values for k that have to be considered is
bounded by a constant only dependmg on n Which values of k need be considered
can easily be deduced from a representaüon of p äs a linear combmation of Z?,,
Z>2, . . . ,&„ .

If we fix the value of k then we restnct attention to those χ = 2 " = 1 ytb, for which
yn — k; and this leads to an integer programmmg pioblem with n — l variables
y\->y-i-> · · · >yn-i- I* 1S stiaightforward to show that the length of the data of this new
problem is bounded by a polynomial function of the length of the original data, if the
directions of §2 have been followed for the construction of r.

Each of the lower dimensional problems is treated recursively. The case of dimen-
sion n — l (or even n = 0) may serve äs a basis for the recursion. This fmishes our
descnption of the algonthm.

We observe that m the case that K Π Z" is nonempty, our algonthm actually
produces an element χ ε K Π Z".

2. The convex set K. Let K = (x e R" : Ax < b], and assume that K is bounded.
In this section we descnbe an algonthm that can be used to verify that K satisfies
condition (2) of §1; to leduce the number of variables if that condition is found not to
be satisfied; and to find the map τ used in §1. The algonthm is better than what is
strictly needed m §1, in the sense that it is polynomial even for varymg n. l am
indebted to L. Loväsz for pointmg out to nie how this can be achieved.

In the first stage of the algonthm one attempts to construct vertices Ü0,ü1; . . . , v„ of
K whose convex hüll is an «-Simplex of positive volume. By maximizmg an arbitrary
hnear function on K, employing Khachiyan's algonthm [8], [4], one fmds a vertex u0 of
K, unless K is empty. Suppose, mductively, that vertices u0, u, , . . . , vd of K have been
found for which o, — u0, . . . , vd — o0 are hnearly independent, with d < n. Then we
can construct n — d lineariy independent linear functions/,, . . ,/„_rf on R" such that
the of-dimensional subspace V = 2 f = i R(ü, ~ %) 1S given by

K={* ε R" ./,(*)= -·· =/„_,(*) = 0}.
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Again employing Khachiyan's algorithm, we maximize each of the linear functions
/,, — /|,/2> —/2> · · · ,fn-d> ~J„-d o n K, until Ά vertcx üd+1 of K is found for which
f](vd+\) ^ fj(v0) for somey e {1,2, . . . , « - i/}. If this occurs, then υ, - u0, . . . , vd —
v0, vd+1 — ü0 are linearly independent, and the inductive step of the construction is
complcted. If, on the other band, no such vd+, is found after each of the 2(n — d)
functions / , , —/,, . . . , /„_d , —/„_</ has been maximized, then we must have ^(x)
— ^(VQ) for all χ G K and all j = l, 2, . . . , n — d, and therefore K C u0 + F. In this
case we reduce the problem to an integer programming problem with only d variables,
äs follows.

Choose, fory = l, 2, . . . , d, a nonzero scalar multiple Wj of vj - v0 such that w} e Z",
and denote by W the (« X ä?)-matrix whose columns are the w . Notice that W has
rank d. Employing the Hermite normal form algorithm of Kannan and Bachern [7] we
can find, in polynomial time, an integral n X «-matrix U with det(f/) = ± l such that

UW = (%)1<1<Bj i

with

k =0 if i>j,
1 (\3)

k„ ̂  0 for l </<</. { '
Denote by M,,u2, . . . , u„ the columns of the integral matrix U~l. These form a basis
of R", and also of the lattice Z": Z" = Σ"=ι 2M,. The subspace F of R" is generated by
the columns of W' = U~l · (k,j), so (13) implies that

κ=Σκ« (14)
; = i

Define r,, r2, . . . , rn e R by υ0 = Σ " = \^> so (Γ$= , = [/«„.
Now suppose that j»c G ÄT Π Z". Then Λ: = 2"~ i J,^, w i th κ G Z, and Λ: e K implies

that χ — ü0 G F. By (14) this means that j y = r} for d <j < n. So if at least one of
O+1 > · · · ' rn IB n o t a n integer, then K n Z" = 0. Suppose, therefore, that rd+ , , . . . , / · „
are all integral. Substituting χ = Σ^=ι Τ/"/ + Σ"=^+1 Ouy m o u r o r i g m a l System Ax < b
we then see that the problem is equivalent to an integer programming problem with d
variables y,, y2, . . . , yd, äs required. The vertices v0, v,,..., vd of K give rise to d + l
vertices v'0,v\, . . . ,v'd of the convex set in Rd belonging to the new problem, and
O'O,V'I, . · . , v'd span a i/-dimensional simplex of positive volume. This means that for
the new, d-dimensional problem the first stage of the algorithm that we are describing
can be bypassed.

To conclude the first stage of the algorithm, we may now suppose that for each
d = 0, l , . . . , « — l the construction of vd+, is successful. Then after n Steps we have
n + l vertices u 0 , « , , . . . , v„ of K for which u, - u0, . . . , u„ - i>0 are linearly indepen-
dent. The «-simplex spanned by v0,vt, . . . , v„ is contained in K, and its volume
equals |detM|/n! where M is the matrix with column vectors v} - v0, . . . , v„ - v0.
This is positive, so condition (2) of § l is satisfied. J

In the second stage of the algorithm we construct the coordinate transformation τ
needed in §1. To this end we first try to find a simplex of "large" volume in K. This is , ]
done by an iterative application of the following procedure, starting from the simplex
spanned by DO,Ü,, . . . , v„. The volume of that simplex is denoted by vol(«0,
«,, . . ,,ü„)·

Construct n + l linear functions g0, g,,..., g„ : R." ->R such that

g, is constant on [v :0 < j < n, i =£ i],
(15)

» * ° f o r Q<<n,*i,
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for / = 0, l, . . . , n. Maximizing the functions g0, -g0, gt, -g,, . . . , g„, -g„ on K by
Khachiyan's algorithm we can decide whether there exist / G {0, l, . . . , « } and a
vertex χ οι Κ such that

l &(*-°,)l>!l &(»,-»,)!

ϊοΐ j =£ i (the choice of j is immaterial, by (15)).
Suppose that such a pair i, χ is found. Then we replace u, by x. This replacement

enlarges vol(ü0,ü,, . . . , v„) by a factor \g,(x - ü,)|/|g,(u( - uy)| (fory ^ /), which is
more than 3/2. We now return to the beginning of the procedure ("Construct n + l
linear functions . . . ").

In every Iteration step vol(t>0,«,,..., u„) increases by a factor > 3/2. On the other
hand, this volume is bounded by the volume of K. Hence after a polynomially
bounded nuraber of iterations we reach a Situation in which the above procedure
discovers that

l&(*-° , ) l< i l&(» , - i> , ) | (16)

for all χ G K and all i,j G {0, l, . . . , « } with i^=j. In that case we let τ be a
nonsingular endomorphism of R" with the property that T(UO), τ(υ,), . . . , T(Ü„) span a
regulär n-simplex. With p = (n + 1)~'Σ/=οτ(ϋ^) w e n o w claim that B(p,r)CrK
CB(p,R) for certain positive real numbers r,R satisfying R/r<2n3/2, i.e., that
conditions (3) and (4) of §1 are satisfied, with c, = 2«3 / 2. This finishes the description
of our algorithm.

To prove our claim, we write z} = r(Vj), for 0 < j < «; we write S for the regulär
«-simplex spanned by z0, z , , . . . , z„, and we define, ior c > 1:

Tc= (xeR" :vol(z0, . . . ,* ,_ , ,* ,£ , + , , ...,zn)

< C-VO\(ZQ, . . . , z„)foralli G (0,1, . . . , « } } .

Condition (16) (for all χ e K and all / =£j) means precisely that τΚ C. T3,2. Further, it
is clear that S C τΚ. Our claim now follows from the following lemma.

LEMMA. Let c > 1. With the above noiation we have B(p,r) C S C Tc C B(p,R)for
two positive real numbers r, R satisfying

β \2 \cV + (c2 + l)n? if n is even,

>' * \cV + (2c2 - 2c + l)n2 + (c1 - 2c)n // n is orfd.

PROOF. Using a similarity transformation we can identify W with the hyperplane
[(>})"=0 G R"+ 1: Σ"=οΟ = 1} in K"+I such that z „ , z , , . . . , z„ is the Standard basis of
r + l . T h e n w e h a v e

l l l
^ n+\ f^0

]

and

i " }
Tc = (r)" G M"+' : |r,| < c for 0 < 7 < n, and Υ r = l .

l y=o J

By a straightforward analysis one proves that Tc is the convex hüll of the set of points
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obtained by permuting the coordinates of the point
m n

zo ~ c Σ zj + c Σ zj if n = 2m,
j=\ j = m+ l

m n

(l - c)z0 - c 2 Zj + c 2 Zj if n = 2m+l.
j= l }-m+ I

It follows that Tc C B(p,R), where R is the distance of p to the above point:

if n is even,

if «isodd.
n + l

Further, B(p,r) C S, where Λ is the distance of p to (0, l/n, l/n, . . . , l/n):

Γ ~ n(n+ 1) '

This proves the lemma.
REMARKS, (a) To the construction of τ in the above algorithm one might raise the

objection that τ need not be given by a matrix with rational coefficients. Indeed, for
« = 2,4,5,6,10,... there exists no regulär n-simplex all of whose vertices have
rational coordinates. This objection can be answered in several ways. One might
replace the regulär simplex by a rational approximation of it, or indeed by any fixed
«-simplex with rational vertices and positive volume, at the cost of getting a larger
value for c,. Alternatively, one might etnbed R" in M"+1, äs was done in the proof of
the lemma. Finally, it can be argued that it is not necessary that the matrix MT

defining τ be rational, but only the Symmetrie matrix MT

TMT defining the quadratic
form (rx, rx); and this can easily be achieved in the above construction of Ί.

(b) The proof that the algorithm described in this section is polynomial, even for
varying n, is entirely straightforward. We indicate the main points. The construction of
/ D · · · 'fn-d m t n e frrst Sta8e> a n d of g0, gi, . . . , gn in the second stage, can be done
by Gaussian elimination, which is well known to be a polynomial algorithm, cf. [2, §7].
It follows that Khachiyan's algorithm is only applied to problems whose lengths are
bounded by a polynomial function of the length of the original data. The same applies
to the </-dimensional integer programming problem constructed in the first stage.
Further details are left to the reader.

(c) We discuss to which extent the value 2«3/2 for c, in (4) is best possible.
Replacing the coefficient 3/2 in (16) by other constants c > l we find, using the
lemma, that for any fixed E > 0 we can take

(l + e)(«3 + 2« 2 ) 1 / 2 if «iseven,
C l = 1/2

[(l + e)(« 3 + n2- n) if n is odd.
If one is satisfied with an algorithm that is only polynomial for fixed n one can also
take e = 0 in this formula. To achieve this, one uses a list of all vertices of K to find the
simplex of maximal volume inside K, and transforms this simplex into a regulär one.
The following result shows that there is still room for improvement: if K C R" is any
closed convex set satisfying (1) and (2) then there exists a nonsingular endomorphism r
of R" such that (3) and (4) hold with c, = n. To prove this, one chooses an ellipsoid E
inside K with maximal volume, and one chooses τ such that τ E is a sphere. The case
that K is a simplex shows that the value c, = n is best possible. For fixed n and e > 0
there is a polynomial algorithm that achieves c, = (l + ε)«. I do not know how well
the best possible value c\ — n can be approximated by an algorithm that is polynomial
for varying n.



INTEGER PROGRAMMING WITH F1XED NUMBER OF VARIABLES 545

(d) The algorithm described in this section applies equally well to any class W of
compact convex bodies in R" for which there exists a polynomial algorithm that
maximizes linear functions on members K of Cff . This remark will play an important
role in §5. In particular, we can take for Ctf a "solvable" class of convex bodies, in the
terminology of [4, §§1 and 3]. The same remark can be made for the algorithm
presented in §1.

3. The reduction process. Let n be a positive integer, and let bl,b2, . . . , bn G R"
be n linearly independent vectors. Put L = 2"= 1 U, ; this is a lattice in R". In this
section we indicate an algorithm that transforms the basis bl,b2, . . . , b„ for L into one
satisfying (7) with c2 = 2" ("~ 1 ) / 4 The algorithm is taken from [9, §1], to which we refer
for a more detailed description.

We recall the Gram-Schmidt orthogonalization process. The vectors b* (\ < i < n)
and the real numbers μ,7 (l < j < i < n) are inductively defined by

b* = b, - Σ μ,/;* , μν = (b, , bf}/(b* , b*),
/ = '

where ( , ) denotes the ordinary inner product on R". Notice that b* is the projection
of b, on the orthogonal complement of ^ ~ Ί R£>7, and that 2 ) = Ί Rfy = Σ,Ι 1, R*/> for
l < i < n. It follows that &*,&*, - . . , b* is an orthogonal basis of R". The following
result is taken from [9].

PROPOSITION. Suppose that

k,l<4 07)
for l < j < i < n, and

for ! < / < « . Then

i.e., (7) holds with c2 = 2" ( w-"/ 4.

PROOF. See [9, Proposition 1.6].

To explain condition (18) we remark that the vectors b* + μ,, _,£>*_, and b*_} are the
projections of b, and Z>,_, on the orthogonal complement of 2 ; = ^ f y · Hence if (18)
does not hold for some /, then it does hold for the basis obtained from bltb2i . . . , bn

by interchanging bt , and b, .
To change a given basis b],b2, . . · , bn for L into one satisfying (7) we may now

iteratively apply the following transformations.
First transformation: select /, ! < / < « , such that (18) does not hold, and inter-

change ft,_, and bt ;
Second transformation: select /, y, l < j < i < «, such that (17) does not hold, and

replace b, by b, — rb] , where r is the integer nearest to μ .
It can be shown that, independently of the order in which these transformations are

applied and independently of the choices of /, and of / andy, that are made, this leads
after a finite number of Steps to a basis b\,b2, . . . ,b„ satisfying (17) and (18). Then (7)
is satisfied äs well, by the proposition. This finishes our sketch of the algorithm.

A particularly efficient strategy for choosing which transformation to apply, and for
which /, or i andy, is described in [9, (1.15)]. If we assume the b, to have integer
coordinates then the resulting algorithm is polynomial, even for varying n, by [9,
Proposition 1.26]. It follows that the same result is true if we allow the coordinates of
the b, to be rational.



5 4 6 H W. LENSTRA, JR

REMARKS, (a) The algorithm sketched above can be used to find the shortest
nonzero vector in L, in the following way. Suppose that bl,b2, . . . , b„ is a basis for L
satisfying (7), and let χ G L. Then we can write χ = 2?= i m,b, with m, ε Ζ, and from
Cramer's rule it is easy to derive that \m,\ < c2 · \x\/\b,\, for l < i < n. If χ is the
shortest nonzero vector in L then |jc| < \b\ for all /, so \m\ < c2. So by searching the

set ( 2 7 = i m A : Z, w c2 for ! < / < « } we can find the shortest nonzero
vector in L in polynomial time, for fixed n. For variable n this problem is likely to be
NP-ha.rd.

(b) We discuss to which extent our value for c2 is best possible. The above algorithm
yields c2 = 2"("~ l )//4. We indicate an algorithm that leads to a much better value for
c 2; but the algorithm is only polynomial for fixed n.

In (a) we showed how to find the shortest nonzero vector in L by a search
procedure. By an analogous but somewhat more complicated search procedure we can
determine the successive minima \b\\,\b'^, . . . ,\b'„ of L (see [l, Chapter VIII] for the
definition). Here b\,b'2, . . . , b'„ ε L are linearly independent, and by [l, Chapter VIII,
Theorem I, p. 205 and Chapter IV, Theorem VII, p. 120] they satisfy

Π ι*;ι < γ;
/2 · d(L)

1=\

where y„ denotes Hermite's constant [l, §IX.7, p. 247], for which it is known that

y„/n for n->oo.

Using a slight improvement of [l, Chapter V, Lemma 8, p. 135] we can change
b\,b'2, . . . , b'„ into a basis b" ,b'2, . . . , b% for L satisfying

\b','\

so

Π · (f

\b',\ (K i < n)

· d(L) (for n > 3).

We conclude that, for fixed n, the basis bl,b2, . . . ,b„ produced by the algorithm
indicated in this section can be used to find, in polynomial time, a new basis satisfying
(7), but now with c2 = (c · n)". Here c denotes some absolute positive constant.

On the other hand, the definition of γη implies that there exists an n-dimensional
lattice L such that \x\ > y„1/2 · d(L)^/n for all χ ε L, χ =£ 0, cf. [l, Chapter I, Lemma 4,
p. 21]. Any basis b\,b2, · · · , bn for such a lattice clearly satisfies

Therefore the best possible value for c2 satisfies c2 > (c' · n)"/2 for some absolute
positive constant c'.

4. A fixed number of constraints. In this section we show that the integer linear
programming problem with a fixed value of m is polynomially solvable. It was noted
by P. van Emde Boas that this is an immediate consequence of our main result.

Let n,m,A,b be äs in the introduction. We have to decide whether there exists
χ e Z" for which Ax < b. Applying the algorithms of Kannan and Bachern [7] we can
find an (n X «)-matrix U with integral coefficients and determinant ± l such that the
matrix ^ i / = ( a ; ) 1 < 1 < m , K / < „ satisfies

0 = 0 for
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Putting/ = U~}x we see that the existence of χ ε Z" with Ax < b is equivalent to the
existence of y G Z" with (AU)y < b.If n > m, then the coordinates J O T + , , . . . ,yn of /
do not occur in these inequalities, since (19) implies that ^ = 0 for 7 > m. We
conclude that the original problem can be reduced to a problem with only min{«,m}
variables. The latter problem is, for fixed m, polynomially solvable, by the main result
of this paper.

5. Mixed integer linear programming. The mixed integer linear programming prob-
lem is formulated äs follows. Let k and m be positive integers, and n an integer
satisfying 0 < n < k. Let further A be an m X Ä>matrix with integral coefficients, and
b e T". The question is to decide whether there exists a vector χ = (χλ,χ2, . . . , xk)

T

with

x, e Z for l < / < n,

x, e K for n + l < / < k

satisfying the system of m inequalities Ax < b.
In this section we indicate an algorithm for the solution of this problem that is

polynomial for any fixed value of «, the number of integer variables. This generalizes
both the result of § l (n = k) and the result of Khachiyan [8], [4] (n = 0).

Let

K' = (xGRk :Ax < b},

K = {(x,,x2, . . . , x„) ε R" : there exist xn+,,..., xk e M

such that (*! ,x2, . . . , xk~J e K'}.

The question is whether K Π Z" = 0.
Making use of the arguments of Von zur Gathen and Sieveking [12] we may again

assume that K', and hence K, is bounded. Next we apply the algorithm of §2 to the
compact convex set K c W. To see that this can be done it suffices to show that we
can maximize linear functions on K, see §2, Remark (d). But maximizing linear
functions on K is equivalent lo maximizing, on K', linear functions that depend only
on the first n coordinates x\,x2, . . . , x„; and this can be done by Khachiyan's
algorithm.

The rest of the algorithm proceeds äs before. At a certain point in the algorithm we
have to decide whether a given vectcr y G R" belongs to τΚ. This can be done by
solving a linear programming problem with k — n variables. This finishes the descrip-
tion of the algorithm.

As in §4 it can be proved that the mixed integer linear programming problem is also
polynomially solvable if the number of inequalities that involve one or more integer
variables is fixed; or, more generally, if the rank of the matrix formed by the first n
columns of A is bounded.
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ABSTRACT: 

The integer programming problem is: Given 
mXn and mXl matrices A and b respectively of 
integers, find whethe~ there exists an all inte- 
ger n×l vector x satisfying the m inequalities 
Ax<b. In settling an important open problem, 
Lenstra (1981) showed in an elegant way that 
when n, the number of dimensions is fixed, there 
is a polynomial-time algorithm to solve this 
problem. His algorithm achieves a running-time 

n 3 
of 0(c "p(length of data)) where p is some 
polynomial and c a constant independent of n. 
Since such an algorithm has several important 
applications - cryptography (Shamir (1982)), 
diophantine approximations (Lagarias (1982)), 
coding theory (Conway and Sloane (1982), etc. 
it is in~ortaht to improve the running time. 
We present an algorithm here that has a running 

time of 0(nJnL log L) where L is the length of 
the input. Whereas Lenstra's algorithm in the 
worst case reduces an n-dimensional problem to 

cn2-(n-l) dimensional problems, our algorithm 
effectively reduces an n-dimensional problem 
to at most polynomially many (n-l) dimensional 

problems, thus achieving our time bound. The 
algorithm we propose, first finds a "more 
orthogonal" basis for a lattice (see the next 
section for the definition of a lattice) than 
those of Lenstra (1981) and Lenstr~ Lenstra 
and Lovasz (1982), but in time 0(n-- poly 
(length of input)). It then uses an enume- 
ration technique to solve integer program- 
ming and related problems. The proof that only 

0(n d'n) possibilities nee4 to be tried for this 
enumeration is based on Minkowski (1911)'s 
fundamental theorem on the geometry of numbers. 
The integer programming algorithm depends on 
algorithms we devise for finding in a similar 
time bound, the shortest nonzero vector in a 
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lattice and the closest point of a lattice to a 
point in space. These then yield better algo- 
rithms than known before for simultaneous dio- 
phantine approximations (Lagarias (1982)). 

While this paper presents mainly the theo- 
retical improvements that can be made in the 
algorithms, we discuss in section 6 why in 
practice our estimates of running time may be 
overly pessimistic. 

The last part of the paper discusses some 
complexity issues. It is an interesting open 
problem as to whether finding the Euclidean 
shortest non-zero vector of a given lattice is 
NP-hard. (See Lenstra (1981), Van Emde Boas (1981) 
and Lagarias (1982)) . 

We show first that this problem is polynomial- 
time Cook (Turing) reducible to the language: 

SHORT={(K;bl,b2,...,bn) Ib I .... ,b n are integer n 

vectors and the Euclidean short- 
est, non-zero vector of the form 
n 

zibi, z i integers has length 
i=l 
at most k} 

Using this reduction, we show that given a sub- 
routine for SHORT which works in time T-SHORT (4) 
-4 length of data, we can find in time 
(p(n)-T-SHORT(£)) (p-a poly) a good approximation 
tb the closest vector of a point to a lattice. 
We conjecture that the latter problem is NP-Hard 
(see also conjecture 2 of Lagarias (1982)). The 
proof of this conjecture would say that SHORT is 
Cook NP-complete and our reduction is essentially 
a polynomial-time Turing rather than a Karp (many 
one) reduction. To my knowledge, no other lan- 
guage is known to be NP-complete under Turing 
reductions which is not trivially also many-one 
NP complete. 

Notation 

~n 

?7.. n _ 
Euclidean n space 

set of n-vectors with integer components. 

For vectors a and b (a,b) is the dot 
product of a and b. 
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for a vector a lal = laI2 = Euclidean length of a 

fall = Ll-length of a = Zla. l 
• l 
l 

L(bl,b2,...,b n) = lattice generated by vectors bl, 
b2, ... ,b n which are possibly de- 

pendent. 
If bl,b2,...,b n is a list of vectors, we denote 

by bi(J) the projection of b i onto the orthogonal 

complement of the space spanned by bl,b2,... ,bj_ 1 

for i>j>2, bi(1) is defined to be equal to b for 
all i. l 

In each section, equations, inequalities, 
etc. are numbered successively beginning with i. 
In the section in which it appears we refer to 
equation (i0) - say simply as (i0). But in other 
sections, we precede it with the section number. 
Thus (2.10) appearing in section 4 refers to 
(i0) of section 2. 

Section i. Basic definitions and techniques. 

n 
A lattice in ~R (Euclidean n-space) is a 

set L generated by finitely_many vectors 
I. 

bl,b 2 ..... b k of m ~n, L = {~ zibilz i are all 
i=l 

integers}. If bl,...,b k are also independent, 

then we call them a basis of the lattice. It is 
a classical theorem that every lattice has a 
basis (see Cassels (1959) or Lekherkerker (1969)- 
these two books on geometry of numbers cover 
the subject extensively). If bl,b2,...,b n are 

n the basis of a lattice L in BR , then volume of 
the parallel piped enclosed by bl,b2,...,b n is 

called the determinant of the lattice L = 
L(b.,b~,...,b ) denoted d(L). This determinant 
• ~ z n 

is invarlant under change of basis. It equals, 
of course, the determinant of the matrix which 
has bl,b2,...,b for its columns. The lat- 
tice generated ~y bl,b2,...,b n remains in- 

variant under the so called unimodular ope- 
rations : 

(i) Adding an integer multiple of one of the 
generators to another 

(2) Multiplying a generator by -i. 

Conversely it can be shown that if bl,b2,...,b n 
^ ^ ^ 

and bl,b2,...,b n are two bases for the same lat- 

tice L, then we can get one from the other by a 
sequence of unimodular operations. Thus the 
number of elements in any basis of a lattice 
L is the same, this is called the dimension of 
the lattice. 

We will have occasion to use the following 
fact often. 

Proposition i: Suppose v is an element of a 
lattice L, v~0 and IvCL for 0<I<i. Then there 
is a basis of the lattice containing v. 

Proof: (See for example Lekherkerker (1969) or 
Cassels 61959)). Let n be the dimension of the 
lattice. The proof will be hy induction on n. 
For n=l, it can be checked that any lattice must 
be of the form {Zbl: z an integer} and thus the 
only v that satisfles the hypothesis of^the prop- 
osition is v=b I. Now assu~ne n=2. Let L be the 

projection of L perpendicular to v, i.e., 

= {b- (b,v) 
(v,v) v: beL} 

(The quantity inside the parenthesis is the pro- 
jection of b onto the hyperplane through the 
origin perpendicular to v). It is not difficult 
to see that L has dimension (n-l), let b2, 
^ ^ ^ 

b3,...,b n be a basis of L. Let b2tb3,...,bn be 
^ 

the vectors in L whose projections are b2, 

~3,...,bn. We wish to assert that {v,b2,...,b n} 

is a basis of L. Clearly v,b2,...,b n are in L. 

It suffices to show that for any w in L, w can 
n 

be expressed as Z z b. with V=bl, zieZZ. Let 
i i i=l 

^ (w,v) ^ ^ 
Let w = w (v,v) v. w is in L and hence equals 
n n ^ 

zibi, zieZg . Consider (w- Z z.b.) = w'. w' 
i=2 i=2 i l 
must be a scaler multiple of v - say = Iv. If 

is not an integer, then since Wl=lV and v 

are in L, (~-I~[) v is in L contradicting the 
hypothesis. Hence i is an integer and w = 
n 

z.b + ~v puts w in L(v,b2,...,bn). Note 
i=2 i i 
that the proof of the proposition actually proves 
the following stronger result: 

Proposition 2: The following "algorithm" 
yields a basis bl,b2,...,b n of the lattice L. 

Procedure input lattice L of dimension n. b0÷0. 
do for i = 1 to n by i: 

Pick any v~0 such that (v,b4)=0 for j=0, 
l,...,i-l. J 

Find the smalle~t positive I such that Iv is 
in the lattice L obtained by projecting L 
onto the orthogonal complement of span 

{bl,---,bi_ l} 
~ind w in L such that w projects onto ~v in 
L. 

b i + l  ~'~ 
end 
return {bl,b 2 ..... b n } 

Of course this is not quite an algorithm - we do 
not know how the input is specified etc. etc. But 
a more rigorous version of this algorithm will be 
given later - in section 2 - it is called SELECT- 
BASIS. 

We are often interested in this paper in pro- 
jecting and "unprojecting" vectors. Projecting 
a vector b onto a hyperplane through ~he, origin 
with v as normal yields the vector b (~'~)~ v 

(v,v) " 

TO project a vector onto a subspace, we just find 
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an orthogonal basis of the complement of the sub- 
space and project perpendicular to each basis 
vector successively. We ,also use one other ob- 
servation. Suppose bl,b2,...,b n form a basis of 

a lattice L and ~ is obtained by projecting L per- 
pendicular to b I. Then for any vector w in L, 

there is a unique vector w in L such that 

(w,bi)~[_ ICbl'bl) l I~,bl,bl) l 
2 ' 2 ) and w is w's pro- 

jection perpendicular to b I. To see this, let w' 

be some vector of L such that w' projects onto ~. 
Then {w'+z bl: z e 2Z } is contained in L and 

also has this property. Clearly a unique element 
of this set satisfies the dot product condition 
above. The set does not depend on the choice of 
w' and hence our assertion follows. 

One other theorem we need from Geometr~ of 
Numbers is the fundamental theorem of Minkowski 
(1911). 

Theorem i. (Minkowski) : If L is an n-dimensional 
lattice, the length (in Euclidean norm*) of a 
shortest nonzero vector of L is at most 

/nn (d (L)) i/n. 

This is a direct consequence of the more 
usual statement of Minkowski's theorem. See 
Lekerkerker (1969), Theorem i, page 120 for ex- 
ample. 

Preamble to the paper: Lenstra (1981) showed 
that given vectors bl,b2,...,b n with integer co- 

ordinates in ~R n, one could find a basis bl' 
^ A 
b2,...,b n for the lattice L(bl,b2,...,b n) = L 

such that 

n (1) n Igil =< d(L)°2(n2/4) 
i = l  

He called bases satisfying the above condition 
"reduced" bases. His algorithm for doing this 

3 
takes time 0 (c n " polynomial (length of data)). 
Later Lenstra, Lenstra and Lovasz (1982) gave 
a polynomial time algorithm for finding a re- 

^ ^ ^ 
duced basis bl,b2,...,b n and in addition to (i) 

showed for their reduced basis that 

(2) '^'lbll ~ 2 n'2 / . length of a shortest 
nonzero vector of L 

We will use the Lenstra, Lenstra, Lovasz algo- 
rithm in our algorithm. So familiarity with 
these two very important papers, especially 
the basis reduction algorithm of the latter is 
highly recommended for reading this paper. How- 
ever, we have used their basis reduction algorithm 
only as a black box and this paper should be quite 

Throughout the paper, unless stated otherwise 
we use the L 2 norm. 

self-contained if the reader remembers that the 
LLL algorithm yields a basis satisfying (2) 
above. The one result from Lenstra (1981) that 
we use, again, only as a black box in section 5 
may be stated as follows: Given a polytope 

{x: Ax~b} in YR n where A and b are the data, we 
can find in polynomial time a linear transforma- 
tion T , p in 'IRn in yRn and R, r £ }R SUCH that 

B(p,r) ~ {Tx: Ax~b} ~B(p,R) 

and R/r 2n 3/2 

where B(y,s) is the ball of radius s with y as 
centre. This says, roughly, that we can apply a 
linear transformation to make the polytope 
"round." 

Section 2: The al@orith m for findin@ the 
shortest vector 

A. First we describe our algorithm to find 
the shortest nonzero vector in a lattice L given 
by its generators, bl,b2,...,b n and then show how 

this is used for integer progra~mning. The pro- 
cedure that finds a shortest nonzero vector in n 
dimensions works recursively by calling the sub- 
routine for lattices of dimension (n-l) or less. 
Using polynomially many calls on such lower di- 
mentional subroutines, we find a basis al,a2,... 

a n for lattice L(bl,...,bn) (bl,...,b n given) 

which satisfies the following properties: 
(i) for j=2,...,n-l, aj(j) is the shortest 

vector in the lattice L. generated by 
aj(j), aj+l(j) ..... an(J~ which is 

(n-j+l) dimensional. 

lall < 2 
=73 la21 

(2) 

< a I 
(3) l a 2 - a 2 ( 2 )  I = - - 7 -  

Whereas in the reduced basis of Lenstra, Lenstra 
and LoVasz (1982), the length of the first vector 

is guaranteed to be at mos~ 2(n/2) (d(L))i/n, for 
our basis al,...,an, we can easily prove (4) be- 

low using Minkowski's theorem, conditions (2) 
(3) and the fact that d(L) = lalld(L2) 

fall ~ ~ (4(L)) 1/n 

(In other words, our a I is a much shorter vector 
in general than theirs-- but of course we spend 
more time finding it). 

Having obtained such a basis al,...,an, we 

show that the shortest vector must be of the form 

We sometimes use the phrase "shortest vector" 
for "shortest nonzero vector" when the meaning 
is clear 

195 



n 
= Z ~.a. where (~l,...,~n) e T Y i i 

i = l  

b. ÷ a. 
i i 

end 

where T is a subset of ~ n We stow £hat it is Con~neDt. We now have a basis b_,b^, ..,b n 
• satisfying conditions (i) and (3)~ z " 

enough to consider a set T of cardinality at most 

2nlalln (6) If Ib21</~Ibll then do Swap b I and b 2 

(5) d(L) go to 3. 

(4) is used to bound the expression (5). We 
enumerate all members of T, find the corre- 
sponding y and take the shortest• 

We now present an algorithm that finds a 
shortest nonzero vector in the lattice L(b.,..., I 
bn) where bl,...,b n are independent input vectors 

with integer coordinates. To facilitate the re- 
cursion, the algorithm will accomplish more. To 
describe what more, suppose VltV2,...,v n is the 

final basis returned by the algorithm• As be- 
fore let vi(j) denote the projection of v i onto 

the (n-j) dimensional subspace vj of ~n ortho- 

gonal to the span of Vl,V2,...,vj_ I, for i~j~2. 

Let Vl(1) = v I and V 1 = SE n . Then our basis 

{Vl,...,v n} satisfies: (cf: (i) through (3))• 

(6) for j=l,2,3,...,n-l, v.(J) is the 
shortest vector Sin L. - the 
projection of the lattice L 
(bl,...,b n) = L onto Vj. (Thus 

v I is the shortest vector in L). 

(v) Ivi(S) _ vi(J+l~l ~ I~ (J ) l  2 for 

i~j~l 

Procedure. SHORTEST (n;bl,b2,... ,b n) 

Comment. The preceding paragraph explains what 
exactly this procedure accomplishes. L = 
L(b l,...,b n). 

i. If n=l then return (b I) . 

2. Use the basis reduction algorithm of 
Lenstra, Lenstra and Lovasz (1982) to make 
{bl,b2,...,b n} a reduced basis. 

3. bi ÷ projection of b i perpendicular to b 1 

for i=2,3,... ,n. 

4. {b2,b3 ..... bn } ~- SHORTEST (n-l; b2,b3 .... 

b). n 

5. for i=2 to n do 

Find the unique element a i in L such that 

a. 's projection perpendicular to b I is 
i 

l(bl'bl) l Ib! bl ! I, I 
bi and (ai,b I) e(- 2 ' 

end 

Comment. We now satisfy condition (2); 
caution: Ib21 , Ibll may be irrational, but their 

squares are not, so we use them instead• 

(7) If Ibj(j)l~Ibll for some j, then 

J0 + minimum such j els_.~e 

J0 ÷ n+l 

(8) BASIS ÷ {bl,b 2 ..... bj0_l} • 

Corgnent. We show later that some nonzero shortest 
vector of L(bl,...,b n) is in L(bl,...,bj0_l). 

(9) Call ENUMERATE(BASIS) to obtain v I = a 
shortest nonzero vector in L(bl,...,bn). 

Comment. This procedure is explainer later. 

(i0) {bl,b2,...,b n} + SELECT BASIS(n~v I, 

bl,-..,b n) 
Comment. Procedure explained later. It returns 
a basis of L containing v I as the first vector 
(cf. Proposition i.i) 

(ii) ~i ÷ projection of b i perpendicular to 

b I for i=2,...,n 

(12) . . . . .  SHORTEST (n-l, %, 
b3' .... bn 

(13) For i=2,3...,n find a such that a. is 
• 1 . 1 

in L, ai's pro3ection perpendlcular to 

'(bl'bl)!'(bl'bl)' 1 
b I is ~i and (ai,bl)£(- 2 2 

(14) Return (bl,a2,...,an). 

Procedure. SELECT-BASIS(n;bl,b2,...,bn+I) 

Comment.k bl'b~'''''bn+ 1 are rational vectors in 

SE for some k=n and span an n-dimensional sub- 

space of SEk. The procedure returns a basis 
al,a2,...,a n of L=L(bl,b2,...bn+l). It first 
finds the shortest vector of L in the direction 
of b I - this is a I. Then it projects L ortho- 

gonal to a I to get a lattice 5. It works by re- 

cursively finding a basis of ~ (cf. Proposition 
1.2). 
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If n=0 then return the empty set. 

I_~f b I is independent of b2,b3,...,bn+ 1 

then al+b 1 

else do 

find e2,e3,...,e ~(rationals-these are 
ne~+ 1 

unique) such that ~ e.b.=b. 
j=2 J 3 i 

M least common multiple of the denominators 
of e2,...,en+ 1 

y÷gcd(Me2,M~3,.-.,Men+ I) 

if (M/e) is integral the_~n al+b 1 

else do: 

find p, q£~ rel-prime 

such that ~ - [~ J 
1 Y = p/q 

alqb I 

end 

Let b2,b3,...,bn+ 1 be the projections of 

b2,...,bn+ 1 perpendicular to el;if any one of 

~2 ..... bA+l-say bj is zero then delete it to get 

a basis a2,...,a n for L(b2,b3,...,bn+l). 

else Call SELECTBASIS (n-l;b2,b3,...,bn+l) to 

get a2,...,a n as the basis of L(b2,b3,...,bn+l). 

Find a2,a3,...,a n in L such that aj projects onto 

~'3 and l(aj,al) I~ l(al,al) I/2 

Return (al,a2,...,an) 

end. 

Proposition 0. The basis al,a2,...,a n returned 

by the above procedure is a basis of L = 
L(b l ,b2 , . . . , bn+  1) assuming b l , b 2 , . . . , b n +  1 have 
rank n. 

Proof: By Proposition 1.2, it suffices to 
show that a I is the shortest vector of L in the 
direction b I. We have 

Me 2 M~ 3 M~n+ 1 
M b I = ~ -~- b2+ -~- b3+...+ Y bn+ 1 and 

Me 2 Men+ 1 
Y ., ~/ are relatively prime integers. 

Any other vector in L(b2,...,bn+l_) in the. direc- 
tion of b I must thus be an integer multlple of 
the vector in the square brackets which equals 
M 

b I = q~ b I. Thus any vector of L(bl,b2,...,bn+ I) 
in the direction of b I is an integer multiple of 

b I. Conversely, ~ b I and q b I belong to L and 
q 

1 p and q are relatively prime implies ~ b I does too. 

Hence we have the lemma. 

Proposition i. The vectors vl,...,v returned by 
the procedure SHORTEST (n;bl,~ 2 .... ~n ) form a 

basis of L(bl,...,b ). 
Proof: For n=l, ~he proof is clear. We proceed 
by induction. At the end of step 4 of the pro- 

cedure, b2,b3,...,b n form a basis of the lattice 

L =L projected onto the hyperplane h perpendic- 
ular to b I at the origin and thus by Proposition 
1.2, al,a2,...,a n form a basis of L(bl,...,b n) at 

the end of step 5. By repeating this argument, 
they form a basis of L at the beginning of step 
i0. By Proposition 0, again procedure SELECT- 
BASIS works correctly to produce a basis of our 
lattice. Hence the current proposition is proved. 

Proposition 2. The vectors returned by SHORTEST 
satisfy conditions (6) and (7). 

Proof: Easy. 

P_~roDosition 3. Let J0 be as defined in step 7 
of procedure SHORTEST. Then a shortest nonzero 
integer combination of bl,b2,...,b j 1 is also 

a shortest nonzero integer combinatlon of bl, 
b2,..-,b n • 

n 
Proof: Suppose v = ~ e.b. is a shortest non- 

ii i=l 
zero integer combination of bl,b2,...,b n and one 

of ej0 , eJ0+l..., e n is nonzero. Then the pro- 

jection v' of v onto V the orthogonal complement 
of span {bl,b2,...,b } is nonzero. But then 

J0-1 
since the shortest vector of L projected onto V 
is of length bj0(J0) , (by (6)) Iv']~Ibj0(J0) I. 

> w > . > Then clearly Ivl=Iv I =Ibj (30) ]=Ibl]. Thus b 1 

is a shortest vector of L. 0 This proves proposi- 
tion 3. 

Proposition 4. The procedure SHORTEST cal~s it- 
self on lower dimensional lattices at most ~ n 
times (when started on a n dimensional lattlce). 

Proof: By Lenstra, Lenstra and Lovasz, the exe- 
cution of their basis reduction algorithm (in 
step 2 of procedure SHORTEST)-yields a basis of L 

n--l < (-~-) 
with b I = 2 /I(L) where II(L) is the length 

of the shortest vector of L. Each execution, but 
the first of the loop of steps 3-6 of SHORTEST 

cuts down Ibll by a factor of (~). Thus each 

5 iterations of the loop cuts it down by a factor 
of 2. Thus there are at most (5 n/2) executions 
of the loop. 
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DQscription of procedure ENUMERATE. Suppose 
BASIS = {bl,b2,...,b m} in step 8 of procedure 

SHORTEST and suppose a shortest vector of L(b I, 
m 

b2,...,b m) is y = Z ~.b.. Then since y must be i i i=l 
of length at most Ibll and the projection of y 

n onto V the orthogonal complement in FR of span m 
{b I .... ,bm_l} must be of length at most IblI. 

This projection has length I~bm(m) I, we must have 

< Jbll 

More generally we have the following lemma: 

proposition 5. With the above notation, suppose 
8i+i,8i+2,...,8 m are fixed integers. Then there 

is an easily computed integer 80 such that for all 1 
integers ~i,~2,...,~i_i and 8i, 

i-i m I 
@.b.+8.b + Z 8 b. < 

I j=l 3 3 i i j=i+l 3 3 = Ibll 

i' 8i+ 2 

^ 
Proof: For any vector v, we denote by v the 
component of v along hi(i), i.e., 

(v, (b. (i)) m i b. (i). Let u = ~ ~.b and w = 
(bi(i),bi(i)) l j=i+l 3 3 

i-i m ^ 
ejbj+Sib i + Z 8 b.. Clearly, w = 

j=l j=i+l 3 3 

m 
8 b (i) + Z ~.b Since 8j j=i+l ..... m 
i i j=i+l 3 3 

are fixed, the last sum is fixed. Let it be 
(t bi(i)) , t a scaler. Then 

^ 
w = 8.b. (i)+t bi(i) = (Si+t)bi(i) i 1 

lw1~Ibll +LGI~IBII 

{(Si+t)bi(i)l~iE~ } are colinear points at 

distance Ibi(i) I between two adjacent ones. 

Clearly then the lemma follows. 
< 

NOTE: We needed Ibll=Ibi(i) I to state the 

lemma as it is. If IblI<Ibi(i) I, we need to try 

at most 2 values of ~i - not 2 (Ibll/Ibi(i) I). 

Procedure ENUMERATE (bl,b2,...,bm) 

Comment. bl,b2,...,b m are vectors satisfying 

(i), (2) and (3). The procedure here finds the 
shortest vector of L(bl,b2,...,bm). 

if m=l then return (bl). 

for each ~m integer in the range 

Ibll 
- 7 t o  + 

do: 

CALL LIST (m-l) 

end: 

Comment: LIST(m-I) returns T - a list of candi- 
dates (~l,~2,...,~m) as per proposition 5. 

Return the shortest nonzero vector in the set 
m 

{~ ~.b.: ,~n) ET}. j=l 3 3 (51'''" 

end ENUMERATE. 

procedure LIST(k) 

Comment. When this procedure is called, the 
integers ~+i' ~+2' .... ~m are fixed. 

if k=0 then do 

T+TU{ (51,e2,. " " '~m ) } 
Return 

end 

0 
Compute 8 k based on proposition 5. 

for each inte?er G k in the range 

do 

Call LIST(k-I) 

end 

end LIST. 

Lemma i. The procedure ENUMERATE tries out at 
m Ibll 

most 2m ~ ( /bi(i) I)) sets of values which 
i=2 

is at most (2n) n/2" sets of values. 

Proof: The first part follows from the last 
m 

proposition. The denominator ~ Ibi(i) I is 
i=2 

clearly the determinant of the lattice L' gene- 
rated by b2(2) , b3(2) ,...,bm(2). Ib2 (2) I is the 

length of the shortest vector in L', thus 
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Ib2 (2) I m-I 
< (/~-~)m-i ~ nn/2 (by Minkowski). 

d~L) 2 f~ Ibll 
Further IblI~ ~3 Ib21 and Ib2-b2(2) ~- imply 

that (/21b2(2) I)~Ibll. Thus we need to enumerate 
at most 

(/~) (m-l) . nn/2 < (2n) n/2k possibilities. 

We show in the next section that if the input 
vectors to SHORTEST (n;...) are all integral and 
each is of length at most B, then all numbers pro- 
duced by the algorithm are rationals with nume- 
rators and denominators that can be represented 

in 0(n2(log B+ log n)) bits. (lemma 3 of section 
3). Assuming this for the moment, we prove the 
following theorem. 

Theorem i: with input vectors of integer compo- 
nents each of length at most B, the algorithm 

SHORTEST(n;...) runs in time 0((4n3/2)n(log B) 
(log log B)). 

NOTE: In common usage, we might call this a 

0((4n3/2) n)- algorithm. This however counts only 
the number of arithmetic operations-additions, 
substractions, multiplications and divisions and 
not the number of bit operations. Since log B 
could be substantial, and the number of bits of 
numbers grows nontrivially, such an analysis is 
imprecise. 

Proof: Let T(n) be the maximum number of arith- 
metic operations (not bit operations) performed 
by SHORTEST(n;...) for any input bl,...,b n of 

n vectors. Then it is easily seen that all steps 
of the algorithm except recursive calls to 
SHORTEST(n-l; .... ) and the enumeration step take 
only polynomially many operations. Thus we have, 

5n T(n)~ -~ T(n-l)+q(n) q-some polynomial 

+ (2n) n/2 

(by proposition 4 and lemma l) 

Thus T(n) is 0((3.9)n3/2)n). By lemma 3 of the 
next section, each arithmetic operation is per- 

formed on operands of length 0(n2(log B+log n)) 

and hence take 0(n2(icg B+log n)'(21og n+log 

log B+log log n)) bit operations. This multi- 

plied by T(n) is at most 0((4n3/2)n'log B log 
log B). Hence the theorem. 

Section 3. Size of the numbers involved in the 
algorithm. 

Since this algorithm manipulates numbers 
and keeps all numbers exactly, it is important to 
derive bounds on the number of bits needed to 
represent them. It is easy to see that they are 
rationals. We will derive bounds on the size of 
the numberators and denominators of all these 
numbers. 

Firsfi we note that even though the algorithm 
at various times works on the projections of the 
original lattice L; it always has values of b_ (i), 
b2(2),...,bn(n) for some basis bl,...,b n of t~e 

whole lattice. Here as usual b. (i)=projection of l b onto the orthogonal complement of the space 
s{anned by b I .... ,bi_ 1 for i>2 and bl(1)=b I. 

n 
Proposition i. Max Ibi(i) I never increases 

i=l 
during the execution of SHORTEST• 

Proof: We consider the algorithm step by step. 
The proof is by induction on n. For n=l, the 
proof is trivial. So assume n~2. For step 2, the 
LLL algorithm never increases the quantity as seen 
from their paper (page 13, last but one paragraph). 
For step 4, the inductive hypothesis suffices. In 
step 6, Ibl(1) I strictly decreases, Ib2(2) I does 

not increase and Ib3(3) I ..... Ibn(n) I remain the 

same. For steps 7 through i0, the enumeration and 
basis selection processes, the proof is a little 
harder, but is dealt with in proposition 2. For 
step 13 again, we invoke the inductive hypothesis, 
completing the proof of this proposition. 

Pr_~osition 2. Steps 7 through i0 of the algorithm 
SHORTEST (n;bl,...,b n) do not increase 
~x{bi<i) {- 
l 

Proof: Suppose bl,...,b n is the basis of the lat- 

tice at the beginning of step 7 and suppose v I is 
found to be a shortest nonzero vector of L(bl,..., 
b n) by enumeration. Define Ul=Vl, u2=bl, u3=b2• . 

Un+l=bn . Let ui(j) be defined as usual for i~j. 

Clearly, precisely one of the ui(i)'s is zero. 

Let this be uj(j). Finally let bl,b2 ..... bn be 

the basis returned by SELECT BASIS(Vl,bl,...,bn). 

bl=Vl . Further for i=2,3,...,j-i, the algorithm 

SELECT BASIS chooses b~ (i) to be a vector of length 
at most Iuz(Z) I Now ~u-(Z))=projection of b Z 

• ~ -i orthogonal to Vl,bl,... , bi_ 2 and thus we must 
have 

(i) Ib£(~)I~luz(£)I~Ibz_l(£-l) I for £=2,3 ..... 

j-l.For £=j,j+l ..... n Ibz(1) I is the same as 

{bz(£) I because bj_l(J-i ) is discarded and after 

that SELECT BASIS just returns what is left. 

(2) Ibz(1) l=Ib£(£)} for £=j,j+l ..... n and 

(3) Ibl(1) l=IVll~Ibl(1) I . (i), (2), and (3) 
establish the proposition. 

We now define, for any basis bl,...,b n of the 
n-dimensional lattice 

(4) d i = (d(L(bl,b 2 ..... bi))) 2 . 

It is easy to see that d. is the determinant of 
the ixi matrix with entries (bj,b I) for l!j, 

l~i. Since our original basis vectors had integer 
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coordinates, this is also true of any 
other basis. Thus the d are all inte- l gets. Clearly, 

i 
= ~ Ib (j)f2 

(5) di 9= 1 3 

The following proposition resembles a sim- 
ilar one in the LLL paper. 

Proposition 3. All numbers produced by the 
algorithm are rationals of the form p/q, p,q ~n ZZ 
where q is one of the d.'s. l 

Proof: b. (i), the projection of b orthogonal 

to b ,. (for j~i~2) is given by (6) b (i)= 
ill "''bi-i 3 

b - 7~ ~jkbk where 6jk are some real numbers. 
3 k=l 

< i< Taking a dot product with b£ (i= =i-l) and noting 
that (bi,bj(i))=0, we have 

i-i 
(b~,b i)J = ~ ~9k(bk,b~) for £=1,2 ..... i-l. 

k=l 

These are (i-l) independent equations in the (i-l) 
variables ~jk with a matrix whose determinant is 

di_ 1. Thus (d i_ l~ jk )  a re  a l l  i n t e g e r s .  Hence 

from (6) (bj (i) di_ I) is an integral vector. The 

proof of the proposition for other quantities - 
for example the Dij's of the LLL algorithm is 

similar and we omit it. 

Lemma i: Except while executinq the Lenstra, 
Lenstra and Lovasz algorithm and step 9,10 all 
the vectors produced by the algorithm ~RTEST 
(n;bl,...,bn) are of length at most nB - where 

the input bl,°..,b n consists of integral vectors 

each of length at most /{. 

Proof: While Ibl(1) I never increases, Ibi(i) I 

could increase for i>l. So to prove the lemma, 
we proceed by induction, but to avoid mistakes 
one must prove by induction on i that SHORTEST 
(i;al,a2,...,ai) never produces vectors that 

are too long where i is between 1 and n and 
aj=bn_i+ j(n-i+ 9) for 9=1,2,...,i. Throughout 

this proof /{ will denote the length of the 
longest of bl,... ,b n which were the original in- 

put to SHORTEST(n;...). For i=l, the proof is 
trivial. Assume i-~2 and no execution of SHORT- 
EST(i-I;...) within SHORTEST(n;...) ever pro- 
duces a vector of length more than (i-l)/B 
except while executing LLL. We consider an exe- 
cution of SHORTEST(i;al,...,ai) where again aj= 

bn_i+ j(n-i+j) for j=1,2, .... i step by step. 

Step 1 OK Ste~ 2 exclused by hypothesis. Step 
3 does not increase lengths of vectors, step 4 
Here SHORTEST(i-l;...) is called and we use in- 
duction to assert that the lengths of all vectors 
are bounded by (i-l)/B except while executing LLL. 

Step 5: This adds one more "component" to the 
vectors, but the component is no l~ore than the 

Ibn-÷-(n-i+l) % 4 I/2 which by Proposition 1 current 

is at most B ±/L. Thus from the previous sentence, 
the lengths of the vectors at the end of Step 5 

are at most (i-l)/B + /B = i/B . Steps 6,7 and 8 
do not affect the lengths of the vectors. Steps 9 
and i0 are excluded by hypothesis. But we note 
that at the end of SELECT BASIS, we have a basis 
al,a2,...,a i such that 

la~(~) I</B (by Proposition 2) 

and each a. can be expressed as 
3 

9-1 
aj=aj(9)+i=l ~ ~9iai(i) where I~9il < ~i for all i,9. 

(To see this use induction on k where k is the 
argument if SELECT BASIS~i.e., deal with SELECT 
BASIS(k;...)). Thus la~I=i/B for all ~. The -- 
proof that steps 11,12 and 13 keep the bounds on 
the lengths is similar to that for steps 3,4 and 
5 and is therefore omitted. This proves our cur- 
rent lemma. We will now consider the "problem" 
steps separately. 

Lemma 2: In SHORTEST(n-bl,...,b ) during every .' n execution of LLL algorlthm all n~ers produced 
2 on are bounded in magnitude by (nB) for some fixed 

constant c. 

Proof: Whenever the LLL algorithm is called, all 
the input vectors- say- al,a2,...,a i have ra- 

tional components with common denominator d where 
by Proposition 3, d is one of the d. and hence by 

Proposition 2 is bounded by B i. Also, by the pre- 
vious lemma, their lengths are all bounded by 

(n/B). Further, it is easily seen that the LLL 
algorithm behaves identically on input (dal,da^.. 
da i) as it does on input al,a2,...,a i except t~at'' 

in the second case all vectors are divided by d. 
(dal,...,dai) are integral vectors and thus the 

bounds proved in the LLL paper apply to them. For 
these as input, we have (from their Proposition 
(1.26)) that all numbers produced by their algo- 
rithm are bounded in magnitude by 

which is at most 

2 
(B n-I n.~B) cn ~ (nB)Cn 

n 
(maxlda il)cn 
i=l 

Pro~ositign 4. Steps 9 and l0 do not produce any 
number of magnitude greater than nCnB. 

Proof: It is easily seen using Minkowski's theo- 
rem that in the enumeration process, all the 
multipliers of the vectors are at most n cn for 
some constant . SELECT BASIS is also easy to 
analyse. Hence the proposition follows. 
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Lemma 3: On input bl,...,b n which are independent 

vectors with integer components and of length at 
most /B, all numbers produced by the algorithm 
SHORTEST(n;bl,...,b n) can be represented in 

0(n2(log B+log n)) bits. Further, the numbers pro- 
duced by the algorithm can be represented in 
0(nlog n+log B) bits except while it is executing 
the Lenstra, Lenstra, Lovasz algorithm. 

Section 4. Finding the closest y ector: 

In this section, we consider the following 
"closest vector problem": 

Given bl,b2,.o.,b n independent vectors in 

(i) ~R n with rational components and b 0 in ~R n, 
find b in L(bl,...,b n) such that ]b0-b I is a mini- 

mum. This is the inhomogeneous problem. We solve 
this as a "warm-up" for the integer programming 
problem in the next section. The algorithm we give 
first finds using SHORTEST "a nice" basis bl, 
^ ^ 
b2,...,b n. (I.e., a basis satisfying (2.6) and 

n 
(2.7)) Next we use an upper bound ! ~I bj(j)I = M 

• 2j=  1 
(say) on the distance between any b^ and its 
closest lattice point (This bound is proved in 
Proposition 1 to follow) to assert that we need to 
enumerate not too many values of (~l,~2,...,~n) 

n 
such that I ~ ~ b -b01 is within this upper bound. 

j=l 3 
Arguing as in the case of shortest vectors (Prop- 
osition 5 and lemma 1 of section 2), this gives 

us a bound of Mn/d(L) for the number of possible 
n-tuples (~l,...,~n) to enumerate. Unfortunately, 

this can be too large. So we have to use another 

idea: If Ibi(i) I is the largest among all 

Ib~(j) I, then we are able to show that not too 
ma~y values of (~i,~i+l...,~n) are candidates to 
be tried. For each such candidate, we project to 
a (i-l) dimensional problem and solve these re- 
cursively. The details are explained after the 
algorithm. 

~rocedure CLP(n;b0,bl,...,bn) 

Comment: This procedure returns the vector in L(bl, 
b2,.°.,b n) that is L2-closest to b 0. bl,...,b n are 

independent vectors in ~ k, k~n. 

{bl,...,b n} + SHORTEST (n;bl,b2,...,b n) 

Return CLP'(n;b0,bl,...,b n) 

end CLP. 

~rocedure CLP' (n0,b0,bl,...,bn) 

Comment: Does the same as CLP, but assumes bl'''" 
b n is a "nice" basis for L(bl,...,bn)-i.e. , is the 

output of SHORTEST. 

if n=l then return the easily computed closest 
point. Find i such that 

n 
Ibi(i) l = =~ Ibj(j)I. 

j = l  

CANDIDATES + ~ . 
four each "possible" li,li+l,... ,A n in Zz d__o_o: 

Comment: This is the enumeration step, explained 
later. n 
if i=l then CANDIDATES+CANDIDATES~{ Z I b } 

, 33 3=1 
else do 

n 
v÷ ~ l.b. 

3=i 

v'÷ CLP'(i-l;b0-v , bl,b2,...,bi_ I) 

CANDIDATES+CANDIDATES U {v'+v} 

end 

Return the element of CANDIDATES that is closest 
to b 0. 

end CLP' 

To show that the number of (~i,~i+l,...,~n) that 

we need to enumerate is small, we need to show the 
proposition. 

Proposition I. If L=L(bl,...,b n) is a lattice in 

~Rk,k>n b,...,b n independent and b0E~Rk with 50= 

projection of b 0 onto span {bl,b 2 .... ,bn} , then 

there exists a point b in L such that 
n 

rb ½ j[lfbj J) I 
Further if i is such that Ibi(i)I = maxlbj(j) I, 

then clearly, Ib-%1<12 bi(i) I. 3 

Proof: It is not difficult to see that we can 
successively choose integers ~n,~n_l,...,~l (in 
that order) such that 

] n 1 <,bj(j), ( z ~b~-~0), bj(j) = 2 
~j 

for all j. (Because the choice of ~. does not 
affect the earlier inequalities obtained). Since 
b I(I) , b 2(2) ,...,b n(n) form an orthogonal basis 

of the space span {bl,...,b n} and 50 also lies in 

that space, the lemma follows. 

Proposition 2. with the notation of the last prop- 
osition, t h e r e  e x i s t s  a~ e a s i l y  d e t e r m i n e d  s e t  

T ~ ~n-i+l with ITI < ~(n-i+l) = n such that if 
n 
Z t . b .  i s  a c l o s e s t  p o i n t  t o  b o , . . . , t j E ~  , t h e n  

j=l 33 

{~i,~i+l,...,~n} belongs to T. 
n 

P r o o f :  Suppose_ ~ ~b .=v~ 3 i n  L i s  a c l o s e s t  p o i n t  t o  

b 0. Then clearly, v must be the closest point in L 
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to ~0" By the last proposition, then we must have 
-- > 

- < ~Ibi(i) 1 ~ow we have Iv b~1=IC(v~0), 
Iv b01= i (~0'bn I nY) I 

bn(n) I/Ibn (n) l=llnllbn(n) I - Ibm(n) I =l~nIIbn(n)l-t 

for some fixed real number t. Thus these are at 

most (~Ibi(i)n I/Ibn(n) I) candidates for In. Now we 

show a similar bound for li,...,In using an argu- 

ment very like that of Proposition 5 of Section 2. 
So suppose lj+l, lj+2,...,l n are fixed integers, 
> 

j=i. Then arguing as in that proposition, there 

are at most max(2,2o21bi(i)I/Ibj(j)l)=nlbi(i)I/ 

Ibj(j) I possible values of lj such that the length 

of v in the direction of bj (j) remains bounded by 

21bi(i) I. Clearly as before we may easily compute 

these values ~ . Thus we have shown that we need 
3 

to consider a set T of candidates {li,li+l,...,A n) 
where 

n 
ITI < ~ nlbi(i)I/Ibj(j) I 

j=i 

Ibi(i) I is the length of the shortest vector in 

the lattice generated by b (i) bi+l(i) ,...,bn(i)- 
• . 1 ' Thus by Mlnkowskl' s theorem, 

}(n-i+l) < 3(n-i+l) 
ITI < n n-i+l (n-i+l) = n 

Hence the lemma. 

Theorem I. The algorithm CLP(n;b0,bl,...,bn) 

with input integral vectors all of length at most 
/B returns the closest point of L(bl,...,b n) to 

--n 
b 0 in at most 0((4n) 2 ) arithmetic operations. 

Further all numbers produced by the algorithm are 
rationals with numerator and denominator expres- 

sible in 0(n2(log B+log n)) bits each. 

Proof: It is easily seen from the algorithm that 
T(n) the number of arithmetic operations is 
bounded by 

T(n)~ number of arithmetic operations for 
SHORTEST (n-,...) 

~(n-i+l) 

+ n T (i-l) 

+ q(n) 

where q(n) is a polynomial in n, the second term 
is the number of operations needed to solve the 
lower dimensional problems whose number is at most 
3 ~(n-i+l) 

n by the last proposition. 

Using Theorem i, Section 2 we get the first 
part of the current theorem. The bound on the 
size of the numbers is obtained without much diffi- 
culty. The enumeration process, it can be easily 
seen does not involve integers that are too large. 
We omit this proof here. 

Section 5. integer Programming. 

Integer programming again is the following 
problem: 
(i) Given m×n and m×l matrices A and b of inte- 

gers, determine whether there is a x in ~n 
such that Arab. Using a result of Lenstra 
(81), we can reduce it to the following 
problem: 

(2) Given bl,b2,...,b n independent vectors in ~n, 

A mXn and b m×l of integers determine whether 
there is an x in L(bl,b2,...,bn) such that 

Arab, where the following additional condi- 
tions are satisfied: 

(3) a pE~R n, r and R reals such that , 
(a) R/r ~ 2n 3/2 

(b) B(p,r) C {xEm n, Ax~b} C~B(p,R). 
(B(q,s) = ball of radius s with q as center). 

We proceed as follows: Apply SHORTEST to 
b I ..... b n. Let now Ibi(i) l= maxlbj(j) l. Then 

3 
there is clearly a point b of L(bl, .... bn) (by 

proposition 1 of section 4) such that Ib-pl ~ 

~Ibi(i) I . We consider two cases: (as in Lenstra) 

n Case i: rE ~Ibi(i) l . Then clearly the answer to 

question 2 is Yes and we stop. 

Case 2: r ! ~Ibi(i) I whence R<n5/21bi(i) I. In 

this case, we argue as in the last section that 
there are not too many values of li,li+l,...,In 

n 
integers such that Z l.b. belongs to B(p,R). We 

j=l 3 J 

then enumerate all these values of li,...,l n and 

for each, solve a (i-l) dimensional problem. 

To push through this recursion, we need to 
solve the following generalization of problem 
(2): 

(4) Given bl,b2,...,b n independent vectors in ~n, 

A,b mXn and mXl matrices of integers and b 0 in ~R n, 
does there exist an x such that Ax&b and (x-b0EL 
(bl,b2,...,bn)? We will call problem (4) gene- 

ralized integer programming GILP for want of 
another name. We solve it by the following pro- 
cedure: 

procedure. G I L P ( n ; b 0 , b l , b 2 , . . . , b n ; A , b  ) . 

Comment. See description of problem (4) above. 
The procedure returns Yes or No. 

i. Use Lenstra'sQ result which applies a suitable 
linear transformation on the space and en- 
sures condition (3). We refer to the trans- 
formed quantities by their old names b0,bl, 
b2,.°.,bn; A,b. 

2. {bl,b2,...,b n} + SHORTEST {bl,b2,...,b n} 
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n 
3. Let bi(i) = max Ib (j) I. 

j=l 3 

4. if r = bi(i) [ then return Yes 

< n Comment. We may now assume that r = ~Ib i (i) I 
< 

and R = n5/21bi(i) I . '  

5. if i=l then do. 
for each candidate ll,12,...,ln integers d_~o. 

Comment. Enumeration ~ is explained later. 
n 

if b + ~ ~ b =x satisfies Ax~b then return Yes. 
- -  0 j=l 3 3 

end 

Return No 
end 

n-i+l 
fo_~r each candidate {li,li+l,...,ln}E~Z 

do: Comment. We explain later what the 
candidates are. 

n 
6. b 0 ÷ b 0 + ~ ~jbj 

3=i 

7. b0 ~- p r o j e c t i o n  o f  b 0 o n t o  span { h i , b 2 , . . .  , 

bi_l}. 

8. V ÷ {yEaRn: projection of v orthogonal to 
span {b I ..... bi_ I} = b-b 0} 

Comment. Since we are "fixing" li,li+l,...,In, 

we are fixing the projection of our final po- 
n 

tential candidate (b^+ ~ ~ b ) onto the ortho- 
u j=l 3 3 

gonal complement of span {bl,b2,...,bi_l}. Thus 

we are only looking for candidates in V. V is 
(i-l) dimensional affine set. 

9. Taking bl(1)/Ibl(1) [, ,bi_l(i-i ) 
"'" /Ibi_l (i_l) I 

as the basis of span {bl,b2,...,bi_l} express 

{x: Ax-<-b}~V as {y: A'y<b '} where A f is m' by 

(i-l). Let b0 be b6 in this coordinate sys- 

tem, b. be b' for j=l,2,...,i-l. 
3 3 

10. if (GZLP(i-l~b;,b{,b½ . . . . .  b~. 1 ,A' ,b ' )  
returns Yes then return Yes. 
end 
Return No 
end GILP 

As usual, we first explain the enumeration process. 
At the beginning of Step 5, we may assume that R 

at most Ibi(i) I'n 5/2. Thus the vectors that is 

are of the form b0+a , a in L(bl,...,bn) which could 

belong to the polytope {x: Ax<b} all have the prop- 

erty that Ib0+a-pl<Ibi(i)In 5/2. Hence they must 

each be of length at most n5/21b (i) I in the di- 
rection of bn(n) which says thatlwe need to try 
at most 

3 n 5/2 Ibi(i) I 
values of I . n 

Arguing in a similar vein (cf Proposition 5 of 
section 2 and Proposition 2 of section 4), the 
number of candidates for li,li+l,...,l n is at 

2n_i+in5/2 n I most (n-i+l) ~ ibi(i) i/ibj(j) I 
j=i 

which again by Minkowski's theorem is at most 

3(n-i+l) ((1-29)n) 

That the algorithm works correctly is very easy to 
check. 

Theorem i: The algorithm GILP(n;,..) on an in- 
put of length L, correctly solves the n- 
generalized integer programming problem in 

0((l-3n) 3n) arithmetic operations. Each integer 

produced by the algorithm is 0(n 5"I n.L) bits in 

size and thus the overall running time is 

0(n 9n L log(L)). 

Proof. The first part of the theorem follows by 
an argument very similar to the proof of Theorem 1 
of section 4. The second part is a little 
trickier. By going through the construction to 
"round out" a polytope due to Lenstra (1981), one 
finds that this increases the number of bits by at 

• n21og most a factor of n. This is because 
Lenstra's algorithm obtains the affine transfor- 
mation that rounds out the polytope {x:Ax~b} 
by mapping (n+l) of its vertices (in n dimen- 
sions) to (0,0,0 .... ,0), (i,0,...0), (0,i,...,0) 
..., (0,0,...,0,i). The claim above easily fol- 
lows by reckoning a bound on the size of numbers 
needed to express the vertices and then observing 
that the matrix associated with the linear trans- 

formation is simply S -I where S is a nXn matrix 
with each row being one of the (n+l) vertices. 
The algorithm SHORTEST then increases the sizes 

by at most a factor of 0(n21og n) by Lemma 3 of 
section 3. But when the algorithm SHORTEST is 
finished, the sizes are much smaller by lemma 1 
of section 3, and thus it is easily checked that 
the process of projecting to a lower dimensional 
problem does not increase the sizes beyond the 
bound obtained for SHORTEST. Thus each re- 
duction in the dimension of the ~roblems in- 
creases the size of numbers by at most a factor 

of 0(n4(log n) 2) which is 0(n4"l). Since this 
happens at most n times, the sizes of the numbers 

are all bounded by 0(n(5"l)nL). The last sentence 
in Theorem 1 follows since the time taken to add, 
subtract, multiply or divide 2 N-bit integers is 
0(N log N) (Aho, Hopcroft and Ullmann (1974). 

Remark: It is unfortunate that in this algorithm 
the bound we derive on the size of the integers is 
exponential in n. While this does not increase 
the order of the running time of the algorithm, it 
would be nice to prove a polynomial bound on the 
sizes of the integers involved, perhaps after 
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modifying the algorithm slightly. The obvious 
try in this direction does not work - i.e., if the 
polytope {x: Ax~b} satisfies roundness conditions 
(3), it is trivially seen that its projections 
onto affine sets do not necessarily satisfy (3). 

Section 6: 

While we have improved substantially the theo- 
retical bounds on the running times of known algo- 
rithms, the bounds we give may still seem too long 
in practice. However, all the algorithms given here 
are expected to run a lot faster than dictated by 
the theoretical bounds. Primarily, this is because 
the LLL algorithm used here to initialize the pro- 
cedure SHORTEST yields in practice much shorter 
vectors .than the bounds proved by them; in addition 
it should be the case that the procedure enumerate 
tries a lot fewer cases on the average than we 
can prove using Minkowski's Theorem. Of course 
all of these statements have to be tested empiri- 
cally. 

Section 7: Com~!exit~ Issues. 

It was conjectured in Lenstra (1981) that 
the problem of finding a shortest vector in a lat- 
tice L = L(bl,...,b n) given bl,...,b n is NP-hard. 

This conjecture is still open. Van Emde Boas has 
proved (among others) the following language to 
be NP-complete: 

= {(b0,bl,...,•bn;K) ib0,bl,...,bnE~ n L2-Closest 

and ~b£L(b l , . . . , bn )  such tha t  
Ib-boI ~ K } .  

We do not solve the conjecture here, but relate 
the complexity of finding the shortest vector to 
L2-closest. First define a language 

L2-SHORTEST = {(bl,...,bn;K) l ~beL(b I, .... bn), 

b~0 such that Ibl ~ K}. 

Theorem i: Given b0,bl,...,b n in ~R n, with poly- 

nomially many calls to a subroutine for deciding 
membership in L2-Shortes ~ and polynomial addi- 
tional time we can find a vector y in L(bl,...,b n) 
such that for all y' in L(bl,...,bn) , 

lY-b01 ~ n. ly'-b01 

Remark. The theorem asserts that the problem of 
finding an approximate closest vector to within a 
factor of n is polynomial-time Turing (Cook) re- 
ducible to L2-Shortest. The reduction given is 
essentially Turing-it invokes more than one call 
to the subroutine. We show first that given a 
subroutine that accepts L2-shortest , we can 
actually find a shortest vector in a lattice. 
Suppose L=L(bl,...,bn) , bie~n independent is the 

lattice in which we want to find a shortest non- 
zero vector. Define 

1 
(i) £ = l(/nn (d(L))~) 4 

Let T be the linear transformation given by 

T = /zn+~3n 1 
\ . • gl+z3n 

(T multiplies the ith coordinate by 
(£n+l-i+£3n) . 

n Lemma: Suppose L=L(bl,...,bn) where biE~ and 

are independent and define £ and T as in (i) and 
(2). Then for L*=YL, any shortest nonzero 
vector of L* must be of the form 

3n n ~3n ^(n-l). 
(3) Y = (£ +£ )yl,(Z +~ )y2,...,(13n+£)yn ) 

where (yl,Y2,...,yn) is a shortest and nonzero 

vector of L and for any other shortest vector 
(YI''Y2 ..... y~) of L, we have 

n 
(4) lYi01<ly!101for i0=mini=l {i:IyiI~IYLI} 

(In other words (lyll ..... lYnl) is the lexico- 

graphically least among the shortest vectors of L). 

Proof: Suppose II(L) and II(L*) are the lengths 

respectively of the shortest nonzero vectors of L 
and L*. Then clearly, 

(5) II(L*) ~ (£3n+zn) II(L). 

Suppose now Y is a shortest vector in L* and the 
corresponding (yl,Y2,...,yn) (according to (3)) is 

not a shortest vector of L. Then 

IYI~3n( I (yl,Y2 ..... Yn ) l)~3n(~liL)+l) 

=£3n~l(L)+~3n>z3n~l(L)+£n~l(L) (from (l)). 

This contradicts (5) and hence y=(yl,Y2,...,yn ) 

must be a shortest nonzero vector of L. Further, 

Iy I 2= (~3n+In) 2 2 (13n+z) 2y~. Suppose y'= 
yl+... + 

t l) (yl,...,y n is another shortest vector of L and 

(4) is violated. Then Yi0~Y~0+l. It can be seen 

easily that this together with the fact that 
ly~l ~ ~ for all j (by the definition of i in (i) 

and Minkowski) implies that Y'=Ty' is shorter 
than Y in L*-a contradiction. Thus (lyll,... , 
lynl) must be lexicographically least among all 
the shortest vectors of L. From (3) and the fact 
that a shortest nonzero vector y=(yl,...,yn ) of 

L must satisfy lyjl~£ I/4 for all j, we see easily 

that if IYI 2 is given, then (lyll,lY21 ..... lynl) 

can be determined: Expand the integer IYI 2 to 
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the base £ to write 
2 6n 2 2 2 

Yl=~2n , Y2=~2(n_l) -, Yn=~2 IYI =j~0ejEJ;_ then ,.. 

as is easily seen. 

All of this has only given us (lylI,ly21 

~thY~I) for some shortest vector of L, we still need 
signs of the components. Towards this end, 

first note that L* has the property that if Y is a 
shortest vector of L*, then for any other shortest 
vector Y' of L*,  IYiI=IY~l(by_ (4)). Let ( IY l l  , 
IY21 ..... IYl) be the magnitudes of the coordi- 
nates of a ~hortest vector Y of L* obtained by 
the above procedure. Consider the (n-l) di- 
mensional lattice: 

L' = L*n{x: XlIY21-x21Yll = 0} 

Clearly, II(L')=II(L*) iff there is a shortest 

vector of L* with the first two coordinates posi- 
tive. Let L" = L*~{x:. XllY21+x21YiI=o}. Then 

%I(L") = II(L*) iff there is a shortest vector of 

L* with the first two coordinates of opposite 
signs. So, we do the following: using our sub- 
routine for L2-Shortest , we check if II(L') = 

AI(L*). If so we find (recursively) a shortest 
vector in L' and hence figure out a shortest 
vector of L*, then of L. If not, we find (re- 
cursively) a shortest vector of L" and do like- 
wise. Note that to solve the problem of finding 
a shortest vector in n-dimensions, we solve one 
instance of the corresponding (n-l) dimensional 
problem plus polynomially many calls to L2-short- 
est. 

Lemma 2: with polynomially many calls to a sub- 
routine accepting the language L2-Shortest and 
polynomial additional time, we can find a short- 
est nonzero vector in a lattice. 

Proof. We can construct from the input lat- 
tice L, the lattice L* discussed above. For L*, 

we may find (%l(L*)) 2 (=IY} 2 in the discussion 
above) by binary search using polynomially many 
calls to the language oracle. This then gives 
us a shortest vector of L as described above. 

Remark: A lemma similar to the one above holds 
for most known NP-complete languages and several 
other ones-like linear programming. For example, 
it is easy to see by using self-reducibility that 
given an algorithm to test whether a given Boolean 
formula is satisfiable, we may use it to find a 
satisfying assignment. This speaks for the 
versality of the language SAT. (the set of sat- 
isfiable Boolean formulas). It is interesting 
that the language L2-shortest not yet known to 
be NP-complete has %his versatality. 

We now study the relationship between the 
problem of finding a closest vector of a lattice 
. n In ~ , to a given point in IR n (called the "in 
homogeneous problem") to that of finding a short- 
est nonzero vector of a lattice (called the "homo- 
geneous problem"). The device we use to relate 
these two may be called the process of 

"homogenaisation". The technique has been used, 
for example, in polyhedral theory. The idea is 
to relate the inhomogeneous problem for a lat- 
tice L in n dimensions to a homogeneous problem 
for a lattice L' constructed from L in (n+l) di- 
mensions. 

Suppose we are given bl,b2,...,bn,b 0 in ~n 

and are asked to find a point b of L~L(bl,...,bn) 

which is ~ (to be defined later) 
"closest (in Euclidean distance) point of L to b0. 
We first check whether b 0 is in L by using, for 
example the polynomial-tlme algorithm of Bachem 
and Kannan (1979) to solve linear diophantine 
equations. If so, we may stop. Otherwise we 
find (using the subroutines for the homogeneous 
problem) I](L) (the length of a shortest nonzero 
vector of ~: Caution: this may be irrational, so 
we will only find an approximation to it in the 
actual algorithm, but to simplify the current 
discussion, assume we know II(L) exactly.). We 

then consider the lattice L' in Qn+l generated by 
b~=(bi,0) for i=l,2,...,n and b' = n+l 
(b0,('51) lll(L)l). We find a shortest nonzero 

vector v=(vl,...,Vn+l) of L' This gives us in- 

formation about the vector closest to b 0 in L as 
summarized by the following lemma: 

Lemma 3: Suppose L=L(bl,...,bn) is a lattice in 
~n and---'~b0 in ~n is not in L. Let L' be as de- 

fined above and let v=(vl,...,Vn+l) be a shortest 

nonzero vector of L' with Vn+l~0. Then if Vn+l=0, 

Ib0-bJ~'SJ~l(L) j for a11 b in L. 

If Vn+l@0 then Vn+l = -(.51) Ill(L) I and (Vl,V2,... , 

Vn)+b 0 is the closest vector in L to b 0. 

Proof. The shortest vector v=(vl,v2,...,Vn+l) 

must clearly satisfy IVn+ll~lll(L) l because 

there is a vector of length Ill(L) I in L and hence 

in L' Thus Vn+l=0 or ~(-51) II~(L)I Without 

loss of generality, we assume Vn+l~0 and hence is 

0 or -(,51) Ill(L) I. Let b be a closest point of 
n 

L to b 0 and b = ~ ~b.. If Ib-b01~.SI~l(L) l,then 
j=l 3 3 

n 1 
I Z ~ b'-b' }~)II(L)I ((-8)2+(-51)2) 2 
j=l 3 j n+l 

and thus the shortest vector v of L' will have 
Vn+l= -('51) Ill(L) I and is nonzero. This proves 

2 
the first statement. 

For the second, clearly if Vn+l~0 , Vn+l~0 

implies Vn+l = -,511II(L) I. Then v equals 
n 

(-b' _+ ~ 8.b~) and the last component of v being 
n+l j=l 3 3 
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fixed at absolute value -51 (III(L) I, will be short- 
n 

est when ~ ~.b is closest to b 0. Thus the le/maa 
1 3 3 

is proved. 

Acknowledgement: I wish to thank Gary Miller for 
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