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Preface

Our purpose in writing this book is to provide a gentle introduction to a subject
that is enjoying a surge in interest. We believe that the subject is fascinating in its
own right, but the increase in interest can be attributed to several factors. One fac-
tor is the realization that networks are “everywhere”. From social networks such
as Facebook, the World Wide Web and the Internet to the complex interactions
between proteins in the cells of our bodies, we face the challenge of understand-
ing their structure and development. By and large natural networks grow in an
unpredictable manner and this is often modeled by a random construction. An-
other factor is the realization by Computer Scientists that NP-hard problems are
often easier to solve than their worst-case suggests and that an analysis of running
times on random instances can be informative.

History
Random graphs were used by Erdős [330] to give a probabilistic construction of
a graph with large girth and large chromatic number. It was only later that Erdős
and Rényi began a systematic study of random graphs as objects of interest in their
own right. Early on they defined the random graph Gn,m and founded the subject.
Often neglected in this story is the contribution of Gilbert [433] who introduced
the model Gn,p, but clearly the credit for getting the subject off the ground goes to
Erdős and Rényi. Their seminal series of papers [331], [333], [334], [335] and in
particular [332], on the evolution of random graphs laid the groundwork for other
mathematicians to become involved in studying properties of random graphs.

In the early eighties the subject was beginning to blossom and it received a
boost from two sources. First was the publication of the landmark book of Béla
Bollobás [155] on random graphs. Around the same time, the Discrete Mathemat-
ics group in Adam Mickiewicz University began a series of conferences in 1983.
This series continues biennially to this day and is now a conference attracting
more and more participants.

The next important event in the subject was the start of the journal Random
Structures and Algorithms in 1990 followed by Combinatorics, Probability and
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Computing a few years later. These journals provided a dedicated outlet for work
in the area and are flourishing today.

Scope of the book
We have divided the book into four parts. Part one is devoted to giving a detailed
description of the main properties of Gn,m and Gn,p. The aim is not to give best
possible results, but instead to give some idea of the tools and techniques used in
the subject, as well to display some of the basic results of the area. There is suffi-
cient material in part one for a one semester course at the advanced undergraduate
or beginning graduate level. Once one has finished the content of the first part,
one is equipped to continue with material of the remainder of the book, as well as
to tackle some of the advanced monographs such as Bollobás [155] and the more
recent one by Janson, Łuczak and Ruciński [509].

Each chapter comes with a few exercises. Some are fairly simple and these are
designed to give the reader practice with making some the estimations that are so
prevalent in the subject. In addition each chapter ends with some notes that lead
through references to some of the more advanced important results that have not
been covered.

Part two deals with models of random graphs that naturally extend Gn,m and
Gn,p. Part three deals with other models. Finally, in part four, we describe some
of the main tools used in the area along with proofs of their validity.

Having read this book, the reader should be in a good position to pursue re-
search in the area and we hope that this book will appeal to anyone interested in
Combinatorics or Applied Probability or Theoretical Computer Science.
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Conventions/Notation
Often in what follows, we will give an expression for a large positive integer. It
might not be obvious that the expression is actually an integer. In which case, the
reader can rest assured that he/she can round up or down and obtained any required
property. We avoid this rounding for convenience and for notational purposes.

In addition we list the following notation:
Mathematical Relations

• f (x) = O(g(x)): | f (x)| ≤ K|g(x)| for some constant K > 0 and all x ∈ R.

• f (x) = Θ(g(x)): f (n) = O(g(x)) and g(x) = O( f (x)).

• f (x) = ω(g(x)) if g(x) = o( f (x)).

• f (x) = Ω(g(x)) if f (x)≥ cg(x) for some positive constant c.0 and all x∈R.

• f (x) = o(g(x)) as x→ a: f (x)/g(x)→ 0 as x→ a.

• A≪ B: A/B→ 0 as n→ ∞.

• A≫ B: A/B→ ∞ as n→ ∞.

• A≈ B: A/B→ 1 as some parameter converges to 0 or ∞ or another limit.

• A ≲ B or B ≳ A if A≤ (1+o(1))B.

• [n]: This is {1,2, . . . ,n}. In general, if a < b are positive integers, then
[a,b] = {a,a+1, . . . ,b}.

• If S is a set and k is a non-negative integer then
(S

k

)
denotes the set of k-

element subsets of S. In particular,
([n]

k

)
dnotes the set of k-sets of {1,2, . . . ,n}.

Furthermore,
( S
≤k

)
=
⋃k

j=0
(S

j

)
.

Graph Notation
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• G = (V,E): V =V (G) is the vertex set and E = E(G) is the edge set.

• e(G) = |E(G)| and for S⊆V we have eG(S) = |{e ∈ E : e⊆ S}|.

• For S,T ⊆V,S∩T = /0 we have eG(S : T ) = {e = {x,y} ∈ E : x ∈ S,y ∈ T}.

• N(S)=NG(S)= {w /∈ S : ∃v ∈ S such that {v,w} ∈ E} and dG(S)= |NG(S)|
for S⊆V (G).

• NG(S,X) = NG(S)∩X for X ,S⊆V .

• degS(x) = |{y ∈ S : {x,y} ∈ E}| for x ∈V,S⊆V and deg(v) = degV (v).

• For sets X ,Y ⊆ V (G) we let NG(X ,Y ) = {y ∈ Y : ∃x ∈ X ,{x,y} ∈ E(G)}
and eG(X ,Y ) = |NG(X ,Y )|.

• For a graph H, aut(H) denotes the number of automorphisms of H.

• dist(v,w) denotes the graph distance between vertices v,w.

• The co-degree of vertices v,w of graph G is NG(v)∩NG(w).

Random Graph Models

• [n]: The set {1,2, . . . ,n}.

• Gn,m: The family of all labeled graphs with vertex set V = [n] = {1,2, . . . ,n}
and exactly m edges.

• Gn,m:A random graph chosen uniformly at random from Gn,m.

• En,m = E(Gn,m).

• Gn,p: A random graph on vertex set [n] where each possible edge occurs
independently with probability p.

• En,p = E(Gn,p).

• Gδ≥k
n,m : Gn,m, conditioned on having minimum degree at least k.

• Gn,n,p: A random bipartite graph with vertex set consisting of two disjoint
copies of [n] where each of the n2 possible edges occurs independently with
probability p.

• Gn,r: A random r-regular graph on vertex set [n].

• Gn,d: The set of graphs with vertex set [n] and degree sequence
d = (d1,d2, . . . ,dn).
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• Gn,d: A random graph chosen uniformly at random from Gn,d.

• Hn,m;k: A random k-uniform hypergraph on vertex set [n] and m edges of
size k.

• Hn,p;k: A random k-uniform hypergraph on vertex set [n] where each of the(n
k

)
possibles edge occurs independently with probability p.

• G⃗k−out : A random digraph on vertex set [n] where each v ∈ [n] indepen-
dently chooses k random out-neighbors.

• Gk−out : The graph obtained from G⃗k−out by ignoring orientation and coa-
lescing multiple edges.

Probability

• P(A): The probability of event A.

• EZ: The expected value of random variable Z.

• h(Z): The entropy of random variable Z.

• Po(λ ): A random variable with the Poisson distribution with mean λ .

• N(0,1): A random variable with the normal distribution, mean 0 and vari-
ance 1.

• Bin(n, p): A random variable with the binomial distribution with parameters
n, the number of trials and p, the probability of success.

• EXP(λ ): A random variable with the exponential distribution, mean λ i.e.
P(EXP(λ )≥ x) = e−λx. We sometimes say rate 1/λ in place of mean λ .
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• d→: We write Xn
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d→ N(0,1)

(resp. Xn
d→ Po(λ )) to mean that X has the corresponding normal (resp.
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Chapter 1

Random Graphs

Graph theory is a vast subject in which the goals are to relate various graph prop-
erties i.e. proving that Property A implies Property B for various properties A,B.
In some sense, the goals of Random Graph theory are to prove results of the form
“Property A almost always implies Property B”. In many cases Property A could
simply be “Graph G has m edges”. A more interesting example would be the fol-
lowing: Property A is “G is an r-regular graph, r ≥ 3” and Property B is “G is
r-connected”. This is proved in Chapter 9.

Before studying questions such as these, we will need to describe the basic
models of a random graph.

1.1 Models and Relationships
The study of random graphs in their own right began in earnest with the seminal
paper of Erdős and Rényi [332]. This paper was the first to exhibit the threshold
phenomena that characterize the subject.

Let Gn,m be the family of all labeled graphs with vertex set V = [n] =
{1,2, . . . ,n} and exactly m edges, 0 ≤ m ≤

(n
2

)
. To every graph G ∈ Gn,m, we

assign a probability

P(G) =

((n
2

)
m

)−1

.

Equivalently, we start with an empty graph on the set [n], and insert m edges
in such a way that all possible

((n
2)
m

)
choices are equally likely. We denote such a

random graph by Gn,m = ([n],En,m) and call it a uniform random graph.
We now describe a similar model. Fix 0≤ p≤ 1. Then for 0≤m≤

(n
2

)
, assign

to each graph G with vertex set [n] and m edges a probability

P(G) = pm(1− p)(
n
2)−m,
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where 0 ≤ p ≤ 1. Equivalently, we start with an empty graph with vertex set [n]
and perform

(n
2

)
Bernoulli experiments inserting edges independently with proba-

bility p. We call such a random graph, a binomial random graph and denote it by
Gn,p = ([n],En,p). This was introduced by Gilbert [433]

As one may expect there is a close relationship between these two models of
random graphs. We start with a simple observation.

Lemma 1.1. A random graph Gn,p, given that its number of edges is m, is equally

likely to be one of the
((n

2)
m

)
graphs that have m edges.

Proof. Let G0 be any labeled graph with m edges. Then since

{Gn,p = G0} ⊆ {|En,p|= m}

we have

P(Gn,p = G0 | |En,p|= m) =
P(Gn,p = G0, |En,p|= m)

P(|En,p|= m)

=
P(Gn,p = G0)

P(|En,p|= m)

=
pm(1− p)(

n
2)−m((n

2)
m

)
pm(1− p)(

n
2)−m

=

((n
2

)
m

)−1

.

Thus Gn,p conditioned on the event {Gn,p has m edges} is equal in distribu-
tion to Gn,m, the graph chosen uniformly at random from all graphs with m edges.
Obviously, the main difference between those two models of random graphs is that
in Gn,m we choose its number of edges, while in the case of Gn,p the number of
edges is the Binomial random variable with the parameters

(n
2

)
and p. Intuitively,

for large n random graphs Gn,m and Gn,p should behave in a similar fashion when
the number of edges m in Gn,m equals or is “close” to the expected number of
edges of Gn,p, i.e., when

m =

(
n
2

)
p≈ n2 p

2
, (1.1)

or, equivalently, when the edge probability in Gn,p

p≈ 2m
n2 . (1.2)
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Throughout the book, we will use the notation f ≈ g to indicate that f = (1+
o(1))g, where the o(1) term will depend on some parameter going to 0 or ∞.

We next introduce a useful “coupling technique” that generates the random
graph Gn,p in two independent steps. We will then describe a similar idea in
relation to Gn,m. Suppose that p1 < p and p2 is defined by the equation

1− p = (1− p1)(1− p2), (1.3)

or, equivalently,
p = p1 + p2− p1 p2.

Thus an edge is not included in Gn,p if it is not included in either of Gn,p1 or Gn,p2 .
It follows that

Gn,p =Gn,p1 ∪Gn,p2,

where the two graphs Gn,p1 ,Gn,p2 are independent. So when we write

Gn,p1 ⊆Gn,p,

we mean that the two graphs are coupled so that Gn,p is obtained from Gn,p1 by
superimposing it with Gn,p2 and replacing eventual double edges by a single one.

We can also couple random graphs Gn,m1 and Gn,m2 where m2 ≥ m1 via

Gn,m2 =Gn,m1 ∪H.

Here H is the random graph on vertex set [n] that has m = m2−m1 edges chosen
uniformly at random from

([n]
2

)
\En,m1 .

Consider now a graph property P defined as a subset of the set of all labeled
graphs on vertex set [n], i.e., P ⊆ 2(

n
2). For example, all connected graphs (on n

vertices), graphs with a Hamiltonian cycle, graphs containing a given subgraph,
planar graphs, and graphs with a vertex of given degree form a specific “graph
property”.

We will state below two simple observations which show a general relation-
ship between Gn,m and Gn,p in the context of the probabilities of having a given
graph property P . The constant 10 in the next lemma is not best possible, but in
the context of the usage of the lemma, any constant will suffice.

Lemma 1.2. Let P be any graph property and p = m/
(n

2

)
where m = m(n)→ ∞,(n

2

)
−m→ ∞. Then, for large n,

P(Gn,m ∈P)≤ 10m1/2P(Gn,p ∈P).
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Proof. By the law of total probability,

P(Gn,p ∈P) =
(n

2)

∑
k=0

P(Gn,p ∈P | |En,p|= k)P(|En,p|= k)

=
(n

2)

∑
k=0

P(Gn,k ∈P)P(|En,p|= k) (1.4)

≥ P(Gn,m ∈P)P(|En,p|= m).

To justify (1.4), we write

P(Gn,p ∈P | |En,p|= k) =
P(Gn,p ∈P ∧|En,p|= k)

P(|En,p|= k)

= ∑
G∈P
|E(G)|=k

pk(1− p)N−k(N
k

)
pk(1− p)N−k

= ∑
G∈P
|E(G)|=k

1(N
k

)
= P(Gn,k ∈P).

Next recall that the number of edges |En,p| of a random graph Gn,p is a random
variable with the Binomial distribution with parameters

(n
2

)
and p. Applying Stir-

ling’s Formula:

k! = (1+o(1))
(

k
e

)k√
2πk, (1.5)

and putting N =
(n

2

)
, we get, after substituting (1.5) for the factorials in

(N
m

)
,

P(|En,p|= m) =

(
N
m

)
pm(1− p)(

n
2)−m

= (1+o(1))
NN
√

2πN pm(1− p)N−m

mm(N−m)N−m 2π
√

m(N−m)
(1.6)

= (1+o(1))

√
N

2πm(N−m)
,

Hence
P(|En,p|= m)≥ 1

10
√

m
,

so
P(Gn,m ∈P)≤ 10m1/2P(Gn,p ∈P).
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We call a graph property P monotone increasing if G∈P implies G+e∈P ,
i.e., adding an edge e to a graph G does not destroy the property. For example,
connectivity and Hamiltonicity are monotone increasing properties. A monotone
increasing property is non-trivial if the empty graph K̄n /∈P and the complete
graph Kn ∈P .
A graph property is monotone decreasing if G ∈P implies G− e ∈P , i.e., re-
moving an edge from a graph does not destroy the property. Properties of a graph
not being connected or being planar are examples of monotone decreasing graph
properties. Obviously, a graph property P is monotone increasing if and only
if its complement is monotone decreasing. Clearly not all graph properties are
monotone. For example having at least half of the vertices having a given fixed
degree d is not monotone.

From the coupling argument it follows that if P is a monotone increasing
property then, whenever p < p′ or m < m′,

P(Gn,p ∈P)≤ P(Gn,p′ ∈P), (1.7)

and
P(Gn,m ∈P)≤ P(Gn,m′ ∈P), (1.8)

respectively.
For monotone increasing graph properties we can get a much better upper bound
on P(Gn,m ∈P), in terms of P(Gn,p ∈P), than that given by Lemma 1.2.

Lemma 1.3. Let P be a monotone increasing graph property and p = m
N . Then,

for large n and p = o(1) such that N p,N(1− p)/(N p)1/2→ ∞,

P(Gn,m ∈P)≤ 3P(Gn,p ∈P).

Proof. Suppose P is monotone increasing and p = m
N , where N =

(n
2

)
. Then

P(Gn,p ∈P) =
N

∑
k=0

P(Gn,k ∈P)P(|En,p|= k)

≥
N

∑
k=m

P(Gn,k ∈P)P(|En,p|= k)

However, by the coupling property we know that for k ≥ m,

P(Gn,k ∈P)≥ P(Gn,m ∈P).
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The number of edges |En,p| in Gn,p has the Binomial distribution with parameters
N, p. Hence

P(Gn,p ∈P)≥ P(Gn,m ∈P)
N

∑
k=m

P(|En,p|= k)

= P(Gn,m ∈P)
N

∑
k=m

uk, (1.9)

where

uk =

(
N
k

)
pk(1− p)N−k.

Now, using Stirling’s formula,

um = (1+o(1))
NN pm(1− p)N−m

mm(N−m)N−m(2πm)1/2 =
1+o(1)
(2πm)1/2 .

Furthermore, if k = m+ t where 0≤ t ≤ m1/2 then

uk+1

uk
=

(N− k)p
(k+1)(1− p)

=
1− t

N−m

1+ t+1
m

≥ exp
{
− t

N−m− t
− t +1

m

}
,

after using Lemma 27.1(a),(b) to obtain the inequality. and our assumptions on
N, p to obtain the second.

It follows that for 0≤ t ≤ m1/2,

um+t ≥
1+o(1)
(2πm)1/2 exp

{
−

t−1

∑
s=0

(
s

N−m− s
− s+1

m

)}
≥

exp
{
− t2

2m −o(1)
}

(2πm)1/2 ,

where we have used the fact that m = o(N).
It follows that

m+m1/2

∑
k=m

uk ≥
1−o(1)
(2π)1/2

∫ 1

x=0
e−x2/2dx≥ 1

3

and the lemma follows from (1.9).

Lemmas 1.2 and 1.3 are surprisingly applicable. In fact, since the Gn,p model
is computationally easier to handle than Gn,m, we will repeatedly use both lemmas
to show that P(Gn,p ∈P)→ 0 implies that P(Gn,m ∈P)→ 0 when n→ ∞. In
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other situations we can use a stronger and more widely applicable result. The
theorem below, which we state without proof, gives precise conditions for the
asymptotic equivalence of random graphs Gn,p and Gn,m. It is due to Łuczak
[632].

Theorem 1.4. Let 0≤ p0≤ 1, s(n)= n
√

p(1− p)→∞, and ω(n)→∞ arbitrarily
slowly as n→ ∞.

(i) Suppose that P is a graph property such that P(Gn,m ∈P)→ p0 for all

m ∈
[(

n
2

)
p−ω(n)s(n),

(
n
2

)
p+ω(n)s(n)

]
.

Then P(Gn,p ∈P)→ p0 as n→ ∞,

(ii) Let p− = p−ω(n)s(n)/n2 and p+ = p+ω(n)s(n)/n2 Suppose that P is
a monotone graph property such that P(Gn,p− ∈P)→ p0 and P(Gn,p+ ∈
P)→ p0. Then P(Gn,m ∈P)→ p0, as n→ ∞, where m = ⌊

(n
2

)
p⌋.

1.2 Thresholds and Sharp Thresholds
One of the most striking observations regarding the asymptotic properties of ran-
dom graphs is the “abrupt” nature of the appearance and disappearance of certain
graph properties. To be more precise in the description of this phenomenon, let us
introduce threshold functions (or just thresholds) for monotone graph properties.
We start by giving the formal definition of a threshold for a monotone increasing
graph property P .

Definition 1.5. A function m∗ = m∗(n) is a threshold for a monotone increasing
property P in the random graph Gn,m if

lim
n→∞

P(Gn,m ∈P) =

{
0 if m/m∗→ 0,
1 if m/m∗→ ∞,

as n→ ∞.

A similar definition applies to the edge probability p= p(n) in a random graph
Gn,p.
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Definition 1.6. A function p∗ = p∗(n) is a threshold for a monotone increasing
property P in the random graph Gn,p if

lim
n→∞

P(Gn,p ∈P) =

{
0 if p/p∗→ 0,
1 if p/p∗→ ∞,

as n→ ∞.

It is easy to see how to define thresholds for monotone decreasing graph prop-
erties and therefore we will leave this to the reader.

Notice also that the thresholds defined above are not unique since any function
which differs from m∗(n) (resp. p∗(n)) by a constant factor is also a threshold for
P .

A large body of the theory of random graphs is concerned with the search for
thresholds for various properties, such as containing a path or cycle of a given
length, or, in general, a copy of a given graph, or being connected or Hamiltonian,
to name just a few. Therefore the next result is of special importance. It was
proved by Bollobás and Thomason [178].

Theorem 1.7. Every non-trivial monotone graph property has a threshold.

Proof. Without loss of generality assume that P is a monotone increasing graph
property. Given 0 < ε < 1 we define p(ε) by

P(Gn,p(ε) ∈P) = ε.

Note that p(ε) exists because

P(Gn,p ∈P) = ∑
G∈P

p|E(G)|(1− p)N−|E(G|

is a polynomial in p that increases from 0 to 1. This is not obvious from the
expression, but it is obvious from the fact that P is monotone increasing and that
increasing p increases the likelihood that Gn,p ∈P .

We will show that p∗ = p(1/2) is a threshold for P . Let G1,G2, . . . ,Gk
be independent copies of Gn,p. The graph G1 ∪G2 ∪ . . .∪Gk is distributed as
Gn,1−(1−p)k . Now 1− (1− p)k ≤ kp, and therefore by the coupling argument

Gn,1−(1−p)k ⊆Gn,kp,

and so Gn,kp /∈P implies G1,G2, . . . ,Gk /∈P . Hence

P(Gn,kp /∈P)≤ [P(Gn,p /∈P)]k.
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Let ω be a function of n such that ω → ∞ arbitrarily slowly as n→ ∞, ω ≪
log logn. (We say that f (n)≪ g(n) or f (n) = o(g(n)) if f (n)/g(n)→ 0 as n→
∞. Of course in this case we can also write g(n)≫ f (n).) Suppose also that
p = p∗ = p(1/2) and k = ω . Then

P(Gn,ω p∗ /∈P)≤ 2−ω = o(1).

On the other hand for p = p∗/ω ,

1
2
= P(Gn,p∗ /∈P)≤

[
P(Gn,p∗/ω /∈P)

]ω
.

So
P(Gn,p∗/ω /∈P)≥ 2−1/ω = 1−o(1).

In order to shorten many statements of theorems in the book we say that a
sequence of events En occurs with high probability (w.h.p.) if

lim
n→∞

P(En) = 1.

Thus the statement that says p∗ is a threshold for a property P in Gn,p is the same
as saying that Gn,p ̸∈P w.h.p. if p≪ p∗, while Gn,p ∈P w.h.p. if p≫ p∗.

In many situations we can observe that for some monotone graph properties
more “subtle” thresholds hold. We call them “sharp thresholds”. More precisely,

Definition 1.8. A function m∗ = m∗(n) is a sharp threshold for a monotone in-
creasing property P in the random graph Gn,m if for every ε > 0,

lim
n→∞

P(Gn,m ∈P) =

{
0 i f m/m∗ ≤ 1− ε

1 i f m/m∗ ≥ 1+ ε.

A similar definition applies to the edge probability p = p(n) in the random
graph Gn,p.

Definition 1.9. A function p∗ = p∗(n) is a sharp threshold for a monotone in-
creasing property P in the random graph Gn,p if for every ε > 0

lim
n→∞

P(Gn,p ∈P) =

{
0 i f p/p∗ ≤ 1− ε

1 i f p/p∗ ≥ 1+ ε.

We will illustrate both types of threshold in a series of examples dealing with
very simple graph properties. Our goal at the moment is to demonstrate basic
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techniques to determine thresholds rather than to “discover” some “striking” facts
about random graphs.
We will start with the random graph Gn,p and the property

P = {all non-empty (non-edgeless) labeled graphs on n vertices}.

This simple graph property is clearly monotone increasing and we will show be-
low that p∗ = 1/n2 is a threshold for a random graph Gn,p of having at least one
edge (being non-empty).

Lemma 1.10. Let P be the property defined above, i.e., stating that Gn,p contains
at least one edge. Then

lim
n→∞

P(Gn,p ∈P) =

{
0 if p≪ n−2

1 if p≫ n−2.

Proof. Let X be a random variable counting edges in Gn,p. Since X has the Bino-
mial distribution, then EX =

(n
2

)
p, and VarX =

(n
2

)
p(1− p) = (1− p)EX .

A standard way to show the first part of the threshold statement, i.e. that w.h.p.
a random graph Gn,p is empty when p = o(n−2), is a very simple consequence of
the Markov inequality, called the First Moment Method, see Lemma 26.2. It states
that if X is a non-negative integer valued random variable, then

P(X > 0)≤ EX .

Hence, in our case

P(X > 0)≤ n2

2
p→ 0

as n→ ∞, since p≪ n−2.
On the other hand, if we want to show that P(X > 0)→ 1 as n→ ∞ then

we cannot use the First Moment Method and we should use the Second Moment
Method, which is a simple consequence of the Chebyshev inequality, see Lemma
26.3. We will use the inequality to show concentration around the mean. By this
we mean that w.h.p. X ≈ EX . The Chebyshev inequality states that if X is a
non-negative integer valued random variable then

P(X > 0)≥ 1− VarX
(EX)2 .

Hence P(X > 0)→ 1 as n→ ∞ whenever VarX/(EX)2→ 0 as n→ ∞. (For
proofs of both of the above Lemmas see Section 26.1 of Chapter 26.)
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Now, if p≫ n−2 then EX → ∞ and therefore

VarX
(EX)2 =

1− p
EX

→ 0

as n→ ∞, which shows that the second statement of Lemma 1.10 holds, and so
p∗ = 1/n2 is a threshold for the property of Gn,p being non-empty.

Let us now look at the degree of a fixed vertex in both models of random
graphs. One immediately notices that if deg(v) denotes the degree of a fixed vertex
in Gn,p, then deg(v) is a binomially distributed random variable, with parameters
n−1 and p, i.e., for d = 0,1,2 . . . ,n−1,

P(deg(v) = d) =
(

n−1
d

)
pd(1− p)n−1−d,

while in Gn,m the distribution of deg(v) is Hypergeometric, i.e.,

P(deg(v) = d) =

(n−1
d

)((n−1
2 )

m−d

)
((n

2)
m

) .

Consider the monotone decreasing graph property that a graph contains an isolated
vertex, i.e. a vertex of degree zero:

P = {all labeled graphs on n vertices containing isolated vertices}.

We will show that m∗ = 1
2n logn is the sharp threshold function for the above

property P in Gn,m.

Lemma 1.11. Let P be the property that a graph on n vertices contains at least
one isolated vertex and let m = 1

2n(logn+ω(n)). Then

lim
n→∞

P(Gn,m ∈P) =

{
1 if ω(n)→−∞

0 if ω(n)→ ∞.

Proof. To see that the second statement of Lemma 1.11 holds we use the First
Moment Method. Namely, let X0 = Xn,0 be the number of isolated vertices in the
random graph Gn,m. Then X0 can be represented as the sum of indicator random
variables

X0 = ∑
v∈V

Iv,

where

Iv =

{
1 if v is an isolated vertex in Gn,m

0 otherwise.
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So

EX0 = ∑
v∈V

E Iv = n

((n−1
2 )
m

)((n
2)
m

) =

n
(

n−2
n

)m m−1

∏
i=0

(
1− 4i

n(n−1)(n−2)−2i(n−2)

)
=

n
(

n−2
n

)m(
1+O

(
(logn)2

n

))
, (1.10)

assuming that ω = o(logn).
(For the product we use 1 ≥ ∏

m−1
i=0 (1− xi) ≥ 1−∑

m−1
i=0 xi which is valid for all

0≤ x0,x1, . . . ,xm−1 ≤ 1.)
Hence,

EX0 ≤ n
(

n−2
n

)m

≤ ne−
2m
n = e−ω ,

for m = 1
2n(logn+ω(n)).

(1+ x≤ ex is one of the basic inequalities stated in Lemma 27.1.)
So EX0→ 0 when ω(n)→∞ as n→∞ and the First Moment Method implies

that X0 = 0 w.h.p.
To show that Lemma 1.11 holds in the case when ω →−∞ we first observe

from (1.10) that in this case

EX0 = (1−o(1))n
(

n−2
n

)m

≥ (1−o(1))nexp
{
− 2m

n−2

}
≥ (1−o(1))e−ω → ∞, (1.11)

The second inequality in the above comes from Lemma 27.1(b), and we have once
again assumed that ω = o(logn) to justify the first equation.

We caution the reader that EX0 → ∞ does not prove that X0 > 0 w.h.p. In
Chapter 5 we will see an example of a random variable XH , where EXH → ∞ and
yet XH = 0 w.h.p.

We will now use a stronger version of the Second Moment Method (for its
proof see Section 26.1 of Chapter 26). It states that if X is a non-negative integer
valued random variable then

P(X > 0)≥ (EX)2

EX2 = 1− VarX
EX2 . (1.12)

Notice that
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EX2
0 = E

(
∑
v∈V

Iv

)2

= ∑
u,v∈V

E(IuIv)

= ∑
u,v∈V

P(Iu = 1, Iv = 1)

= ∑
u̸=v

P(Iu = 1, Iv = 1)+ ∑
u=v

P(Iu = 1, Iv = 1)

= n(n−1)

((n−2
2 )
m

)((n
2)
m

) +EX0

≤ n2
(

n−2
n

)2m

+EX0

= (1+o(1))(EX0)
2 +EX0.

The last equation follows from (1.10).
Hence, by (1.12),

P(X0 > 0)≥ (EX0)
2

EX2
0

≥ (EX0)
2

(1+o(1))((EX0)2 +EX0)

=
1

(1+o(1)+(EX0)−1

= 1−o(1),

on using (1.11). Hence P(X0 > 0)→ 1 when ω(n)→−∞ as n→∞, and so we can
conclude that m = m(n) is the sharp threshold for the property that Gn,m contains
isolated vertices.

For this simple random variable, we worked with Gn,m. We will in general
work with the more congenial independent model Gn,p and translate the results to
Gn,m if so desired.

For another simple example of the use of the second moment method, we will
prove

Theorem 1.12. If m/n→ ∞ then w.h.p. Gn,m contains at least one triangle.

Proof. Because having a triangle is a monotone increasing property we can prove
the result in Gn,p assuming that np→ ∞.

Assume first that np=ω ≤ logn where ω =ω(n)→∞ and let Z be the number
of triangles in Gn,p. Then

EZ =

(
n
3

)
p3 ≥ (1−o(1))

ω3

6
→ ∞.
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We remind the reader that simply having EZ → ∞ is not sufficient to prove that
Z > 0 w.h.p.

Next let T1,T2, . . . ,TM,M =
(n

3

)
denote the triangles of Kn. Then

EZ2 =
M

∑
i, j=1

P(Ti,Tj ∈Gn,p)

=
M

∑
i=1

P(Ti ∈Gn,p)
M

∑
j=1

P(Tj ∈Gn,p | Ti ∈Gn,p) (1.13)

= MP(T1 ∈Gn,p)
M

∑
j=1

P(Tj ∈Gn,p | T1 ∈Gn,p) (1.14)

= EZ×
M

∑
j=1

P(Tj ∈Gn,p | T1 ∈Gn,p).

Here (1.14) follows from (1.13) by symmetry.
Now suppose that Tj,T1 share σ j edges. Then

M

∑
j=1

P(Tj ∈Gn,p | T1 ∈Gn,p)

= 1+ ∑
j:σ j=1

P(Tj ∈Gn,p | T1 ∈Gn,p)+

∑
j:σ j=0

P(Tj ∈Gn,p | T1 ∈Gn,p)

= 1+3(n−3)p2 +

((
n
3

)
−3n+8

)
p3

≤ 1+
3ω2

n
+EZ.

It follows that

VarZ ≤ (EZ)
(

1+
3ω2

n
+EZ

)
− (EZ)2 ≤ 2EZ.

Applying the Chebyshev inequality we get

P(Z = 0)≤ P(|Z−EZ| ≥ EZ)≤ VarZ
(EZ)2 ≤

2
EZ

= o(1).

This proves the theorem for p≤ logn
n . For larger p we can use (1.7).

We can in fact use the second moment method to show that if m/n→ ∞ then
w.h.p. Gn,m contains a copy of a k-cycle Ck for any fixed k≥ 3. See Theorem 5.3,
see also Exercise 1.4.7.
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1.3 Pseudo-Graphs
We sometimes use one of the two the following models that are related to Gn,m
and have a little more independence. (We will use Model A in Section 7.3 and
Model B in Section 6.4).

Model A: We let x = (x1,x2, . . . ,x2m) be chosen uniformly at random from
[n]2m.

Model B: We let x = (x1,x2, . . . ,x2m) be chosen uniformly at random from([n]
2

)m
.

The (multi-)graph G(X)
n,m, X ∈ {A,B} has vertex set [n] and edge set Em =

{{x2i−1,x2i} : 1≤ i≤ m}. Basically, we are choosing edges with replacement. In
Model A we allow loops and in Model B we do not. We get simple graphs from
by removing loops and multiple edges to obtain graphs G(X∗)

n,m with m∗ edges. It
is not difficult to see that for X ∈ {A,B} and conditional on the value of m∗ that
G(X∗)

n,m is distributed as Gn,m∗ , see Exercise (1.4.11).
More importantly, we have that for G1,G2 ∈ Gn,m,

P(G(X)
n,m = G1 |G

(X)
n,m is simple) = P(G(X)

n,m = G2 |G
(X)
n,m is simple), (1.15)

for X = A,B.
This is because for i = 1,2,

P(G(A)
n,m = Gi) =

m!2m

n2m and P(G(B)
n,m = Gi) =

m!2m(n
2

)m2m
.

Indeed, we can permute the edges in m! ways and permute the vertices within
edges in 2m ways without changing the underlying graph. This relies on G(X)

n,m
being simple.

Secondly, if m = cn for a constant c > 0 then with N =
(n

2

)
, and using Lemma

27.2,

P(G(X)
n,m is simple)≥

(
N
m

)
m!2m

n2m ≥

(1−o(1))
Nm

m!
exp
{
−m2

2N
− m3

6N2

}
m!2m

n2m

= (1−o(1))e−(c
2+c). (1.16)

It follows that if P is some graph property then

P(Gn,m ∈P) = P(G(X)
n,m ∈P |G(X)

n,m is simple)≤
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(1+o(1))ec2+cP(G(X)
n,m ∈P). (1.17)

Here we have used the inequality P(A | B)≤ P(A)/P(B) for events A,B.
We will use this model a couple of times and (1.17) shows that if P(G(X)

n,m ∈
P) = o(1) then P(Gn,m ∈P) = o(1), for m = O(n).

Model G(A)
n,m was introduced independently by Bollobás and Frieze [166] and

by Chvátal [229].

1.4 Exercises
We point out here that in the following exercises, we have not asked for best pos-
sible results. These exercises are for practise. You will need to use the inequalities
from Section 27.1.

1.4.1 Suppose that p = d/n where d = o(n1/3). Show that w.h.p. Gn,p has no
copies of K4.

1.4.2 Suppose that p = d/n where d > 1. Show that w.h.p. Gn,p contains an
induced path of length (logn)1/2.

1.4.3 Suppose that p = d/n where d = O(1). Prove that w.h.p., in Gn,p, for all
S ⊆ [n], |S| ≤ n/ logn, we have e(S) ≤ 2|S|, where e(S) is the number of
edges contained in S.

1.4.4 Suppose that p = logn/n. Let a vertex of Gn,p be small if its degree is less
than logn/100. Show that w.h.p. there is no edge of Gn,p joining two small
vertices.

1.4.5 Suppose that p = d/n where d is constant. Prove that w.h.p., in Gn,p, no
vertex belongs to more than one triangle.

1.4.6 Suppose that p = d/n where d is constant. Prove that w.h.p. Gn,p contains

a vertex of degree exactly
⌈
(logn)1/2

⌉
.

1.4.7 Suppose that k ≥ 3 is constant and that np→ ∞. Show that w.h.p. Gn,p
contains a copy of the k-cycle, Ck.

1.4.8 Suppose that 0 < p < 1 is constant. Show that w.h.p. Gn,p has diameter
two.

1.4.9 Let f : [n]→ [n] be chosen uniformly at random from all nn functions from
[n]→ [n]. Let X = { j :̸ ∃i s.t. f (i) = j}. Show that w.h.p. |X | ≈ e−1n.
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1.4.10 Prove Theorem 1.4.

1.4.11 Show that conditional on the value of mX∗ that GX∗
n,m is distributed as Gn,m∗ ,

where X = A,B.

1.5 Notes
Friedgut and Kalai [378] and Friedgut [379] and Bourgain [185] and Bourgain
and Kalai [184] provide much greater insight into the notion of sharp thresholds.
Friedgut [377] gives a survey of these aspects. For a graph property A let µ(p,A )
be the probability that the random graph Gn,p has property A . A threshold is
coarse if it is not sharp. We can identify coarse thresholds with pdµ(p,A )

d p <C for
some absolute constant 0 < C. The main insight into coarse thresholds is that to
exist, the occurrence of A can in the main be attributed to the existence of one
of a bounded number of small subgraphs. For example, Theorem 2.1 of [377]
states that there exists a function K(C,ε) such that the following holds. Let A be
a monotone property of graphs that is invariant under automorphism and assume
that pdµ(p,A )

d p < C for some constant 0 < C. Then for every ε > 0 there exists a
finite list of graphs G1,G2, . . . ,Gm all of which have no more than K(ε,C) edges,
such that if B is the family of graphs having one of these graphs as a subgraph
then µ(p,A ∆B)≤ ε .
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Chapter 2

Evolution

Here begins our story of the typical growth of a random graph. All the results up
to Section 2.3 were first proved in a landmark paper by Erdős and Rényi [332].
The notion of the evolution of a random graph stems from a dynamic view of a
graph process: viz. a sequence of graphs:

G0 = ([n], /0),G1,G2, . . . ,Gm, . . . ,GN = Kn.

where Gm+1 is obtained from Gm by adding a random edge em. We see that there
are
(n

2

)
! such sequences and Gm and Gn,m have the same distribution.

In process of the evolution of a random graph we consider properties possessed
by Gm or Gn,m w.h.p., when m = m(n) grows from 0 to

(n
2

)
, while in the case of

Gn,p we analyse its typical structure when p = p(n) grows from 0 to 1 as n→ ∞.
In the current chapter we mainly explore how the typical component structure

evolves as the number of edges m increases.

2.1 Sub-Critical Phase
The evolution of Erdős-Rényi type random graphs has clearly distinguishable
phases. The first phase, at the beginning of the evolution, can be described as
a period when a random graph is a collection of small components which are
mostly trees. Indeed the first result in this section shows that a random graph Gn,m
is w.h.p. a collection of tree-components as long as m = o(n), or, equivalently, as
long as p = o(n−1) in Gn,p. For clarity, all results presented in this chapter are
stated in terms of Gn,m. Due to the fact that computations are much easier for Gn,p
we will first prove results in this model and then the results for Gn,m will follow
by the equivalence established either in Lemmas 1.2 and 1.3 or in Theorem 1.4.
We will also assume, throughout this chapter, that ω = ω(n) is a function growing
slowly with n, e.g. ω = log logn will suffice.
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Theorem 2.1. If m≪ n, then Gm is a forest w.h.p.

Proof. Suppose m = n/ω and let N =
(n

2

)
, so p = m/N ≤ 3/(ωn). Let X be the

number of cycles in Gn,p. Then

EX =
n

∑
k=3

(
n
k

)
(k−1)!

2
pk

≤
n

∑
k=3

nk

k!
(k−1)!

2
pk

≤
n

∑
k=3

nk

2k
3k

ωknk

= O(ω−3)→ 0.

Therefore, by the First Moment Method, (see Lemma 26.2),

P(Gn,p is not a forest) = P(X ≥ 1)≤ EX = o(1),

which implies that
P(Gn,p is a forest)→ 1 as n→ ∞.

Notice that the property that a graph is a forest is monotone decreasing, so by
Lemma 1.3

P(Gm is a forest)→ 1 as n→ ∞.

(Note that we have actually used Lemma 1.3 to show that P(Gn,p is not a forest)=o(1)
implies that P(Gm is not a forest)=o(1).)

We will next examine the time during which the components of Gm are isolated
vertices and single edges only, w.h.p.

Theorem 2.2. If m≪ n1/2 then Gm is the union of isolated vertices and edges
w.h.p.

Proof. Let p = m/N, m = n1/2/ω and let X be the number of paths of length two
in the random graph Gn,p. By the First Moment Method,

P(X > 0)≤ EX = 3
(

n
3

)
p2 ≤ n4

2N2ω2 → 0,
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as n→ ∞. Hence

P(Gn,p contains a path of length two) = o(1).

Notice that the property that a graph contains a path of a given length two is
monotone increasing, so by Lemma 1.3,

P(Gm contains a path of length two) = o(1),

and the theorem follows.
Now we are ready to describe the next step in the evolution of Gm.

Theorem 2.3. If m≫ n1/2, then Gm contains a path of length two w.h.p.

Proof. Let p = m
N ,m = ωn1/2 and X be the number of paths of length two in Gn,p.

Then

EX = 3
(

n
3

)
p2 ≈ 2ω

2→ ∞,

as n→ ∞. This however does not imply that X > 0 w.h.p.! To show that X > 0
w.h.p. we will apply the Second Moment Method

Let P2 be the set of all paths of length two in the complete graph Kn, and let
X̂ be the number of isolated paths of length two in Gn,p i.e. paths that are also
components of Gn,p. We will show that w.h.p. Gn,p contains such an isolated
path. Now,

X̂ = ∑
P∈P2

IP⊆iGn,p.

We always use IE to denote the indicator for an event E . The notation⊆i indicates
that P is contained in Gn,p as a component (i.e. P is isolated). Having a path of
length two is a monotone increasing property. Therefore we can assume that m =
o(n) and so np = o(1) and the result for larger m will follow from monotonicity
and coupling. Then

E X̂ = 3
(

n
3

)
p2(1− p)3(n−3)+1

≥ (1−o(1))
n3

2
4ω2n

n4 (1−3np)→ ∞,

as n→ ∞.
In order to compute the second moment of the random variable X̂ notice that,

X̂2 = ∑
P∈P2

∑
Q∈P2

IP⊆iGn,pIQ⊆iGn,p = ∑
∗
P,Q∈P2

IP⊆iGn,pIQ⊆iGn,p,
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where the last sum is taken over P,Q ∈P2 such that either P = Q or P and Q are
vertex disjoint. The simplification that provides the last summation is precisely
the reason that we introduce path-components (isolated paths). Now

E X̂2 = ∑
P

{
∑
Q
P(Q⊆i Gn,p| P⊆i Gn,p)

}
P(P⊆i Gn,p).

The expression inside the brackets is the same for all P and so

E X̂2 = E X̂

1+ ∑
Q∩P(1,2,3)= /0

P(Q⊆i Gn,p| P(1,2,3) ⊆i Gn,p)

 ,

where P{1,2,3} denotes the path on vertex set [3] = {1,2,3} with middle vertex
2. By conditioning on the event P(1,2,3) ⊆i Gn,p, i.e, assuming that P(1,2,3) is a
component of Gn,p, we see that all of the nine edges between Q and P(1,2,3) must
be missing. Therefore

E X̂2 ≤ E X̂
(

1+3
(

n
3

)
p2(1− p)3(n−6)+1

)
≤ E X̂

(
1+(1− p)−9E X̂

)
.

So, by the Second Moment Method (see Lemma 26.5),

P(X̂ > 0)≥ (E X̂)2

E X̂2
≥ (E X̂)2

E X̂
(
1+(1− p)−9E X̂

)
=

1
(1− p)−9 +[E X̂ ]−1

→ 1

as n→ ∞, since p→ 0 and E X̂ → ∞. Thus

P(Gn,p contains an isolated path of length two)→ 1,

which implies that P(Gn,p contains a path of length two)→ 1. As the property of
having a path of length two is monotone increasing it in turn implies that

P(Gm contains a path of length two)→ 1

for m≫ n1/2 and the theorem follows.

From Theorems 2.2 and 2.3 we obtain the following corollary.

Corollary 2.4. The function m∗(n) = n1/2 is the threshold for the property that a
random graph Gm contains a path of length two, i.e.,

P(Gm contains a path of length two) =

{
o(1) if m≪ n1/2.

1−o(1) if m≫ n1/2.
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As we keep adding edges, trees on more than three vertices start to appear.
Note that isolated vertices, edges and paths of length two are also trees on one,
two and three vertices, respectively. The next two theorems show how long we
have to “wait” until trees with a given number of vertices appear w.h.p.

Theorem 2.5. Fix k ≥ 3. If m≪ n
k−2
k−1 , then w.h.p. Gm contains no tree with k

vertices.

Proof. Let m = n
k−2
k−1/ω and then p = m

N ≈
2

ωnk/(k−1) ≤ 3
ωnk/(k−1) . Let Xk denote the

number of trees with k vertices in Gn,p. Let T1,T2, . . . ,TM be an enumeration of
the copies of k-vertex trees in Kn. Let

Ai = {Ti occurs as a subgraph in Gn,p}.

The probability that a tree T occurs in Gn,p is pe(T ), where e(T ) is the number of
edges of T . So,

EXk =
M

∑
t=1

P(At) = Mpk−1.

But M =
(n

k

)
kk−2 since one can choose a set of k vertices in

(n
k

)
ways and then by

Cayley’s formula choose a tree on these vertices in kk−2 ways. Hence

EXk =

(
n
k

)
kk−2 pk−1. (2.1)

Noting also that (see Lemma 27.1(c))(
n
k

)
≤
(ne

k

)k
,

we see that

EXk ≤
(ne

k

)k
kk−2

(
3

ωnk/(k−1)

)k−1

=
3k−1ek

k2ωk−1 → 0,

as n→ ∞, seeing as k is fixed.
Thus we see by the first moment method that,

P(Gn,p contains a tree with k vertices)→ 0.

This property is monotone increasing and therefore

P(Gm contains a tree with k vertices)→ 0.
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Let us check what happens if the number of edges in Gm is much larger than
n

k−2
k−1 .

Theorem 2.6. Fix k ≥ 3. If m≫ n
k−2
k−1 , then w.h.p. Gm contains a copy of every

fixed tree with k vertices.

Proof. Let p = m
N ,m = ωn

k−2
k−1 where ω = o(logn) and fix some tree T with k

vertices. Denote by X̂k the number of isolated copies of T (T -components) in
Gn,p. Let aut(H) denote the number of automorphisms of a graph H. Note that
there are k!/aut(T ) copies of T in the complete graph Kk. To see this choose a
copy of T with vertex set [k]. There are k! ways of mapping the vertices of T to
the vertices of Kk. Each map f induces a copy of T and two maps f1, f2 induce
the same copy iff f2 f−1

1 is an automorphism of T .
So,

E X̂k =

(
n
k

)
k!

aut(T )
pk−1(1− p)k(n−k)+(k

2)−k+1 (2.2)

= (1+o(1))
(2ω)k−1

aut(T )
→ ∞.

In (2.2) we have approximated
(n

k

)
≤ nk

k! and used the fact that ω = o(logn) in

order to show that (1− p)k(n−k)+(k
2)−k+1 = 1−o(1).

Next let T be the set of copies of T in Kn and T[k] be a fixed copy of T on
vertices [k] of Kn. Then, arguing as in (2.3),

E(X̂2
k ) = ∑

T1,T2∈T
P(T2 ⊆i Gn,p| T1 ⊆i Gn,p)P(T1 ⊆i Gn,p)

= E X̂k

1+ ∑
T2∈T

V (T2)∩[k]= /0

P(T2 ⊆i Gn,p| T[k] ⊆i Gn,p)


≤ E X̂k

(
1+(1− p)−k2

EXk

)
.

Notice that the (1− p)−k2
factor comes from conditioning on the event

T[k] ⊆i Gn,p which forces the non-existence of fewer than k2 edges.
Hence, by the Second Moment Method,

P(X̂k > 0)≥ (E X̂k)
2

E X̂k
(
1+(1− p)−k2 E X̂k

) → 1.
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Then, by a similar reasoning to that in the proof of Theorem 2.3,

P(Gm contains a copy of T )→ 1,

as n→ ∞.

Combining the two above theorems we arrive at the following conclusion.

Corollary 2.7. The function m∗(n) = n
k−2
k−1 is the threshold for the property that a

random graph Gm contains a tree with k ≥ 3 vertices, i.e.,

P(Gm ⊇ k-vertex-tree) =

{
o(1) if m≪ n

k−2
k−1

1−o(1) if m≫ n
k−2
k−1

In the next theorem we show that “on the threshold” for k vertex trees, i.e., if
m = cn

k−2
k−1 , where c is a constant, c > 0, the number of tree components of a given

order asymptotically follows the Poisson distribution. This time we will formulate
both the result and its proof in terms of Gm.

Theorem 2.8. If m = cn
k−2
k−1 , where c > 0, and T is a fixed tree with k≥ 3 vertices,

then
P(Gm contains an isolated copy of tree T )→ 1− e−λ ,

as n→ ∞, where λ = (2c)k−1

aut(T ) .
More precisely, the number of copies of T is asymptotically distributed as the

Poisson distribution with expectation λ .

Proof. Let T1,T2, . . . ,TM be an enumeration of the copies of some k vertex tree T
in Kn.
Let

Ai = {Ti occurs as a component in Gm}.
Suppose J ⊆ [M] = {1,2, . . . ,M} with |J|= t, where t is fixed. Let AJ =

⋂
j∈J A j.

We have P(AJ) = 0 if there are i, j ∈ J such that Ti,Tj share a vertex. Suppose
Ti, i ∈ J are vertex disjoint. Then

P(AJ) =

( (n−kt
2 )

m−(k−1)t

)(N
m

) .

Note that in the numerator we count the number of ways of choosing m edges so
that AJ occurs.
If, say, t ≤ logn, then(

n− kt
2

)
= N

(
1− kt

n

)(
1− kt

n−1

)
= N

(
1−O

(
kt
n

))
,
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and so
m2(n−kt

2

) → 0.

Then from Lemma 27.1(f),

( (n−kt
2

)
m− (k−1)t

)
= (1+o(1))

(
N
(
1−O

(kt
n

)))m−(k−1)t

(m− (k−1)t)!

= (1+o(1))
Nm−(k−1)t (1−O

(mkt
n

))
(m− (k−1)t)!

= (1+o(1))
Nm−(k−1)t

(m− (k−1)t)!
.

Similarly, again by Lemma 27.1,(
N
m

)
= (1+o(1))

Nm

m!
,

and so

P(AJ) = (1+o(1))
m!

(m− (k−1)t)!
N−(k−1)t = (1+o(1))

(m
N

)(k−1)t
.

Thus, if ZT denotes the number of components of Gm that are copies of T , then,

E
(

ZT

t

)
≈ 1

t!

(
n

k,k,k, . . . ,k

)(
k!

aut(T )

)t (m
N

)(k−1)t

≈ nkt

t!(k!)t

(
k!

aut(T )

)t
(

cn(k−2)/(k−1)

N

)(k−1)t

≈ λ t

t!
,

where

λ =
(2c)k−1

aut(T )
.

So by Theorem 26.11 the number of copies of T -components is asymptotically
distributed as the Poisson distribution with expectation λ given above, which com-
bined with the statements of Theorem 2.1 and Corollary 2.7 proves the theorem.
Note that Theorem 2.1 implies that w.h.p. there are no non-component copies of
T .
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We complete our presentation of the basic features of a random graph in its
sub-critical phase of evolution with a description of the order of its largest com-
ponent.

Theorem 2.9. If m = 1
2cn, where 0 < c < 1 is a constant, then w.h.p. the order of

the largest component of a random graph Gm is O(logn).

The above theorem follows from the next three lemmas stated and proved in
terms of Gn,p with p = c/n, 0 < c < 1. In fact the first of those three lemmas
covers a little bit more than the case of p = c/n, 0 < c < 1.

Lemma 2.10. If p≤ 1
n−

ω

n4/3 , where ω = ω(n)→∞, then w.h.p. every component
in Gn,p contains at most one cycle.

Proof. Suppose that there is a pair of cycles that are in the same component.
If such a pair exists then there is minimal pair C1,C2, i.e., either C1 and C2 are
connected by a path (or meet at a vertex) or they form a cycle with a diagonal path
(see Figure 2.1). Then in either case, C1∪C2 consists of a path P plus another two
distinct edges, one from each endpoint of P joining it to another vertex in P. The
number of such graphs on k labeled vertices can be bounded by k2k!.
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Figure 2.1: C1∪C2
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Let X be the number of subgraphs of the above kind (shown in Figure 2.1) in the
random graph Gn,p. By the first moment method (see Lemma 26.2),

P(X > 0)≤ EX ≤
n

∑
k=4

(
n
k

)
k2k!pk+1 (2.3)

≤
n

∑
k=4

nk

k!
k2k!

1
nk+1

(
1− ω

n1/3

)k+1

≤
∫

∞

0

x2

n
exp
(
− ωx

n1/3

)
dx

=
2

ω3

= o(1).

We remark for later use that if p = c/n, 0 < c < 1 then (2.3) implies

P(X > 0)≤
n

∑
k=4

k2ck+1n−1 = O(n−1). (2.4)

Hence, in determining the order of the largest component we may concentrate
our attention on unicyclic components and tree-components (isolated trees). How-
ever the number of vertices on unicyclic components tends to be rather small, as
is shown in the next lemma.

Lemma 2.11. If p= c/n, where c ̸= 1 is a constant, then in Gn,p w.h.p. the number
of vertices in components with exactly one cycle, is O(ω) for any growing function
ω .

Proof. Let Xk be the number of vertices on unicyclic components with k vertices.
Then

EXk ≤
(

n
k

)
kk−2

(
k
2

)
kpk(1− p)k(n−k)+(k

2)−k. (2.5)

The factor kk−2(k
2

)
in (2.5) is the number of choices for a tree plus an edge on k

vertices in [k]. This bounds the number C(k,k) of connected graphs on [k] with k
edges. This is off by a factor O(k1/2) from the exact formula which is given below
for completeness:

C(k,k) =
k

∑
r=3

(
k
r

)
(r−1)!

2
rkk−r−1 ≈

√
π

8
kk−1/2. (2.6)
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The remaining factor, other than
(n

k

)
, in (2.5) is the probability that the k edges of

the unicyclic component exist and that there are no other edges on Gn,p incident
with the k chosen vertices.
Noting also that by Lemma 27.1(d),(

n
k

)
≤ nk

k!
e−

k(k−1)
2n .

Assume next that c < 1 and then we get

EXk ≤
nk

k!
e−

k(k−1)
2n kk+1 ck

nk e−ck+ ck(k−1)
2n + ck

2n (2.7)

≤ ek

kk e−
k(k−1)

2n kk+1cke−ck+ k(k−1)
2n + c

2 (2.8)

≤ k
(
ce1−c)k

e
c
2 .

So,

E
n

∑
k=3

Xk ≤
n

∑
k=3

k
(
ce1−c)k

e
c
2 = O(1), (2.9)

since ce1−c < 1 for c ̸= 1. By the Markov inequality, if ω = ω(n)→ ∞, (see
Lemma 26.1)

P

(
n

∑
k=3

Xk ≥ ω

)
= O

(
1
ω

)
→ 0 as n→ ∞,

and the Lemma follows for c < 1. If c > 1 then we cannot deduce (2.8) from (2.7).
If however k = o(n) then this does not matter, since then ek2/n = eo(k). Now we
show in the proof of Theorem 2.14 below that when c > 1 there is w.h.p. a unique
giant component of size Ω(n) and all other components are of size O(logn). This
giant is not unicyclic. This enables us to complete the proof of this lemma for
c > 1.

After proving the first two lemmas one can easily see that the only remaining
candidate for the largest component of our random graph is an isolated tree.

Lemma 2.12. Let p = c
n , where c ̸= 1 is a constant, α = c− 1− logc, and ω =

ω(n)→ ∞, ω = o(log logn). Then

(i) w.h.p. there exists an isolated tree of order

k− =
1
α

(
logn− 5

2
loglogn

)
−ω,
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(ii) w.h.p. there is no isolated tree of order at least

k+ =
1
α

(
logn− 5

2
loglogn

)
+ω

Proof. Note that our assumption on c means that α is a positive constant.
Let Xk be the number of isolated trees of order k. Then

EXk =

(
n
k

)
kk−2 pk−1(1− p)k(n−k)+(k

2)−k+1. (2.10)

To prove (i) suppose k = O(logn). Then
(n

k

)
≈ nk

k! and by using Lemma 27.1(a),(b)
and Stirling’s approximation (1.5) for k! we see that

EXk = (1+o(1))
n
c

kk−2

k!
(ce−c)k (2.11)

=
(1+o(1))

c
√

2π

n
k5/2 (ce1−c)k

=
(1+o(1))

c
√

2π

n
k5/2 e−αk, for k = O(logn). (2.12)

Putting k = k− we see that

EXk =
(1+o(1))

c
√

2π

n
k5/2

eαω(logn)5/2

n
≥ Aeαω , (2.13)

for some constant A > 0.
We continue via the Second Moment Method, this time using the Chebyshev

inequality as we will need a little extra precision for the proof of Theorem 2.14.
Using essentially the same argument as for a fixed tree T of order k (see Theorem
2.6), we get

EX2
k ≤ EXk

(
1+(1− p)−k2

EXk

)
.

So

VarXk ≤ EXk +(EXk)
2
(
(1− p)−k2

−1
)

≤ EXk +2ck2(EXk)
2/n, for k = O(logn). (2.14)

Thus, by the Chebyshev inequality (see Lemma 26.3), we see that for any ε > 0,

P(|Xk−EXk| ≥ ε EXk)≤
1

ε2EXk
+

2ck2

ε2n
= o(1). (2.15)
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Thus w.h.p. Xk ≥ Aeαω/2 and this completes the proof of (i).
For (ii) we go back to the formula (2.10) and write, for some new constant

A > 0,

EXk ≤
A√
k

(ne
k

)k
kk−2

(
1− k

2n

)k−1(c
n

)k−1
e−ck+ ck2

2n

≤ 2An
ĉkk5/2

(
ĉke1−ĉk

)k
,

where ĉk = c
(
1− k

2n

)
.

In the case c < 1 we have ĉke1−ĉk ≤ ce1−c and ĉk ≈ c and so we can write

n

∑
k=k+

EXk ≤
3An

c

n

∑
k=k+

(
ce1−c)k

k5/2 ≤ 3An

ck5/2
+

∞

∑
k=k+

e−αk =

=
3Ane−αk+

ck5/2
+ (1− e−α)

=
(3A+o(1))α5/2e−αω

c(1− e−α)
= o(1). (2.16)

If c > 1 then for k≤ n
logn we use ĉke1−ĉk = e−α−O(1/ logn) and for k > n

logn we use
ck ≥ c/2 and ĉke1−ĉk ≤ 1 and replace (2.16) by

n

∑
k=k+

EXk ≤
3An

ck5/2
+

n/ logn

∑
k=k+

e−(α+O(1/ logn))k +
6An

c

n

∑
k=n/ logn

1
k5/2 = o(1).

Finally, applying Lemmas 2.11 and 2.12 we can prove the following useful
identity: Suppose that x = x(c) is given as

x = x(c) =

{
c c≤ 1
The solution in (0,1) to xe−x = ce−c c > 1

.

Note that xe−x increases continuously as x increases from 0 to 1 and then de-
creases. This justifies the existence and uniqueness of x.

Lemma 2.13. If c > 0, c ̸= 1 is a constant, and x = x(c) is defined above, then

1
x

∞

∑
k=1

kk−1

k!
(
ce−c)k

= 1.
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Proof. Let p = c
n . Assume first that c < 1 and let X be the total number of vertices

of Gn,p that lie in non-tree components. Let Xk be the number of tree-components
of order k. Then,

n =
n

∑
k=1

kXk +X .

So,

n =
n

∑
k=1

kEXk +EX .

Now,

(i) by (2.4) and (2.9), EX = O(1),

(ii) by (2.11), if k < k+ then

EXk = (1+o(1))
n

ck!
kk−2 (ce−c)k

.

So, by Lemma 2.12,

n = o(n)+
n
c

k+

∑
k=1

kk−1

k!
(
ce−c)k

= o(n)+
n
c

∞

∑
k=1

kk−1

k!
(
ce−c)k

.

Now divide through by n and let n→ ∞.
This proves the identity for the case c < 1. Suppose now that c > 1. Then,

since x is a solution of equation ce−c = xe−x, 0 < x < 1, we have

∞

∑
k=1

kk−1

k!
(
ce−c)k

=
∞

∑
k=1

kk−1

k!
(
xe−x)k

= x,

by the first part of the proof (for c < 1).
We note that in fact, Lemma 2.13 is also true for c = 1.

2.2 Super-Critical Phase
The structure of a random graph Gm changes dramatically when m = 1

2cn where
c > 1 is a constant. We will give a precise characterisation of this phenomenon,
presenting results in terms of Gm and proving them for Gn,p with p = c/n, c > 1.
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Theorem 2.14. If m = cn/2, c > 1, then w.h.p. Gm consists of a unique giant
component, with

(
1− x

c +o(1)
)

n vertices and
(

1− x2

c2 +o(1)
)

cn
2 edges. Here

0 < x < 1 is the solution of the equation xe−x = ce−c. The remaining components
are of order at most O(logn).

Proof. Suppose that Zk is the number of components of order k in Gn,p. Then,
bounding the number of such components by the number of trees with k vertices
that span a component, we get

EZk ≤
(

n
k

)
kk−2 pk−1(1− p)k(n−k) (2.17)

≤ A
(ne

k

)k
kk−2

(c
n

)k−1
e−ck+ck2/n

≤ An
k2

(
ce1−c+ck/n

)k

Now let β1 = β1(c) be small enough so that

ce1−c+cβ1 < 1,

and let β0 = β0(c) be large enough so that(
ce1−c+o(1)

)β0 logn
<

1
n2 .

If we choose β1 and β0 as above then it follows that w.h.p. there is no component
of order k ∈ [β0 logn,β1n].
Our next task is to estimate the number of vertices on small components i.e. those
of size at most β0 logn.

We first estimate the total number of vertices on small tree components, i.e.,
on isolated trees of order at most β0 logn.
Assume first that 1≤ k ≤ k0, where k0 =

1
2α

logn, where α is from Lemma 2.12.
It follows from (2.11) that

E

(
k0

∑
k=1

kXk

)
≈ n

c

k0

∑
k=1

kk−1

k!
(
ce−c)k

≈ n
c

∞

∑
k=1

kk−1

k!
(
ce−c)k

,

using kk−1/k! < ek, and ce−c < e−1 for c ̸= 1 to extend the summation from k0 to
infinity.
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Putting ε = 1/ logn and using (2.15) we see that the probability that any
Xk, 1≤ k ≤ k0, deviates from its mean by more than 1± ε is at most

k0

∑
k=1

[
(logn)2

n1/2−o(1)
+O

(
(logn)4

n

)]
= o(1),

where the n1/2−o(1) term comes from putting ω ≈ k0/2 in (2.13), which is allowed
by (2.12), (2.14).
Thus, if x = x(c), 0 < x < 1 is the unique solution in (0,1) of the equation xe−x =
ce−c, then w.h.p.,

k0

∑
k=1

kXk ≈
n
c

∞

∑
k=1

kk−1

k!
(
xe−x)k

=
nx
c
,

by Lemma 2.13.
Now consider k0 < k ≤ β0 logn.

E

(
β0 logn

∑
k=k0+1

kXk

)
≤ n

c

β0 logn

∑
k=k0+1

(
ce1−c+ck/n

)k

= O
(

n(ce1−c)k0
)

= O
(

n1/2+o(1)
)
.

So, by the Markov inequality (see Lemma 26.1), w.h.p.,

β0 logn

∑
k=k0+1

kXk = o(n).

Now consider the number Yk of non-tree components with k vertices, 1 ≤ k ≤
β0 logn.

E

(
β0 logn

∑
k=1

kYk

)
≤

β0 logn

∑
k=1

(
n
k

)
kk−1

(
k
2

)(c
n

)k(
1− c

n

)k(n−k)

≤
β0 logn

∑
k=1

k
(

ce1−c+ck/n
)k

= O(1).
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So, again by the Markov inequality, w.h.p.,

β0 logn

∑
k=1

kYk = o(n).

Summarising, we have proved so far that w.h.p. there are approximately nx
c ver-

tices on components of order k, where 1≤ k≤ β0 logn and all the remaining giant
components are of size at least β1n.
We complete the proof by showing the uniqueness of the giant component. Let

c1 = c− logn
n

and p1 =
c1

n
.

Define p2 by
1− p = (1− p1)(1− p2)

and note that p2 ≥ logn
n2 . Then, see Section 1.2,

Gn,p =Gn,p1 ∪Gn,p2 .

If x1e−x1 = c1e−c1 , then x1 ≈ x and so, by our previous analysis, w.h.p., Gn,p1

has no components with number of vertices in the range [β0 logn,β1n].
Suppose there are components C1,C2, . . . ,Cl with |Ci|> β1n. Here l ≤ 1/β1.
Now we add edges of Gn,p2 to Gn,p1 . Then

P
(
∃i, j : no Gn,p2 edge joins Ci with C j

)
≤
(

l
2

)
(1− p2)

(β1n)2

≤ l2e−β 2
1 logn

= o(1).

So w.h.p. Gn,p has a unique component with more than β0 logn vertices and it has
≈
(
1− x

c

)
n vertices.

We now consider the number of edges in the giant C0. Now we switch to
G = Gn,m. Suppose that the edges of G are e1,e2, . . . ,em in random order. We
estimate the probability that e = em = {x,y} is an edge of the giant. Let G1 be the
graph induced by {e1,e2, . . . ,em−1}. G1 is distributed as Gn,m−1 and so we know
that w.h.p. G1 has a unique giant C1 and other components are of size O(logn).
So the probability that e is an edge of the giant is o(1) plus the probability that x
or y is a vertex of C1. Thus,

P
(

e ̸∈C0 | |C1| ≈ n
(

1− x
c

))
= P

(
e∩C1 = /0 | |C1| ≈ n

(
1− x

c

))
=

(
1− |C1|

n

)(
1− |C1|+1

n

)
≈
(x

c

)2
. (2.18)
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It follows that the expected number of edges in the giant is as claimed. To
prove concentration, it is simplest to use the Chebyshev inequality, see Lemma
26.3. So, now fix i, j≤m and let C2 denote the unique giant component of Gn,m−{

ei,e j
}

. Then, arguing as for (2.18),

P(ei,e j ⊆C0) =

o(1)+P(e j∩C2 ̸= /0 | ei∩C2 ̸= /0)P(ei∩C2 ̸= /0)
= (1+o(1))P(ei ⊆C0)P(e j ⊆C0).

In the o(1) term, we hide the probability of the event{
ei∩C2 ̸= /0,e j∩C2 ̸= /0,ei∩ e j ̸= /0

}
which has probability o(1). We should double this o(1) probability here to account
for switching the roles of i, j.

The Chebyshev inequality can now be used to show that the number of edges
is concentrated as claimed.

We will see later, see Theorem 2.18, that w.h.p. each of the small components
have at most one cycle.

From the above theorem and the results of previous sections we see that, when
m = cn/2 and c passes the critical value equal to 1, the typical structure of a
random graph changes from a scattered collection of small trees and unicyclic
components to a coagulated lump of components (the giant component) that dom-
inates the graph. This short period when the giant component emerges is called
the phase transition. We will look at this fascinating period of the evolution more
closely in Section 2.3.

We know that w.h.p. the giant component of Gn,m,m = cn/2, c > 1 has ≈(
1− x

c

)
n vertices and ≈

(
1− x2

c2

)
cn
2 edges. So, if we look at the graph H induced

by the vertices outside the giant, then w.h.p. H has≈ n1 =
nx
c vertices and≈m1 =

xn1/2 edges. Thus we should expect H to resemble Gn1.m1 , which is sub-critical
since x < 1. This can be made precise, but the intuition is clear.

Now increase m further and look on the outside of the giant component. The
giant component subsequently consumes the small components not yet attached
to it. When m is such that m/n→ ∞ then unicyclic components disappear and a
random graph Gm achieves the structure described in the next theorem.

Theorem 2.15. Let ω = ω(n)→ ∞ as n→ ∞ be some slowly growing function.
If m≥ ωn but m≤ n(logn−ω)/2, then Gm is disconnected and all components,
with the exception of the giant, are trees w.h.p.

Tree-components of order k die out in the reverse order they were born, i.e.,
larger trees are ”swallowed” by the giant earlier than smaller ones.
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Cores
Given a positive integer k, the k-core of a graph G = (V,E) is the largest set S⊆V
such that the minimum degree δS in the vertex induced subgraph G[S] is at least
k. This is unique because if δS ≥ k and δT ≥ k then δS∪T ≥ k. Cores were first
discussed by Bollobás [154]. It was shown by Łuczak [636] that for k ≥ 3 either
there is no k-core in Gn,p or one of linear size, w.h.p. The precise size and first
occurrence of k-cores for k ≥ 3 was established in Pittel, Spencer and Wormald
[742]. The 2-core, C2 which is the set of vertices that lie on at least one cycle
behaves differently to the other cores, k ≥ 3. It grows gradually. We will need the
following result in Section 17.2.

Lemma 2.16. Suppose that c > 1 and that x < 1 is the solution to xe−x = ce−c.
Then w.h.p. the 2-core C2 of Gn,p, p = c/n has (1− x)

(
1− x

c +o(1)
)

n vertices

and
(
1− x

c +o(1)
)2 cn

2 edges.

Proof. Fix v∈ [n]. We estimate P(v∈C2). Let C1 denote the unique giant compo-
nent of G1 =Gn,p−v. Now G1 is distributed as Gn−1,p and so C1 exists w.h.p. To
be in C2, either (i) v has two neighbors in C1 or (ii) v has two neighbors in some
other component. Now because all components other than C1 have size O(logn)
w.h.p., we see that

P((ii)) = o(1)+n
(

O(logn)
2

)(c
n

)2
= o(1).

Now w.h.p. |C1| ≈
(
1− x

c

)
n and it is independent of the edges incident with v and

so

P((i)) = 1−P(0 or 1 neighbors in C1) =

= o(1)+(1+o(1))E
(

1−
((

1− c
n

)|C1|
+ |C1|

(
1− c

n

)|C1|−1 c
n

))
(2.19)

= o(1)+1− (e−c+x +(c− x)e−c+x)

= o(1)+(1− x)
(

1− x
c

)
,

where the last line follows from the fact that e−c+x = x
c . Also, one has to be care-

ful when estimating something like E
(
1− c

n

)|C1|. For this we note that Jensen’s
inequality implies that

E
(

1− c
n

)|C1|
≥
(

1− c
n

)E |C1|
= e−c+x+o(1).

On the other hand, if ng =
(
1− x

c

)
n,
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E
(

1− c
n

)|C1|
≤

E
((

1− c
n

)|C1|
∣∣∣∣|C1| ≥ (1−o(1))ng

)
P(|C1| ≥ (1−o(1))ng)

+P(|C1| ≤ (1−o(1))ng) = e−c+x+o(1).

It follows from (2.19) that E(|C2|)≈ (1−x)
(
1− x

c

)
n. To prove concentration

of |C2|, we can use the Chebyshev inequality as we did in the proof of Theorem
2.14 to prove concentration for the number of edges in the giant.

To estimate the expected number of edges in C2, we proceed as in Theorem
2.14 and turn to G =Gn,m and estimate the probability that e1 ⊆C2. If G′ = G\ e
and C′1 is the giant of G′ then e1 is an edge of C2 iff e1 ⊆C′1 or e1 is contained in
a small component. This latter condition is unlikely. Thus,

P(e1 ⊆C2) = o(1)+E
(
|C′1|

n

)2

= o(1)+
(

1− x
c

)2
.

The estimate for the expectation of the number of edges in the 2-core follows
immediately and one can prove concentration using the Chebyshev inequality.

2.3 Phase Transition
In the previous two sections we studied the asymptotic behavior of Gm (and Gn,p)
in the “sub-critical phase” when m = cn/2,c < 1 (p = c/n,c < 1), as well as in
the “super-critical phase” when m = cn/2,c > 1 (p = c/n,c > 1) of its evolution.

We have learned that when m = cn/2,c > 1 our random graph consists w.h.p.
of tree components and components with exactly one cycle (see Theorem 2.1 and
Lemma 2.11). We call such components simple while components which are not
simple, i.e. components with at least two cycles, will be called complex.

All components during the sub-critical phase are rather small, of order logn,
tree-components dominate the typical structure of Gm, and there is no significant
gap in the order of the first and the second largest component. This follows from
Lemma 2.12. The proof of this lemma shows that w.h.p. there are many trees of
height k−. The situation changes when m > n/2, i.e., when we enter the super-
critical phase and then w.h.p. Gm consists of a single giant complex component
(of the order comparable to n), and some number of simple components, i.e., tree
components and components with exactly one cycle (see Theorem 2.14). One can
also observe a clear gap between the order of the largest component (the giant) and
the second largest component which is of the order O(logn). This phenomenon
of dramatic change of the typical structure of a random graph is called its phase
transition.



2.3. Phase Transition 41

A natural question arises as to what happens when m/n→ 1/2, either from
below or above, as n→ ∞. It appears that one can establish, a so called, scaling
window or critical window for the phase transition in which Gm is undergoing a
rapid change in its typical structure. A characteristic feature of this period is that
a random graph can w.h.p. consist of more than one complex component (recall:
there are no complex components in the sub-critical phase and there is a unique
complex component in the super-critical phase).

Erdős and Rényi [332] studied the size of the largest tree in the random graph
Gn,m when m = n/2 and showed that it was likely to be around n2/3. They called
the transition from O(logn) through Θ(n2/3) to Ω(n) the “double jump”. They
did not study the regime m = n/2+ o(n). Bollobás [153] opened the detailed
study of this and Łuczak [634] continued this analysis. He established the precise
size of the “scaling window” by removing a logarithmic factor from Bollobás’s
estimates. The component structure of Gn,m for m = n/2+o(n) is rather compli-
cated and the proofs are technically challenging. We will begin by stating several
results that give a an idea of the component structure in this range, referring the
reader elsewhere for proofs: Chapter 5 of Janson, Łuczak and Ruciński [509]; Al-
dous [19]; Bollobás [153]; Janson [496]; Janson, Knuth, Łuczak and Pittel [513];
Łuczak [634], [635], [639]; Łuczak, Pittel and Wierman [642]. We will finish
with a proof by Nachmias and Peres that when p = 1/n the largest component is
likely to have size of order n2/3.

The first theorem is a refinement of Lemma 2.10.

Theorem 2.17. Let m = n
2 − s, where s = s(n)≥ 0.

(a) The probability that Gn,m contains a complex component is at most n2/4s3.

(b) If n2/3≪ s≪ n then w.h.p. the largest component is a tree of size asymptotic
to n2

2s2 log s3

n .

The next theorem indicates when the phase in which we may have more than
one complex component “ends”, i.e., when a single giant component emerges.

Theorem 2.18. Let m = n
2 + s, where s = s(n)≥ 0. Then the probability that Gn,m

contains more than one complex component is at most 6n2/9/s1/3.

For larger s, the next theorem gives a precise estimate of the size of the largest
component for s≫ n2/3. For s > 0 we let s̄ > 0 be defined by(

1− 2s̄
n

)
exp
{

2s̄
n

}
=

(
1+

2s
n

)
exp
{
−2s

n

}
.
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Theorem 2.19. Let m = n
2 + s where s≫ n2/3. Then with probability at least

1−7n2/9/s1/3, ∣∣∣∣L1−
2(s+ s̄)n

n+2s

∣∣∣∣≤ n2/3

5
where L1 is the size of the largest component in Gn,m. In addition, the largest
component is complex and all other components are either trees or unicyclic com-
ponents.

To get a feel for this estimate of L1 we remark that

s̄ = s− 4s2

3n
+O

(
s3

n2

)
.

The next theorem gives some information about ℓ-components inside the scal-
ing window m = n/2+O(n2/3). An ℓ-component is one that has ℓ more edges
than vertices. So trees are (-1)-components.

Theorem 2.20. Let m= n
2 +O(n2/3) and let rℓ denote the number of ℓ-components

in Gn,m. For every 0 < δ < 1 there exists Cδ such that if n is sufficiently large,
then with probability at least 1−δ , ∑ℓ≥3 ℓrℓ ≤Cδ and the number of vertices on
complex components is at most Cδ n2/3.

One of the difficulties in analysing the phase transition stems from the need
to estimate C(k, ℓ), which is the number of connected graphs with vertex set [k]
and ℓ edges. We need good estimates for use in first moment calculations. We
have seen the values for C(k,k− 1) (Cayley’s formula) and C(k,k), see (2.6).
For ℓ > 0, things become more tricky. Wright [856], [857], [858] showed that
Ck,k+ℓ ≈ γℓkk+(3ℓ−1)/2 for ℓ = o(k1/3) where the Wright coefficients γℓ satisfy an
explicit recurrence and have been related to Brownian motion, see Aldous [19] and
Spencer [811]. In a breakthrough paper, Bender, Canfield and McKay [92] gave
an asymptotic formula valid for all k. Łuczak [633] in a beautiful argument sim-
plified a large part of their argument, see Exercise (4.3.6). Bollobás [155] proved
the useful simple estimate Ck,k+ℓ ≤ cℓ−ℓ/2kk+(3ℓ−1)/2 for some absolute constant
c > 0. It is difficult to prove tight statements about Gn,m in the phase transition
window without these estimates. Nevertheless, it is possible to see that the largest
component should be of order n2/3, using a nice argument from Nachmias and
Peres. They have published a stronger version of this argument in [705].

Theorem 2.21. Let p = 1
n and A be a large constant. Let Z be the size of the

largest component in Gn,p. Then

(i) P
(

Z ≤ 1
A

n2/3
)
= O(A−1),
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(ii) P
(

Z ≥ An2/3
)
= O(A−1).

Proof. We will prove part (i) of the theorem first. This is a standard application of
the first moment method, see for example Bollobás [155]. Let Xk be the number
of tree components of order k and let k ∈

[
1
An2/3,An2/3

]
. Then, see also (2.10),

EXk =

(
n
k

)
kk−2 pk−1(1− p)k(n−k)+(k

2)−k+1.

But

(1− p)k(n−k)+(k
2)−k+1 ≈ (1− p)kn−k2/2

= exp{(kn− k2/2) log(1− p)}

≈ exp
{
−kn− k2/2

n

}
.

Hence, by the above and Lemma 27.2,

EXk ≈
n√

2π k5/2
exp
{
− k3

6n2

}
. (2.20)

So if

X =
An2/3

∑
1
A n2/3

Xk,

then

EX ≈ 1√
2π

∫ A

x= 1
A

e−x3/6

x5/2 dx

=
4

3
√

π
A3/2 +O(A1/2).

Arguing as in Lemma 2.12 we see that

EX2
k ≤ EXk +(1+o(1))(EXk)

2,

E(XkXl)≤ (1+o(1))(EXk)(EXl), k ̸= l.

It follows that
EX2 ≤ EX +(1+o(1))(EX)2.

Applying the second moment method, Lemma 26.6, we see that

P(X > 0)≥ 1
(EX)−1 +1+o(1)
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= 1−O(A−1),

which completes the proof of part (i).

To prove (ii) we first consider a breadth first search (BFS) starting from, say,
vertex x. We construct a sequence of sets S1 = {x},S2, . . ., where

Si+1 = {v ̸∈
⋃
j≤i

S j : ∃w ∈ Si such that (v,w) ∈ E(Gn,p)}.

We have

E(|Si+1| |Si)≤ (n−|Si|)
(

1− (1− p)|Si|
)

≤ (n−|Si|)|Si|p
≤ |Si|.

So
E |Si+1| ≤ E |Si| ≤ · · · ≤ E |S1|= 1. (2.21)

We prove next that

πk = P(Sk ̸= /0)≤ 4
k
. (2.22)

This is clearly true for k ≤ 4 and we obtain (2.22) by induction from

πk+1 ≤
n−1

∑
i=1

(
n−1

i

)
pi(1− p)n−1−i(1− (1−πk)

i). (2.23)

To explain the above inequality note that we can couple the construction of S1,S2, . . . ,Sk
with a (branching) process where T1 = {1} and Tk+1 is obtained from Tk as fol-
lows: each Tk independently spawns Bin(n− 1, p) individuals. Note that |Tk|
stochastically dominates |Sk|. This is because in the BFS process, each w ∈ Sk
gives rise to at most Bin(n−1, p) new vertices. Inequality (2.23) follows, because
Tk+1 ̸= /0 implies that at least one of 1’s children give rise to descendants at level
k. Going back to (2.23) we get

πk+1 ≤ 1− (1− p)n−1− (1− p+ p(1−πk))
n−1 +(1− p)n−1

= 1− (1− pπk)
n−1

≤ 1−1+(n−1)pπk−
(

n−1
2

)
p2

π
2
k +

(
n−1

3

)
p3

π
3
k

≤ πk−
(

1
2
+o(1)

)
π

2
k +

(
1
6
+o(1)

)
π

3
k
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= πk

(
1−πk

((
1
2
+o(1)

)
−
(

1
6
+o(1)

)
πk

))
≤ πk

(
1− 1

4
πk

)
.

This expression increases for 0≤ πk ≤ 1 and immediately gives π5 ≤ 3/4≤ 4/5.
In general we have by induction that

πk+1 ≤
4
k

(
1− 1

k

)
≤ 4

k+1
,

completing the inductive proof of (2.22).

Let Cx be the component containing x and let ρx = max{k : Sk ̸= /0} in the BFS
from x. Let

X =
∣∣∣{x : |Cx| ≥ n2/3

}∣∣∣≤ X1 +X2,

where
X1 =

∣∣∣{x : |Cx| ≥ n2/3 and ρx ≤ n1/3
}∣∣∣ ,

X2 =
∣∣∣{x : ρx > n1/3

}∣∣∣ .
It follows from (2.22) that

P(ρx > n1/3)≤ 4
n1/3

and so
EX2 ≤ 4n2/3.

Furthermore,

P
{
|Cx| ≥ n2/3 and ρx ≤ n1/3

}
≤ P

(
|S1|+ . . .+ |Sn1/3| ≥ n2/3

)
≤

E(|S1|+ . . .+ |Sn1/3|)
n2/3

≤ 1
n1/3 ,

after using (2.21). So EX1 ≤ n2/3 and EX ≤ 5n2/3.
Now let Cmax denote the size of the largest component. Now

Cmax ≤ |X |+n2/3
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where the addition of n2/3 accounts for the case where X = 0.
So we have

ECmax ≤ 6n2/3

and part (ii) of the theorem follows from the Markov inequality (see Lemma 26.1).

2.4 Exercises

2.4.1 Prove Theorem 2.15.

2.4.2 Show that if p = ω/n where ω = ω(n)→ ∞ then w.h.p. Gn,p contains no
unicyclic components. (A component is unicyclic if it contains exactly one
cycle i.e. is a tree plus one extra edge).

2.4.3 Prove Theorem 2.17.

2.4.4 Suppose that m = cn/2 where c > 1 is a constant. Let C1 denote the giant
component of Gn,m, assuming that it exists. Suppose that C1 has n′ ≤ n
vertices and m′ ≤ m edges. Let G1,G2 be two connected graphs with n′

vertices from [n] and m′ edges. Show that

P(C1 = G1) = P(C1 = G2).

(I.e. C1 is a uniformly random connected graph with n′ vertices and m′

edges).

2.4.5 Suppose that Z is the length of the cycle in a randomly chosen connected
unicyclic graph on vertex set [n]. Show that, where N =

(n
2

)
,

EZ =
nn−2(N−n+1)

C(n,n)
.

2.4.6 Suppose that c < 1. Show that w.h.p. the length of the longest path in Gn,p,
p = c

n is ≈ logn
log1/c .

2.4.7 Suppose that c ̸= 1 is constant. Show that w.h.p. the number of edges in the
largest component that is a path in Gn,p, p = c

n is ≈ logn
c−logc .
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2.4.8 Let Gn,n,p denote the random bipartite graph derived from the complete bi-
partite graph Kn,n where each edge is included independently with probabil-
ity p. Show that if p = c/n where c > 1 is a constant then w.h.p. Gn,n,p has
a unique giant component of size ≈ 2G(c)n where G(c) is as in Theorem
2.14.

2.4.9 Consider the bipartite random graph Gn,n,p=c/n, with constant c > 1. Define
0 < x < 1 to be the solution to xe−x = ce−c. Prove that w.h.p. the 2-core of
Gn,n,p=c/n has ≈ 2(1− x)

(
1− x

c

)
n vertices and ≈ c

(
1− x

c

)2 n edges.

2.4.10 Let p = 1+ε

n . Show that if ε is a small positive constant then w.h.p. Gn,p

contains a giant component of size (2ε +O(ε2))n.

2.4.11 Let m= n
2 +s, where s= s(n)≥ 0. Show that if s≫ n2/3 then w.h.p. the ran-

dom graph Gn,m contains exactly one complex component. (A component
C is complex if it contains at least two distinct cycles. In terms of edges, C
is complex iff it contains at last |C|+1 edges).

2.4.12 Let mk(n) = n(logn+ (k− 1) log logn+ω)/(2k), where |ω| → ∞, |ω| =
o(logn). Show that

P(Gmk ̸⊇ k-vertex-tree-component) =

{
o(1) if ω →−∞

1−o(1) if ω → ∞
.

2.4.13 Let k ≥ 3 be fixed and let p = c
n . Show that if c is sufficiently large, then

w.h.p. the k-core of Gn,p is non-empty.

2.4.14 Let k ≥ 3 be fixed and let p = c
n . Show that there exists θ = θ(c,k) > 0

such that w.h.p. all vertex sets S with |S| ≤ θn contain fewer than k|S|/2
edges. Deduce that w.h.p. either the k-core of Gn,p is empty or it has size at
least θn.

2.4.15 Suppose that p = c
n where c > 1 is a constant. Show that w.h.p. the giant

component of Gn,p is non-planar. (Hint: Assume that c = 1+ ε where ε is
small. Remove a few vertices from the giant so that the girth is large. Now
use Euler’s formula).

2.4.16 Show that if ω = ω(n)→ ∞ then w.h.p. Gn,p has at most ω complex com-
ponents.

2.4.17 Suppose that np→ ∞ and 3≤ k = O(1). Show that Gn,p contains a k-cycle
w.h.p.
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2.4.18 Suppose that p = c/n where c > 1 is constant and let β = β (c) be the
smallest root of the equation

1
2

cβ +(1−β )ce−cβ = log
(

c(1−β )(β−1)/β

)
.

(a) Show that if ω/ logn→ ∞ and ω ≤ k ≤ βn then w.h.p. Gn,p contains
no maximal induced tree of size k.

(b) Show that w.h.p. Gn,p contains an induced tree of size (logn)2.

(c) Deduce that w.h.p. Gn,p contains an induced tree of size at least βn.

2.4.19 Show that if c ̸= 1 and xe−x = ce−c where 0 < x < 1 then

1
c

∞

∑
k=1

kk−2

k!
(ce−c)k =

{
1− c

2 c < 1.
x
c

(
1− x

2

)
c > 1.

2.4.20 Let Gδ≥k
N,M denote a graph chosen uniformly at random from the set of graphs

with vertex set [N], M edges and minimum degree at least k. Let Ck denote
the k core of Gn,m (if it exists). Show that conditional on |Ck| = N and
|E(Ck)|= M that the graph induced by Ck is distributed as Gδ≥k

N,M.

2.4.21 Let p = c/n. Run the Breadth First Search algorithm on Gn,p. Denote by S
the set of vertices that have already been used and uncovered, Q the set of
active vertices in the queue, and T the remaining vertices. Denote by q(s)
the size of Q at the time that |S|= s. Assume that the first vertex to enter Q
belongs to the giant component. Then, finding the expected value of s for
which q(s) = 0 again will give us the size of the giant. Use the Differential
Equations method of Chapter 28 to obtain the size of the giant given in
Theorem 2.14. (This idea was given to us in a private communication by
Sahar Diskin and Michael Krivelevich.)

2.5 Notes

Phase transition
The paper by Łuczak, Pittel and Wierman [642] contains a great deal of informa-
tion about the phase transition. In particular, [642] shows that if m = n/2+λn2/3

then the probability that Gn,m is planar tends to a limit p(λ ), where p(λ )→ 0 as
λ → ∞. The landmark paper by Janson, Knuth, Łuczak and Pittel [513] gives the
most detailed analysis to date of the events in the scaling window. Ambroggio and
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Roberts [49], [50] discuss the probability of finding unusually large components
in the scaling window and in critical percolation on random regular graphs. Am-
broggio in [48] discusses the case of unusually small maximal components in the
same models.

Outside of the critical window n
2 ±O(n2/3) the size of the largest component

is asymptotically determined. Theorem 2.17 describes Gn,m before reaching the
window and on the other hand a unique “giant” component of size ≈ 4s begins to
emerge at around m = n

2 + s, for s≫ n2/3. Ding, Kim, Lubetzky and Peres [296]
give a useful model for the structure of this giant.

Achlioptas processes

Dimitris Achlipotas proposed the following variation on the basic graph process.
Suppose that instead of adding a random edge ei to add to Gi−1 to create Gi,
one is given a choice of two random edges ei, fi and one chooses one of them
to add. He asked whether it was possible to come up with a choice rule that
would delay the occurrence of some graph property P . As an initial challenge
he asked whether it was possible to delay the production of a giant component
beyond n/2. Bohman and Frieze [137] showed that this was possible by the use
of a simple rule. Since that time this has grown into a large area of research. Kang,
Perkins and Spencer [545] have given a more detailed analysis of the “Bohman-
Frieze” process. Bohman and Kravitz [144] and in greater generality Spencer and
Wormald [813] analyse “bounded size algorithms” in respect of avoiding giant
components. Flaxman, Gamarnik and Sorkin [368] consider how to speed up the
occurrence of a giant component. Riordan and Warnke [764] discuss the speed of
transition at a critical point in an Achlioptas process.

The above papers concern component structure. Krivelevich, Loh and Su-
dakov [595] considered rules for avoiding specific subgraphs. Krivelevich, Lubet-
zky and Sudakov [596] discuss rules for speeding up Hamiltonicity.

Graph Minors

Fountoulakis, Kühn and Osthus [374] show that for every ε > 0 there exists Cε

such that if np >Cε and p = o(1) then w.h.p. Gn,p contains a complete minor of

size (1± ε)
(

n2 p
lognp

)
. This improves earlier results of Bollobás, Catlin and Erdős

[159] and Krivelevich and Sudakov [603]. Ajtai, Komlós and Szemerédi [13]
showed that if np≥ 1+ε and np = o(n1/2) then w.h.p. Gn,p contains a toplogical
clique of size almost as large as the maximum degree. If we know that Gn,p is non-
planar w.h.p. then it makes sense to determine its thickness. This is the minimum
number of planar graphs whose union is the whole graph. Cooper [243] showed
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that the thickness of Gn,p is strongly related to its arboricity and is asymptotic to
np/2 for a large range of p.



Chapter 3

Vertex Degrees

In this chapter we study some typical properties of the degree sequence of a ran-
dom graph. We begin by discussing the typical degrees in a sparse random graph
i.e. one with O(n) edges and prove some results on the asymptotic distribution
of degrees. Next we look at the typical values of the minimum and maximum
degrees in dense random graphs. We then describe a simple canonical labelling
algorithm for the graph isomorphism problem on a dense random graph.

3.1 Degrees of Sparse Random Graphs
Recall that the degree of an individual vertex of Gn,p is a Binomial random vari-
able with parameters n− 1 and p. One should also notice that the degrees of
different vertices are only mildly correlated.

We will first prove some simple but often useful properties of vertex degrees
when p = o(1). Let X0 = Xn,0 be the number of isolated vertices in Gn,p. In
Lemma 1.11, we established the sharp threshold for “disappearance” of such ver-
tices. Now we will be more precise and determine the asymptotic distribution of
X0 “below”, “on” and “above” the threshold. Obviously,

EX0 = n(1− p)n−1,

and an easy computation shows that, as n→ ∞,

EX0→


∞ if np− logn→−∞

e−c if np− logn→ c, c < ∞,

0 if np− logn→ ∞

(3.1)

We denote by Po(λ ) a random variable with the Poisson distribution with
parameter λ , while N(0,1) denotes the random variable with the Standard Normal
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distribution. We write Xn
D→ X to say that a random variable Xn converges in

distribution to a random variable X , as n→ ∞.
The following theorem shows that the asymptotic distribution of X0 passes

through three phases: it starts in the Normal phase; next when isolated vertices
are close to “dying out”, it moves through a Poisson phase; it finally ends up at
the distribution concentrated at 0.

Theorem 3.1. Let X0 be the random variable counting isolated vertices in a ran-
dom graph Gn,p. Then, as n→ ∞,

(i) X̃0 = (X0−EX0)/(VarX0)
1/2 D→ N(0,1),

if n2 p→ ∞ and np− logn→−∞,

(ii) X0
D→ Po(e−c), if np− logn→ c, c < ∞,

(iii) X0
D→ 0, if np− logn→ ∞.

Proof. For the proof of (i) we refer the reader to Chapter 6 of Janson, Łuczak and
Ruciński [509] (or to [76] and [586]).

To prove (ii) one has to show that if p = p(n) is such that np− logn→ c , then

lim
n→∞

P(X0 = k) =
e−ck

k!
e−e−c

, (3.2)

for k = 0,1, ... . Now,
X0 = ∑

v∈V
Iv,

where

Iv =

{
1 if v is an isolated vertex in Gn,p

0 otherwise.

So

EX0 = ∑
v∈V

E Iv = n(1− p)n−1

= nexp{(n−1) log(1− p)}

= nexp

{
−(n−1)

∞

∑
k=1

pk

k

}
= nexp

{
−(n−1)p+O(np2)

}
= nexp

{
−(logn+ c)+O

(
(logn)2

n

)}
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≈ e−c. (3.3)

The easiest way to show that (3.2) holds is to apply the Method of Moments
(see Chapter 26). Briefly, since the distribution of the random variable X0 is
uniquely determined by its moments, it is enough to show, that either the kth fac-
torial moment EX0(X0−1) · · ·(X0− k+1) of X0, or its binomial moment E

(X0
k

)
,

tend to the respective moments of the Poisson distribution, i.e., to either e−ck or
e−ck/k!. We choose the binomial moments, and so let

B(n)
k = E

(
X0

k

)
,

then, for every non-negative integer k,

B(n)
k = ∑

1≤i1<i2<···<ik≤n
P(Ivi1

= 1, Ivi2
= 1, . . . , Ivik

= 1),

=

(
n
k

)
(1− p)k(n−k)+(k

2).

Hence

lim
n→∞

B(n)
k =

e−ck

k!
,

and part (ii) of the theorem follows by Theorem 26.11, with λ = e−c.
For part (iii), suppose that np = logn+ω where ω → ∞. We repeat the cal-

culation estimating EX0 and replace ≈ e−c in (3.3) by ≤ (1+o(1))e−ω → 0 and
apply the first moment method.

From the above theorem we immediately see that if np− logn→ c then

lim
n→∞

P(X0 = 0) = e−e−c
. (3.4)

We next give a more general result describing the asymptotic distribution of
the number Xd = Xn,d , d ≥ 1 of vertices of any fixed degree d in a random graph.

Recall, that the degree of a vertex in Gn,p has the binomial distribution Bin(n−
1, p). Hence,

EXd = n
(

n−1
d

)
pd(1− p)n−1−d. (3.5)

Therefore, as n→ ∞,

EXd →



0 if p≪ n−(d+1)/d,

λ1 if p≈ cn−(d+1)/d, c < ∞,

∞ if p≫ n−(d+1)/d) but
pn− logn−d log logn→−∞,

λ2 if pn− logn−d log logn→ c, c < ∞,

0 if pn− logn−d log logn→ ∞,

(3.6)
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where

λ1 =
cd

d!
and λ2 =

e−c

d!
. (3.7)

The asymptotic behavior of the expectation of the random variable Xd suggests
possible asymptotic distributions for Xd , for a given edge probability p.

Theorem 3.2. Let Xd = Xn,d be the number of vertices of degree d,
d ≥ 1, in Gn,p and let λ1,λ2 be given by (3.7). Then, as n→ ∞,

(i) Xd
D→ 0 if p≪ n−(d+1)/d ,

(ii) Xd
D→ Po(λ1) if p≈ cn−(d+1)/d, c < ∞,

(iii) X̃d := (Xd−EXd)/(VarXd)
1/2 D→ N(0,1) if p≫ n−(d+1)/d , but

pn− logn−d log logn→−∞

(iv) Xd
D→ Po(λ2) if pn− logn−d log logn→ c, −∞ < c < ∞,

(v) Xd
D→ 0 if pn− logn−d log logn→ ∞

Proof. The proofs of statements (i) and (v) are straightforward applications of the
first moment method, while the proofs of (ii) and (iv) can be found in Chapter 3
of Bollobás [147] (see also Karoński and Ruciński [553] for estimates of the rate
of convergence). The proof of (iii) can be found in [76].

The next theorem shows the concentration of Xd around its expectation when
in Gn,p the edge probability p = c/n, i.e., when the average vertex degree is c.

Theorem 3.3. Let p = c/n where c is a constant. Let Xd denote the number of
vertices of degree d in Gn,p. Then, for d = O(1), w.h.p.

Xd ≈
cde−c

d!
n.

Proof. Assume that vertices of Gn,p are labeled 1,2, . . . ,n. We first compute EXd .
Thus,

EXd = nP(deg(1) = d) =

= n
(

n−1
d

)(c
n

)d (
1− c

n

)n−1−d
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= n
nd

d!

(
1+O

(
d2

n

))(c
n

)d
exp
{
−(n−1−d)

(
c
n
+O

(
1
n2

))}
= n

cde−c

d!

(
1+O

(
1
n

))
.

We now compute the second moment. For this we need to estimate

P(deg(1) = deg(2) = d)

=
c
n

((
n−2
d−1

)(c
n

)d−1(
1− c

n

)n−1−d
)2

+
(

1− c
n

)((n−2
d

)(c
n

)d (
1− c

n

)n−2−d
)2

= P(deg(1) = d)P(deg(2) = d)
(

1+O
(

1
n

))
.

The first line here accounts for the case where {1,2} is an edge and the second
line deals with the case where it is not.

Thus

VarXd =

=
n

∑
i=1

n

∑
j=1

[P(deg(i) = d,deg( j) = d)−P(deg(1) = d)P(deg(2) = d)]

≤
n

∑
i ̸= j=1

O
(

1
n

)
+EXd ≤ An,

for some constant A = A(c).
Applying the Chebyshev inequality ( Lemma 26.3), we obtain

P(|Xd−EXd| ≥ tn1/2)≤ A
t2 ,

which completes the proof.
We conclude this section with a look at the asymptotic behavior of the maxi-

mum vertex degree, when a random graph is sparse.

Theorem 3.4. Let ∆(Gn,p) (δ (Gn,p)) denotes the maximum (minimum) degree of
vertices of Gn,p.

(i) If p = c/n for some constant c > 0 then w.h.p.

∆(Gn,p)≈
logn

log logn
.
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(ii) If np = ω logn where ω → ∞, then w.h.p. δ (Gn,p)≈ ∆(Gn,p)≈ np.

Proof. (i) Let d± =
⌈

logn
log logn±2logloglogn

⌉
. Then, if d = d−,

P(∃v : deg(v)≥ d)≤ n
(

n−1
d

)(c
n

)d

≤ n
(ce

d

)d

= exp{logn−d logd +O(d)} (3.8)

Let λ = log loglogn
log logn . Then

d logd ≥ logn
log logn

· 1
1−2λ

· (log logn− log loglogn+o(1))

=
logn

log logn
(1+2λ +O(λ 2))(log logn− log loglogn+o(1))

=
logn

log logn
(log logn+ log loglogn+o(1)). (3.9)

Plugging this into (3.8) shows that ∆(Gn,p)≤ d− w.h.p.
Now let d = d+ and let Xd be the number of vertices of degree d in Gn,p. Then

E(Xd) = n
(

n−1
d

)(c
n

)d (
1− c

n

)n−d−1

= exp{logn−d logd +O(d)}

= exp
{

logn− logn
log logn

(log logn− log loglogn+o(1))+O(d)
}

(3.10)

→ ∞.

Here (3.10) is obtained by using −λ in place of λ in the argument for (3.9). Now,
for vertices v,w, by the same argument as in the proof of Theorem 3.3, we have

P(deg(v) = deg(w) = d) = (1+o(1))P(deg(v) = d)P(deg(w) = d),

and the Chebyshev inequality implies that Xd > 0 w.h.p. This completes the proof
of (i).

Statement (ii) is an easy consequence of the Chernoff bounds, Corollary 27.7.
Let ε = ω−1/3. Then

P(∃v : |deg(v)−np| ≥ εnp)≤ 2ne−ε2np/3 = 2n−ω1/3/3 = o(n−1).
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3.2 Degrees of Dense Random Graphs
In this section we will concentrate on the case where edge probability p is constant
and see how the degree sequence can be used to solve the graph isomorphism
problem w.h.p. The main result deals with the maximum vertex degree in dense
random graph and is instrumental in the solution of this problem.

Theorem 3.5. Let d± = (n−1)p+(1±ε)
√

2(n−1)pq logn, where q = 1− p. If
p is constant and ε > 0 is a small constant, then w.h.p.

(i) d− ≤ ∆(Gn,p)≤ d+.

(ii) There is a unique vertex of maximum degree.

Proof. We break the proof of Theorem 3.5 into two lemmas.

Lemma 3.6. Let d = (n− 1)p+ x
√

(n−1)pq, p be constant, x ≤ n1/3(logn)2,
where q = 1− p. Then

Bd =

(
n−1

d

)
pd(1− p)n−1−d = (1+o(1))

√
1

2πnpq
e−x2/2

= the probability that an individual vertex has degree d.

Proof. Stirling’s formula gives

Bd = (1+o(1))

√
1

2πnpq

((
(n−1)p

d

) d
n−1
(

(n−1)q
n−1−d

)1− d
n−1
)n−1

. (3.11)

Now (
d

(n−1)p

) d
n−1

=

(
1+ x

√
q

(n−1)p

) d
n−1

=

= exp
{(

x
√

q
(n−1)p

− x2q
2(n−1)p

+O
(

x3

n3/2

))(
p+ x

√
pq

n−1

)}
= exp

{
x
√

pq
n−1

+
x2q

2(n−1)
+O

(
x3

n3/2

)}
,

whereas(
n−1−d
(n−1)q

)1− d
n−1

=

(
1− x

√
p

(n−1)q

)1− d
n−1

=

= exp
{
−
(

x
√

p
(n−1)q

+
x2 p

2(n−1)q
+O

(
x3

n3/2

))(
q− x

√
pq

n−1

)}



58 Chapter 3. Vertex Degrees

= exp
{
−x
√

pq
n−1

+
x2 p

2(n−1)
+O

(
x3

n3/2

)}
,

So (
d

(n−1)p

) d
n−1
(

n−1−d
(n−1)q

)1− d
n−1

= exp
{

x2

2(n−1)
+O

(
x3

n3/2

)}
,

and lemma follows from (3.11).
The next lemma proves a strengthing of Theorem 3.5.

Lemma 3.7. Let ε = 1/10, and p be constant and q = 1− p. If

d± = (n−1)p+(1± ε)
√

2(n−1)pq logn.

then w.h.p.

(i) ∆(Gn,p)≤ d+,

(ii) There are Ω(n2ε(1−ε)) vertices of degree at least d−,

(iii) ̸ ∃ u ̸= v such that deg(u),deg(v)≥ d− and |deg(u)−deg(v)| ≤ 10.

Proof. We first prove that as x→ ∞,

1
x

e−x2/2
(

1− 1
x2

)
≤
∫

∞

x
e−y2/2dy≤ 1

x
e−x2/2. (3.12)

To see this, notice∫
∞

x
e−y2/2dy =−

∫
∞

x

1
y

(
e−y2/2

)′
dy

=−
[

1
y

e−y2/2
]∞

x
−
∫

∞

x

1
y2 e−y2/2dy

=
1
x

e−x2/2 +

[
1
y3 e−y2/2

]∞

x
+3

∫
∞

x

1
y4 e−y2/2dy

=
1
x

e−x2/2
(

1− 1
x2

)
+O

(
1
x4 e−x2/2

)
.

We can now prove statement (i).
Let Xd be the number of vertices of degree d. Then EXd = nBd and so Lemma
3.6 implies that

EXd = (1+o(1))
√

n
2π pq

exp

−1
2

(
d− (n−1)p√

(n−1)pq

)2
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assuming that
d ≤ dL = (n−1)p+(logn)2

√
(n−1)pq.

Also, if d > (n−1)p then

Bd+1

Bd
=

(n−d−1)p
(d +1)q

< 1

and so if d ≥ dL,
EXd ≤ EXdL ≤ nexp{−Ω(logn)4}.

It follows that
∆(Gn,p)≤ dL w.h.p. (3.13)

Now if Yd = Xd +Xd+1 + · · ·+XdL for d = d± then

EYd ≈
dL

∑
l=d

√
n

2π pq
exp

−1
2

(
l− (n−1)p√
(n−1)pq

)2


≈
∞

∑
l=d

√
n

2π pq
exp

−1
2

(
l− (n−1)p√
(n−1)pq

)2
 (3.14)

≈
√

n
2π pq

∫
∞

λ=d
exp

−1
2

(
λ − (n−1)p√

(n−1)pq

)2
dλ .

The justification for (3.14) comes from

∞

∑
l=dL

√
n

2π pq
exp

−1
2

(
l− (n−1)p√
(n−1)pq

)2
=

= O(n)
∞

∑
x=(logn)2

e−x2/2 = O(e−(logn)2/3),

and √
n

2π pq
exp

−1
2

(
d+− (n−1)p√

(n−1)pq

)2
= n−O(1).

If d = (n−1)p+ x
√

(n−1)pq then, from (3.12) we have

EYd ≈
√

n
2π pq

∫
∞

λ=d
exp

−1
2

(
λ − (n−1)p√

(n−1)pq

)2
dλ
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=

√
n

2π pq

√
(n−1)pq

∫
∞

y=x
e−y2/2dy

≈ n√
2π

1
x

e−x2/2{
≤ n−2ε(1+ε) d = d+
≥ n2ε(1−ε) d = d−

. (3.15)

Part (i) follows from (3.15).
When d = d− we see from (3.15) that EYd → ∞. We use the second moment

method to show that Yd− ̸= 0 w.h.p.

EYd(Yd−1) = n(n−1)
dL

∑
d≤d1,d2

P(deg(1) = d1,deg(2) = d2)

= n(n−1)
dL

∑
d≤d1,d2

(pP(d̂(1) = d1−1, d̂(2) = d2−1)

+(1− p)P(d̂(1) = d1, d̂(2) = d2)),

where d̂(x) is the number of neighbors of x in {3,4, . . . ,n}. Note that d̂(1) and
d̂(2) are independent, and

P(d̂(1) = d1−1)
P(d̂(1) = d1)

=

( n−2
d1−1

)
(1− p)(n−2

d1

)
p

=
d1(1− p)

(n−1−d1)p

= 1+ Õ(n−1/2).

In Õ we ignore polylog factors.
Hence

E(Yd(Yd−1))

= n(n−1)
dL

∑
d≤d1,d2

[
P(d̂(1) = d1)P(d̂(2) = d2)(1+ Õ(n−1/2))

]
= n(n−1)

dL

∑
d≤d1,d2

[
P(deg(1) = d1)P(deg(2) = d2)(1+ Õ(n−1/2))

]
= EYd(EYd−1)(1+ Õ(n−1/2)),

since

P(d̂(1) = d1)

P(deg(1) = d1)
=

(n−2
d1

)(n−1
d1

)(1− p)−1
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= 1+ Õ(n−1/2).

So, with d = d−

P
(

Yd ≤
1
2
EYd

)
≤ E(Yd(Yd−1))+EYd− (EYd)

2

(EYd)2/4

= Õ
(

1
nε

)
= o(1).

This completes the proof of statement (ii). Finally,

P(¬(iii))≤ o(1)+
(

n
2

) dL

∑
d1=d−

∑
|d2−d1|≤10

P(deg(1) = d1,deg(2) = d2)

= o(1)+
(

n
2

) dL

∑
d1=d−

∑
|d2−d1|≤10

[
pP(d̂(1) = d1−1)P(d̂(2) = d2−1)

+(1− p)P(d̂(1) = d1)P(d̂(2) = d2)
]
,

Now

dL

∑
d1=d−

∑
|d2−d1|≤10

P(d̂(1) = d1−1)P(d̂(2) = d2−1)

≤ 21(1+ Õ(n−1/2))
dL

∑
d1=d−

[
P(d̂(1) = d1−1)

]2
,

and by Lemma 3.6 and by (3.12) we have with

x =
d−− (n−1)p√

(n−1)pq
≈ (1− ε)

√
2logn,

dL

∑
d1=d−

[
P(d̂(1) = d1−1)

]2 ≈ 1
2π pqn

∫
∞

y=x
e−y2

dy

=
1√

8π pqn

∫
∞

z=x
√

2
e−z2/2dz

≈ 1√
8π pqn

1
x
√

2
n−2(1−ε)2

,
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We get a similar bound for ∑
dL
d1=d−∑|d2−d1|≤10

[
P(d̂(1) = d1

]2
. Thus

P(¬(iii)) = o
(

n2−1−2(1−ε)2
)

= o(1).

Application to graph isomorphism

In this section we describe a procedure for canonically labelling a graph G. It is
taken from Babai, Erdős and Selkow [57]. If the procedure succeeds then it is
possible to quickly tell whether G∼= H for any other graph H. (Here ∼= stands for
graph isomorphism).
Algorithm LABEL
Step 0: Input graph G and parameter L.
Step 1: Re-label the vertices of G so that they satisfy

dG(v1)≥ dG(v2)≥ ·· · ≥ dG(vn).

If there exists i < L such that dG(vi) = dG(vi+1), then FAIL.
Step 2: For i > L let

Xi = { j ∈ {1,2, . . . ,L} :
{

vi,v j
}
∈ E(G)}.

Re-label vertices vL+1,vL+2, . . . ,vn so that these sets satisfy

XL+1 ≻ XL+2 ≻ ·· · ≻ Xn

where ≻ denotes lexicographic order.
If there exists i < n such that Xi = Xi+1 then FAIL.

Suppose now that the above ordering/labelling procedure LABEL succeeds
for G. Given an n vertex graph H, we run LABEL on H.

(i) If LABEL fails on H then G ̸∼= H.

(ii) Suppose that the ordering generated on V (H) is w1,w2, . . . ,wn. Then

G∼= H⇔ vi→ wi is an isomorphism.

It is straightforward to verify (i) and (ii).
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Theorem 3.8. Let p be a fixed constant, q = 1− p, and let ρ = p2 + q2 and let
L = 3log1/ρ n. Then w.h.p. LABEL succeeds on Gn,p.

Proof. Lemma 3.7 implies that Step 1 succeeds w.h.p. We must now show that
w.h.p. Xi ̸= X j for all i ̸= j > L. There is a slight problem because the edges from
vi, i > L to v j, j ≤ L are conditioned by the fact that the latter vertices are those of
highest degree.

Now fix i, j and let Ĝ = Gn,p \ {vi,v j}. It follows from Lemma 3.7 that if
i, j > L then w.h.p. the L largest degree vertices of Ĝ and Gn,p coincide. So, w.h.p.,
we can compute Xi,X j with respect to Ĝ to create X̂i, X̂ j, which are independent of
the edges incident with vi,v j. It follows that if i, j > L then X̂i = Xi and X̂ j = X jand
this avoids our conditioning problem. Denote by NĜ(v) the set of the neighbors
of vertex v in graph Ĝ. Then

P(Step 2 fails)
≤ o(1)+P(∃vi,v j : NĜ(vi)∩{v1, . . . ,vL}= NĜ(v j)∩{v1, . . . ,vL})

≤ o(1)+
(

n
2

)
(p2 +q2)L

= o(1).

Corollary 3.9. If 0 < p < 1 is constant then w.h.p. Gn,p has a unique automor-
phism, i.e. the identity automorphism.

See Exercise 3.3.9.

Application to edge coloring

The chromatic index χ ′(G) of a graph G is the minimum number of colors that
can be used to color the edges of G so that if two edges share a vertex, then they
have a different color. Vizing’s theorem states that

∆(G)≤ χ
′(G)≤ ∆(G)+1.

Also, if there is a unique vertex of maximum degree, then χ ′(G) = ∆(G). So,
it follows from Theorem 3.5 (ii) that, for constant p, w.h.p. we have χ ′(Gn,p) =
∆(Gn,p).
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3.3 Exercises

3.3.1 Suppose that m = dn/2 where d is constant. Prove that the number of ver-
tices of degree k in Gn,m is asymptotically equal to dke−d

k! n for any fixed
positive integer k.

3.3.2 Suppose that c > 1 and that x < 1 is the solution to xe−x = ce−c. Show
that if c = O(1) is fixed then w.h.p. the giant component of Gn,p, p = c

n has

≈ cke−c

k!

(
1−
(x

c

)k
)

n vertices of degree k ≥ 1.

3.3.3 Suppose that p≤ 1+εn
n where n1/4εn→ 0. Show that if Γ is the sub-graph of

Gn,p induced by the 2-core C2, then Γ has maximum degree at most three.

3.3.4 Let p = logn+d log logn+c
n , d ≥ 1. Using the method of moments, prove that

the number of vertices of degree d in Gn,p is asymptotically Poisson with
mean e−c

d! .

3.3.5 Prove parts (i) and (v) of Theorem 3.2.

3.3.6 Show that if 0 < p < 1 is constant then w.h.p. the minimum degree δ in
Gn,p satisfies

|δ − (n−1)q−
√

2(n−1)pq logn| ≤ ε
√

2(n−1)pq logn,

where q = 1− p and ε = 1/10.

3.3.7 Show that if p = c logn
n where c > 1 is a constant then w.h.p.the mini-

mum degree in Gn,p is at least α0 logn where α0 is the smallest root of
α log(ce/α) = c−1.

3.3.8 Show that if p = c logn
n where c > 1 is a constant then w.h.p.the maxi-

mum degree in Gn,p is at most α1c logn where α1 is the largest root of
α log(ce/α) = c−1.

3.3.9 Use the canonical labelling of Theorem 3.8 to show that w.h.p. Gn,1/2 has
exactly one automprphism, the identity automorphism. (An automorphism
of a graph G = (V,E) is a map ϕ : V →V such that {x,y} ∈ E if and only if
{ϕ(x),ϕ(y)} ∈ E.)
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3.4 Notes
For the more detailed account of the properties of the degree sequence of Gn,p the
reader is referred to Chapter 3 of Bollobás [155].

Erdős and Rényi [331] and [333] were first to study the asymptotic distri-
bution of the number Xd of vertices of degree d in relation with connectivity
of a random graph. Bollobás [151] continued those investigations and provided
detailed study of the distribution of Xd in Gn,p when 0 < liminfnp(n)/ logn ≤
limsupnp(n)/ logn < ∞. Palka [722] determined certain range of the edge prob-
ability p for which the number of vertices of a given degree of a random graph
Gn,p has a Normal distribution. Barbour [73] and Karoński and Ruciński [553]
studied the distribution of Xd using the Stein–Chen approach. A complete answer
to the asymptotic Normality of Xd was given by Barbour, Karoński and Ruciński
[76] (see also Kordecki [586]). Janson [502] extended those results and showed
that random variables counting vertices of given degree are jointly normal, when
p≈ c/n in Gn,p and m≈ cn in Gn,m, where c is a constant.

Ivchenko [491] was the first to analyze the asymptotic behavior of the kth-
largest and kth smallest element of the degree sequence of Gn,p. In particular he
analysed the span between the minimum and the maximum degree of sparse Gn,p.
Similar results were obtained independently by Bollobás [149] (see also Palka
[723]). Bollobás [151] answered the question for what values of p(n), Gn,p w.h.p.
has a unique vertex of maximum degree (see Theorem 3.5).

Bollobás [146], for constant p, 0 < p < 1, i.e., when Gn,p is dense, gave an es-
timate of the probability that maximum degree does not exceed pn+O(

√
n logn).

A more precise result was proved by Riordan and Selby [761] who showed that
for constant p, the probability that the maximum degree of Gn,p does not exceed
pn+b

√
np(1− p), where b is fixed, is equal to (c+o(1))n, for c = c(b) the root

of a certain equation. Surprisingly, c(0) = 0.6102... is greater than 1/2 and c(b)
is independent of p.

McKay and Wormald [673] proved that for a wide range of functions p =
p(n), the distribution of the degree sequence of Gn,p can be approximated by
{(X1, . . . ,Xn)|∑Xi is even}, where X1, . . . ,Xn are independent random variables
each having the Binomial distribution Bin(n− 1, p′), where p′ is itself a random
variable with a particular truncated normal distribution
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Chapter 4

Connectivity

We first establish, rather precisely, the threshold for connectivity. We then view
this property in terms of the graph process and show that w.h.p. the random graph
becomes connected at precisely the time when the last isolated vertex joins the
giant component. This “hitting time” result is the pre-cursor to several similar
results. After this we deal with k-connectivity.

4.1 Connectivity
The first result of this chapter is from Erdős and Rényi [331].

Theorem 4.1. Let m = 1
2n(logn+ cn). Then

lim
n→∞

P(Gm is connected) =


0 if cn→−∞,

e−e−c
if cn→ c (constant)

1 if cn→ ∞.

Proof. To prove the theorem we consider, as before, a random graph Gn,p. It
suffices to prove that, when p = logn+c

n ,

P(Gn,p is connected )→ e−e−c
.

and use Theorem 1.4 to translate to Gm and then use (1.7) and monotonicity for
cn→±∞.

Let Xk = Xk,n be the number of components with k vertices in Gn,p and con-
sider the complement of the event that Gn,p is connected. Then

P(Gn,p is not connected )
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= P

n/2⋃
k=1

(Gn,p has a component of order k)

=

P

n/2⋃
k=1

{Xk > 0}

 .

Note that X1 counts here isolated vertices and therefore

P(X1 > 0)≤ P(Gn,p is not connected )≤ P(X1 > 0)+
n/2

∑
k=2

P(Xk > 0).

Now

n/2

∑
k=2

P(Xk > 0)≤
n/2

∑
k=2

EXk ≤
n/2

∑
k=2

(
n
k

)
kk−2 pk−1(1− p)k(n−k) =

n/2

∑
k=2

uk.

Now, for 2≤ k ≤ 10,

uk ≤ eknk
(

logn+ c
n

)k−1

e−k(n−10) logn+c
n

≤ (1+o(1))ek(1−c)
(

logn
n

)k−1

,

and for k > 10

uk ≤
(ne

k

)k
kk−2

(
logn+ c

n

)k−1

e−k(logn+c)/2

≤ n

(
e1−c/2+o(1) logn

n1/2

)k

.

So

n/2

∑
k=2

uk ≤ (1+o(1))
e−c logn

n
+

n/2

∑
k=10

n1+o(1)−k/2

= O
(

no(1)−1
)
.

It follows that
P(Gn,p is connected ) = P(X1 = 0)+o(1).
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But we already know (Theorem 3.1) that for p = (logn+ c)/n the number of
isolated vertices in Gn,p has an asymptotically Poisson distribution and therefore,
as in (3.4)

lim
n→∞

P(X1 = 0) = e−e−c
,

and so the theorem follows.

It is possible to tweak the proof of Theorem 4.1 to give a more precise result
stating that a random graph becomes connected exactly at the moment when the
last isolated vertex disappears.

Theorem 4.2. Consider the random graph process {Gm}. Let

m∗1 = min{m : δ (Gm)≥ 1},

m∗c = min{m : Gm is connected}.

Then, w.h.p.,
m∗1 = m∗c .

Proof. Let

m± =
1
2

n logn± 1
2

n log logn,

and
p± =

m±
N
≈ logn± log logn

n
.

We first show that w.h.p.

(i) Gm− consists of a giant connected component plus a set V1 of at most 2 logn
isolated vertices,

(ii) Gm+ is connected.

Assume (i) and (ii). It follows that w.h.p.

m− ≤ m∗1 ≤ m∗c ≤ m+.

Since Gm− consists of a connected component and a set of isolated vertices V1, to
create Gm+ we add m+−m− random edges. Note that m∗1 = m∗c if none of these
edges are contained in V1. Thus

P(m∗1 < m∗c)≤ o(1)+(m+−m−)
1
2 |V1|2

N−m+
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≤ o(1)+
2n((logn)2) log logn

1
2n2−O(n logn)

= o(1).

Thus to prove the theorem, it is sufficient to verify (i) and (ii).
Let

p− =
m−
N
≈ logn− log logn

n
,

and let X1 be the number of isolated vertices in Gn,p− . Then

EX1 = n(1− p−)n−1

≈ ne−np−

≈ logn.

Moreover

EX2
1 = EX1 +n(n−1)(1− p−)2n−3

≤ EX1 +(EX1)
2(1− p−)−1.

So,
VarX1 ≤ EX1 +2(EX1)

2 p−,

and

P(X1 ≥ 2logn) = P(|X1−EX1| ≥ (1+o(1))EX1)

≤ (1+o(1))
(

1
EX1

+2p−

)
= o(1).

Having at least 2 logn isolated vertices is a monotone property and so w.h.p. Gm−
has less then 2logn isolated vertices.

To show that the rest of Gm is a single connected component we let Xk, 2 ≤
k ≤ n/2 be the number of components with k vertices in Gp− . Repeating the
calculations for p− from the proof of Theorem 4.1, we have

E

(
n/2

∑
k=2

Xk

)
= O

(
no(1)−1

)
.

Let
E = {∃ component of order 2≤ k ≤ n/2}.
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Then

P(Gm− ∈ E )≤ O(
√

n)P(Gn,p− ∈ E )

= o(1),

and this completes the proof of (i).
To prove (ii) (that Gm+ is connected w.h.p.) we note that (ii) follows from

the fact that Gn,p is connected w.h.p. for np− logn→ ∞ ( see Theorem 4.1). By
implication Gm is connected w.h.p. if nm

N − logn→ ∞. But,

nm+

N
=

n(1
2n logn+ 1

2n log logn)
N

≈ logn+ log logn.

4.2 k-connectivity

In this section we show that the threshold for the existence of vertices of degree k
is also the threshold for the k-connectivity of a random graph. Recall that a graph
G is k-connected if the removal of at most k−1 vertices of G does not disconnect
it. In the light of the previous result it should be expected that a random graph
becomes k-connected as soon as the last vertex of degree k− 1 disappears. This
is true and follows from the results of Erdős and Rényi [333]. Here is a weaker
statement. The stronger statement is left as an exercise, Exercise 4.3.1.

Theorem 4.3. Let m = 1
2n(logn+(k−1) log logn+ cn) , k = 1,2, . . .. Then

lim
n→∞

P(Gm is k-connected) =


0 if cn→−∞

e−
e−c

(k−1)! if cn→ c
1 if cn→ ∞.

Proof. Let

p =
logn+(k−1) log logn+ c

n
.

We will prove that, in Gn,p, with edge probability p above,

(i) the expected number of vertices of degree at most k−2 is o(1),

(ii) the expected number of vertices of degree k−1 is, approximately e−c

(k−1)! .
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We have

E(number of vertices of degree t ≤ k−1)

= n
(

n−1
t

)
pt(1− p)n−1−t ≈ n

nt

t!
(logn)t

nt
e−c

n(logn)k−1

and (i) and (ii) follow immediately.
The distribution of the number of vertices of degree k− 1 is asymptotically

Poisson, as may be verified by the method of moments. (See Exercise 3.3.4).
We now show that, if

A (S,T ) =
{

T is a component of Gn,p \S
}

then

P
(
∃S,T, |S|< k, 2≤ |T | ≤ 1

2
(n−|S|) : A (S,T )

)
= o(1).

This implies that if δ (Gn,p) ≥ k then Gn,p is k-connected and Theorem 4.3 fol-
lows. |T | ≥ 2 because if T = {v} then v has degree less than k.

We can assume that S is minimal and then N(T ) = S and denote s = |S|, t =
|T |. T is connected, and so it contains a tree with t−1 edges. Also each vertex of
S is incident with an edge from S to T and so there are at least s edges between S
and T . Thus, if p = (1+o(1)) logn

n then

P(∃S,T )≤ o(1)+
k−1

∑
s=1

(n−s)/2

∑
t=2

(
n
s

)(
n
t

)
tt−2 pt−1

(
st
s

)
ps(1− p)t(n−s−t)

≤ p−1
k−1

∑
s=1

(n−s)/2

∑
t=2

(ne
s
· (te) · p · et p

)s(
ne · p · e−(n−t)p

)t

≤ p−1
k−1

∑
s=1

(n−s)/2

∑
t=2

AtBs (4.1)

where

A = nepe−(n−t)p = e1+o(1)n−1+(t+o(t))/n logn

B = ne2t pet p = e2+o(1)tn(t+o(t))/n logn.

Now if 2 ≤ t ≤ logn then A = n−1+o(1) and B = O((logn)2). On the other hand,
if t > logn then we can use A ≤ n−1/3 and B ≤ n2 to see that the sum in (4.1) is
o(1).
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4.3 Exercises
4.3.1 Let k = O(1) and let m∗k be the hitting time for minimum degree at least k in

the graph process. Let t∗k be the hitting time for k-connectivity. Show that
m∗k = t∗k w.h.p.

4.3.2 Let m=m∗1 be as in Theorem 4.2 and let em = (u,v) where u has degree one.
Let 0 < c < 1 be a positive constant. Show that w.h.p. there is no triangle
containing vertex v.

4.3.3 Let m = m∗1 as in Theorem 4.2 and let em = (u,v) where u has degree one.
Let 0 < c < 1 be a positive constant. Show that w.h.p. the degree of v in Gm
is at least c logn.

4.3.4 Suppose that n logn≪ m ≤ n3/2 and let d = 2m/n. Let Si(v) be the set of
vertices at distance i from vertex v. Show that w.h.p. |Si(v)| ≥ (d/2)i for all
v ∈ [n] and 1≤ i≤ 2logn

3logd .

4.3.5 Suppose that n logn≪ m ≤ n4/3−ε and let d = m/n. Amend the proof of
the previous question and show that w.h.p. there are at least d/2 internally
vertex disjoint paths of length at most 4logn

3logd between any pair of vertices in
Gn,m.

4.3.6 Suppose that m≫ n logn and let d = m/n. Suppose that we randomly color
the edges of Gn,m with q colors where q≫ (logn)2

(logd)2 . Show that w.h.p. there
is a rainbow path between every pair of vertices. (A path is rainbow if each
of its edges has a different color).

4.3.7 Let Ck,k+ℓ denote the number of connected graphs with vertex set [k] and
k+ ℓ edges where ℓ→ ∞ with k and ℓ= o(k). Use the inequality(

n
k

)
Ck,k+ℓpk+ℓ(1− p)(

k
2)−k−ℓ+k(n−k) ≤ n

k

and a careful choice of p,n to prove (see Łuczak [633]) that

Ck,k+ℓ ≤
√

k3

ℓ

(
e+O(

√
ℓ/k)

12ℓ

)ℓ/2

kk+(3ℓ−1)/2.

4.3.8 Let Gn,n,p be the random bipartite graph with vertex bi-partition V = (A,B),
A = [1,n],B = [n+ 1,2n] in which each of the n2 possible edges appears
independently with probability p. Let p = logn+ω

n , where ω → ∞. Show
that w.h.p. Gn,n,p is connected.
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4.4 Notes

Disjoint paths
Being k-connected means that we can find disjoint paths between any two sets
of vertices A = {a1,a2, . . . ,ak} and B = {b1,b2, . . . ,bk}. In this statement there
is no control over the endpoints of the paths i.e. we cannot specify a path from
ai to bi for i = 1,2, . . . ,k. Specifying the endpoints leads to the notion of linked-
ness. Broder, Frieze, Suen and Upfal [200] proved that when we are above the
connectivity threshold, we can w.h.p. link any two k-sets by edge disjoint paths,
provided some natural restrictions apply. The result is optimal up to constants.
Broder, Frieze, Suen and Upfal [199] considered the case of vertex disjoint paths.
Frieze and Zhao [418] considered the edge disjoint path version in random regular
graphs.

Rainbow Connection
The rainbow connection rc(G) of a connected graph G is the minimum number
of colors needed to color the edges of G so that there is a rainbow path between
every pair of vertices. Caro, Lev, Roditty, Tuza and Yuster [209] proved that
p =

√
logn/n is the sharp threshold for the property rc(G) ≤ 2. This was sharp-

ened to a hitting time result by Heckel and Riordan [475]. He and Liang [474] fur-
ther studied the rainbow connection of random graphs. Specifically, they obtain a
threshold for the property rc(G)≤ d where d is constant. Frieze and Tsourakakis
[417] studied the rainbow connection of G = G(n, p) at the connectivity threshold
p = logn+ω

n where ω → ∞ and ω = o(logn). They showed that w.h.p. rc(G) is
asymptotically equal to max{diam(G),Z1(G)}, where Z1 is the number of ver-
tices of degree one.
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Small Subgraphs

Graph theory is replete with theorems stating conditions for the existence of a
subgraph H in a larger graph G. For example Turán’s theorem [832] states that a
graph with n vertices and more than

(
1− 1

r

) n2

2 edges must contain a copy of Kr+1.
In this chapter we see instead how many random edges are required to have a
particular fixed size subgraph w.h.p. In addition, we will consider the distribution
of the number of copies.

5.1 Thresholds

In this section we will look for a threshold for the appearance of any fixed graph
H, with vH = |V (H)| vertices and eH = |E(H)| edges. The property that a random
graph contains H as a subgraph is clearly monotone increasing. It is also trans-
parent that ”denser” graphs appear in a random graph ”later” than ”sparser” ones.
More precisely, denote by

d(H) =
eH

vH
, (5.1)

the density of a graph H. Notice that 2d(H) is the average vertex degree in H.
We begin with the analysis of the asymptotic behavior of the expected number of
copies of H in the random graph Gn,p.

Lemma 5.1. Let XH denote the number of copies of H in Gn,p.

EXH =

(
n

vH

)
vH!

aut(H)
peH ,

where aut(H) is the number of automorphisms of H.
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Proof. The complete graph on n vertices Kn contains
( n

vH

)
aH distinct copies of H,

where aH is the number of copies of H in KvH . Thus

EXH =

(
n

vH

)
aH peH ,

and all we need to show is that

aH×aut(H) = vH!.

Each permutation σ of [vH ] = {1,2, . . . ,vH} defines a unique copy of H as follows:
A copy of H corresponds to a set of eH edges of KvH . The copy Hσ corresponding
to σ has edges {(xσ(i),yσ(i)) : 1≤ i≤ eH}, where {(x j,y j) : 1≤ j≤ eH} is some
fixed copy of H in KvH . But Hσ = Hτσ if and only if for each i there is j such that
(xτσ(i),yτσ(i)) = (xσ( j),yσ( j)) i.e., if τ is an automorphism of H.

Theorem 5.2. Let H be a fixed graph with eH > 0. Suppose p = o
(

n−1/d(H)
)

.
Then w.h.p. Gn,p contains no copies of H.

Proof. Suppose that p = ω−1n−1/d(H) where ω = ω(n)→ ∞ as n→ ∞. Then

EXH =

(
n

vH

)
vH!

aut(H)
peH ≤ nvH ω

−eH n−eH/d(H) = ω
−eH .

Thus
P(XH > 0)≤ EXH → 0 as n→ ∞.

From our previous experience one would expect that when EXH → ∞ as n→
∞ the random graph Gn,p would contain H as a subgraph w.h.p. Let us check
whether such a phenomenon holds also in this case. So consider the case when
pn1/d(H)→ ∞, i.e. where p = ωn−1/d(H) and ω = ω(n)→ ∞ as n→ ∞. Then for
some constant cH > 0

EXH ≥ cHnvH ω
eH n−eH/d(H) = cHω

eH → ∞.

However, as we will see, this is not always enough for Gn,p to contain a copy of a
given graph H w.h.p. To see this, consider the graph H given in Figure 5.1 below.
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Figure 5.1: A Kite

Here vH = 6 and eH = 8. Let p = n−5/7. Now 1/d(H) = 6/8 > 5/7 and so

EXH ≈ cHn6−8×5/7→ ∞.

On the other hand, if Ĥ = K4 then

EXĤ ≤ n4−6×5/7→ 0,

and so w.h.p. there are no copies of Ĥ and hence no copies of H.
The reason for such ”strange” behavior is quite simple. Our graph H is in

fact not balanced, since its overall density is smaller than the density of one of its
subgraphs, i.e., of Ĥ = K4. So we need to introduce another density characteristic
of graphs, namely the maximum subgraph density defined as follows:

m(H) = max{d(K) : K ⊆ H}. (5.2)

A graph H is balanced if m(H) = d(H). It is strictly balanced if d(H)> d(K) for
all proper subgraphs K ⊂ H.

Now we are ready to determine the threshold for the existence of a copy of
H in Gn,p. Erdős and Rényi [332] proved this result for balanced graphs. The
threshold for any graph H was first found by Bollobás in [147] and an alternative,
deterministic argument to derive the threshold was presented in [552]. A simple
proof, given here, is due to Ruciński and Vince [777].

Theorem 5.3. Let H be a fixed graph with eH > 0. Then

lim
n→∞

P(H ⊆Gn,p) =

{
0 if pn1/m(H)→ 0
1 if pn1/m(H)→ ∞.
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Proof. Let ω = ω(n)→ ∞ as n→ ∞. The first statement follows from Theorem
5.2. Notice, that if we choose Ĥ to be a subgraph of H with d(Ĥ) = m(H) (such
a subgraph always exists since we do not exclude Ĥ = H), then p = ω−1n−1/d(Ĥ)

implies that EXĤ → 0. Therefore, w.h.p. Gn,p contains no copies of Ĥ, and so it
does not contain H as well.

To prove the second statement we use the Second Moment Method. Suppose
now that p = ωn−1/m(H). Denote by H1,H2, . . . ,Ht all copies of H in the complete
graph on {1,2, . . . ,n}. Note that

t =
(

n
vH

)
vH!

aut(H)
, (5.3)

where aut(H) is the number of automorphisms of H. For i = 1,2, . . . , t let

Ii =

{
1 if Hi ⊆Gn,p,

0 otherwise.

Let XH = ∑
t
i=1 Ii. Then

VarXH =
t

∑
i=1

t

∑
j=1

Cov(Ii, I j) =
t

∑
i=1

t

∑
j=1

(E(IiI j)− (E Ii)(E I j))

=
t

∑
i=1

t

∑
j=1

(P(Ii = 1, I j = 1)−P(Ii = 1)P(I j = 1))

=
t

∑
i=1

t

∑
j=1

(
P(Ii = 1, I j = 1)− p2eH

)
.

Observe that random variables Ii and I j are independent iff Hi and H j are edge
disjoint. In this case Cov(Ii, I j) = 0 and such terms vanish from the above sum-
mation. Therefore we consider only pairs (Hi,H j) with Hi ∩H j = K , for some
graph K with eK > 0. So,

VarXH = O
(

∑
K⊆H,eK>0

n2vH−vK
(

p2eH−eK − p2eH
))

= O
(

n2vH p2eH ∑
K⊆H,eK>0

n−vK p−eK
)
.

On the other hand,

EXH =

(
n

vH

)
vH!

aut(H)
peH = Ω(nvH peH ) ,
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thus, by Lemma 26.4,

P(XH = 0) ≤ VarXH

(EXH)2 = O

(
∑

K⊆H,eK>0
n−vK p−eK

)

= O

(
∑

K⊆H,eK>0

(
1

ωn1/d(K)−1/m(H)

)eK
)

= o(1).

Hence w.h.p., the random graph Gn,p contains a copy of the subgraph H when
pn1/m(H)→ ∞.

5.2 Asymptotic Distributions
We will now study the asymptotic distribution of the number XH of copies of a
fixed graph H in Gn,p. We start at the threshold, so we assume that npm(H) →
c, c > 0, where m(H) denotes as before, the maximum subgraph density of H.
Now, if H is not balanced, i.e., its maximum subgraph density exceeds the density
of H, then EXH → ∞ as n→ ∞, and one can show that there is a sequence of
numbers an, increasing with n, such that the asymptotic distribution of XH/an
coincides with the distribution of a random variable counting the number of copies
of a subgraph K of H for which m(H) = d(K). Note that K is itself a balanced
graph. However the asymptotic distribution of balanced graphs on the threshold,
although computable, cannot be given in a closed form. The situation changes
dramatically if we assume that the graph H whose copies in Gn,p we want to
count is strictly balanced, i.e., when for every proper subgraph K of H, d(K) <
d(H) = m(H).

The following result is due to Bollobás [147], and Karoński and
Ruciński [551].

Theorem 5.4. If H is a strictly balanced graph and npm(H)→ c,
c > 0, then XH

D→ Po(λ ), as n→ ∞, where λ = cvH/aut(H).

Proof. Denote, as before, by H1,H2, . . . ,Ht all copies of H in the complete graph
on {1,2, . . . ,n}. For i = 1,2, . . . , t, let

IHi =

{
1 if Hi ⊆Gn,p

0 otherwise

Then XH = ∑
t
i=1 IHi and the kth factorial moment of XH , k = 1,2 . . .,

E(XH)k = E[XH(XH−1) · · ·(XH− k+1)],
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can be written as

E(XH)k = ∑
i1,i2,...,ik

P(IHi1
= 1, IHi2

= 1, . . . , IHik
= 1)

= Dk +Dk,

where the summation is taken over all k-element sequences of distinct indices i j
from {1,2, . . . , t}, while Dk and Dk denote the partial sums taken over all (ordered)
k tuples of copies of H which are, respectively, pairwise vertex disjoint (Dk) and
not all pairwise vertex disjoint (Dk). Now, observe that

Dk = ∑
i1,i2,...,ik

P(IHi1
= 1)P(IHi2

= 1) · · ·P(IHik
= 1)

=

(
n

vH ,vH , . . . ,vH

)
(aH peH )k

≈ (EXH)
k .

So assuming that npd(H) = npm(H)→ c as n→ ∞,

Dk ≈
(

cvH

aut(H)

)k

. (5.4)

On the other hand we will show that

Dk→ 0 as n→ ∞. (5.5)

Consider the family Fk of all (mutually non-isomorphic) graphs obtained by
taking unions of k not all pairwise vertex disjoint copies of the graph H. Suppose
F ∈Fk has vF vertices (vH ≤ vF ≤ kvH−1) and eF edges, and let d(F) = eF/vF
be its density. To prove that (5.5) holds we need the following Lemma.

Lemma 5.5. If F ∈Fk then d(F)> m(H).

Proof. Define
fF = m(H)vF − eF . (5.6)

We will show (by induction on k ≥ 2) that fF < 0 for all F ∈Fk. First note that
fH = 0 and that fK > 0 for every proper subgraph K of H, since H is strictly
balanced. Notice also that the function f is modular, i.e., for any two graphs F1
and F2,

fF1∪F2 = fF1 + fF2− fF1∩F2. (5.7)

Assume that the copies of H composing F are numbered in such a way that Hi1 ∩
Hi2 ̸= /0. If F = Hi1 ∪Hi2 then (5.6) and fH1 = fH2 = 0 implies

fHi1∪Hi2
=− fHi1∩Hi2

< 0.
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For arbitrary k ≥ 3, let F ′ =
⋃k−1

j=1 Hi j and K = F ′ ∩Hik . Then by the inductive
assumption we have fF ′ < 0 while fK ≥ 0 since K is a subgraph of H (in extreme
cases K can be H itself or an empty graph). Therefore

fF = fF ′+ fHik
− fK = fF ′− fK < 0,

which completes the induction and implies that d(F)> m(H).

Let CF be the number of sequences Hi1,Hi2, . . . ,Hik of k distinct copies of H,
such that

V
( k⋃

j=1

Hi j

)
= {1,2, . . . ,vF} and

k⋃
j=1

Hi j
∼= F.

Then, by Lemma 5.5,

Dk = ∑
F∈Fk

(
n

vF

)
CF peF = O(nvF peF )

= O
((

npd(F)
)v(F)

)
= o(1),

and so (5.5) holds.
Summarizing,

E(XH)k ≈
(

cvH

aut(H)

)k

,

and the theorem follows by the Method of Moments (see Theorem 26.11).

The following theorem describes the asymptotic behavior of the number of
copies of a graph H in Gn,p past the threshold for the existence of a copy of H. It
holds regardless of whether or not H is balanced or strictly balanced (see Ruciński
[776]).

Theorem 5.6. Let H be a fixed (not-empty) graph. If npm(H)→∞ and n2(1− p)→
∞, then (XH−EXH)/(VarXH)

1/2 D→ N(0,1), as n→ ∞

Proof. The proof is by the Method of Moments (see Lemma 26.7 and Corollary
26.8). Here, instead of the original proof from [776], we shall reproduce its more
compact version, presented in [509].
As in the previous theorem, denote by H1,H2, . . . ,Ht all copies of H in the com-
plete graph on {1,2, . . . ,n}, where t is given by (5.3). For i = 1,2, . . . , t, let

IHi =

{
1 if Hi ⊆Gn,p

0 otherwise
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Then XH = ∑
t
i=1 IHi and thus for every k = 1,2, ...,

E(XH−EXH)
k = ∑

H1,...,Hk

E((IH1−E IH1) · · ·(IHk−E IHk)), (5.8)

where the summation is over all k-tuples H1, . . . ,Hk of copies of H in Kn.
Denote each term of the sum from (5.8) by T (H1, . . . ,Hk), i.e.,

T (H1, . . . ,Hk) = E((IH1−E IH1) · · ·(IHk−E IHk)).

For each T (H1, . . . ,Hk) define a graph L(H1, . . . ,Hk) with vertex {1, . . . ,k}
and an edge {i, j} whenever Hi and H j have at least one edge in common. An
edge implies that respective indicator random variables IHi and IH j are not inde-
pendent and we call graph L(H1, . . . ,Hk) a dependency graph for the variables
IH1 , . . . IHk . Next, we group the terms of (5.8) according to the structure of the
graph L(H1, . . . ,Hk). So,

E(XH−EXH)
k = ∑

L(H1,...,Hk)

T (H1, . . . ,Hk) = ∑
(1)

+∑
(2)
, (5.9)

where the summation in ∑(1) is taken over all graphs L with an even number of
vertices k = 2m and with exactly k/2 edges forming a perfect matching, i.e., k/2
disjoint edges, while ∑(2) takes care of all the remaining graphs L, for k odd or
even.

In the first step, we estimate ∑(1). One can easily check that in this case

T (H1, . . . ,Hk) = (VarXH)
k/2(1+O(1/n)). (5.10)

Furthermore, since there are

(2m)!
2mm!

= (2m−1)(2m−3) · · ·3 ·1 = (2m−1)!! = (k−1)!!

such graphs, so
∑
(1)

= (k−1)!!(VarXH)
k/2(1+O(1/n)). (5.11)

To estimate ∑(2), first notice that all terms corresponding to graphs L with an
isolated vertex vanish. Indeed, if a vertex j is isolated, it means that IH j −E IH j is
independent from the product ∏i̸= j(IHi−E IHi), and so T (H1, . . . ,Hk) = 0.

Also notice that, in all the remaining cases, the dependency graph L, for any k
odd or even, has less than k/2 components since each component has to have at
least two and some component has at least three vertices.

Denote the number of components of L by c(L) and without loss of generality,
reorder the vertices of L in such a way that vertices of the first component are
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labeled {1, . . . ,r1}, vertices of the second component are labeled
{r1 +1, . . . ,r2}, and vertices of the last one, respectively, by
{rc(L)−1 +1, . . . ,rc(L) = k}. Moreover the relabeling is such that if
j /∈ {1,r1 +1,r2 +1, . . . ,rc(L)−1 +1}, then L contains an edge {i, j} with i < j.

Consider T (H1, . . . ,Hk) with such an L and let H( j) =
⋃ j

i=1 Hi. Let Fj be, the
possibly empty, subgraph of H which corresponds to H( j−1)∩H j under isomor-
phism H j ∼= H. Note that, by our relabeling assumption, when j ∈ {1,r1 +1,r2 +
1 . . . ,rc(L)−1 +1}, the number of edges e(Fj) = 0.
If the edge probability p ≤ 1/2, we estimate T (H1, . . . ,Hk) by taking absolute
values

|T (H1, . . . ,Hk)| ≤ E((IH1 +E IH1) · · ·(IHk +E IHk)).

The product can be expanded into 2k terms, where the largest expectation is of the
product IH1 · · · IHk , so

|T (H1, . . . ,Hk)| ≤ 2kE(IH1 · · · IHk) = O
(

pe(H(k))
)
. (5.12)

In the case of 1/2 < p ≤ 1 we estimate T (H1, . . . ,Hk) by taking one factor from
each component only, i.e.,

|T (H1, . . . ,Hk)| ≤ E
c(L)

∏
i=1
|IHri
−E IHri

|.

These factors are independent, and each has the expected value

E |IHr −E IHr |= 2pe(H)(1− pe(H))≤ 2(1− pe(H))≤ 2e(H)(1− p).

Hence, when 1/2 < p≤ 1,

T (H1, . . . ,Hk) = O
(
(1− p)c(L)

)
. (5.13)

Combining (5.12) and (5.13), by introducing redundant factors in each bound, we
get that for all 0≤ p≤ 1, that

T (H1, . . . ,Hk) = O
(

pe(H(k))(1− p)c(L)
)

= O
(
(1− p)c(L)pke(H)−∑

k
1 e(Fi)

)
, (5.14)

since e(H(k)) = ke(H)−∑
k
1 e(Fi). Similarly, the number of vertices v(H(k)) =

kv(H)−∑
k
1 v(Fi), so there are at most O

(
nkv(H)−∑

k
1 v(Fi)

)
possible choices of H1, . . . ,Hk
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yielding L and a particular sequence F1, . . . ,Fk. So, fixing L and F1, . . . ,Fk gener-
ates a contribution to ∑(2) of the order

O
(

nkv(H)−∑
k
1 v(Fi)(1− p)c(L)pke(H)−∑

k
1 e(Fi)

)
= O

((
nv(H)pe(H)

)k
(1− p)c(L)

k

∏
i=1

(
nv(Fi)pe(Fi)

)−1
)
. (5.15)

To estimate ∏
k
i=1

(
nv(Fi)pe(Fi)

)−1
, notice that c(L) of the Fi’s have no edges, so

nv(Fi)pe(Fi) = nv(Fi) ≥ 1, while k− c(L) others have e(Fi)≥ 1 and thus

nv(Fi)pe(Fi) ≥ EXFi ≥min{EXG : G⊆ H, e(G)> 0}= ΦH .

Thus (
nv(H)pe(H)

)k
(1− p)c(L)

k

∏
i=1

(
nv(Fi)pe(Fi)

)−1

≤
(

nv(H)pe(H)
)k

(1− p)c(L)
Φ

c(l)−k
H = Θ

(
(EXH)

k(1− p)c(L)
Φ

c(l)−k
H

)
= Θ

(
(VarXH)

k/2 ((1− p)ΦH)
c(L)−k/2)

)
. (5.16)

Indeed, if H ′ and H ′′ are copies of H in the complete graph Kn then

VarXH = ∑
H ′,H ′′

Cov(IH ′, IH ′′) = ∑
E(H ′)∩E(H ′′)̸= /0

(E(IH ′IH ′′)−E(IH ′)E(IH ′′)) ,

since indicator random variables IH ′ and IH ′′ are independent if H ′ and H ′′ do not
share an edge. Moreover, noticing that for each G⊆H there are Θ(nv(G)n2(v(H)−v(G)))=
Θ(n2v(H)−v(G)), we get

VarXH = Θ

(
∑

G⊆H,e(G)>0
n2v(H)−v(G)

(
p2e(H)−e(G)− p2e(H)

))

= Θ

(
(1− p) ∑

G⊆H,e(G)>0
n2v(H)−v(G)p2e(H)−e(G)

)

= Θ

(
(1− p) max

G⊆H,e(G)>0

(EXH)
2

EXG

)
= Θ

(
(1− p)

(EXH)
2

ΦH

)
,
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and (5.16) follows.
Now recall that c(L)< k/2 and m(H) denotes maximum subgraph density (see

(5.2))) and notice that, when the edge probability p is such that npm(H)→ ∞ and
n2(1− p)→ ∞, then (1− p)ΦH → ∞.

Indeed, one can observe that the condition npm(H)→ ∞ implies that ΦH → ∞

and so (1− p)ΦH → ∞ provided p→ 0. On the other hand, when p is a constant,
or p→ 1, then ΦH = Θ(n2), and thus (1− p)ΦH = Θ(n2(1− p))→ ∞.
So, by (5.16), (5.15) and (5.14) it follows that for fixed L and F1, . . . ,Fk, each
term contributes o((VarHH)

k/2) to ∑(2). Since there are finitely many possible
sequences F1, . . . ,Fk, therefore

∑
(2)

= o((VarXH)
k/2). (5.17)

Finally, merging (5.11) and (5.17) and taking a2
n = VarXH in Corollary 26.8 , we

arrive at the thesis.

5.3 Exercises
5.3.1 Draw a graph which is: (a) balanced but not strictly balanced, (b) unbal-

anced.

5.3.2 Are the small graphs listed below, balanced or unbalanced: (a) a tree, (b) a
cycle, (c) a complete graph, (d) a regular graph, (d) the Petersen graph, (e)
a graph composed of a complete graph on 4 vertices and a triangle, sharing
exactly one vertex.

5.3.3 Determine (directly, not from the statement of Theorem 5.3) thresholds p̂
for Gn,p ⊇ G, for graphs listed in exercise (ii). Do the same for the thresh-
olds of G in Gn,m.

5.3.4 For a graph G a balanced extension of G is a graph F , such that G ⊆ F
and m(F) = d(F) = m(G). Applying the result of Győri, Rothschild and
Ruciński [458] that every graph has a balanced extension, deduce Bol-
lobás’s result (Theorem 5.3) from that of Erdős and Rényi (threshold for
balanced graphs).

5.3.5 Let F be a graph obtained by taking a union of triangles such that not every
pair of them is vertex-disjoint, Show (by induction) that eF > vF .

5.3.6 Let fF be a graph function defined as

fF = a vF +b eF ,
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where a,b are constants, while vF and eF denote, respectively, the number
of vertices and edges of a graph F . Show that the function fF is modular.

5.3.7 Determine (directly, using exercise (v)) when the random variable counting
the number of copies of a triangle in Gn,p has asymptotically the Poisson
distribution.

5.3.8 Let Xe be the number of isolated edges (edge-components) in Gn,p and let

ω(n) = 2pn− logn− log logn.

Prove that

P(Xe > 0)→

{
0 if p≪ n−2 or ω(n)→ ∞

1 if p≫ n−2 and ω(n)→ ∞.

5.3.9 Determine when the random variable Xe defined in exercise (vii) has asymp-
totically the Poisson distribution.

5.3.10 Use Janson’s inequality, Theorem 27.13, to prove (5.18) below.

5.3.11 Check that (5.10) holds.

5.3.12 In the proof of Theorem 5.6 show that the condition npm(H)→ ∞ is equiva-
lent to ΦH → ∞, as well as that ΦH = Θ(n2), when p is a constant.

5.3.13 Prove that the conditions of Theorem 5.6 are also necessary.

5.4 Notes

Distributional Questions
In 1982 Barbour [73] adapted the Stein–Chen technique for obtaining estimates
of the rate of convergence to the Poisson and the normal distribution (see Section
26.3 or [74]) to random graphs. The method was next applied by Karoński and
Ruciński [553] to prove the convergence results for semi-induced graph properties
of random graphs.

Barbour, Karoński and Ruciński [76] used the original Stein’s method for nor-
mal approximation to prove a general central limit theorem for the wide class of
decomposable random variables. Their result is illustrated by a variety of appli-
cations to random graphs. For example, one can deduce from it the asymptotic
distribution of the number of k-vertex tree-components in Gn,p, as well as of the
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number of vertices of fixed degree d in Gn,p (in fact, Theorem 3.2 is a direct
consequence of the last result).

Barbour, Janson, Karoński and Ruciński [75] studied the number Xk of maxi-
mal complete subgraphs (cliques) of a given fixed size k ≥ 2 in the random graph
Gn,p. They show that if the edge probability p= p(n) is such that the EXk tends to
a finite constant λ as n→ ∞, then Xk tends in distribution to the Poisson random
variable with the expectation λ . When its expectation tends to infinity, Xk con-
verges in distribution to a random variable which is normally distributed. Poisson
convergence was proved using Stein–Chen method, while for the proof of the nor-
mal part, different methods for different ranges of p were used such as the first
projection method or martingale limit theorem (for details of these methods see
Chapter 6 of Janson, Łuczak and Ruciński [509]).

Svante Janson in an a sequence of papers [492],[493], [494], [497] (see also
[510]) developed or accommodated various methods to establish asymptotic nor-
mality of various numerical random graph characteristics. In particular, in [493]
he established the normal convergence by higher semi-invariants of sums of de-
pendent random variables with direct applications to random graphs. In [494] he
proved a functional limit theorem for subgraph count statistics in random graphs
(see also [510]).

In 1997 Janson [492] answered the question posed by Paul Erdős: What is the
length Yn of the first cycle appearing in the random graph process Gm? He proved
that

lim
n→∞

P(Yn = j) =
1
2

∫ 1

0
t j−1et/2+t2/4√1− t dt, for every j ≥ 3.

Tails of Subgraph Counts in Gn,p.
Often one needs exponentially small bounds for the probability that XH deviates
from its expectation. In 1990 Janson [495] showed that for fixed ε ∈ (0,1],

P(XH ≤ (1− ε)EXH) = exp{−Θ(ΦH)} , (5.18)

where ΦH = minK⊆H:eK>0 nvK peK .
The upper tail P(XH ≥ (1+ ε)EXH) proved to be much more elusive. To sim-

plify the results, let us assume that ε is fixed, and p is above the existence thresh-
old, that is, p≫ n−1/m(H), but small enough to make sure that (1+ ε)EXH is at
most the number of copies of H in Kn.

Given a graph G, let ∆G be the maximum degree of G and α∗G the fractional
independence number of G, defined as the maximum of ∑v∈V (G)w(v) over all
functions w : V (G)→ [0,1] satisfying w(u)+w(v)≤ 1 for every uv ∈ E(G).

In 2004, Janson, Oleszkiewicz and Ruciński [507] proved that

exp{−O(MH log(1/p))} ≤ P(XH ≥ (1+ ε)EXH)≤ exp{−Ω(MH)} , (5.19)
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where the implicit constants in (5.19) may depend on ε , and

MH =

{
minK⊆H(nvK peK)1/α∗K , if n−1/m(H) ≤ p≤ n−1/∆H ,

n2 p∆H , if p≥ n−1/∆H .

For example, if H is k-regular, then MH = n2 pk for every p.
The logarithms of the upper and lower bounds in (5.19) differ by a multi-

plicative factor log(1/p). In 2011, DeMarco and Kahn formulated the following
plausible conjecture (stated in [282] for ε = 1).
Conjecture: For any H and ε > 0,

P(XH ≥ (1+ ε)EXH) = exp(−Θ(min{ΦH ,MH log(1/p)})) . (5.20)

A careful look reveals that, when ∆H ≥ 2, the minimum in (5.20) is only attained
by ΦH in a tiny range above the existence threshold (when p≤ n−1/m(H)(logn)aH

for some aH > 0). In 2018, Šileikis and Warnke [806] found counterexample-
graphs (all balanced but not strictly balanced) which violate (5.20) close to the
threshold, and conjectured that (5.20) should hold under the stronger assump-
tion p≥ n−1/mH+δ .

DeMarco and Kahn [282] proved (5.20) for cliques H = Kk, k = 3,4, . . . .
Adamczak and Wolff [7] proved a polynomial concentration inequality which con-

firms (5.20) for any cycle H =Ck, k = 3,4, . . . and p≥ n−
k−2

2(k−1) . Moreover, Lubet-
zky and Zhao [631], via a large deviations framework of Chatterjee and Dembo
[213], showed that (5.20) holds for any H and p ≥ n−α for a sufficiently small
constant α > 0. For more recent developments see [237], where it is shown that
one can take α > 1/6∆H .



Chapter 6

Spanning Subgraphs

The previous chapter dealt with the existence of small subgraphs of a fixed size.
In this chapter we concern ourselves with the existence of large subgraphs, most
notably perfect matchings and Hamilton Cycles. The celebrated theorems of Hall
and Tutte give necessary and sufficient conditions for a bipartite and arbitrary
graph respectively to contain a perfect matching. Hall’s theorem in particular can
be used to establish that the threshold for having a perfect matching in a random
bipartite graph can be identified with that of having no isolated vertices.

For general graphs we view a perfect matching as half a Hamilton cycle and
prove thresholds for the existence of perfect matchings and Hamilton cycles in a
similar way.

Having dealt with perfect matchings and Hamilton cycles, we turn our atten-
tion to long paths in sparse random graphs, i.e. in those where we expect a linear
number of edges. We then analyse a simple greedy matching algorithm using
differential equations.

We then consider random subgraphs of some fixed graph G, as opposed to
random subgraphs of Kn. We give sufficient conditions for the existence of long
paths and cycles.

We finally consider the existence of arbitrary spanning subgraphs H where we
bound the maximum degree ∆(H).

6.1 Perfect Matchings
Before we move to the problem of the existence of a perfect matching, i.e., a
collection of independent edges covering all of the vertices of a graph, in our
main object of study, the random graph Gn,p, we will analyse the same problem
in a random bipartite graph. This problem is much simpler than the respective
one for Gn,p, but provides a general approach to finding a perfect matching in a
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random graph.

Bipartite Graphs
Let Gn,n,p be the random bipartite graph with vertex bi-partition V = (A,B), A =
[1,n],B = [n+1,2n] in which each of the n2 possible edges appears independently
with probability p. The following theorem was first proved by Erdős and Rényi
[334].

Theorem 6.1. Let ω = ω(n), c > 0 be a constant, and p = logn+ω

n . Then

lim
n→∞

P(Gn,n,p has a perfect matching) =


0 if ω →−∞

e−2e−c
if ω → c

1 if ω → ∞.

Moreover,

lim
n→∞

P(Gn,n,p has a perfect matching) = lim
n→∞

P(δ (Gn,n,p)≥ 1).

Proof. We will use Hall’s condition for the existence of a perfect matching in a
bipartite graph. It states that a bipartite graph contains a perfect matching if and
only if the following condition is satisfied:

∀S⊆ A, |N(S)| ≥ |S|, (6.1)

where for a set of vertices S, N(S) denotes the set of neighbors of S. We refer to S
as a witness.

Now we can restrict our attention to minimal witnesses that satisfy S⊆ A,T ⊆
B satisfying (a) |S| = |T |+ 1 and (b) each vertex in T has at least 2 neighbors in
S and (c) |S| ≤ n/2. Take a pair S,T with |S|+ |T | as small as possible. If the
minimum degree δ ≥ 1 then |S| ≥ 2.

(i) If |S|> |T |+1, we can remove |S|−|T |−1 vertices from |S| – contradiction.

(ii) Suppose ∃w ∈ T such that w has less than 2 neighbors in S. Remove w and
its (unique) neighbor in |S| – contradiction.

It is convenient to replace (6.1) by

∀S⊆ A, |S| ≤ n
2
, |N(S)| ≥ |S|, (6.2)
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∀T ⊆ B, |T | ≤ n
2
, |N(T )| ≥ |T |. (6.3)

This is because if we have a minimal witness S with |S| > n/2 and |N(S)| < |S|
then T = B\N(S) will violate (6.3).

It follows that

P(∃v : v is isolated)≤ P(̸ ∃ a perfect matching)
≤ P(∃v : v is isolated)+2P(∃S⊆ A,T ⊆ B,2≤ k = |S| ≤ n/2,
|T |= k−1,N(S)⊆ T and e(S : T )≥ 2k−2).

Here e(S : T ) denotes the number of edges between S and T , and e(S : T ) can be
assumed to be at least 2k−2, because of (b) above.

Suppose now that p = logn+c
n for some constant c. Then let Y denote the

number of sets S and T not satisfying the conditions (6.2), (6.3). Then

EY ≤ 2
n/2

∑
k=2

(
n
k

)(
n

k−1

)(
k(k−1)
2k−2

)
p2k−2(1− p)k(n−k)

≤ 2
n/2

∑
k=2

(ne
k

)k
(

ne
k−1

)k−1(ke(logn+ c)
2n

)2k−2

e−npk(1−k/n)

≤
n/2

∑
k=2

n

(
eO(1)nk/n(logn)2

n1−1/k

)k

=
n/2

∑
k=2

uk.

Case 1: 2≤ k ≤ n3/4.

uk = n((eO(1)n−1 logn)2)k.

So
n3/4

∑
k=2

uk = O
(

1
n1/2−o(1)

)
.

Case 2: n3/4 < k ≤ n/2.
uk ≤ n1−k(1/2−o(1))

So
n/2

∑
n3/4

uk = O
(

n−n3/4/3
)
.
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So
P(̸ ∃ a perfect matching) = P(∃ isolated vertex)+o(1).

Let X0 denote the number of isolated vertices in Gn,n,p. Then

EX0 = 2n(1− p)n ≈ 2e−c.

It follows in fact via inclusion-exclusion or the method of moments that we have

P(X0 = 0)≈ e−2e−c

To prove the case for |ω| →∞ we can use monotonicity and (1.7) and the fact that
e−e−2c → 0 if c→−∞ and e−e−2c → 1 if c→ ∞.

Non-Bipartite Graphs
We now consider Gn,p. We could try to replace Hall’s theorem by Tutte’s theorem.
A proof along these lines was given by Erdős and Rényi [335]. We can however
get away with a simpler approach based on simple expansion properties of Gn,p.
The proof here can be traced back to Bollobás and Frieze [166].

Theorem 6.2. Let ω = ω(n), c > 0 be a constant, and let p = logn+cn
n . Then

lim
n→∞
n even

P(Gn,p has a perfect matching) =


0 if cn→−∞

e−e−c
if cn→ c

1 if cn→ ∞.

Moreover,

lim
n→∞

P(Gn,p has a perfect matching) = lim
n→∞

P(δ (Gn,p)≥ 1).

Proof. We will for convenience only consider the case where cn = ω → ∞ and
ω = o(logn). If cn →−∞ then there are isolated vertices, w.h.p. and our proof
can easily be modified to handle the case cn→ c.

Our combinatorial tool that replaces Tutte’s theorem is the following: We say
that a matching M isolates a vertex v if no edge of M contains v.

For a graph G we let

µ(G) = max{|M| : M is a matching in G} . (6.4)

Let G = (V,E) be a graph without a perfect matching i.e. µ(G) < ⌊|V |/2⌋. Fix
v ∈V and suppose that M is a maximum matching that isolates v. Let S0(v,M) =
{u ̸= v : M isolates u}. If u ∈ S0(v,M) and e = {x,y} ∈ M and f = {u,x} ∈ E
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then flipping e, f replaces M by M′ = M+ f − e. Here e is flipped-out. Note that
y ∈ S0(v,M′).

Now fix a maximum matching M that isolates v and let

A(v,M) =
⋃
M′

S0(v,M′)

where we take the union over M′ obtained from M by a sequence of flips.

Lemma 6.3. Let G be a graph without a perfect matching and let M be a maximum
matching and v be a vertex isolated by M. Then |NG(A(v,M))|< |A(v,M)|.

Proof. Suppose that x ∈ NG(A(v,M)) and that f = {u,x} ∈ E where u ∈ A(v,M).
Now there exists y such that e = {x,y} ∈M, else x ∈ S0(M)⊆ A(v,M). We claim
that y ∈ A(v,M) and this will prove the lemma. Since then, every neighbor of
A(v,M) is the neighbor via an edge of M.

Suppose that y /∈ A(v,M). Let M′ be a maximum matching that (i) isolates u
and (ii) is obtainable from M by a sequence of flips. Now e ∈M′ because if e has
been flipped out then either x or y is placed in A(v,M). But then we can do another
flip with M′, e and the edge f = {u,x}, placing y ∈ A(v,M), contradiction.

We now change notation and write A(v) in place of A(v,M), understanding that
there is some maximum matching that isolates v. Note that if u∈A(v) then there is
some maximum matching that isolates u and so A(u) is well-defined. Furthermore,
it always that case that if v is isolated by some maximum matching and u ∈ A(v)
then µ(G+{u,v}) = µ(G)+1.

Now let
p =

logn+θ log logn+ω

n
where θ ≥ 0 is a fixed integer and ω → ∞ and ω = o(log logn).

We have introduced θ so that we can use some of the following results for the
Hamilton cycle problem.

We write
Gn,p =Gn,p1 ∪Gn,p2 ,

where

p1 =
logn+θ log logn+ω/2

n
and

1− p = (1− p1)(1− p2) so that p2 ≈
ω

2n
.

Note that Theorem 4.3 implies:

The minimum degree in Gn,p1 is at least θ +1 w.h.p. (6.5)
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We consider a process where we add the edges of Gn,p2 one at a time to Gn,p1 .
We want to argue that if the current graph does not have a perfect matching then
there is a good chance that adding such an edge {x,y} will increase the size of a
largest matching. This will happen if y ∈ A(x). If we know that w.h.p. every set S
for which |NGn,p1

(S)|< |S| satisfies |S| ≥ αn for some constant α > 0, then

P(y ∈ A(x))≥
(

αn
2

)
− i(n

2

) ≥ α2

2
, (6.6)

provided i = O(n).
This is because the edges we add will be uniformly random and there will be

at least
(

αn
2

)
edges {x,y} where y ∈ A(x). Here given an initial x we can include

edges {x′,y′} where x′ ∈ A(x) and y′ ∈ A(x′). We have subtracted i to account for
not re-using edges in f1, f2, . . . , fi−1.

In the light of this we now argue that sets S, with |NGn,p1
(S)|< (1+θ)|S| are

w.h.p. of size Ω(n).

Lemma 6.4. Let M = 100(θ +7). W.h.p. S⊆ [n], |S| ≤ n
2e(θ+5)M implies |N(S)| ≥

(θ +1)|S|, where N(S) = NGn,p1
(S).

Proof. Let a vertex of graph G1 =Gn,p1 be large if its degree is at least λ = logn
100 ,

and small otherwise. Denote by LARGE and SMALL, the set of large and small
vertices in G1, respectively.

Claim 1. W.h.p. if v,w ∈ SMALL then dist(v,w)≥ 5.

Proof. If v,w are small and connected by a short path P, then v,w will have few
neighbors outside P and conditional on P existing, v having few neighbors outside
P is independent of w having few neighbors outside P. Hence,

P(∃v,w ∈ SMALL in Gn,p1 such that dist(v,w)< 5)

≤
(

n
2

)( 3

∑
l=0

nl pl+1
1

)(
λ

∑
k=0

(
n
k

)
pk

1(1− p1)
n−k−5

)2

≤ n(logn)4

(
λ

∑
k=0

(logn)k

k!
· (logn)(θ+1)/100 · e−ω/2

n logn

)2

≤ 2n(logn)4

(
(logn)λ

λ !
· (logn)(θ+1)/100 · e−ω/2

n logn

)2

(6.7)
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= O

(
(logn)O(1)

n
(100e)

2logn
100

)
= O(n−3/4)

= o(1).

The bound in (6.7) holds since λ !≥
(

λ

e

)λ

and uk+1
uk

> 100 for k ≤ λ , where

uk =
(logn)k

k!
· (logn)(θ+1)/100 · e−ω/2

n logn
.

Claim 2. W.h.p. Gn,p1 does not have a 4-cycle containing a small vertex.

Proof.

P(∃ a 4-cycle containing a small vertex )

≤ 4n4 p4
1

(logn)/100

∑
k=0

(
n−4

k

)
pk

1(1− p1)
n−4−k

≤ n−3/4(logn)4

= o(1).

Claim 3. W.h.p. in Gn,p1 for every S⊆ [n], |S| ≤ n
2eM ,e(S)< |S| logn

M .

Proof.

P
(
∃|S| ≤ n

2eM
and e(S)≥ |S| logn

M

)
≤

n/2eM

∑
s=logn/M

(
n
s

)( (s
2

)
s logn/M

)
ps logn/M

1

≤
n/2eM

∑
s=logn/M

ne
s

(
Me1+o(1)s

2n

)logn/M
s

≤
n/2eM

∑
s=logn/M

(( s
n

)−1+logn/M
· (Me1+o(1))logn/M

)s

= o(1).
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Claim 4. Let M be as in Claim 3. Then, w.h.p. in Gn,p1 , if S ⊆ LARGE, |S| ≤
n

2e(θ+5)M then |N(S)| ≥ (θ +4)|S|.

Proof. Let T = N(S),s = |S|, t = |T |. Then we have

e(S∪T )≥ e(S,T )≥ |S| logn
100

−2e(S)≥ |S| logn
100

− 2|S| logn
M

.

Then if |T | ≤ (θ +4)|S| we have |S∪T | ≤ (θ +5)|S| ≤ n
2eM and

e(S∪T )≥ |S∪T |
θ +5

(
1

100
− 2

M

)
logn =

|S∪T | logn
M

.

This contradicts Claim 3.
We can now complete the proof of Lemma 6.4. Let |S| ≤ n

2e(θ+5)M and assume
that Gn,p1 has minimum degree at least θ +1.

Let S1 = S∩SMALL and S2 = S\S1. Then

|N(S)|
≥ |N(S1)|+ |N(S2)|− |N(S1)∩S2|− |N(S2)∩S1|− |N(S1)∩N(S2)|
≥ |N(S1)|+ |N(S2)|− |S2|− |N(S2)∩S1|− |N(S1)∩N(S2)|.

But Claim 1 and Claim 2 and minimum degree at least θ +1 imply that

|N(S1)| ≥ (θ +1)|S1|, |N(S2)∩S1| ≤min{|S1|, |S2|}, |N(S1)∩N(S2)| ≤ |S2|.

So, from this and Claim 4 we obtain

|N(S)| ≥ (θ +1)|S1|+(θ +4)|S2|−3|S2|= (θ +1)|S|.

We now go back to the proof of Theorem 6.2 for the case c = ω → ∞. Let
the edges of Gn,p2 be { f1, f2, . . . , fs} in random order, where s≈ ωn/4. Let G0 =
Gn,p1 and Gi =Gn,p1 +{ f1, f2, . . . , fi} for i≥ 1. It follows from Lemmas 6.3 and
6.4 that with µ(G) as in (6.4), and if µ(Gi) < n/2 then, assuming Gn,p1 has the
expansion claimed in Lemma 6.4, with θ = 0 and α = 1

10eM ,

P(µ(Gi+1)≥ µ(Gi)+1 | f1, f2, . . . , fi)≥
α2

2
, (6.8)

see (6.6).
It follows that

P(Gn,p does not have a perfect matching)≤
o(1)+P(Bin(s,α2/2)< n/2) = o(1).

We have used the notion of dominance, see Section 27.9 in order to use the bino-
mial distribution in the above inequality.
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6.2 Hamilton Cycles
This was a difficult question left open in [332]. A breakthrough came with the
result of Pósa [746]. The precise theorem given below can be credited to Komlós
and Szemerédi [579], Bollobás [154] and Ajtai, Komlós and Szemerédi [15].

Theorem 6.5. Let p = logn+log logn+cn
n . Then

lim
n→∞

P(Gn,p has a Hamilton cycle) =


0 if cn→−∞

e−e−c
if cn→ c

1 if cn→ ∞.

Moreover,

lim
n→∞

P(Gn,p has a Hamilton cycle ) = lim
n→∞

P(δ (Gn,p)≥ 2).

Proof. We will first give a proof of the first statement under the assumption that
cn = ω → ∞ where ω = o(log logn). The proof of the second statement is post-
poned to Section 6.3. Under this assumption, we have δ (Gn,p) ≥ 2 w.h.p., see
Theorem 4.3. The result for larger p follows by monotonicity.

We now set up the main tool, viz. Pósa’s Lemma. Let P be a path with end
points a,b, as in Figure 6.1. Suppose that b does not have a neighbor outside of P.
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P

a b

y

x

Figure 6.1: The path P

Notice that the P′ below in Figure 6.2 is a path of the same length as P, ob-
tained by a rotation with vertex a as the fixed endpoint. To be precise, suppose
that P = (a, . . . ,x,y,y′, . . . ,b′,b) and {b,x} is an edge where x is an interior vertex
of P. The path P′ = (a, . . . ,x,b,b′, . . . ,y′,y) is said to be obtained from P by a
rotation.

Now let END = END(P) denote the set of vertices v such that there exists a
path Pv from a to v such that Pv is obtained from P by a sequence of rotations with
vertex a fixed as in Figure 6.3.
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Figure 6.2: The path P′ obtained after a single rotation
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Figure 6.3: A sequence of rotations

Here the set END consists of all the white vertices on the path drawn below in
Figure 6.4.

Lemma 6.6. If v ∈ P \ END and v is adjacent to w ∈ END then there exists
x ∈ END such that the edge {v,x} ∈ P.

Proof. Suppose to the contrary that x,y are the neighbors of v on P and that v,x,y ̸∈
END and that v is adjacent to w ∈ END. Consider the path Pw. Let {r, t} be the
neighbors of v on Pw. Now {r, t} = {x,y} because if a rotation deleted {v,y} say
then v or y becomes an endpoint. But then after a further rotation from Pw we see
that x ∈ END or y ∈ END.
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Figure 6.4: The set END
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Figure 6.5: One of r, t will become an endpoint after a rotation

Corollary 6.7.
|N(END)|< 2|END|.

It follows from Lemma 6.4 with θ = 1 that w.h.p. we have

|END| ≥ αn where α =
1

12eM
. (6.9)

We now consider the following algorithm that searches for a Hamilton cycle
in a connected graph G. The probability p1 is above the connectivity threshold
and so Gn,p1 is connected w.h.p. Our algorithm will proceed in stages. At the
beginning of Stage k we will have a path of length k in G and we will try to grow
it by one vertex in order to reach Stage k+ 1. In Stage n− 1, our aim is simply
to create a Hamilton cycle, given a Hamilton path. We start the whole procedure
with an arbitrary path of G.

Algorithm Pósa:

(a) Let P be our path at the beginning of Stage k. Let its endpoints be x0,y0. If x0
or y0 have neighbors outside P then we can simply extend P to include one of
these neighbors and move to stage k+1.
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(b) Failing this, we do a sequence of rotations with x0 as the fixed vertex until one
of two things happens: (i) We produce a path Q with an endpoint y that has a
neighbor outside of Q. In this case we extend Q and proceed to stage k+ 1.
(ii) No sequence of rotations leads to Case (i). In this case let END denote
the set of endpoints of the paths produced. If y ∈ END then Py denotes a path
with endpoints x0,y that is obtained from P by a sequence of rotations.

(c) If we are in Case (bii) then for each y ∈ END we let END(y) denote the set
of vertices z such that there exists a longest path Qz from y to z such that Qz is
obtained from Py by a sequence of rotations with vertex y fixed. Repeating the
argument above in (b) for each y ∈ END, we either extend a path and begin
Stage k+1 or we go to (d).

(d) Suppose now that we do not reach Stage k+ 1 by an extension and that we
have constructed the sets END and END(y) for all y ∈ END. Suppose that
G contains an edge (y,z) where z ∈ END(y). Such an edge would imply
the existence of a cycle C = (z,Qy,z). If this is not a Hamilton cycle then
connectivity implies that there exist u ∈C and v /∈C such that u,v are joined
by an edge. Let w be a neighbor of u on C and let P′ be the path obtained from
C by deleting the edge (u,w). This creates a path of length k+1 viz. the path
w,P′,v, and we can move to Stage k+1.

A pair z,y where z ∈ END(y) is called a booster in the sense that if we added
this edge to Gn,p1 then it would either (i) make the graph Hamiltonian or (ii) make
the current path longer. We argue now that Gn,p2 can be used to “boost” P to a
Hamilton cycle, if necessary.

We observe now that when G = Gn,p1 , |END| ≥ αn w.h.p., see (6.9). Also,
|END(y)| ≥ αn for all y ∈ END. So we will have Ω(n2) boosters.

For a graph G let λ (G) denote the length of a longest path in G, when G
is not Hamiltonian and let λ (G) = n when G is Hamiltonian. Let the edges of
Gn,p2 be { f1, f2, . . . , fs} in random order, where s ≈ ωn/4. Let G0 = Gn,p1 and
Gi =Gn,p1 +{ f1, f2, . . . , fi} for i≥ 1. It follows from Lemmas 6.3 and 6.4 that if
λ (Gi)< n then, assuming Gn,p1 has the expansion claimed in Lemma 6.4,

P(λ (Gi+1)≥ λ (Gi)+1 | f1, f2, . . . , fi)≥
α2

2
, (6.10)

see (6.6), replacing A(v) by END(v).
It follows that

P(Gn,p is not Hamiltonian)≤ o(1)+P(Bin(s,α2/2)< n) = o(1). (6.11)
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6.3 Long Paths and Cycles in Sparse Random Graphs
In this section we study the length of the longest path and cycle in Gn,p when p =
c/n where c = O(logn), most importantly for c is a large constant. We have seen
in Chapter 1 that under these conditions, Gn,p will w.h.p. have isolated vertices
and so it will not be Hamiltonian. We can however show that it contains a cycle
of length Ω(n) w.h.p.

The question of the existence of a long path/cycle was posed by Erdős and
Rényi in [332]. The first positive answer to this question was given by Ajtai,
Komlós and Szemerédi [14] and by de la Vega [838]. The proof we give here is
due to Krivelevich, Lee and Sudakov. It is subsumed by the more general results
of [594].

Theorem 6.8. Let p = c/n where c is sufficiently large but c = O(logn). Then
w.h.p.

(a) Gn,p has a path of length at least
(

1− 6logc
c

)
n.

(b) Gn,p has a cycle of length at least
(

1− 12logc
c

)
n.

Proof. We prove this theorem by analysing simple properties of Depth First Search
(DFS). This is a well known algorithm for exploring the vertices of a component
of a graph. We can describe the progress of this algorithm using three sets: U is
the set of unexplored vertices that have not yet been reached by the search. D is
the set of dead vertices. These have been fully explored and no longer take part in
the process. A = {a1,a2, . . . ,ar} is the set of active vertices and they form a path
from a1 to ar. We start the algorithm by choosing a vertex v from which to start
the process. Then we let

A = {v} and D = /0 and U = [n]\{v} and r = 1.

We now describe how these sets change during one step of the algorithm.

Step (a) If there is an edge {ar,w} for some w ∈U then we choose one such w
and extend the path defined by A to include w.

ar+1← w;A← A∪{w};U ←U \{w};r← r+1.

We now repeat Step (a).
If there is no such w then we do Step (b):

Step (b) We have now completely explored ar.

D← D∪{ar};A← A\{ar};r← r−1.
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If r≥ 1 we go to Step (a). Otherwise, if U = /0 at this point then we terminate
the algorithm. If U ̸= /0 then we choose some v ∈U to re-start the process
with r = 1. We then go to Step (a).

We make the following simple observations:

• A step of the algorithm increases |D| by one or decreases |U | by one and so
at some stage we must have |D|= |U |= s for some positive integer s.

• There are no edges between D and U because we only add ar to D when
there are no edges from ar to U edges and U does not increase from this
point on.

Thus at some stage we have two disjoint sets D,U of size s with no edges between
them and a path of length |A| − 1 = n− 2s− 1. This plus the following claim
implies that Gn,p has a path P of length at least

(
1− 6logc

c

)
n w.h.p. Note that if c

is large then

α >
3logc

c
implies c >

2
α

log
( e

α

)
.

Claim 5. Let 0 < α < 1 be a positive constant. If p = c/n and c > 2
α

log
( e

α

)
then

w.h.p. in Gn,p, every pair of disjoint sets S1,S2 of size at least αn− 1 are joined
by at least one edge.

Proof. The probability that there exist sets S1,S2 of size (at least) αn−1 with no
joining edge is at most

(
n

αn−1

)2

(1− p)(αn−1)2
≤

(
e2+o(1)

α2 e−cα

)αn−1

= o(1).

To complete the proof of the theorem, we apply the above lemma to the ver-
tices S1,S2 on the two sub-paths P1,P2 of length 3logc

c n at each end of P. There
will w.h.p. be an edge joining S1,S2, creating the cycle of the claimed length.

Krivelevich and Sudakov [604] used DFS to give simple proofs of good bounds
on the size of the largest component in Gn,p for p = 1+ε

n where ε is a small con-
stant. Exercises 6.7.19, 6.7.20 and 6.7.21 elaborate on their results.
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Completing the proof of Theorem 6.5
We need to prove part (b). So we let 1− p= (1− p1)(1− p2) where p2 =

1
n log logn .

Then we apply Theorem 6.8(a) to argue that w.h.p. Gn,p1 has a path of length

n
(

1−O
(

log logn
logn

))
.

Now, conditional on Gn,p1 having minimum degree at least two, the proof of
the statement of Lemma 6.4 goes through without change for θ = 1 i.e. S ⊆
[n], |S| ≤ n

10000 implies |N(S)| ≥ 2|S|. We can then use use the extension-rotation
argument that we used to prove Theorem 6.5(c). This time we only need to close
O
(

n log logn
logn

)
cycles and we have Ω

(
n

log logn

)
edges. Thus (6.11) is replaced by

P(Gn,p is not Hamiltonian | δ (Gn,p1)≥ 2)≤

o(1)+P
(

Bin
(

c1n
log logn

,10−8
)
<

c2n log logn
logn

)
= o(1),

for some hidden constants c1,c2.

6.4 Greedy Matching Algorithm
In this section we see how we can use differential equations to analyse the per-
formance of a greedy algorithm for finding a large matching in a random graph.
Finding a large matching is a standard problem in Combinatorial Optimisation.
The first polynomial time algorithm to solve this problem was devised by Ed-
monds in 1965 and runs in time O(|V |4) [326]. Over the years, many improve-
ments have been made. Currently the fastest such algorithm is that of Micali and
Vazirani which dates back to 1980. Its running time is O(|E|

√
|V |) [680]. These

algorithms are rather complicated and there is a natural interest in the performance
of simpler heuristic algorithms which should find large, but not necessarily maxi-
mum matchings. One well studied class of heuristics goes under the general title
of the GREEDY heuristic.

The following simple greedy algorithm proceeds as follows: Beginning with
graph G = (V,E) we choose a random edge e = {u,v} ∈ E and place it in a set M.
We then delete u,v and their incident edges from G and repeat. In the following,
we analyse the size of the matching M produced by this algorithm.
Algorithm GREEDY

begin
M← /0;
while E(G) ̸= /0 do
begin
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A: Randomly choose e = {x,y} ∈ E
G← G\{x,y};
M←M∪{e}

end;
Output M
end

(G \ {x,y} is the graph obtained from G by deleting the vertices x,y and all
incident edges.)

We will study this algorithm in the context of the pseudo-graph model G(B)
n,m of

Section 1.3 and apply (1.17) to bring the results back to Gn,m. We will argue next
that if at some stage G has ν vertices and µ edges then G is equally likely to be
any pseudo-graph with these parameters.

We will use the method of deferred decisions, a term coined in Knuth, Mot-
wani and Pittel [573]. In this scenario, we do not expose the edges of the pseudo-
graph until we actually need to. So, as a thought experiment, think that initially
there are m boxes, each containing a uniformly random ordered pair of distinct
integers x,y from [n]. Until the box is opened, the contents are unknown except
for their distribution. Observe that opening box A and observing its contents tells
us nothing more about the contents of box B. This would not be the case if as in
Gn,m we insisted that no two boxes had the same contents.

Remark 6.9. A step of GREEDY involves choosing the first unopened box at
random to expose its contents x,y.

After this, the contents of the remaining boxes will of course remain uniformly
random. The algorithm will then ask for each box with x or y to be opened. Other
boxes will remain unopened and all we will learn is that their contents do not
contain x or y and so they are still uniform over the remaining possible edges.

We need the following

Lemma 6.10. Suppose that m = cn for some constant c > 0. Then w.h.p. the
maximum degree in G(B)

n,m is at most logn.

Proof. The degree of a vertex is distributed as Bin(m,2/n). So, if ∆ denotes the
maximum degree in G(B)

n,m, then with ℓ= logn,

P(∆≥ ℓ)≤ n
(

m
ℓ

)(
2
n

)ℓ

≤ n
(

2ce
ℓ

)ℓ

= o(1).
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Now let X(t) = (ν(t),µ(t)), t = 1,2, . . . , denote the number of vertices and
edges in the graph at the end of the tth iteration of GREEDY. Also, let Gt =
(Vt ,Et) = G at this point and let G′t = (Vt ,Et \ e) where e is a uniform random
edge of Et . Thus ν(1) = n,µ(1) = m and G1 = G(B)

n,m. Now ν(t + 1) = ν(t)− 2
and so ν(t) = n−2t +2. Let dt(·) denote degree in G′t and let θt(x,y) denote the
number of copies of the edge {x,y} in Gt , excluding e. Then we have

E(µ(t +1) | Gt) = µ(t)− (dt(x)+dt(y)−1)+θt(x,y)).

Taking expectations over Gt we have

E(µ(t +1)) = E(µ(t))−E(dt(x))−E(dt(y))+1+E(θt(x,y)).

Now we will see momentarily that E(dt(x)2) = O(1). And,

E(dt(x)+dt(y) | Gt)

=
ν(t)

∑
i=1

ν(t)

∑
j ̸=i=1

dt(i)dt( j)
2µ(t)(2µ(t)−1)

(dt(i)+dt( j)

=
1

2µ(t)(2µ(t)−1)

(
ν(t)

∑
i=1

dt(i)∑
j ̸=i

d j(t)2 +
ν(t)

∑
i=1

dt(i)2
∑
j ̸=i

d j(t)

)

=
1

2µ(t)(2µ(t)−1)

(
2µ(t)

(
ν(t)

∑
j=1

d j(t)2−O(1)

)
+(2µ(t)−O(1))

ν(t)

∑
i=1

dt(i)2

)

=
1

µ(t)

ν(t)

∑
i=1

dt(i)2 +O
(

1
µ(t)

)
.

In the model GB
n,m,

E

(
1

µ(t)

ν(t)

∑
i=1

dt(i)2
∣∣∣∣µ(t)

)
=

ν(t)
µ(t)

µ(t)

∑
k=0

k2
(

µ(t)
k

)(
2

ν(t)

)k(
1− 2

ν(t)

)µ(t)−k

= 2
(

1− 2
ν(t)

+
2µ(t)
ν(t)

)
.

So,

E(µ(t +1)) = E(µ(t))− 4E(µ(t))
n−2t

−1+O
(

1
n−2t

)
. (6.12)

Here we use Remark 6.9 to argue that Eθt(x,y)) = O(1/(n−2t)).
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This suggests that w.h.p. µ(t)≈ nz(t/n) where z(0)= c and z(τ) is the solution
to the differential equation

dz
dτ

=− 4z(τ)
1−2τ

−1.

This is easy to solve and gives

z(τ) =
(

c+
1
2

)
(1−2τ)2− 1−2τ

2
.

The smallest root of z(τ) = 0 is τ = c
2c+1 . This suggests the following theorem.

Theorem 6.11. W.h.p., running GREEDY on Gn,cn finds a matching of size c+o(1)
2c+1 n.

Proof. We will replace Gn,m by G(B)
n,m and consider the random sequence µ(t),

t = 1,2, . . .. The number of edges in the matching found by GREEDY equals one
less than the first value of t for which µ(t) = 0. We show that w.h.p. µ(t) > 0 if
and only if t ≤ c+o(1)

2c+1 n. We will use Theorem 28.1 of Chapter 28.
In our set up for the theorem we let

f (τ,x) =− 4x
1−2τ

−1.

D =

{
(τ,x) :−1

n
< t < TD =

c
2c+1

,0 < x <
1
2

}
.

We let X(t) = µ(t) for the statement of the theorem. Then we have to check the
conditions:

(P1) |µ(t)| ≤ cn, ∀t < TD = TDn.

(P2) |µ(t +1)−µ(t)| ≤ 2logn, ∀t < TD.

(P3) |E(µ(t +1)−µ(t)|Ht ,E )− f (t/n,X(t)/n)| ≤ A
n ,∀t < TD.

Here E = {∆≤ logn} and this is needed for (P2).

(P4) f (t,x) is continuous and satisfies a Lipschitz condition
| f (t,x)− f (t ′,x′)| ≤ L∥(t,x)− (t ′,x′)∥∞ where L = 10(2c+1)2,
for (t,x),(t ′,x′) ∈ D∩{(t,x) : t ≥ 0}

Here f (t,x) =−1− 4x
1−2t and we can justify L of P4 as follows:

| f (t,x)− f (t ′,x′)|

=

∣∣∣∣ 4x
1−2t

− 4x′

1−2t ′

∣∣∣∣
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≤
∣∣∣∣ 4(x− x′)
(1−2t)(1−2t ′)

∣∣∣∣+ ∣∣∣∣ 8x′(t− t ′)
(1−2t)(1−2t ′)

∣∣∣∣+ ∣∣∣∣ 8′t(x− x′)
(1−2t)(1−2t ′)

∣∣∣∣
≤ 10(2c+1)2.

Now let β = n1/5 and λ = n−1/20 and σ = T D−10λ and apply the theorem.
This shows that w.h.p. µ(t) = nz(t/n)+O(n19/20) for t ≤ σn.

The result in Theorem 6.11 is taken from Dyer, Frieze and Pittel [324], where a
central limit theorem is proven for the size of the matching produced by GREEDY.

The use of differential equations to approximate the trajectory of a stochastic
process is quite natural and is often very useful. It is however not always best
practise to try and use an “off the shelf” theorem like Theorem 28.1 in order to
get a best result. It is hard to design a general theorem that can deal optimally
with terms that are o(n).

6.5 Random Subgraphs of Graphs with Large Min-
imum Degree

Here we prove an extension of Theorem 6.8. The setting is this. We have a se-
quence of graphs Gk with minimum degree at least k, where k→ ∞. We construct
a random subgraph Gp of G = Gk by including each edge of G, independently
with probability p. Thus if G = Kn, Gp is Gn,p. The theorem we prove was first
proved by Krivelevich, Lee and Sudakov [594]. The argument we present here is
due to Riordan [763].

In the following we abbreviate (Gk)p to Gp where the parameter k is to be
understood.

Theorem 6.12. Let Gk be a sequence of graphs with minimum degree at least k
where k→ ∞. Let p be such that pk→ ∞ as k→ ∞. Then w.h.p. Gp contains a
cycle of length at least (1−o(1))k.

Proof. We will assume that G has n vertices. We let T denote the forest produced
by depth first search. We also let D,U,A be as in the proof of Theorem 6.8. Let
v be a vertex of the rooted forest T . There is a unique vertical path from v to the
root of its component. We write A (v) for the set of ancestors of v, i.e., vertices
(excluding v) on this path. We write D(v) for the set of descendants of v, again
excluding v. Thus w∈D(v) if and only if v∈A (w). The distance d(u,v) between
two vertices u and v on a common vertical path is just their graph distance along
this path. We write Ai(v) and Di(v) for the set of ancestors/descendants of v
at distance exactly i, and A≤i(v),D≤i(v) for those at distance at most i. By the
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depth of a vertex we mean its distance from the root. The height of a vertex v
is max{i : Di(v) ̸= /0}. Let R denote the set of edges of G that are not tested for
inclusion in Gp during the exploration.

Lemma 6.13. Every edge e of R joins two vertices on some vertical path in T .

Proof. Let e = {u,v} and suppose that u is placed in D before v. When u is placed
in D, v cannot be in U , else {u,v} would have been tested. Also, v cannot be in D
by our choice of u. Therefore at this time v ∈ A and there is a vertical path from v
to u.

Lemma 6.14. With high probability, at most 2n/p= o(kn) edges are tested during
the depth first search exploration.

Proof. Each time an edge is tested, the test succeeds (the edge is found to be
present) with probability p. The Chernoff bound implies that the probability that
more than 2n/p tests are made but fewer than n succeed is o(1). But every suc-
cessful test contributes an edge to the forest T , so w.h.p. at most n tests are suc-
cessful.

From now on let us fix an arbitrary (small) constant 0 < ε < 1/10. We call a
vertex v full if it is incident with at least (1− ε)k edges in R.

Lemma 6.15. With high probability, all but o(n) vertices of Tk are full.

Proof. Since G has minimum degree at least k, each v ∈ V (G) = V (T ) that is
not full is incident with at least εk tested edges. If for some constant c > 0 there
are at least cn such vertices, then there are at least cεkn/2 tested edges. But the
probability of this is o(1) by Lemma 6.14.

Let us call a vertex v rich if |D(v)| ≥ εk, and poor otherwise. In the next
two lemmas, (Tk) is a sequence of rooted forests with n vertices. We suppress the
dependence on k in notation.

Lemma 6.16. Suppose that T = Tk contains o(n) poor vertices. Then, for any
constant C, all but o(n) vertices of T are at height at least Ck.

Proof. For each rich vertex v, let P(v) be a set of ⌈εk⌉ descendants of v, obtained
by choosing vertices of D(v) one-by-one starting with those furthest from v. For
every w ∈ P(v) we have D(w) ⊆ P(v), so |D(w)| < εk, i.e., w is poor. Consider
the set S1 of ordered pairs (v,w) with v rich and w ∈ P(v). Each of the n− o(n)
rich vertices appears in at least εk pairs, so |S1| ≥ (1−o(1))εkn.

For any vertex w we have |A≤i(w)| ≤ i, since there is only one ancestor at
each distance, until we hit the root. Since (v,w) ∈ S1 implies that w is poor and
v ∈ A (w), and there are only o(n) poor vertices, at most o(Ckn) = o(kn) pairs
(v,w) ∈ S1 satisfy d(v,w) ≤ Ck. Thus S′1 = {(v,w) ∈ S1 : d(v,w)>Ck} satisfies
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|S′1| ≥ (1−o(1))εkn. Since each vertex v is the first vertex of at most ⌈εk⌉ ≈ εk
pairs in S1 ⊇ S′1, it follows that n− o(n) vertices v appear in pairs (v,w) ∈ S′1.
Since any such v has height at least Ck, the proof is complete.

Let us call a vertex v light if |D≤(1−5ε)k(v)| ≤ (1−4ε)k, and heavy otherwise.
Let H denote the set of heavy vertices in T .

Lemma 6.17. Suppose that T = Tk contains o(n) poor vertices, and let X ⊆V (T )
with |X | = o(n). Then, for k large enough, T contains a vertical path P of length
at least ε−2k containing at most ε2k vertices in X ∪H.

Proof. Let S2 be the set of pairs (u,v) where u is an ancestor of v and 0< d(u,v)≤
(1−5ε)k. Since a vertex has at most one ancestor at any given distance, we have
|S2| ≤ (1− 5ε)kn. On the other hand, by Lemma 6.16 all but o(n) vertices u are
at height at least k and so appear in at least (1−5ε)k pairs (u,v) ∈ S2. It follows
that only o(n) vertices u are in more than (1−4ε)k such pairs, i.e., |H|= o(n).

Let S3 denote the set of pairs (u,v) where v ∈ X ∪H, u is an ancestor of v, and
d(u,v) ≤ ε−2k. Since a given v can only appear in ε−2k pairs (u,v) ∈ S3, we see
that |S3| ≤ ε−2k|X ∪H|= o(kn). Hence only o(n) vertices u appear in more than
ε2k pairs (u,v) ∈ S3.

By Lemma 6.16, all but o(n) vertices are at height at least ε−2k. Let u be such
a vertex appearing in at most ε2k pairs (u,v) ∈ S3, and let P be the vertical path
from u to some v ∈Dε−2k(u). Then P has the required properties.

Proof of Theorem 6.12
Fix ε > 0. It suffices to show that w.h.p. Gp contains a cycle of length at least
(1−5ε)k, say. Explore Gp by depth-first search as described above. We condition
on the result of the exploration, noting that the edges of R are still present inde-
pendently with probability p. By Lemma 6.13, {u,v} ∈ R implies that u is either
an ancestor or a descendant of v. By Lemma 6.15, we may assume that all but
o(n) vertices are full.

Suppose that

|{u : {u,v} ∈ R,d(u,v)≥ (1−5ε)k}| ≥ εk. (6.13)

for some vertex v. Then, since εkp→ ∞, testing the relevant edges {u,v} one-by-
one, w.h.p we find one present in Gp, forming, together with T , the required long
cycle. On the other hand, suppose that (6.13) fails for every v. Suppose that some
vertex v is full but poor. Since v has at most εk descendants, there are at least
(1− 2ε)k pairs {u,v} ∈ R with u ∈ A (v). Since v has only one ancestor at each
distance, it follows that (6.13) holds for v, a contradiction.

We have shown that we can assume that no poor vertex is full. Hence there
are o(n) poor vertices, and we may apply Lemma 6.17, with X the set of vertices
that are not full. Let P be the path whose existence is guaranteed by the lemma,
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and let Z be the set of vertices on P that are full and light, so |V (P)\Z| ≤ ε2k. For
any v ∈ Z, since v is full, there are at least (1−ε)k vertices u ∈A (v)∪D(v) with
{u,v} ∈ R. Since (6.13) does not hold, at least (1−2ε)k of these vertices satisfy
d(u,v)≤ (1−5ε)k. Since v is light, in turn at least 2εk of these u must be in A (v).
Recalling that a vertex has at most one ancestor at each distance, we find a set R(v)
of at least εk vertices u ∈A (v) with {u,v} ∈ R and εk≤ d(u,v)≤ (1−5ε)k≤ k.

It is now easy to find a (very) long cycle w.h.p. Recall that Z ⊆ V (P) with
|V (P)\Z| ≤ ε2k. Thinking of P as oriented upwards towards the root, let v0 be the
lowest vertex in Z. Since |R(v0)| ≥ εk and kp→∞, w.h.p. there is an edge {u0,v0}
in Gp with u0 ∈R(v0). Let v1 be the first vertex below u0 along P with v1 ∈ Z. Note
that we go up at least εk steps from v0 to u0 and down at most 1+ |V (P)\Z| ≤ 2ε2k
from u0 to v1, so v1 is above v0. Again w.h.p. there is an edge {u1,v1} in Gp with
u1 ∈ R(v1), and so at least εk steps above v1. Continue downwards from u1 to the
first v2 ∈ Z, and so on. Since ε−1 = O(1), w.h.p. we may continue in this way
to find overlapping chords {ui,vi} for 0≤ i≤

⌊
2ε−1⌋, say. (Note that we remain

within P as each upwards step has length at most k.) These chords combine with
P to give a cycle of length at least (1− 2ε−1× 2ε2)k = (1− 4ε)k, as shown in
Figure 6.6.
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Figure 6.6: The path P, with the root off to the right. Each chord {vi,ui} has
length at least εk (and at most k); from ui to vi+1 is at most 2ε2k steps back along
P. The chords and the thick part of P form a cycle.

6.6 Spanning Subgraphs

Consider a fixed sequence H(d) of graphs where n = |V (H(d))| →∞. In particular,
we consider a sequence Qd of d-dimensional cubes where n = 2d and a sequence
of 2-dimensional lattices Ld of order n = d2. We ask when Gn,p or Gn,m contains
a copy of H = H(d) w.h.p.
We give a condition that can be proved in quite an elegant and easy way. This
proof is from Alon and Füredi [31].

Theorem 6.18. Let H be fixed sequence of graphs with n = |V (H)| → ∞ and
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maximum degree ∆, where (∆2 +1)2 < n. If

p∆ >
10log⌊n/(∆2 +1)⌋
⌊n/(∆2 +1)⌋

, (6.14)

then Gn,p contains an isomorphic copy of H w.h.p.

Proof. To prove this we first apply the Hajnal-Szemerédi Theorem to the square
H2 of our graph H.
Recall that we square a graph if we add an edge between any two vertices of our
original graph which are at distance at most two. The Hajnal-Szemerédi Theorem
states that every graph with n vertices and maximum vertex degree at most d is
d + 1-colorable with all color classes of size ⌊n/(d + 1)⌋ or ⌈n/(d + 1)⌉, i.e, the
(d +1)-coloring is equitable.
Since the maximum degree of H2 is at most ∆2, there exists an equitable ∆2 +1-
coloring of H2 which induces a partition of the vertex set of H, say U = U(H),
into ∆2 + 1 pairwise disjoint subsets U1,U2, . . . ,U∆2+1, so that each Uk is an in-
dependent set in H2 and the cardinality of each subset is either ⌊n/(∆2 + 1)⌋ or
⌈n/(∆2 +1)⌉.
Next, partition the set V of vertices of the random graph Gn,p into pairwise dis-
joint sets V1,V2, . . . ,V∆2+1, so that |Uk|= |Vk| for k = 1,2, . . . ,∆2 +1.
We define a one-to-one function f : U 7→V , which maps each Uk onto Vk resulting
in a mapping of H into an isomorphic copy of H in Gn,p. In the first step, choose
an arbitrary mapping of U1 onto V1. Now U1 is an independent subset of H and so
Gn,p[V1] trivially contains a copy of H[U1]. Assume, by induction, that we have
already defined

f : U1∪U2∪ . . .∪Uk 7→V1∪V2∪ . . .∪Vk,

and that f maps the induced subgraph of H on U1 ∪U2 ∪ . . .∪Uk into a copy of
it in V1∪V2∪ . . .∪Vk. Now, define f on Uk+1, using the following construction.
Suppose first that Uk+1 = {u1,u2, . . . ,um} and Vk+1 = {v1,v2, . . . ,vm} where m ∈{
⌊n/(∆2 +1)⌋,⌈n/(∆2 +1)⌉

}
.

Next, construct a random bipartite graph G(k)
m,m,p∗ with a vertex set V = (X ,Y ),

where X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,ym} and connect xi and y j with an
edge if and only if in Gn,p the vertex v j is joined by an edge to all vertices f (u),
where u is a neighbor of ui in H which belongs to U1∪U2∪ . . .∪Uk. Hence, we
join xi with y j if and only if we can define f (ui) = v j.
Note that for each i and j, the edge probability p∗ ≥ p∆ and that edges of G(k)

m,m,p∗

are independent of each other, since they depend on pairwise disjoint sets of edges
of Gn,p. This follows from the fact that Uk+1 is independent in H2. Assuming that
the condition (6.14) holds and that (∆2+1)2 < n, then by Theorem 6.1, the random
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graph G(k)
m,m,p∗ has a perfect matching w.h.p. Moreover, we can conclude that the

probability that there is no perfect matching in G(k)
m,m,p∗ is at most 1

(∆2+1)n . It is
here that we have used the extra factor 10 in the RHS of (6.14). We use a perfect
matching in G(k)(m,m, p∗) to define f , assuming that if xi and y j are matched then
f (ui) = v j. To define our mapping f : U 7→ V we have to find perfect matchings
in all G(k)(m,m, p∗),k = 1,2, . . . ,∆2 + 1. The probability that we can succeed in
this is at least 1− 1/n. This implies that Gn,p contains an isomorphic copy of H
w.h.p.

Corollary 6.19. Let n = 2d and suppose that d → ∞ and p ≥ 1
2 + od(1), where

od(1) is a function that tends to zero as d→ ∞. Then w.h.p. Gn,p contains a copy
of a d-dimensional cube Qd .

Corollary 6.20. Let n = d2 and p≫
(

logn
n

)1/4
, where ω(n),d→ ∞. Then w.h.p.

Gn,p contains a copy of the 2-dimensional lattice Ld .

6.7 Exercises
6.7.1 Consider the bipartite graph process Γm,m = 0,1,2, . . . ,n2 where we add

the n2 edges in A×B in random order, one by one. Show that w.h.p. the
hitting time for Γm to have a perfect matching is identical with the hitting
time for minimum degree at least one.

6.7.2 Show that

lim
n→∞
n odd

P(Gn,p has a near perfect matching) =


0 if cn→−∞

e−e−c
if cn→ c

1 if cn→ ∞.

A near pefect matching is one of size ⌊n/2⌋.

6.7.3 Show that if p= logn+(k−1) log logn+ω

n where k =O(1) and ω→∞ then w.h.p.
Gn,n,p contains a k-regular spanning subgraph.

6.7.4 Consider the random bipartite graph G with bi-partition A,B where |A| =
|B| = n. Each vertex a ∈ A independently chooses ⌈2logn⌉ random neigh-
bors in B. Show that w.h.p. G contains a perfect matching.
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6.7.5 Show that if p= logn+(k−1) log logn+ω

n where k =O(1) and ω→∞ then w.h.p.
Gn,p contains ⌊k/2⌋ edge disjoint Hamilton cycles. If k is odd, show that
in addition there is an edge disjoint matching of size ⌊n/2⌋. (Hint: Use
Lemma 6.4 to argue that after “peeling off” a few Hamilton cycles, we can
still use the arguments of Sections 6.1, 6.2).

6.7.6 Let m∗k denote the first time that Gm has minimum degree at least k. Show
that w.h.p. in the graph process (i) Gm∗1 contains a perfect matching and (ii)
Gm∗2 contains a Hamilton cycle.

6.7.7 Show that if p = logn+log logn+ω

n where ω → ∞ then w.h.p.Gn,n,p contains
a Hamilton cycle. (Hint: Start with a 2-regular spanning subgraph from
(ii). Delete an edge from a cycle. Argue that rotations will always produce
paths beginning and ending at different sides of the partition. Proceed more
or less as in Section 6.2).

6.7.8 Show that if p= logn+log logn+ω

n where n is even and ω→∞ then w.h.p. Gn,p
contains a pair of vertex disjoint n/2-cycles. (Hint: Randomly partition [n]
into two sets of size n/2. Then move some vertices between parts to make
the minimum degree at least two in both parts).

6.7.9 Show that if three divides n and np2≫ logn then w.h.p. Gn,p contains n/3
vertex disjoint triangles. (Hint: Randomly partition [n] into three sets A,B,C
of size n/3. Choose a perfect matching M between A and B and then match
C into M).

6.7.10 Let G = (X ,Y,E) be an arbitrary bipartite graph where the bi-partition X ,Y
satisfies |X | = |Y | = n. Suppose that G has minimum degree at least 3n/4.
Let p = K logn

n where K is a large constant. Show that w.h.p. Gp contains a
perfect matching.

6.7.11 Let p= (1+ε) logn
n for some fixed ε > 0. Prove that w.h.p. Gn,p is Hamilton

connected i.e. every pair of vertices are the endpoints of a Hamilton path.

6.7.12 Show that if p = (1+ε) logn
n for ε > 0 constant, then w.h.p. Gn,p contains a

copy of a caterpillar on n vertices. The diagram below is the case n = 16.
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6.7.13 Show that for any fixed ε > 0 there exists cε such that if c ≥ cε then Gn,p

contains a cycle of length (1− ε)n with probability 1− e−cε2n/10.

6.7.14 Let p= (1+ε) logn
n for some fixed ε > 0. Prove that w.h.p. Gn,p is pancyclic

i.e. it contains a cycle of length k for every 3≤ k ≤ n.
(See Cooper and Frieze [248] and Cooper [242], [244]).

6.7.15 Show that if p is constant then

P(Gn,p is not Hamiltonian) = O(e−Ω(np)).

6.7.16 Let T be a tree on n vertices and maximum degree less than c1 logn. Sup-
pose that T has at least c2n leaves. Show that there exists K = K(c1,c2)

such that if p≥ K logn
n then Gn,p contains a copy of T w.h.p.

6.7.17 Let p = 1000
n and G = Gn,p. Show that w.h.p. any red-blue coloring of the

edges of G contains a mono-chromatic path of length n
1000 . (Hint: Apply the

argument of Section 6.3 to both the red and blue sub-graphs of G to show
that if there is no long monochromatic path then there is a pair of large sets
S,T such that no edge joins S,T .)
This question is taken from Dudek and Pralat [312]

6.7.18 Suppose that p = n−α for some constant α > 0. Show that if α > 1
3 then

w.h.p. Gn,p does not contain a maximal spanning planar subgraph i.e. a
planar subgraph with 3n−6 edges. Show that if α < 1

3 then it contains one
w.h.p. (see Bollobás and Frieze [167]).

6.7.19 Show that the hitting time for the existence of k edge-disjoint spanning trees
coincides w.h.p. with the hitting time for minimum degree k, for k = O(1).
(See Palmer and Spencer [724]).

6.7.20 Let p = c
n where c > 1 is constant. Consider the greedy algorithm for con-

structing a large independent set I: choose a random vertex v and put v into
I. Then delete v and all of its neighbors. Repeat until there are no vertices
left. Use the differential equation method (see Section 6.4) and show that
w.h.p. this algorithm chooses an independent set of size at least logc

c n.

6.7.21 Consider the modified greedy matching algorithm where you first choose
a random vertex x and then choose a random edge {x,y} incident with x.
Show that applied to Gn,m, with m = cn, that w.h.p. it produces a matching

of size
(

1
2 +o(1)− log(2−e−2c)

4c

)
n.
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6.7.22 Let X1,X2, . . . ,N =
(n

2

)
be a sequence of independent Bernouilli random

variables with common probability p. Let ε > 0 be sufficiently small. (See
[604]).

(a) Let p = 1−ε

n and let k = 7logn
ε2 . Show that w.h.p. there is no interval I of

length kn in [N] in which at least k of the variables take the value 1.

(b) Let p = 1+ε

n and let N0 =
εn2

2 . Show that w.h.p.∣∣∣∣∣ N0

∑
i=1

Xi−
ε(1+ ε)n

2

∣∣∣∣∣≤ n2/3.

6.7.23 Use the result of Exercise 6.7.21(a) to show that if p = 1−ε

n then w.h.p. the
maximum component size in Gn,p is at most 7logn

ε2 .

6.7.24 Use the result of Exercise 6.7.21(b) to show that if p = 1+ε

n then w.h.p Gn,p

contains a path of length at least ε2n
5 .

6.8 Notes

Hamilton cycles

Multiple Hamilton cycles

There are several results pertaining to the number of distinct Hamilton cycles
in Gn,m. Cooper and Frieze [247] showed that in the graph process Gm∗2 con-
tains (logn)n−o(n) distinct Hamilton cycles w.h.p. This number was improved by

Glebov and Krivelevich [435] to n!pneo(n) for Gn,p and
(

logn
e

)n
eo(n) at time m∗2.

McDiarmid [664] showed that for Hamilton cycles, perfect matchings, spanning
trees the expected number was much higher. This comes from the fact that al-
though there is a small probability that m∗2 is of order n2, most of the expectation
comes from here. (m∗k is defined in Exercise 6.7.5).

Bollobás and Frieze [166] (see Exercise 6.7.4) showed that in the graph pro-
cess, Gm∗k

contains ⌊k/2⌋ edge disjoint Hamilton cycles plus another edge disjoint
matching of size ⌊n/2⌋ if n is odd. We call this property Ak. This was the case
k = O(1). The more difficult case of the occurrence of Ak at m∗k , where k→ ∞

was verified in two papers, Krivelevich and Samotij [601] and Knox, Kühn and
Osthus [574].
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Conditioning on minimum degree

Suppose that instead of taking enough edges to make the minimum degree in Gn,m
two very likely, we instead condition on having minimum degree at least two.
Let Gδ≥k

n,m denote Gn,m conditioned on having minimum degree at least k = O(1).
Bollobás, Fenner and Frieze [164] proved that if

m =
n
2

(
logn
k+1

+ k log logn+ω(n)
)

then Gδ≥k
n,m has Ak w.h.p.

Bollobás, Cooper, Fenner and Frieze [161] prove that w.h.p. Gδ≥k
n,cn has prop-

erty Ak−1 w.h.p. provided 3≤ k = O(1) and c≥ (k+1)3. For k = 3, Frieze [391]
showed that Gδ≥3

n,cn is Hamiltonian w.h.p. for c≥ 10.
The k-core of a random graphs is distributed like Gδ≥k

ν ,µ for some (random)
ν ,µ . Krivelevich, Lubetzky and Sudakov [598] prove that when a k-core first
appears, k ≥ 15, w.h.p. it has ⌊(k−3)/2⌋ edge disjoint Hamilton cycles.

Algorithms for finding Hamilton cycles

Gurevich and Shelah [457] and Thomason [831] gave linear expected time algo-
rithms for finding a Hamilton cycle in a sufficiently dense random graph i.e. Gn,m

with m≫ n5/3 in the Thomason paper. Bollobás, Fenner and Frieze [163] gave
an O(n3+o(1)) time algorithm that w.h.p. finds a Hamilton cycle in the graph Gm∗2 .
Frieze and Haber [393] gave an O(n1+o(1)) time algorithm for finding a Hamilton
cycle in Gδ≥3

n,cn for c sufficiently large.

Long cycles

A sequence of improvements, Bollobás [150]; Bollobás, Fenner and Frieze [165]
to Theorem 6.8 in the sense of replacing O(logc/c) by something smaller led
finally to Frieze [384]. He showed that w.h.p. there is a cycle of length n(1−
ce−c(1+ εc)) where εc→ 0 with c. Up to the value of εc this is best possible.

Glebov, Naves and Sudakov [436] prove the following generalisation of (part
of) Theorem 6.5. They prove that if a graph G has minimum degree at least k and
p≥ logk+log logk+ωk(1)

k then w.h.p. Gp has a cycle of length at least k+1.

Spanning Subgraphs
Riordan [760] used a second moment calculation to prove the existence of a cer-
tain (sequence of) spanning subgraphs H = H(i) in Gn,p. Suppose that we denote
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the number of vertices in a graph H by |H| and the number of edges by e(H).
Suppose that |H|= n. For k ∈ [n] we let eH(k) = max{e(F) : F ⊆H, |F |= k} and
γ = max3≤k≤n

eH(k)
k−2 . Riordan proved that if the following conditions hold, then

Gn,p contains a copy of H w.h.p.: (i) e(H) ≥ n, (ii) N p,(1− p)n1/2 → ∞, (iii)
npγ/∆(H)4→ ∞.

This for example replaces the 1
2 in Corollary 6.19 by 1

4 .

Spanning trees
Gao, Pérez-Giménez and Sato [424] considered the existence of k edge disjoint
spanning trees in Gn,p. Using a characterisation of Nash-Williams [708] they were
able to show that w.h.p. one can find min

{
δ , m

n−1

}
edge disjoint spanning trees.

Here δ denotes the minimum degree and m denotes the number of edges.
When it comes to spanning trees of a fixed structure, Kahn conjectured that

the threshold for the existence of any fixed bounded degree tree T , in terms of
number of edges, is O(n logn). For example, a comb consists of a path P of length
n1/2 with each v ∈ P being one endpoint of a path Pv of the same length. The
paths Pv,Pw being vertex disjoint for v ̸= w. Hefetz, Krivelevich and Szabó [477]
proved this for a restricted class of trees i.e. those with a linear number of leaves
or with an induced path of length Ω(n). Kahn, Lubetzky and Wormald [534],
[535] verified the conjecture for combs. Montgomery [687], [688] sharpened the
result for combs, replacing m = Cn logn by m = (1+ ε)n logn and proved that
any tree can be found w.h.p. when m = O(∆n(logn)5), where ∆ is the maximum
degree of T . More recently, Montgomery [690] improved the upper bound on m
to the optimal, m = O(∆n(logn)).

Large Matchings
Karp and Sipser [558] analysed a greedy algorithm for finding a large matching
in the random graph Gn,p, p = c/n where c > 0 is a constant. It has a much better
performance than the algorithm described in Section 6.4. It follows from their
work that if µ(G) denotes the size of the largest matching in G then w.h.p.

µ(Gn,p)

n
≈ 1− γ∗+ γ∗+ γ∗γ∗

2c

where γ∗ is the smallest root of x = cexp{−ce−x} and γ∗ = ce−γ∗ .
Later, Aronson, Frieze and Pittel [52] tightened their analysis. This led to

the consideration of the size of the largest matching in Gδ≥2
n,m=cn. Frieze and Pittel

[413] showed that w.h.p. this graph contains a matching of size n/2−Z where
Z is a random variable with bounded expectation. Frieze [389] proved that in
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the bipartite analogue of this problem, a perfect matching exists w.h.p. Building
on this work, Chebolu, Frieze and Melsted [215] showed how to find an exact
maximum sized matching in Gn,m,m = cn in O(n) expected time.

H-factors
By an H-factor of a graph G, we mean a collection of vertex disjoint copies of
a fixed graph H that together cover all the vertices of G. Some early results on
the existence of H-factors in random graphs are given in Alon and Yuster [38]
and Ruciński [778]. For the case of when H is a tree, Łuczak and Ruciński [644]
found the precise threshold. For general H, there is a recent breakthrough paper
of Johansson, Kahn and Vu [529] that gives the threshold for strictly balanced H
and good estimates in general. See Gerke and McDowell [423] for some further
results.



Chapter 7

Extreme Characteristics

This chapter is devoted to the extremes of certain graph parameters. We look first
at the diameter of random graphs i.e. the extreme value of the shortest distance
between a pair of vertices. Then we look at the size of the largest independent set
and the the related value of the chromatic number. We decribe an important recent
result on “interpolation” that proves certain limits exist. We end the chapter with
the likely values of the first and second eigenvalues of a random graph.

7.1 Diameter
In this section we will first discuss the threshold for Gn,p to have diameter d,
when d ≥ 2 is a constant. The diameter of a connected graph G is the maximum
over distinct vertices v,w of dist(v,w) where dist(v,w) is the minimum number
of edges in a path from v to w. The theorem below was proved independently by
Burtin [203], [204] and by Bollobás [148]. The proof we give is due to Spencer
[810].

Theorem 7.1. Let d ≥ 2 be a fixed positive integer. Suppose that c > 0 and

pdnd−1 = log(n2/c).

Then

lim
n→∞

P(diam(Gn,p) = k) =

{
e−c/2 if k = d
1− e−c/2 if k = d +1.

Proof. (a): w.h.p. diam(G)≥ d.
Fix v ∈V and let

Nk(v) = {w : dist(v,w) = k}. (7.1)
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It follows from Theorem 3.4 that w.h.p. for 0≤ k < d,

|Nk(v)| ≤ ∆
k ≈ (np)k ≈ (n logn)k/d = o(n). (7.2)

(b) w.h.p. diam(G)≤ d +1
Fix v,w ∈ [n]. Then for 1≤ k < d, define the event

Fk =

{
|Nk(v)| ∈ Ik =

[(np
2

)k
,(2np)k

]}
.

Then for k ≤ ⌈d/2⌉ we have

P(¬Fk |F1, . . . ,Fk−1) =

= P

(
Bin

(
n−

k−1

∑
i=0
|Ni(v)|,1− (1− p)|Nk−1(v)|

)
/∈ Ik

)

≤ P
(

Bin
(

n−o(n),
3
4

(np
2

)k−1
p
)
≤
(np

2

)k
)

+P
(

Bin
(

n−o(n),
5
4
(2np)k−1 p

)
≥ (2np)k

)
≤ exp

{
−Ω

(
(np)k

)}
= O(n−3).

So with probability 1−O(n−3),

|N⌊d/2⌋(v)| ≥
(np

2

)⌊d/2⌋
and |N⌈d/2⌉(w)| ≥

(np
2

)⌈d/2⌉
.
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If X = N⌊d/2⌋(v) and Y = N⌈d/2⌉(w) then, either

X ∩Y ̸= /0 and dist(v,w)≤ ⌊d/2⌋+ ⌈d/2⌉= d,

or since the edges between X and Y are unconditioned by our construction,

P(̸ ∃ an X : Y edge )≤ (1− p)(
np
2 )

d

≤ exp
{
−
(np

2

)d
p
}

≤ exp{−(2−o(1))np logn}= o(n−3).

So
P(∃v,w : dist(v,w)> d +1) = o(n−1).

We now consider the probability that d or d + 1 is the diameter. We will use
Janson’s inequality, see Section 27.6. More precisely, we will use the earlier in-
equality, Corollary 27.14, from Janson, Łuczak and Ruciński [508].
We will first use this to estimate the probability of the following event: Let
v ̸= w ∈ [n] and let

Av,w = {v,w are not joined by a path of length d}.

For x = x1,x2, . . . ,xd−1 let

Bv,x,w = {(v,x1,x2, . . . ,xd−1,w) is a path in Gn,p}.

Let
Z = ∑

x
Zx,

where

Zx =

{
1 if Bv,x,w occurs
0 otherwise.

Janson’s inequality allows us to estimate the probability that Z = 0, which is pre-
cisely the probability of Av,w.

Now

µ = EZ = (n−2)(n−3) · · ·(n−d)pd = log
(

n2

c

)(
1+O

(
1
n

))
.

Let x = x1,x2, · · · ,xd−1, y = y1,y2, . . . ,yd−1 and

∆ = ∑
x,y:x̸=y

v,x,w and v,y,w
share an edge

P(Bx∩By)
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≤
d−1

∑
t=1

(
d
t

)
n2(d−1)−t p2d−t , t is the number of shared edges,

= O

(
d−1

∑
t=1

n2(d−1)−t− d−1
d (2d−t)(logn)

2d−t
d

)

= O

(
d−1

∑
t=1

n−t/d+o(1)

)
= o(1).

Applying Corollary 27.14, P(Z = 0)≤ e−µ+∆, we get

P(Z = 0)≤ c+o(1)
n2 .

On the other hand the FKG inequality (see Section 27.3) implies that

P(Z = 0)≥
(

1− pd
)(n−2)(n−3)···(n−d)

=
c+o(1)

n2 .

So

P(Av,w) = P(Z = 0) =
c+o(1)

n2 .

So

E(#v,w : Av,w occurs) =
c+o(1)

2
and we should expect that

P(̸ ∃ v,w : Av,w occurs)≈ e−c/2. (7.3)

Indeed if we choose v1,w1,v2,w2, . . . ,vk,wk, k constant, we will find that

P(Av1,w1,Av2,w2, . . . ,Avk,wk)≈
( c

n2

)k
(7.4)

and (7.3) follows from the method of moments.
The proof of (7.3) is just a more involved version of the proof of the special

case k = 1 that we have just completed. We now let

Bx =
k⋃

i=1

Bvi,x,wi

and re-define
Z = ∑

x
Zx,
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where now

Zx =

{
1 if Bx occurs
0 otherwise.

Then we have {Z = 0} is equivalent to
⋂k

i=1 Avi,wi .
Now,

EZ = k(n−2)(n−3) · · ·(n−d)pd = k log
(

n2

c

)(
1+O

(
1
n

))
.

We need to show that the corresponding ∆ = o(1). But,

∆≤∑
r,s

∑
x,y:x̸=y

vr,x,wr and vs,y,ws
share an edge

P(Bvr,x,wr ∩Bvs,y,ws)

≤ k2
d−1

∑
t=1

(
d
t

)
n2(d−1)−t p2d−t

= o(1).

This shows that

P(Z = 0)≤ e−k log(n2/c+o(1) =

(
c+o(1)

n2

)k

.

On the other hand, the FKG inequality (see Section 27.3) shows that

P(Av1,w1,Av2,w2, . . . ,Avk,wk)≥
k

∏
i=1

P(Avi,wi) .

This verifies (7.4) and completes the proof of Theorem 7.1.
We turn next to a sparser case and prove a somewhat weaker result.

Theorem 7.2. Suppose that p = ω logn
n where ω → ∞. Then

diam(Gn,p)≈
logn

lognp
w.h.p.

Proof. Fix v ∈ [n] and let Ni = Ni(v) be as in (7.1). Let N≤k =
⋃

i≤k Ni. Using the
proof of Theorem 3.4(b) we see that we can assume that

(1−ω
−1/3)np≤ deg(x)≤ (1+ω

−1/3)np for all x ∈ [n]. (7.5)

It follows that if γ = ω−1/3 and

k0 =
logn− log3
lognp+ γ

≈ logn
lognp
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then w.h.p.

|N≤k0| ≤ ∑
k≤k0

((1+ γ)np)k ≤ 2((1+ γ)np)k0 =
2n

3+o(1)

and so the diameter of Gn,p is at least (1−o(1)) logn
lognp .

We can assume that np = no(1) as larger p are dealt with in Theorem 7.1. Now
fix v,w ∈ [n] and let Ni be as in the previous paragraph. Now consider a Breadth
First Search (BFS) that constructs N1,N2, . . . ,Nk1 where

k1 =
3logn

5lognp
.

It follows that if (7.5) holds then for k ≤ k1 we have

|Ni≤k| ≤ n3/4 and |Nk|p≤ n−1/5. (7.6)

Observe now that the edges from Ni to [n]\N≤i are unconditioned by the BFS up
to layer k and so for x ∈ [n]\N≤k,

P(x ∈ Nk+1 | N≤k) = 1− (1− p)|Nk| ≥ |Nk|p(1−|Nk|p)≥
ρk = |Nk|p(1−n−1/5).

The events x∈Nk+1 are independent and so |Nk+1| stochastically dominates the bi-
nomial Bin(n−n3/4,ρk). Assume inductively that |Nk| ≥ (1− γ)k (np)k for some
k ≥ 1. This is true w.h.p. for k = 1 by (7.5). Let Ak be the event that (7.6) holds.
It follows that

E(|Nk+1| |Ak)≥ np|Nk|(1−O(n−1/5)).

It then follows from the Chernoff bounds (Theorem 27.6) that

P(|Nk+1| ≤ ((1− γ)np)k+1 ≤ exp
{
−γ2

4
|Nk|np

}
= o(n−anyconstant).

There is a small point to be made about conditioning here. We can condition
on (7.5) holding and then argue that this only multiplies small probabilities by
1+o(1) if we use P(A | B)≤ P(A)/P(B).

It follows that if

k2 =
logn

2(lognp+ log(1− γ)
≈ logn

2lognp

then w.h.p. we have
|Nk2| ≥ n1/2.
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Analogously, if we do BFS from w to create N′k, i = 1,2, . . . ,k2 then |N′k2
| ≥ n1/2.

If N≤k2 ∩N′≤k2
̸= /0 then dist(v,w)≤ 2k2 and we are done. Otherwise, we observe

that the edges Nk2 : N′k2
between Nk2 and N′k2

are unconditioned (except for (7.5))
and so

P(Nk2 : N′k2
= /0)≤ (1− p)n1/2×n1/2

≤ n−ω .

If Nk2 : N′k2
̸= /0 then dist(v,w) ≤ 2k2 +1 and we are done. Note that given (7.5),

all other unlikely events have probability O(n−anyconstant) of occurring and so we
can inflate these latter probabilities by n2 to account for all choices of v,w. This
completes the proof of Theorem 7.2.

7.2 Largest Independent Sets

Let α(G) denote the size of the largest independent set in a graph G.

Dense case

The following theorem was first proved by Matula [655].

Theorem 7.3. Suppose 0 < p < 1 is a constant and b = 1
1−p . Then w.h.p.

α(Gn,p)≈ 2logb n.

Proof. Let Xk be the number of independent sets of order k.
(i) Let

k = ⌈2logb n⌉

Then,

EXk =

(
n
k

)
(1− p)(

k
2)

≤
(

ne
k(1− p)1/2 (1− p)k/2

)k

≤
(

e
k(1− p)1/2

)k

= o(1).

(ii) Let now
k = ⌊2logb n−5logb logn⌋.
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Let
∆ = ∑

i, j
Si∼S j

P(Si,S j are independent in Gn,p),

where S1,S2, . . . ,S(n
k)

are all the k-subsets of [n] and Si ∼ S j iff |Si∩ S j| ≥ 2. By
Janson’s inequality, see Theorem 27.13,

P(Xk = 0)≤ exp
{
−(EXk)

2

2∆

}
.

Here we apply the inequality in the context of Xk being the number of k-cliques in
the complement of Gn,p. The set [N] will be the edges of the complete graph and
the sets Di will the edges of the k-cliques. Now

∆

(EXk)2 =

(n
k

)
(1− p)(

k
2)∑

k
j=2
(n−k

k− j

)(k
j

)
(1− p)(

k
2)−(

j
2)((n

k

)
(1− p)(

k
2)
)2

=
k

∑
j=2

(n−k
k− j

)(k
j

)(n
k

) (1− p)−(
j
2)

=
k

∑
j=2

u j.

Notice that for j ≥ 2,

u j+1

u j
=

k− j
n−2k+ j+1

k− j
j+1

(1− p)− j

≤
(

1+O
(

logb n
n

))
k2(1− p)− j

n( j+1)
.

Therefore,

u j

u2
≤ (1+o(1))

(
k2

n

) j−2 2(1− p)−( j−2)( j+1)/2

j!

≤ (1+o(1))
(

2k2e
n j

(1− p)−
j+1
2

) j−2

≤ 1.

So
(EXk)

2

∆
≥ 1

ku2
≥ n2(1− p)

k5 .
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Therefore
P(Xk = 0)≤ e−Ω(n2/(logn)5). (7.7)

Matula used the Chebyshev inequality and so he was not able to prove an
exponential bound like (7.7). This will be important when we come to discuss the
chromatic number.

Sparse Case

We now consider the case where p = d/n and d is a large constant. Frieze [388]
proved

Theorem 7.4. Let ε > 0 be a fixed constant. Then for d ≥ d(ε) we have that
w.h.p. ∣∣∣∣α(Gn,p))−

2n
d
(logd− log logd− log2+1)

∣∣∣∣≤ εn
d
.

Dani and Moore [276] have given an even sharper result.
In this section we will prove that if p = d/n and d is sufficiently large then

w.h.p. ∣∣∣∣α(Gn,p)−
2logd

d
n
∣∣∣∣≤ ε logd

d
n. (7.8)

This will follow from the following. Let Xk be as defined in the previous section.
Let

k0 =
(2− ε/8) logd

d
n and k1 =

(2+ ε/8) logd
d

n.

Then,

P
(∣∣α(Gn,p)−E(α(Gn,p))

∣∣≥ ε logd
8d

n
)
≤ exp

{
−Ω

(
(logd)2

d2

)
n
}
. (7.9)

P(α(Gn,p)≥ k1) = P(Xk1 > 0)≤ exp
{
−Ω

(
(logd)2

d

)
n
}
. (7.10)

P(α(Gn,p)≥ k0) = P(Xk0 > 0)≥ exp

{
−O

(
(logd)3/2

d2

)
n

}
. (7.11)

Let us see how (7.8) follows from these three inequalities. Indeed, (7.9) and (7.11)
imply that

E(α(Gn,p))≥ k0−
ε logd

8d
n. (7.12)
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Furthermore (7.9) and (7.10) imply that

E(α(Gn,p))≤ k1 +
ε logd

8d
n. (7.13)

It follows from (7.12) and (7.13) that

|k0−E(α(Gn,p))| ≤
ε logd

2d
n.

We obtain (7.8) by applying (7.9) once more.

Proof of (7.9): This follows directly from the Azuma-Hoeffding inequality – see
Section 27.7, in particular Lemma 27.17. If Z = α(Gn,p) then we write Z =
Z(Y2,Y3, . . . ,Yn) where Yi is the set of edges between vertex i and vertices [i− 1]
for i≥ 2. Y2,Y3, . . . ,Yn are independent and changing a single Yi can change Z by
at most one. Therefore, for any t > 0 we have

P(|Z−E(Z)| ≥ t)≤ exp
{
− t2

2n−2

}
.

Setting t = ε logd
8d n yields (7.9).

Proof of (7.10): The first moment method gives

Pr(Xk1 > 0)≤
(

n
k1

)(
1− d

n

)(k1
2 )
≤

(
ne
k1
·
(

1− d
n

)(k1−1)/2
)k1

≤
(

de
2logd

·d−(1+ε/5)
)k1

= exp
{
−Ω

(
(logd)2

d

)
n
}
.

Proof of (7.11): Now, after using Lemma 27.1(g),

1
P(Xk0 > 0)

≤
E(X2

k0
)

E(Xk0)
2 =

k0

∑
j=0

(n−k0
k0− j

)(k0
j

)( n
k0

) (1− p)−(
j
2)

≤
k0

∑
j=0

(
k0e

j
· exp

{
jd
2n

+O
(

jd2

n2

)}) j

×

(
k0

n

) j(n− k0

n− j

)k0− j

(7.14)

≤
k0

∑
j=0

(
k0e

j
· k0

n
· exp

{
jd
2n

+O
(

jd2

n2

)}) j

×
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exp
{
−(k0− j)2

n− j

}
≤b

k0

∑
j=0

(
k0e

j
· k0

n
· exp

{
jd
2n

+
2k0

n

}) j

× exp
{
−

k2
0

n

}

=
k0

∑
j=0

v j. (7.15)

(The notation A ≤b B is shorthand for A = O(B) when the latter is considered to
be ugly looking).

We observe first that (A/x)x ≤ eA/e for A > 0 implies that(
k0e

j
· k0

n

) j

× exp
{
−

k2
0

n

}
≤ 1.

So,

j ≤ j0 =
(logd)3/4

d3/2 n =⇒ v j ≤ exp
{

j2d
2n

+
2 jk0

n

}
= exp

{
O

(
(logd)3/2

d2

)
n

}
. (7.16)

Now put

j =
α logd

d
n where

1
d1/2(logd)1/4 < α < 2− ε

4
.

Then

k0e
j
· k0

n
· exp

{
jd
2n

+
2k0

n

}
≤ 4e logd

αd
· exp

{
α logd

2
+

4logd
d

}
=

4e logd
αd1−α/2 exp

{
4logd

d

}
< 1.

To see this note that if f (α) = αd1−α/2 then f increases between d−1/2 and
2/ logd after which it decreases. Then note that

min
{

f (d−1/2), f (2− ε)
}
> 4eexp

{
4logd

d

}
.

Thus v j < 1 for j ≥ j0 and (7.11) follows from (7.16).
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7.3 Interpolation
The following theorem is taken from Bayati, Gamarnik and Tetali [82]. Note that
it is not implied by Theorem 7.4. This paper proves a number of other results of
a similar flavor for other parameters. It is an important paper in that it verifies
some very natural conjectures about some graph parameters, that have not been
susceptible to proof until now.

Theorem 7.5. There exists a function H(d) such that

lim
n→∞

E(α(Gn,⌊dn⌋))

n
= H(d).

Proof. For this proof we use the model G(A)
n,m of Section 1.3. This is proper since

we we know that w.h.p.

|α(G(A)
n,m)−α(Gn,m)| ≤ ||E(G(A)

n,m)|−m| ≤ logn.

We will prove that for every 1≤ n1,n2 ≤ n−1 such that n1 +n2 = n,

E(α(G(A)
n,⌊dn⌋))≥ E(α(G(A)

n1,m1))+E(α(G(A)
n2,m2)) (7.17)

where mi = Bin(⌊dn⌋ ,ni/n), i = 1,2.
Assume (7.17). We have E(|m j−

⌊
dn j
⌋
|) = O(n1/2). This and (7.17) and the

fact that adding/deleting one edge changes α by at most one implies that

E(α(G(A)
n,⌊dn⌋))≥ E(α(G(A)

n1,⌊dn1⌋))+E(α(G(A)
n2,⌊dn2⌋))−O(n1/2). (7.18)

Thus the sequence un = E(α(G(A)
n,⌊dn⌋)) satisfies the conditions of Lemma 7.6 be-

low and the proof of Theorem 7.5 follows.

Proof of (7.17): We begin by constructing a sequence of graphs interpolating
between G(A)

n,⌊dn⌋ and a disjoint union of G(A)
n1,m1 and G(A)

n2,m2 . Given n,n1,n2 such
that n1 +n2 = n and any 0≤ r ≤m = ⌊dn⌋, let G(n,m,r) be the random (pseudo-
)graph on vertex set [n] obtained as follows. It contains precisely m edges. The
first r edges e1,e2, . . . ,er are selected randomly from [n]2. The remaining m−
r edges er+1, . . . ,em are generated as follows. For each j = r + 1, . . . ,m, with
probability n j/n, e j is selected randomly from M1 = [n1]

2 and with probability
n2/n, e j is selected randomly from M2=[n1 +1,n]2. Observe that when r = m we
have G(n,m,r) =G(A)(n,m) and when r = 0 it is the disjoint union of G(A)

n1,m1 and
G(A)

n2,m2 where m j = Bin(m,n j/n) for j = 1,2. We will show next that

E(α(G(n,m,r)))≥ E(α(G(n,m,r−1))) for r = 1, . . . ,m. (7.19)
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It will follow immediately that

E(α(G(A)
n,m)) = E(α(G(n,m,m)))≥

E(α(G(n,m,0))) = E(α(G(A)
n1,m1))+E(α(G(A)

n2,m2))

which is (7.17).
Proof of (7.19): Observe that G(n,m,r−1) is obtained from

G(n,m,r) by deleting the random edge er and then adding an edge from M1 or M2.
Let G0 be the graph obtained after deleting er, but before adding its replacement.
Remember that

G(n,m,r) =G0 + er.

We will show something stronger than (7.19) viz. that

E(α(G(n,m,r)) |G0)≥ E(α(G(n,m,r−1)) |G0) for r = 1, . . . ,m. (7.20)

Now let O∗ ⊆ [n] be the set of vertices that belong to every largest independent set
in G0. Then for er = (x,y), α(G0 + e) = α(G0)−1 if x,y ∈ O∗ and α(G0 + e) =
α(G0) if x /∈ O∗ or y /∈ O∗. Because er is randomly chosen, we have

E(α(G0 + er) |G0)−E(α(G0)) =−
(
|O∗|

n

)2

.

By a similar argument

E(α(G(n,m,r−1) |G0)−α(G0)

=−n1

n

(
|O∗∩M1|

n1

)2

− n2

n

(
|O∗∩M2|

n2

)2

≤−
(

n1

n
|O∗∩M1|

n1
+

n2

n
|O∗∩M2|

n2

)2

=−
(
|O∗|

n

)2

= E(α(G0 + er) |G0)−E(α(G0)),

completing the proof of (7.20).
The proof of the following lemma is left as an exercise.

Lemma 7.6. Given γ ∈ (0,1), suppose that the non-negative sequence un,n ≥ 1
satisfies

un ≥ un1 +un2−O(nγ)

for every n1,n2 such that n1 +n2 = n. Then limn→∞
un
n exists.
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7.4 Chromatic Number
Let χ(G) denote the chromatic number of a graph G, i.e., the smallest number of
colors with which one can properly color the vertices of G. A coloring is proper
if no two adjacent vertices have the same color.

Dense Graphs
We will first describe the asymptotic behavior of the chromatic number of dense
random graphs. The following theorem is a major result, due to Bollobás [156].
The upper bound without the 2 in the denominator follows directly from Theorem
7.3. An intermediate result giving 3/2 instead of 2 was already proved by Matula
[656].

Theorem 7.7. Suppose 0 < p < 1 is a constant and b = 1
1−p . Then w.h.p.

χ(Gn,p)≈
n

2logb n
.

Proof. (i) By Theorem 7.3

χ(Gn,p)≥
n

α(Gn,p)
≈ n

2logb n
.

(ii) Let ν = n
(logb n)2 and k0 = 2logb n−4logb logb n. It follows from (7.7) that

P(∃S : |S| ≥ ν , S does not contain an independent set of order ≥ k0)

≤
(

n
ν

)
exp
{
−Ω

(
ν2

(logn)5

)}
(7.21)

= o(1).

So assume that every set of order at least ν contains an independent set of order
at least k0. We repeatedly choose an independent set of order k0 among the set
of uncolored vertices. Give each vertex in this set a new color. Repeat until the
number of uncolored vertices is at most ν . Give each remaining uncolored vertex
its own color. The number of colors used is at most

n
k0

+ν ≈ n
2logb n

.



7.4. Chromatic Number 133

It should be noted that Bollobás did not have the Janson inequality available
to him and he had to make a clever choice of random variable for use with the
Azuma-Hoeffding inequality. His choice was the maximum size of a family of
edge independent independent sets. Łuczak [637] proved the corresponding result
to Theorem 7.7 in the case where np→ 0.

Concentration

Theorem 7.8. Suppose 0 < p < 1 is a constant. Then

P(|χ(Gn,p)−Eχ(Gn,p)| ≥ t)≤ 2exp
{
− t2

2n

}
Proof. Write

χ = Z(Y1,Y2, . . . ,Yn) (7.22)

where
Yj = {(i, j) ∈ E(Gn,p) : i < j}.

Then
|Z(Y1,Y2, . . . ,Yn)−Z(Y1,Y2, . . . ,Ŷi, . . . ,Yn)| ≤ 1

and the theorem follows from the Azuma-Hoeffding inequality, see Section 27.7,
in particular Lemma 27.17.

Greedy Coloring Algorithm

We show below that a simple greedy algorithm performs very efficiently. It uses
twice as many colors as it “should” in the light of Theorem 7.7. This algorithm is
discussed in Bollobás and Erdős [162] and by Grimmett and McDiarmid [453]. It
starts by greedily choosing an independent set C1 and at the same time giving its
vertices color 1. C1 is removed and then we greedily choose an independent set
C2 and give its vertices color 2 and so on, until all vertices have been colored.

Algorithm GREEDY

• k is the current color.

• A is the current set of vertices that might get color k in the current round.

• U is the current set of uncolored vertices.
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begin
k←− 0, A←− [n], U ←− [n], Ck←− /0.

while U ̸= /0 do
k←− k+1 A←−U
while A ̸= /0

begin
Choose v ∈ A and put it into Ck
U ←−U \{v}
A←− A\ ({v}∪N(v))

end
end

Theorem 7.9. Suppose 0 < p < 1 is a constant and b = 1
1−p . Then w.h.p. algo-

rithm GREEDY uses approximately n/ logb n colors to color the vertices of Gn,p.

Proof. At the start of an iteration the edges inside U are un-examined. Suppose
that

|U | ≥ ν =
n

(logb n)2 .

We show that approximately logb n vertices get color k i.e. at the end of round k,
|Ck| ≈ logb n.
Each iteration chooses a maximal independent set from the remaining uncolored
vertices. Let k0 = logb n−5logb logb n. Then

P(∃ T : |T | ≤ k0, T is maximally independent in U)

≤
k0

∑
t=1

(
n
t

)
(1− p)(

t
2)
(
1− (1− p)t)ν−t ≤

k0

∑
t=1

(ne)te−(ν−k0)(1−p)t
≤

k0 (ne)k0 e−
1
2 (logb n)3

≤ e−
1
3 (logb n)3

.

So the probability that we fail to use at least k0 colors while |U | ≥ ν is at most

ne−
1
3 (logb ν)3

= o(1).

So w.h.p. GREEDY uses at most

n
k0

+ν ≈ n
logb n

colors.

We now put a lower bound on the number of colors used by GREEDY. Let

k1 = logb n+2logb logb n.
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Consider one round. Let U0 = U and suppose u1,u2, . . . ∈ Ck and Ui+1 = Ui \
({ui})∪N(ui)).
Then

E( |Ui+1| |Ui )≤ |Ui |(1− p),

and so, for i = 1,2, ..
E |Ui| ≤ n(1− p)i.

So
P(k1 vertices colored in one round)≤ 1

(logb n)2 ,

and
P(2k1 vertices colored in one round)≤ 1

n
.

So let

δi =

{
1 if at most k1 vertices are colored in round i
0 otherwise

We see that
P(δi = 1|δ1,δ2, . . . ,δi−1)≥ 1− 1

(logb n)2 .

So the number of rounds that color more than k1 vertices is stochastically dom-
inated by a binomial with mean n/(logb n)2. The Chernoff bounds imply that
w.h.p. the number of rounds that color more than k1 vertices is less than 2n/(logb n)2.
Strictly speaking we need to use Lemma 27.24 to justify the use of the Cher-
noff bounds. Because no round colors more than 2k1 vertices we see that w.h.p.
GREEDY uses at least

n−2k1×2n/(logb n)2

k1
≈ n

logb n
colors.

Sparse Graphs

We now consider the case of sparse random graphs. We first state an important
conjecture about the chromatic number.

Conjecture: Let k ≥ 3 be a fixed positive integer. Then there exists dk > 0
such that if ε is an arbitrary positive constant and p= d

n then w.h.p. (i) χ(Gn,p)≤ k
for d ≤ dk− ε and (ii) χ(Gn,p)≥ k+1 for d ≥ dk + ε .

In the absence of a proof of this conjecture, we present the following result due
to Łuczak [638]. It should be noted that Shamir and Spencer [799] had already
proved six point concentration.
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Theorem 7.10. If p< n−5/6−δ ,δ > 0, then the chromatic number of Gn,p is w.h.p.
two point concentrated.

Proof. To prove this theorem we need three lemmas.

Lemma 7.11.

(a) Let 0 < δ < 1/10, 0 ≤ p < 1 and d = np. Then w.h.p. each subgraph H of
Gn,p on less than nd−3(1+2δ ) vertices has less than (3/2−δ )|H| edges.

(b) Let 0 < δ < 1.0001 and let 0 ≤ p ≤ δ/n. Then w.h.p. each subgraph H of
Gn,p has less than 3|H|/2 edges.

The above lemma can be proved easily by the first moment method, see Ex-
ercise 7.6.6. Note also that Lemma 7.11 implies that each subgraph H satisfying
the conditions of the lemma has minimum degree less than three, and thus is 3-
colorable, due to the following simple observation (see Bollobás [157] Theorem
V.1)

Lemma 7.12. Let k = maxH⊆G δ (H), where the maximum is taken over all in-
duced subgraphs of G. Then χ(G)≤ k+1.

Proof. This is an easy exercise in Graph Theory. We proceed by induction on
|V (G)|. We choose a vertex of minimum degree v, color G− v inductively and
then color v.

The next lemma is an immediate consequence of the Azuma-Hoeffding in-
equality, see Section 27.7, in particular Lemma 27.17.

Lemma 7.13. Let k = k(n) be such that

P(χ(Gn,p)≤ k)>
1

loglogn
. (7.23)

Then w.h.p. all but at most n1/2 logn vertices of Gn,p can be properly colored
using k colors.

Proof. Let Z be the maximum number of vertices in Gn,p that can be properly
colored with k colors. Write Z = Z(Y1,Y2, . . . ,Yn) as in (7.22). Then we have

P(Z = n)>
1

loglogn
and P(|Z−EZ)| ≥ t)≤ 2exp

{
− t2

2n

}
. (7.24)
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Putting t = 1
2n1/2 logn into (7.24) shows that EZ ≥ n− t and the lemma follows

after applying the concentration inequality in (7.24) once again.
Now we are ready to present Łuczak’s ingenious argument to prove Theorem

7.10. Note first that when p is such that np→ 0 as n→ ∞, then by Theorem 2.1
Gn,p is a forest w.h.p. and so its chromatic number is either 1 or 2. Furthermore,
for 1/ logn < d < 1.0001 the random graph Gn,p w.h.p. contains at least one edge
and no subgraph with minimal degree larger than two (see Lemma 7.11), which
implies that χ(Gn,p) is equal to 2 or 3 (see Lemma 7.12). Now let us assume that
the edge probability p is such that 1.0001 < d = np < n1/6−δ . Observe that in this
range of p the random graph Gn,p w.h.p. contains an odd cycle, so χ(Gn,p)≥ 3.
Let k be as in Lemma 7.13 and let U0 be a set of size at most u0 = n1/2 logn
such that [n]\U0 can be properly colored with k colors. Let us construct a nested
sequence of subsets of vertices U0 ⊆ U1 ⊆ . . . ⊆ Um of Gn,p, where we define
Ui+1 = Ui ∪{v,w}, where v,w ̸∈Ui are connected by an edge and both v and w
have a neighbor in Ui. The construction stops at i = m if such a pair {v,w} does
not exist.
Notice that m can not exceed m0 = n1/2 logn, since if m > m0 then a subgraph of
Gn,p induced by vertices of Um0 would have

|Um0|= u0 +2m0 ≤ 3n1/2 logn < nd−3(1+2δ )

vertices and at least 3m0 ≥ (3/2− δ )|Um0| edges, contradicting the statement of
Lemma 7.11.
As a result, the construction produces a set Um in Gn,p, such that its size is smaller
than nd−3(1+2δ ) and, moreover, all neighbors N(Um) of Um form an independent
set, thus “isolating” Um from the “outside world”.
Now, the coloring of the vertices of Gn,p is an easy task. Namely, by Lemma 7.13,
we can color the vertices of Gn,p outside the set Um∪N(Um) with k colors. Then
we can color the vertices from N(Um) with color k+1, and finally, due to Lemmas
7.11 and 7.12, the subgraph induced by Um is 3-colorable and we can color Um
with any three of the first k colors.

7.5 Eigenvalues

Separation of first and remaining eigenvalues

The following theorem is a weaker version of a theorem of Füredi and Komlós
[421], which was itself a strengthening of a result of Juhász [533]. See also Coja–
Oghlan [232] and Vu [843]. In their papers, 2ω logn is replaced by 2+o(1) and
this is best possible.
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Theorem 7.14. Suppose that ω → ∞,ω = o(logn) and ω3(logn)2 ≤ np ≤ n−
ω3(logn)2. Let A denote the adjacency matrix of Gn,p. Let the eigenvalues of A
be λ1 ≥ λ2 ≥ ·· · ≥ λn. Then w.h.p.

(i) λ1 ≈ np

(ii) |λi| ≤ 2ω logn
√

np(1− p) for 2≤ i≤ n.

The proof of the above theorem is based on the following lemma.

In the following |x| denotes the Euclidean norm of x ∈ R.

Lemma 7.15. Let J be the all 1’s matrix and M = pJ−A. Then w.h.p.

∥M∥ ≤ 2ω logn
√

np(1− p)

where
∥M∥= max

|x|=1
|Mx|= max{|λ1(M)|, |λn(M)|} .

We first show that the lemma implies the theorem. Let e denote the all 1’s vector.
Suppose that |ξ |= 1 and ξ⊥e. Then Jξ = 0 and

|Aξ |= |Mξ | ≤ ∥M∥ ≤ 2ω logn
√

np(1− p).

Now let |x|= 1 and let x = αu+βy where u = 1√
ne and y⊥e and |y|= 1. Then

|Ax| ≤ |α||Au|+ |β ||Ay|.

We have, writing A = pJ+M, that

|Au|= 1√
n
|Ae| ≤ 1√

n
(np|e|+∥M∥|e|)

≤ np+2ω logn
√

np(1− p)

|Ay| ≤ 2ω logn
√

np(1− p)

Thus

|Ax| ≤ |α|np+(|α|+ |β |)2ω logn
√

np(1− p)

≤ np+3ω logn
√

np(1− p).

This implies that λ1 ≤ (1+o(1))np.
But

|Au| ≥ |(A+M)u|− |Mu|
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= |pJu|− |Mu|
≥ np−2ω logn

√
np(1− p),

implying λ1 ≥ (1+o(1))np, which completes the proof of (i).
Now

λ2 = min
η

max
0̸=ξ⊥η

|Aξ |
|ξ |

≤ max
0̸=ξ⊥u

|Aξ |
|ξ |

≤ max
0̸=ξ⊥u

|Mξ |
|ξ |

≤ 2ω logn
√

np(1− p)

λn = min
|ξ |=1

ξ
T Aξ ≥ min

|ξ |=1
ξ

T Aξ − pξ
T Jξ

= min
|ξ |=1
−ξ

T Mξ ≥−∥M∥ ≥ −2ω logn
√

np(1− p).

This completes the proof of (ii).
Proof of Lemma 7.15:

As in previously mentioned papers, we use the trace method of Wigner [853].
Putting M̂ = M− pIn we see that

∥M∥ ≤ ∥M̂∥+∥pIn∥= ∥M̂∥+ p

and so we bound ∥M̂∥.
Letting mi j denote the (i, j)th entry of M̂ we have

(i) Emi j = 0

(ii) Varmi j ≤ p(1− p) = σ
2

(iii) mi j,mi′ j′ are independent, unless (i′, j′) = ( j, i),
in which case they are identical.

Now let k ≥ 2 be an even integer.

Trace(M̂k) =
n

∑
i=1

λi(M̂k)

≥max
{

λ1(M̂k),λn(M̂k)
}

= ∥M̂k∥.
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We estimate
∥M̂∥ ≤ Trace(M̂k)1/k,

where k = ω logn.
Now,

E(Trace(M̂k)) = ∑
i0,i1,...,ik−1∈[n]

E(mi0i1mi1i2 · · ·mik−2ik−1mik−1i0).

Recall that the i, jth entry of M̂k is the sum over all products
mi,i1mi1,i2 · · ·mik−1 j.

Continuing, we therefore have

E∥M̂∥k ≤
k

∑
ρ=2

En,k,ρ

where

En,k,ρ = ∑
i0,i1,...,ik−1∈[n]

|{i0,i1,i2,...,ik−1}|=ρ

∣∣∣∣∣E
(

k−1

∏
j=0

mi ji j+1

)∣∣∣∣∣ .
Note that as mii = 0 by construction of M̂ we have that En,k,1 = 0
Each sequence i = i0, i1, . . . , ik−1, i0 corresponds to a walk W (i) on the graph Kn
with n loops added. Note that

E

(
k−1

∏
j=0

mi ji j+1

)
= 0 (7.25)

if the walk W (i) contains an edge that is crossed exactly once, by condition (i).
On the other hand, |mi j| ≤ 1 and so by conditions (ii), (iii),∣∣∣∣∣E

(
k−1

∏
j=0

mi ji j+1

)∣∣∣∣∣≤ σ
2(ρ−1)

if each edge of W (i) is crossed at least twice and if |{i0, i1, . . . , ik−1}|= ρ .
Let Rk,ρ denote the number of (k,ρ) walks i.e closed walks of length k that visit
ρ distinct vertices and do not cross any edge exactly once. We use the following
trivial estimates:

(i) ρ > k
2 +1 implies Rk,ρ = 0. (ρ this large will invoke (7.25)).

(ii) ρ ≤ k
2 +1 implies Rk,ρ ≤ nρkk,
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where nρ bounds from above the the number of choices of ρ distinct vertices,
while kk bounds the number of walks of length k.
We have

E∥M̂∥k ≤
1
2 k+1

∑
ρ=2

Rk,ρσ
2(ρ−1) ≤

1
2 k+1

∑
ρ=2

nρkk
σ

2(ρ−1) ≤ 2n
1
2 k+1kk

σ
k.

Therefore,

P
(
∥M̂∥ ≥ 2kσn

1
2

)
= P

(
∥M̂∥k ≥

(
2kσn

1
2

)k
)
≤ E∥M̂∥k(

2kσn
1
2

)k

≤ 2n
1
2 k+1kkσ k(

2kσn
1
2

)k =

(
(2n)1/k

2

)k

=

(
1
2
+o(1)

)k

= o(1).

It follows that w.h.p. ∥M̂∥ ≤ 2σω(logn)n1/2 ≤ 2ω logn
√

np(1− p) and com-
pletes the proof of Theorem 7.14.

Concentration of eigenvalues
We show here how one can use Talagrand’s inequality, Theorem 27.18, to show
that the eigenvalues of random matrices are highly concentrated around their me-
dian values. The result is from Alon, Krivelevich and Vu [35].

Theorem 7.16. Let A be an n×n random symmetric matrix with independent en-
tries ai, j = a j,i, 1≤ i≤ j ≤ n with absolute value at most one. Let its eigenvalues
be λ1(A) ≥ λ2(A) ≥ ·· · ≥ λn(A). Suppose that 1 ≤ s ≤ n. Let µs denote the me-
dian value of λs(A) i.e. µs = infµ {P(λs(A)≤ µ)≥ 1/2}. Then for any t ≥ 0 we
have

P(|λs(A)−µs| ≥ t)≤ 4e−t2/32s2
.

The same estimate holds for the probability that λn−s+1(A) deviates from its me-
dian by more than t.

Proof. We will use Talagrand’s inequality, Theorem 27.18. We let m =
(n+1

2

)
and

let Ω = Ω1×Ω2×·· ·×Ωm where for each 1 ≤ k ≤ m we have Ωk =
{

ai, j
}

for
some i ≤ j. Fix a positive integer s and let M, t be real numbers. Let A be the
set of matrices A for which λs(A)≤M and let B be the set of matrices for which
λs(B) ≥ M + t. When applying Theorem 27.18 it is convenient to view A as an
m-vector.
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Fix B ∈B and let v(1),v(2), . . . ,v(s) be an orthonormal set of eigenvectors for
the s largest eigenvalues of B. Let v(k) = (v(k)1 ,v(k)2 , . . . ,v(k)n ),

αi,i =
s

∑
k=1

(v(k)i )2 for 1≤ i≤ n

and

αi, j = 2

√
s

∑
k=1

(v(k)i )2

√
s

∑
k=1

(v(k)j )2 for 1≤ i < j ≤ n.

Lemma 7.17.
∑

1≤i≤ j≤n
α

2
i, j ≤ 2s2.

Proof.

∑
1≤i≤ j≤n

α
2
i, j =

n

∑
i=1

(
s

∑
k=1

(v(k)i )2

)2

+4 ∑
1≤i< j≤n

(
s

∑
k=1

(v(k)i )2
s

∑
k=1

(v(k)j )2

)

≤ 2

(
n

∑
i=1

s

∑
k=1

(v(k)i )2

)2

= 2

(
s

∑
k=1

n

∑
i=1

(v(k)i )2

)2

= 2s2,

where we have used the fact that each v(k) is a unit vector.

Lemma 7.18. For every A = (ai, j) ∈A and B = (bi, j) ∈B,

∑
1≤i≤ j≤n:ai, j ̸=bi, j

αi, j ≥ t/2.

Fix A ∈ A . Let u = ∑
s
k=1 ckv(k) be a unit vector in the span S of the vectors

v(k), k = 1,2, . . . ,s which is orthogonal to the eigenvectors of the (s− 1) largest
eigenvalues of A. Recall that v(k), k = 1,2, . . . ,s are eigenvectors of B. Then
∑

s
k=1 c2

k = 1 and utAu≤ λs(A)≤M, whereas utBu≥minv∈S vtBv = λs(B)≥M+
t. Recall that all entries of A and B are bounded in absolute value by 1, implying
that |bi, j− ai, j| ≤ 2 for all 1 ≤ i, j ≤ n. It follows that if X is the set of ordered
pairs (i, j) for which ai, j ̸= bi, j then

t ≤ ut(B−A)u = ∑
(i, j)∈X

(bi, j−ai, j)

(
s

∑
k=1

ckv(k)i

)t s

∑
k=1

ckv(k)j

≤ 2 ∑
(i, j)∈X

∣∣∣∣∣ s

∑
k=1

ckv(k)i

∣∣∣∣∣
∣∣∣∣∣ s

∑
k=1

ckv(k)j

∣∣∣∣∣
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≤ 2 ∑
(i, j)∈X

(√
s

∑
k=1

c2
k

√
s

∑
k=1

(
v(k)i

)2
)(√

s

∑
k=1

c2
k

√
s

∑
k=1

(
v(k)j

)2
)

= 2 ∑
(i, j)∈X

αi, j

as claimed. (We obtained the third inequality by use of the Cauchy-Schwarz in-
equality).

By the above two lemmas, and by Theorem 27.18 for every M and every t > 0

P(λs(A)≤M)P(λs(B)≥M+ t)≤ e−t2/(32s2). (7.26)

If M is the median of λs(A) then P(λs(A) ≤ M) ≥ 1/2, by definition, implying
that

P(λs(A)≥M+ t)≤ 2e−t2/(32s2).

Similarly, by applying (7.26) with M + t being the median of λs(A) we conclude
that

P(λs(A)≤M− t)≤ 2e−t2/(32s2).

This completes the proof of Theorem 7.16 for λs(A). The proof for λn−s+1 follows
by applying the theorem to s and −A.

7.6 Exercises
7.6.1 Let p = d/n where d is a positive constant. Let S be the set of vertices of

degree at least 2logn
3loglogn . Show that w.h.p., S is an independent set.

7.6.2 Let p = d/n where d is a large positive constant. Use the first moment
method to show that w.h.p.

α(Gn,p)≤
2n
d
(logd− log logd− log2+1+ ε)

for any positive constant ε .

7.6.3 Complete the proof of Theorem 7.4.
Let m = d/(logd)2 and partition [n] into n0 =

n
m sets S1,S2, . . . ,Sn0 of size

m. Let β (G) be the maximum size of an independent set S that satisfies
|S∩Si| ≤ 1 for i = 1,2, . . . ,n0. Use the proof idea of Theorem 7.4 to show
that w.h.p.

β (Gn,p)≥ k−ε =
2n
d
(logd− log logd− log2+1− ε).
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7.6.4 Prove Theorem 7.4 using Talagrand’s inequality, Theorem 27.22.
(Hint: Let A =

{
α(Gn,p)≤ k−ε −1

}
).

7.6.5 Prove Lemma 7.6.

7.6.6 Prove Lemma 7.11.

7.6.7 Prove that if ω = ω(n)→ ∞ then there exists an interval I of length
ωn1/2/ logn such that w.h.p. χ(Gn,1/2) ∈ I. (See Scott [797]).

7.6.8 A topological clique of size s is a graph obtained from the complete graph
Ks by subdividing edges. Let tc(G) denote the size of the largest topological
clique contained in a graph G. Prove that w.h.p. tc(Gn,1/2) = Θ(n1/2).

7.6.9 Suppose that H is obtained from Gn,1/2 by planting a clique C of size m
= n1/2 logn inside it. describe a polynomial time algorithm that w.h.p. finds
C. (Think that an adversary adds the clique without telling you where it is).

7.6.10 Show that if d > 2k logk for a positive integer k≥ 2 then w.h.p. G(n,d/n) is
not k-colorable. (Hint:Consider the expected number of proper k-coloring’s).

7.6.11 Let p = K logn/n for some large constant K > 0. Show that w.h.p. the
diameter of Gn,p is Θ(logn/ log logn).

7.6.12 Suppose that 1+ ε ≤ np = o(logn), where ε > 0 is constant. Show that
given A > 0, there exists B = B(A) such that

P
(

diam(K)≥ B
logn

lognp

)
≤ n−A,

where K is the giant component of Gn,p.

7.6.13 Let p = d/n for some constant d > 0. Let A be the adjacency matrix of
Gn,p. Show that w.h.p. λ1(A) ≈ ∆1/2 where ∆ is the maximum degree in
Gn,p. (Hint: the maximum eigenvalue of the adjacency matrix of K1,m is
m1/2).

7.6.14 A proper 2-tone k-coloring of a graph G = (V,E) is an assignment of pairs
of colors Cv ⊆ [k], |Cv|= 2 such that (i) |Cv∩Cw|< d(v,w) where d(v,w) is
the graph distance from v to w. If χ2(G) denotes the minimum k for which
there exists a 2-tone coloring of G, show that w.h.p. χ2(Gn,p)≈ 2χ(Gn,p).
(This question is taken from [60]).
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7.6.15 The set chromatic number χs(G) of a graph G=(V,E) is defined as follows:
Let C denote a set of colors. Color each v ∈ V with a color f (v) ∈ C.
Let Cv = { f (w) : {v,w} ∈ G}. The coloring is proper if Cv ̸=Cw whenever
{v,w} ∈ E. χs is the minimum size of C in a proper coloring of G. Prove
that if 0< p< 1 is constant then w.h.p. χs(Gn,p)≈ r log2 n where r = 2

log2 1/s

and s = min
{

q2ℓ+(1−qℓ)2 : ℓ= 1,2, . . .
}

where q = 1− p. (This question
is taken from Dudek, Mitsche and Pralat [311]).

7.7 Notes

Chromatic number

There has been a lot of progress in determining the chromatic number of sparse
random graphs. Alon and Krivelevich [32] extended the result in [638] to the
range p ≤ n−1/2−δ . A breakthrough came when Achlioptas and Naor [6] identi-
fied the two possible values for np = d where d = O(1): Let kd be the smallest
integer k such that d < 2k logk. Then w.h.p. χ(Gn,p) ∈ {kd,kd +1}. This im-
plies that dk, the (conjectured) threshold for a random graph to have chromatic
number at most k, satisfies dk ≥ 2k logk− 2logk−2+ ok(1) where ok(1)→ 0 as
k → ∞. Coja–Oghlan, Panagiotou and Steger [234] extended the result of [6]
to np ≤ n1/4−ε , although here the guaranteed range is three values. More re-
cently, Coja–Oghlan and Vilenchik [235] proved the following. Let dk,cond =
2k logk− logk− 2log2. Then w.h.p. dk ≥ dk,cond − ok(1). On the other hand
Coja–Oghlan [233] proved that dk ≤ dk,cond +(2log2−1)+ok(1).

It follows from Chapter 2 that the chromatic number of Gn,p, p≤ 1/n is w.h.p.
at most 3. Achlioptas and Moore [4] proved that in fact χ(Gn,p) ≤ 3 w.h.p. for
p≤ 4.03/n. Now a graph G is s-colorable iff it has a homomorphism ϕ : G→ Ks.
(A homomorphism from G to H is a mapping ϕ : V (G) → V (H) such that if
{u,v} ∈ E(G) then (ϕ(u),ϕ(v)) ∈ E(H)). It is therefore of interest in the con-
text of coloring, to consider homomorphisms from Gn,p to other graphs. Frieze
and Pegden [411] show that for any ℓ > 1 there is an ε > 0 such that with high
probability, Gn, 1+ε

n
either has odd-girth < 2ℓ+ 1 or has a homomorphism to the

odd cycle C2ℓ+1. They also showed that w.h.p. there is no homomorphism from
Gn,p, p = 4/n to C5. Previously, Hatami [470] has shown that w.h.p. there is no
homomorphism from a random cubic graph to C7.

Alon and Sudakov [37] considered how many edges one must add to Gn,p in
order to significantly increase the chromatic number. They show that if n−1/3+δ ≤
p≤ 1/2 for some fixed δ > 0 then w.h.p. for every set E of

2−12ε2n2

(logb(np))2 edges, the chromatic number of Gn,p∪E is still at most (1+ε)n
2logb(np) .
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Let Lk be an arbitrary function that assigns to each vertex of G a list of k
colors. We say that G is Lk-list-colorable if there exists a proper coloring of the
vertices such that every vertex is colored with a color from its own list. A graph is
k-choosable, if for every such function Lk, G is Lk-list-colorable. The minimum
k for which a graph is k-choosable is called the list chromatic number, or the
choice number, and denoted by χL(G). The study of the choice number of Gn,p
was initiated in [26], where Alon proved that w.h.p., the choice number of Gn,1/2 is
o(n). Kahn then showed (see [27]) that w.h.p. the choice number of Gn,1/2 equals
(1+o(1))χ(Gn,1/2). In [589], Krivelevich showed that this holds for p≫ n−1/4,
and Krivelevich, Sudakov, Vu, and Wormald [607] improved this to p≫ n−1/3.
On the other hand, Alon, Krivelevich, Sudakov [33] and Vu [842] showed that
for any value of p satisfying 2 < np≤ n/2, the choice number is Θ(np/ log(np)).
Krivelevich and Vu [608] generalized this to hypergraphs; they also improved the
leading constants and showed that the choice number for C/n≤ p≤ 0.9 (where C
is a sufficiently large constant) is at most a multiplicative factor of 2+o(1) away
from the chromatic number, the best known factor for p≤ n−1/3.

Algorithmic questions

We have seen that the Greedy algorithm applied to Gn,p generally produces a
coloring that uses roughly twice the minimum number of colors needed. Note
also that the analysis of Theorem 7.9, when k = 1, implies that a simple greedy
algorithm for finding a large independent set produces one of roughly half the
maximum size. In spite of much effort neither of these two results have been sig-
nificantly improved. We mention some negative results. Jerrum [526] showed that
the Metropolis algorithm was unlikely to do very well in finding an independent
set that was significantly larger than GREEDY. Other earlier negative results in-
clude: Chvátal [228], who showed that for a significant set of densities, a large
class of algorithms will w.h.p. take exponential time to find the size of the largest
independent set and McDiarmid [660] who carried out a similar analysis for the
chromatic number.

Frieze, Mitsche, Pérez-Giménez and Pralat [409] study list coloring in an on-
line setting and show that for a wide range of p, one can asymptotically match the
best known constants of the off-line case. Moreover, if pn≥ logω n, then they get
the same multiplicative factor of 2+o(1).

Randomly Coloring random graphs

A substantial amount of research in Theoretical Computer Science has been as-
sociated with the question of random sampling from complex distributions. Of
relevance here is the following: Let G be a graph and k be a positive integer. Then
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let Ωk(G) be the set of proper k-coloring’s of the vertices of G. There has been a
good deal of work on the problem of efficiently choosing a (near) random member
of Ωk(G). For example, Vigoda [840] has described an algorithm that produces a
(near) random sample in polynomial time provided k > 11∆(G)/6. When it comes
to Gn,p, Dyer, Flaxman, Frieze and Vigoda [321] showed that if p= d/n,d =O(1)
then w.h.p. one can sample a random coloring if k = O(log logn) = o(∆). The
bound on k was reduced to k = O(dO(1)) by Mossell and Sly [697] and then to
k = O(d) by Efthymiou [327].

Diameter of sparse random graphs
The diameter of the giant component of Gn,p, p = λ/n,λ > 1 was considered
by Fernholz and Ramachandran [359] and by Riordan and Wormald [765]. In
particular, [765] proves that w.h.p. the diameter is logn

logλ
+2 logn

log1/λ ∗+W where λ ∗<

1 and λ ∗e−λ ∗ = λe−λ and W = Op(1) i.e. is bounded in probability for λ = O(1)
and O(1) for λ → ∞. In addition, when λ = 1+ ε where ε3n→ ∞ i.e. the case of
the emerging giant, [765] shows that w.h.p. the diameter is logε3n

logλ
+2 logε3n

log1/λ ∗ +W

where W = Op(1/ε). If λ = 1− ε where ε3n→ ∞ i.e. the sub-critical case, then

Łuczak [640] showed that w.h.p. the diameter is log(2ε3n)+Op(1)
− logλ

.
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Part II

Basic Model Extensions





Chapter 8

Inhomogeneous Graphs

Thus far we have concentrated on the properties of the random graphs Gn,m and
Gn,p. We first consider a generalisation of Gn,p where the probability of edge
(i, j) is pi j is not the same for all pairs i, j. We call this the generalized binomial
graph . Our main result on this model concerns the probability that it is connected.
For this model we concentrate on its degree sequence and the existence of a giant
component. After this we move onto a special case of this model, viz. the expected
degree model. Here pi j is proportional to wiw j for weights wi. In this model, we
prove results about the size of the largest components. We finally consider another
special case of the generalized binomial graph, viz. the Kronecker random graph.

8.1 Generalized Binomial Graph
Consider the following natural generalisation of the binomial random graph Gn,p,
first considered by Kovalenko [587].
Let V = {1,2, . . . ,n} be the vertex set. The random graph Gn,P has vertex set V
and two vertices i and j from V , i ̸= j, are joined by an edge with probability
pi j = pi j(n), independently of all other edges. Denote by

P =
[
pi j
]

the symmetric n×n matrix of edge probabilities, where pii = 0. Put qi j = 1− pi j
and for i,k ∈ {1,2, . . . ,n} define

Qi =
n

∏
j=1

qi j, λn =
n

∑
i=1

Qi.

Note that Qi is the probability that vertex i is isolated and λn is the expected
number of isolated vertices. Next let

Rik = min
1≤ j1< j2<···< jk≤n

qi j1 · · ·qi jk .
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Suppose that the edge probabilities pi j are chosen in such a way that the following
conditions are simultaneously satisfied as n→ ∞:

max
1≤i≤n

Qi→ 0, (8.1)

lim
n→∞

λn = λ = constant, (8.2)

and

lim
n→∞

n/2

∑
k=1

1
k!

(
n

∑
i=1

Qi

Rik

)k

= eλ −1. (8.3)

The next two theorems are due to Kovalenko [587].
We will first give the asymptotic distribution of the number of isolated vertices
in Gn,P, assuming that the above three conditions are satisfied. The next theorem
is a generalisation of the corresponding result for the classical model Gn,p (see
Theorem 3.1(ii)).

Theorem 8.1. Let X0 denote the number of isolated vertices in the random graph
Gn,P. If conditions (8.1) (8.2) and (8.3) hold, then

lim
n→∞

P(X0 = k) =
λ k

k!
e−λ

for k = 0,1, . . ., i.e., the number of isolated vertices is asymptotically Poisson
distributed with mean λ .

Proof. Let

Xi j =

{
1 with prob. pi j

0 with prob. qi j = 1− pi j.

Denote by Xi, for i = 1,2, . . .n, the indicator of the event that vertex i is isolated
in Gn,P. To show that X0 converges in distribution to the Poisson random variable
with mean λ one has to show (see Theorem 26.11) that for any natural number k

E

(
∑

1≤i1<i2<...<ik≤n
Xi1Xi2 · · ·Xik

)
→ λ k

k!
(8.4)

as n→ ∞. But

E(Xi1Xi2 · · ·Xik) =
k

∏
r=1

P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
, (8.5)
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where in the case of r = 1 we condition on the sure event.
Since the LHS of (8.4) is the sum of E(Xi1Xi2 · · ·Xik) over all i1 < · · · < ik,

we need to find matching upper and lower bounds for this expectation. Now
P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
is the unconditional probability that ir is not ad-

jacent to any vertex j ̸= i1, . . . , ir−1 and so

P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
=

∏
n
j=1 qir j

∏
r−1
s=1 qiris

.

Hence

Qir ≤ P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
≤ Qir

Rir,r−1
≤ Qir

Rirk
.

It follows from (8.5) that

Qi1 · · ·Qik ≤ E(Xi1 · · ·Xik)≤
Qi1
Ri1k
· · ·

Qik
Rikk

. (8.6)

Applying conditions (8.1) and (8.2) we get that

∑
1≤i1<···<ik≤n

Qi1 · · ·Qik =
1
k! ∑

1≤i1 ̸=···≠ir≤n
Qi1 · · ·Qik ≥

1
k! ∑

1≤i1,...,ik≤n
Qi1 · · ·Qik−

k
k!

n

∑
i=1

Q2
i

(
∑

1≤i1,...,ik−2≤n
Qi1 · · ·Qik−2

)

≥ λ k
n

k!
− (max

i
Qi)λ

k−1
n =

λ k
n

k!
− (max

i
Qi)λ

k−1
n → λ k

k!
, (8.7)

as n→ ∞.
Now,

n

∑
i=1

Qi

Rik
≥ λn =

n

∑
i=1

Qi,

and if limsup
n→∞

∑
n
i=1

Qi
Rik

> λ then limsup
n→∞

∑
n/2
k=1

1
k!

(
∑

n
i=1

Qi
Rik

)k
> eλ −1, which con-

tradicts (8.3). It follows that

lim
n→∞

n

∑
i=1

Qi

Rik
= λ .

Therefore

∑
1≤i1<...<ik≤n

Qi1 · · ·Qik ≤
1
k!

(
n

∑
i=1

Qi

Rik

)k

→ λ k

k!
.
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as n→ ∞.
Combining this with (8.7) gives us (8.4) and completes the proof of Theorem
8.1.

One can check that the conditions of the theorem are satisfied when

pi j =
logn+ xi j

n
,

where xi j’s are uniformly bounded by a constant.

The next theorem shows that under certain circumstances, the random graph
Gn,P behaves in a similar way to Gn,p at the connectivity threshold.

Theorem 8.2. If the conditions (8.1), (8.2) and (8.3) hold, then

lim
n→∞

P(Gn,P is connected) = e−λ .

Proof. To prove the this we will show that if (8.1), (8.2) and (8.3) are satisfied
then w.h.p. Gn,P consists of X0 + 1 connected components, i.e., Gn,P consists of
a single giant component plus components that are isolated vertices only. This,
together with Theorem 8.1, implies the conclusion of Theorem 8.2.
Let U ⊆ V be a subset of the vertex set V . We say that U is closed if Xi j = 0 for
every i and j, where i ∈U and j ∈ V \U . Furthermore, a closed set U is called
simple if either U or V \U consists of isolated vertices only. Denote the number
of non-empty closed sets in Gn,P by Y1 and the number of non-empty simple sets
by Y . Clearly Y1 ≥ Y .
We will prove first that

liminf
n→∞

EY ≥ 2eλ −1. (8.8)

Denote the set of isolated vertices in Gn,P by J. If V \ J is not empty then
Y = 2X0+1− 1 (the number of non-empty subsets of J plus the number of their
complements, plus V itself). If V \ J = /0 then Y = 2n−1. Now, by Theorem 8.1,
for every fixed k = 0,1, . . . ,

lim
n→∞

P(Y = 2k+1−1) = e−λ λ k

k!
.

Observe that for any ℓ≥ 0,

EY ≥
ℓ

∑
k=0

(2k+1−1)P(Y = 2k+1−1)
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and hence

liminf
n→∞

EY ≥
ℓ

∑
k=0

(2k+1−1)
λ ke−λ

k!
.

So,

liminf
n→∞

EY ≥ lim
ℓ→∞

ℓ

∑
k=0

(2k+1−1)
λ ke−λ

k!
= 2eλ −1

which completes the proof of (8.8).
We will show next that

limsup
n→∞

EY1 ≤ 2eλ −1. (8.9)

To prove (8.9) denote by Zk the number of closed sets of order k in Gn,P so that
Y1 = ∑

n
k=1 Zk. Note that

Zk = ∑
i1<...<ik

Zi1...ik ,

where Zi1,...ik indicates whether set Ik = {i1 . . . ik} is closed. Then

EZi1,...ik = P(Xi j = 0, i ∈ Ik, j ̸∈ Ik) = ∏
i∈Ik, j ̸∈Ik

qi j.

Consider first the case when k ≤ n/2. Then

∏
i∈Ik, j ̸∈Ik

qi j =
∏i∈Ik,1≤ j≤n qi j

∏i∈Ik, j∈Ik
qi j

= ∏
i∈Ik

Qi

∏ j∈Ik
qi j
≤∏

i∈Ik

Qi

Rik
.

Hence

EZk ≤ ∑
i1<...<ik

∏
i∈Ik

Qi

Rik
≤ 1

k!

(
n

∑
i=1

Qi

Rik

)k

.

Now, (8.3) implies that

limsup
n→∞

n/2

∑
k=1

EZk ≤ eλ −1.

To complete the estimation of EZk (and thus for EY1) consider the case when
k > n/2. For convenience let us switch k with n− k, i.e, consider EZn−k, when
0≤ k < n/2. Notice that EZn = 1 since V is closed. So for 1≤ k < n/2

EZn−k = ∑
i1<...<ik

∏
i∈Ik, j ̸∈Ik

qi j.
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But qi j = q ji so, for such k, EZn−k = EZk. This gives

limsup
n→∞

EY1 ≤ 2(eλ −1)+1,

where the +1 comes from Zn = 1 This completes the proof of (8.9).
Now,

P(Y1 > Y ) = P(Y1−Y ≥ 1)≤ E(Y1−Y ).

Estimates (8.8) and (8.9) imply that

limsup
n→∞

E(Y1−Y )≤ 0,

which in turn leads to the conclusion that

lim
n→∞

P(Y1 > Y ) = 0.

i.e., asymptotically, the probability that there is a closed set that is not simple,
tends to zero as n→ ∞. It is easy to check that X0 < n w.h.p. and therefore
Y = 2X0+1−1 w.h.p. and so w.h.p. Y1 = 2X0+1−1. If Gn,P has more than X0 +1
connected components then the graph after removal of all isolated vertices would
contain at least one closed set, i.e., the number of closed sets would be at least
2X0+1. But the probability of such an event tends to zero and the theorem follows.

We finish this section by presenting a sufficient condition for Gn,P to be con-
nected w.h.p. as proven by Alon [28].

Theorem 8.3. For every positive constant b there exists a constant
c = c(b)> 0 so that if, for every non-trivial S⊂V ,

∑
i∈S, j∈V\S

pi j ≥ c logn,

then probability that Gn,P is connected is at least 1−n−b.

Proof. In fact Alon’s result is much stronger. He considers a random subgraph
Gpe of a multi-graph G on n vertices, obtained by deleting each edge e indepen-
dently with probability 1− pe. The random graph Gn,P is a special case of Gpe

when G is the complete graph Kn. Therefore, following in his footsteps, we will
prove that Theorem 8.3 holds for Gpe and thus for Gn,P.

So, let G = (V,E) be a loopless undirected multigraph on n vertices, with
probability pe, 0≤ pe ≤ 1 assigned to every edge e ∈ E and suppose that for any
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non-trivial S ⊂ V the expectation of the number ES of edges in a cut (S,V \S) of
Gpe satisfies

EES = ∑
e∈(S,V\S)

pe ≥ c logn. (8.10)

Create a new graph G′ = (V,E ′) from G by replacing each edge e by k = c logn
parallel copies with the same endpoints and giving each copy e′ of e a probability
p′e′ = pe/k.

Observe that for S⊂V

EE ′S = ∑
e′∈(S,V\S)

p′e′ = EES.

Moreover, for every edge e of G, the probability that no copy e′ of e survives in a
random subgraph G′p′ is (1− pe/k)k ≥ 1− pe and hence the probability that Gpe

is connected exceeds the probability of G′p′e being connected, and so in order to
prove the theorem it suffice to prove that

P(G′p′e is connected)≥ 1−n−b. (8.11)

To prove this, let E ′1∪E ′2∪ . . .∪E ′k be a partition of the set E ′ of the edges of G′,
such that each E ′i consists of a single copy of each edge of G. For i = 0,1, . . . ,k
define G′i as follows. G′0 is the subgraph of G′ that has no edges, and for all
i ≥ 1, G′i is the random subgraph of G′ obtained from G′i−1 by adding to it each
edge e′ ∈ E ′i independently, with probability p′e′ .

Let Ci be the number of connected components of G′i. Then we have C0 = n
and we have G′k ≡ G′p′e . Let us call the stage i, 1 ≤ i ≤ k, successful if either
Ci−1 = 1 (i.e., G′i−1 is connected) or if Ci < 0.9Ci−1. We will prove that

P(Ci−1 = 1 or Ci < 0.9Ci−1|G′i−1)≥
1
2
. (8.12)

To see that (8.12) holds, note first that if G′i−1 is connected then there is noth-
ing to prove. Otherwise let Hi = (U,F) be the graph obtained from G′i−1 by (i)
contracting every connected component of G′i−1 to a single vertex and (ii) adding
to it each edge e′ ∈ E ′i independently, with probability p′e′ and throwing away
loops. Note that since for every nontrivial S, EE ′S ≥ k, we have that for every
vertex u ∈U (connected component of G′i−1),

∑
u∈e′∈F

p′e′ = ∑
e∈U :Uc

pe

k
≥ 1.

Moreover, the probability that a fixed vertex u ∈U is isolated in Hi is

∏
u∈e′∈F

(1− p′e′)≤ exp

{
− ∑

u∈e′∈F
p′e′

}
≤ e−1.
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Hence the expected number of isolated vertices of Hi does not exceed |U |e−1.
Therefore, by the Markov inequality, it is at most 2|U |e−1 with probability at least
1/2. But in this case the number of connected components of Hi is at most

2|U |e−1 +
1
2
(|U |−2|U |e−1) =

(
1
2
+ e−1

)
|U |< 0.9|U |,

and so (8.12) follows. Observe that if Ck > 1 then the total number of successful
stages is strictly less than logn/ log0.9 < 10logn. However, by (8.12), the proba-
bility of this event is at most the probability that a Binomial random variable with
parameters k and 1/2 will attain a value at most 10logn. It follows from (27.22)
that if k = c logn = (20+ t) logn then the probability that Ck > 1 (i.e., that G′p′e
is disconnected) is at most n−t2/4c. This completes the proof of (8.11) and the
theorem follows.

8.2 Expected Degree Model
In this section we will consider a special case of Kovalenko’s generalized binomial
model, introduced by Chung and Lu in [220], where edge probabilities pi j depend
on weights assigned to vertices. This was also meant as a model for “Real World
networks”, see Chapter 18.

Let V = {1,2, . . . ,n} and let wi be the weight of vertex i. Now insert edges
between vertices i, j ∈V independently with probability pi j defined as

pi j =
wiw j

W
where W =

n

∑
k=1

wk.

We assume that maxi w2
i < W so that pi j ≤ 1. The resulting graph is denoted as

Gn,Pw . Note that putting wi = np for i ∈ [n] yields the random graph Gn,p.
Notice that loops are allowed here but we will ignore them in what follows.

Moreover, for vertex i ∈V its expected degree is

∑
j

wiw j

W
= wi.

Denote the average vertex weight by w (average expected vertex degree) i.e.,

w =
W
n
,

while, for any subset U of a vertex set V define the volume of U as

w(U) = ∑
k∈U

wk.
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Chung and Lu in [220] and [222] proved the following results summarized in
the next theorem.

Theorem 8.4. The random graph Gn,Pw with a given expected degree sequence
has a unique giant component w.h.p. if the average expected degree is strictly
greater than one (i.e., w > 1). Moreover, if w > 1 then w.h.p. the giant component
has volume

λ0W +O
(√

n(logn)3.5
)
,

where λ0 is the unique nonzero root of the following equation

n

∑
i=1

wie−wiλ = (1−λ )
n

∑
i=1

wi,

Furthermore w.h.p., the second-largest component has size at most

(1+o(1)µ(w) logn,

where

µ(w) =

{
1/(w−1− logw) if 1 < w < 2,
1/(1+ logw− log4) if w > 4/e.

Here we will prove a weaker and restricted version of the above theorem. In
the current context, a giant component is one with volume Ω(W ).

Theorem 8.5. If the average expected degree w > 4, then a random graph Gn,Pw

w.h.p. has a unique giant component and its volume is at least(
1− 2√

ew

)
W

while the second-largest component w.h.p. has the size at most

(1+o(1))
logn

1+ logw− log4
.

The proof is based on a key lemma given below, proved under stronger condi-
tions on w than in fact Theorem 8.5 requires.

Lemma 8.6. For any positive ε < 1 and w > 4
e(1−ε)2 w.h.p. every connected

component in the random graph Gn,Pw either has volume at least εW or has at
most logn

1+logw−log4+2log(1−ε) vertices.
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Proof. We first estimate the probability of the existence of a connected com-
ponent with k vertices (component of size k) in the random graph Gn,Pw . Let
S⊆V and suppose that vertices from S = {vi1,vi2, . . . ,vik} have respective weights
wi1 ,wi2, . . . ,wik . If the set S induces a connected subgraph of Gn,Pw than it contains
at least one spanning tree T . The probability of such event equals

P(T ) = ∏
{vi j ,vil }∈E(T )

wi jwil ρ,

where
ρ :=

1
W

=
1

nw
.

So, the probability that S induces a connected subgraph of our random graph can
be bounded from above by

∑
T
P(T ) = ∑

T
∏

{vi j ,vil }∈E(T )
wi jwil ρ,

where T ranges over all spanning trees on S.
By the matrix-tree theorem (see West [852]) the above sum equals the determinant
of any k−1 by k−1 principal sub-matrix of (D−A)ρ , where A is defined as

A =


0 wi1wi2 · · · wi1wik

wi2wi1 0 · · · wi2wik
...

... . . . ...
wikwi1 wikwi2 · · · 0

 ,

while D is the diagonal matrix

D = diag(wi1(W −wi1), . . . ,wik(W −wik)) .

(To evaluate the determinant of the first principal co-factor of D−A, delete row
and column k of D−A; Take out a factor wi1wi2 · · ·wik−1; Add the last k−2 rows
to row 1; Row 1 is now (wik ,wik , . . . ,wik), so we can take out a factor wik ; Now
subtract column 1 from the remaining columns to get a (k− 1)× (k− 1) upper
triangular matrix with diagonal equal to diag(1,w(S),w(S), . . . ,w(S))).

It follows that

∑
T
P(T ) = wi1wi2 · · ·wikw(S)k−2

ρ
k−1. (8.13)

To show that this subgraph is in fact a component one has to multiply by the
probability that there is no edge leaving S in Gn,Pw . Obviously, this probability
equals ∏vi∈S,v j ̸∈S(1−wiw jρ) and can be bounded from above

∏
vi∈S,v j∈V\S

(1−wiw jρ)≤ e−ρw(S)(W−w(S)). (8.14)
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Let Xk be the number of components of size k in Gn,Pw . Then, using bounds
from (8.13) and (8.14) we get

EXk ≤∑
S

w(S)k−2
ρ

k−1e−ρw(S)(W−w(S))
∏
i∈S

wi,

where the sum ranges over all S ⊆ V, |S| = k. Now, we focus our attention on k-
vertex components whose volume is at most εW . We call such components small
or ε-small. So, if Yk is the number of small components of size k in Gn,Pw then

EYk ≤ ∑
small S

w(S)k−2
ρ

k−1e−w(S)(1−ε)
∏
i∈S

wi = f (k). (8.15)

Now, using the arithmetic-geometric mean inequality, we have

f (k)≤ ∑
small S

(
w(S)

k

)k

w(S)k−2
ρ

k−1e−w(S)(1−ε).

The function x2k−2e−x(1−ε) achieves its maximum at x = (2k−2)/(1−ε). There-
fore

f (k)≤
(

n
k

)
ρk−1

kk

(
2k−2
1− ε

)2k−2

e−(2k−2)

≤
(ne

k

)k ρk−1

kk

(
2k−2
1− ε

)2k−2

e−(2k−2)

≤ (nρ)k

4ρ(k−1)2

(
2

1− ε

)2k

e−k

=
1

4ρ(k−1)2

(
4

ew(1− ε)2

)k

=
e−ak

4ρ(k−1)2 ,

where
a = 1+ logw− log4+2log(1− ε)> 0

under the assumption of Lemma 8.6.
Let k0 =

logn
a . When k satisfies k0 < k < 2k0 we have

f (k)≤ 1
4nρ(k−1)2 = o

(
1

logn

)
,
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while, when 2logn
a ≤ k ≤ n, we have

f (k)≤ 1
4n2ρ(k−1)2 = o

(
1

n logn

)
.

So, the probability that there exists an ε-small component of size exceeding k0 is
at most

∑
k>k0

f (k)≤ logn
a
×o
(

1
logn

)
+n×o

(
1

n logn

)
= o(1).

This completes the proof of Lemma 8.6.

To prove Theorem 8.5 assume that for some fixed δ > 0 we have

w = 4+δ =
4

e(1− ε)2 where ε = 1− 2
(ew)1/2 (8.16)

and suppose that w1 ≥ w2 ≥ ·· · ≥ wn. We show next that there exists i0 ≥ n1/3

such that

wi0 ≥

√√√√(1+ δ

8

)
W

i0
. (8.17)

Suppose the contrary, i.e., for all i≥ n1/3,

wi <

√√√√(1+ δ

8

)
W

i
.

Then

W ≤ n1/3W 1/2 +
n

∑
i=n1/3

√√√√(1+ δ

8

)
W

i

≤ n1/3W 1/2 +2

√(
1+

δ

8

)
Wn.

Hence

W 1/2 ≤ n1/3 +2
(

1+
δ

8

)
n1/2.

This is a contradiction since for our choice of w

W = nw≥ 4(1+δ )n.
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We have therefore verified the existence of i0 satisfying (8.17).
Now consider the subgraph G of Gn,Pw on the first i0 vertices. The probability

that there is an edge between vertices vi and v j, for any i, j ≤ i0, is at least

wiw jρ ≥ w2
i0ρ ≥

1+ δ

8
i0

.

So the asymptotic behavior of G can be approximated by a random graph Gn,p

with n = i0 and p > 1/i0. So, w.h.p. G has a component of size Θ(i0) = Ω(n1/3).
Applying Lemma 8.6 with ε as in (8.16) we see that any component with size
≫ logn has volume at least εW .

Finally, consider the volume of a giant component. Suppose first that there
exists a giant component of volume cW which is ε-small i.e. c ≤ ε . By Lemma
8.6, the size of the giant component is then at most logn

2log2 . Hence, there must be at
least one vertex with weight w greater than or equal to the average

w≥ 2cW log2
logn

.

But it implies that w2 ≫W , which contradicts the general assumption that all
pi j < 1.

We now prove uniqueness in the same way that we proved the uniqueness of
the giant component in Gn,p. Choose η > 0 such that w(1−η)> 4. Then define
w′i = (1−η)wi and decompose

Gn,Pw = G1∪G2

where the edge probability in G1 is p′i j =
w′iw

′
j

(1−η)W and the edge probability in G2

is p′′i j where 1− wiw j
W = (1− p′i, j)(1− p′′i j). Simple algebra gives p′′i j ≥

ηwiw j
W . It

follows from the previous analysis that G1 contains between one and 1/ε giant
components. Let C1,C2 be two such components. The probability that there is no
G2 edge between them is at most

∏
i∈C1
j∈C2

(
1−

ηwiw j

W

)
≤ exp

{
−ηw(C1)w(C2)

W

}
≤ e−ηW = o(1).

As 1/ε < 4, this completes the proof of Theorem 8.5.

To add to the picture of the asymptotic behavior of the random graph Gn,Pw we
will present one more result from [220]. Denote by w2 the expected second-order
average degree, i.e.,

w2 = ∑
j

w2
j

W
.
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Notice that

w2 =
∑ j w2

j

W
≥ W

n
= w.

Chung and Lu [220] proved the following.

Theorem 8.7. If the average expected square degree w2 < 1 then, with probability

at least 1−
w
(

w2
)2

C2
(

1−w2
) , all components of Gn,Pw have volume at most C

√
n.

Proof. Let
x = P(∃S : w(S)≥Cn1/2and S is a component).

Randomly choose two vertices u and v from V , each with probability proportional
to its weight. Then, for each vertex, the probability that it is in a set S with
w(S)≥C

√
n is at least C

√
nρ . Hence the probability that both vertices are in the

same component is at least

x(C
√

nρ)2 =C2xnρ
2. (8.18)

On the other hand, for any two fixed vertices, say u and v, the probability Pk(u,v)
of u and v being connected via a path of length k+1 can be bounded from above
as follows

Pk(u,v)≤ ∑
i1,i2,...,ik

(wuwi1ρ)(wi1wi2ρ) · · ·(wikwvρ)≤ wuwvρ(w2)k.

So the probability that u and v belong to the same component is at most

n

∑
k=0

Pk(u,v)≤
∞

∑
k=0

wuwvρ(w2)k =
wuwvρ

1−w2
.

Recall that the probabilities of u and v being chosen from V are wuρ and wvρ ,
respectively. so the probability that a random pair of vertices are in the same
component is at most

∑
u,v

wuρ wvρ
wuwvρ

1−w2
=

(
w2
)2

ρ

1−w2
.

Combining this with (8.18) we have

C2xnρ
2 ≤

(
w2
)2

ρ

1−w2
,
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which implies

x≤
w
(

w2
)2

C2
(

1−w2
) ,

and Theorem 8.7 follows.

8.3 Kronecker Graphs
Kronecker random graphs were introduced by Leskovec, Chakrabarti, Kleinberg
and Faloutsos [622] (see also [621]). It is meant as a model of “Real World net-
works”, see Chapter 18. Here we consider a special case of this model of an
inhomogeneous random graph. To construct it we begin with a seed matrix

P =

[
α β

β γ

]
,

where 0 < α,β ,γ < 1, and let P[k] be the kth Kronecker power of P. Here P[k] is
obtained from P[k−1] as in the diagram below:

P[k] =

[
αP[k−1] βP[k−1]

βP[k−1] γP[k−1]

]
and so for example

P[2] =


α2 αβ βα β 2

αβ αγ β 2 βγ

βα β 2 γα γβ

β 2 βγ γβ γ2

 .
Note that P[k] is symmetric and has size 2k×2k.

We define a Kronecker random graph as a copy of Gn,P[k] for some k ≥ 1 and
n = 2k. Thus each vertex is a binary string of length k, and between any two such
vertices (strings) u,v we put an edge independently with probability

pu,v = α
uv

γ
(1−u)(1−v)

β
k−uv−(1−u)(1−v),

or equivalently
puv = α

i
β

j
γ

k−i− j,

where i is the number of positions t such that ut = vt = 1, j is the number of t
where ut ̸= vt and hence k− i− j is the number of t that ut = vt = 0. We observe
that when α = β = γ then Gn,P[k] becomes Gn,p with n = 2k and p = αk.
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Connectivity
We will first examine, following Mahdian and Xu [647], conditions under which
is Gn,P[k] connected w.h.p.

Theorem 8.8. Suppose that α ≥ β ≥ γ . The random graph Gn,P[k] is connected
w.h.p. (for k→ ∞) if and only if either (i) β + γ > 1 or (ii) α = β = 1,γ = 0.

Proof. We show first that β + γ ≥ 1 is a necessary condition. Denote by 0 the
vertex with all 0’s. Then the expected degree of vertex 0 is

∑
v

p0v =
k

∑
j=0

(
k
j

)
β

j
γ

k− j = (β + γ)k = o(1), when β + γ < 1.

Thus in this case vertex 0 is isolated w.h.p.
Moreover, if β + γ = 1 and 0 < β < 1 then Gn,P[k] cannot be connected w.h.p.

since the probability that vertex 0 is isolated is bounded away from 0. Indeed,
0 < β < 1 implies that β jγk− j ≤ ζ < 1, 0 ≤ j ≤ k for some absolute constant ζ .
Thus, using Lemma 27.1(b),

P(0 is isolated) = ∏
v
(1− p0v)≥

k

∏
j=0

(
1−β

j
γ

k− j
)(k

j)

≥ exp

{
−

k

∑
j=0

(k
j

)
β jγk− j

1−ζ

}
= e−1/ζ .

Now when α = β = 1,γ = 0, the vertex with all 1’s has degree n−1 with proba-
bility one and so Gn,P[k] will be connected w.h.p. in this case.

It remains to show that the condition β + γ > 1 is also sufficient. To show that
β + γ > 1 implies connectivity we will apply Theorem 8.3. Notice that the ex-
pected degree of vertex 0, excluding its self-loop, given that β and γ are constants
independent of k and β + γ > 1, is

(β + γ)k− γ
k ≥ 2c logn,

for some constant c > 0, which can be as large as needed.
Therefore the cut (0,V \ {0}) has weight at least 2c logn. Remove vertex 0

and consider any cut (S,V \S). Then at least one side of the cut gets at least half
of the weight of vertex 0. Without loss of generality assume that it is S, i.e.,

∑
u∈S

p0u ≥ c logn.
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Take any vertices u,v and note that puv ≥ pu0 because we have assumed that
α ≥ β ≥ γ . Therefore

∑
u∈S

∑
v∈V\S

puv ≥ ∑
u∈S

pu0 > c logn,

and so the claim follows by Theorem 8.3.

To add to the picture of the structure of Gn,P[k] when β + γ > 1 we state (with-
out proof) the following result on the diameter of Gn,P[k] .

Theorem 8.9. If β + γ > 1 then w.h.p. Gn,P[k] has constant diameter.

Giant Component
We now consider when Gn,P[k] has a giant component (see Horn and Radcliffe
[489]).

Theorem 8.10. Gn,P[k] has a giant component of order Θ(n) w.h.p., if and only if
(α +β )(β + γ)> 1.

Proof. We prove a weaker version of the Theorem 8.10, assuming that for α ≥
β ≥ γ as in [647]. For the proof of the more general case, see [489].

We will show first that the above condition is necessary. We prove that if

(α +β )(β + γ)≤ 1,

then w.h.p. Gn,P[k] has n−o(n) isolated vertices. First let

(α +β )(β + γ) = 1− ε, ε > 0.

First consider those vertices with weight (counted as the number of 1’s in their
label) less than k/2+ k2/3 and let Xu be the degree of a vertex u with weight l
where l = 0, . . . ,k. It is easily observed that

EXu = (α +β )l(β + γ)k−l. (8.19)

Indeed, if for vertex v, i = i(v) is the number of bits that ur = vr = 1, r = 1, . . . ,k
and j = j(v) is the number of bits where ur = 0 and vr = 1, then the probability
of an edge between u and v equals

puv = α
i
β

j+l−i
γ

k−l− j.
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Hence,

EXu = ∑
v∈V

puv =
l

∑
i=0

k−l

∑
j=0

(
l
i

)(
k− l

j

)
α

i
β

j+l−i
γ

k−l− j

=
l

∑
i=0

(
l
i

)
α

i
β

l−i
k−l

∑
j=0

β
j
γ

k−l−l

and (8.19) follows. So, if l < k/2+ k2/3, then assuming that α ≥ β ≥ γ ,

EXu ≤(α +β )k/2+k2/3
(β + γ)k−(k/2+k2/3)

=((α +β )(β + γ))k/2
(

α +β

β + γ

)k2/3

=(1− ε)k/2
(

α +β

β + γ

)k2/3

=o(1). (8.20)

Suppose now that l ≥ k/2+ k2/3 and let Y be the number of 1’s in the label of
a randomly chosen vertex of Gn,P[k] . Since EY = k/2, the Chernoff bound (see
(27.26)) implies that

P
(

Y ≥ k
2
+ k2/3

)
≤ e−k4/3/(3k/2) ≤ e−k1/3/2 = o(1).

Therefore, there are o(n) vertices with l ≥ k/2+ k2/3. It then follows from (8.20)
that the expected number of non-isolated vertices in Gn,P[k] is o(n) and the Markov
inequality then implies that this number is o(n) w.h.p.

Next, when α + β = β + γ = 1, which implies that α = β = γ = 1/2, then
random graph Gn,P[k] is equivalent to Gn,p with p = 1/n and so by Theorem 2.21
it does not have a component of order n, w.h.p.

To prove that the condition (α +β )(β + γ)> 1 is sufficient we show that the
subgraph of Gn,P[k] induced by the vertices of H of weight l ≥ k/2 is connected
w.h.p. This will suffice as there are at least n/2 such vertices. Notice that for any
vertex u ∈ H its expected degree, by (8.19), is at least

((α +β )(β + γ))k/2≫ logn. (8.21)

We first show that for u ∈V ,

∑
v∈H

puv ≥
1
4 ∑

v∈V
puv. (8.22)
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For the given vertex u let l be the weight of u. For a vertex v let i(v) be the
number of bits where ur = vr = 1, r = 1, . . . ,k, while j(v) stands for the number
of bits where ur = 0 and vr = 1. Consider the partition

V \H = S1∪S2∪S3,

where
S1 = {v : i(v)≥ l/2, j(v)< (k− l)/2},

S2 = {v : i(v)< l/2, j(v)≥ (k− l)/2},

S3 = {v : i(v)< l/2, j(v)< (k− l)/2}.

Next, take a vertex v ∈ S1 and turn it into v′ by flipping the bits of v which
correspond to 0’s of u. Surely, i(v′) = i(v) and

j(v′)≥ (k− l)/2 > j(v).

Notice that the weight of v′ is at least k/2 and so v′ ∈H. Notice also that α ≥ β ≥
γ implies that puv′ ≥ puv. Different vertices v ∈ S1 map to different v′. Hence

∑
v∈H

puv ≥ ∑
v∈S1

puv. (8.23)

The same bound (8.23) holds for S2 and S3 in place of S1. To prove the same
relationship for S2 one has to flip the bits of v corresponding to 1’s in u, while for
S3 one has to flip all the bits of v. Adding up these bounds over the partition of
V \H we get

∑
v∈V\H

puv ≤ 3 ∑
v∈H

puv

and so the bound (8.22) follows.
Notice that combining (8.22) with the bound given in (8.21) we get that for u ∈H
we have

∑
v∈H

puv > 2c logn, (8.24)

where c can be a large as needed.
We finish the proof by showing that a subgraph of Gn,P[k] induced by vertex

set H is connected w.h.p. For that we make use of Theorem 8.3. So, we will show
that for any cut (S,H \S)

∑
u∈S

∑
v∈H\S

puv ≥ 10logn.
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Without loss of generality assume that vertex 1 ∈ S. Equation (8.24) implies that
for any vertex u ∈ H either

∑
v∈S

puv ≥ c logn, (8.25)

or
∑

v∈H\S
puv ≥ c logn. (8.26)

If there is a vertex u such that (8.26) holds then since u≤ 1 and α ≥ β ≥ γ ,

∑
u∈S

∑
v∈H\S

puv ≥ ∑
v∈H\S

p1v ≥ ∑
v∈H\S

puv > c logn.

Otherwise, (8.25) is true for every vertex u ∈ H. Since at least one such vertex is
in H \S, we have

∑
u∈S

∑
v∈H\S

puv ≥ c logn,

and the Theorem follows.

8.4 Exercises
8.4.1 Prove Theorem 8.3 (with c = 10) using the result of Karger and Stein [546]

that in any weighted graph on n vertices the number of r-minimal cuts is
O
(
(2n)2r). (A cut (S,V \ S),S ⊆ V, in a weighted graph G is called r-

minimal if its weight, i.e., the sum of weights of the edges connecting S
with V \S, is at most r times the weight of minimal weighted cut of G).

8.4.2 Suppose that the entries of an n×n symmetric matrix A are all non-negative.
Show that for any positive constants c1,c2, . . . ,cn, the largest eigenvalue
λ (A) satisfies

λ (A)≤ max
1≤i≤n

(
1
ci

n

∑
j=1

c jai, j

)
.

8.4.3 Let A be the adjacency matrix of Gn,Pw and for a fixed value of x let

ci =

{
wi wi > x
x wi ≤ x

.

Let m = max{wi : i ∈ [n]}. Let Xi =
1
ci

∑
n
j=1 c jai, j. Show that

EXi ≤ w2 + x and VarXi ≤
m
x

w2 + x.
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8.4.4 Apply Theorem 27.11 with a suitable value of x to show that w.h.p.

λ (A)≤ w2 +(6(m logn)1/2(w2 + logn))1/2 +3(m logn)1/2.

8.4.5 Show that if w2 > m1/2 logn then w.h.p. λ (A) = (1+o(1))w2.

8.4.6 Suppose that 1≤wi≪W 1/2 for 1≤ i≤ n and that wiw jw2≫W logn. Show
that w.h.p. diameter(Gn,Pw)≤ 2.

8.4.7 Prove, by the Second Moment Method, that if α+β = β +γ = 1 then w.h.p.
the number Zd of the vertices of degree d in the random graph Gn,P[k] , is
concentrated around its mean, i.e., Zd = (1+o(1))EZd .

8.4.8 Fix d ∈ N and let Zd denote the number of vertices of degree d in the Kro-
necker random graph Gn,P[k]. Show that

EZd = (1+o(1))
k

∑
w=0

(
k
w

)
(α +β )dw(β + γ)d(k−w)

d!
×

× exp
(
−(α +β )w(β + γ)k−w

)
+o(1).

8.4.9 Depending on the configuration of the parameters 0<α,β ,γ < 1, show that
we have either

EZd = Θ

((
(α +β )d +(β + γ)d

)k
)
,

or
EZd = o(2k).

8.5 Notes

General model of inhomogeneous random graph
The most general model of inhomogeneous random graph was introduced by Bol-
lobás, Janson and Riordan in their seminal paper [168]. They concentrate on the
study of the phase transition phenomenon of their random graphs, which includes
as special cases the models presented in this chapter as well as, among others,
Dubins’ model (see Kalikow and Weiss [540] and Durrett [315]), the mean-field
scale-free model (see Riordan [762]), the CHKNS model (see Callaway, Hopcroft,
Kleinberg, Newman and Strogatz [207]) and Turova’s model (see [833], [834] and
[835]).
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The model of Bollobás, Janson and Riordan is an extension of one defined by
Söderberg [809]. The formal description of their model goes as follows. Consider
a ground space being a pair (S ,µ), where S is a separable metric space and µ is
a Borel probability measure on S . Let V = (S ,µ,(xn)n≥1) be the vertex space,
where (S ,µ) is a ground space and (xn)n≥1) is a random sequence (x1,x2, . . . ,xn)
of n points of S satisfying the condition that for every µ-continuity set A, A⊆S ,
|{i : xi ∈ A}|/n converges in probability to µ(A). Finally, let κ be a kernel on the
vertex space V (understood here as a kernel on a ground space (S ,µ)), i.e., a
symmetric non-negative (Borel) measurable function on S× S. Given the (ran-
dom) sequence (x1,x2, . . . ,xn) we let GV (n,κ) be the random graph GV (n,(pi j))
with pi j := min{κ(xi,x j)/n,1}. In other words, GV (n,κ) has n vertices and,
given x1,x2, . . . ,xn, an edge {i, j} (with i ̸= j) exists with probability pi j, inde-
pendently for all other unordered pairs {i, j}.

Bollobás, Janson and Riordan present in [168] a wide range of results describ-
ing various properties of the random graph GV (n,κ). They give a necessary and
sufficient condition for the existence of a giant component, show its uniqueness
and determine the asymptotic number of edges in the giant component. They
also study the stability of the component, i.e., they show that its size does not
change much if we add or delete a few edges. They also establish bounds on the
size of small components, the asymptotic distribution of the number of vertices
of given degree and study the distances between vertices (diameter). Finally they
turn their attention to the phase transition of GV (n,κ) where the giant component
first emerges.

Janson and Riordan [511] study the susceptibility, i.e., the mean size of the
component containing a random vertex, in a general model of inhomogeneous
random graphs. They relate the susceptibility to a quantity associated to a corre-
sponding branching process, and study both quantities in various examples.

Devroye and Fraiman [287] find conditions for the connectivity of inhomo-
geneous random graphs with intermediate density. They draw n independent
points Xi from a general distribution on a separable metric space, and let their
indices form the vertex set of a graph. An edge i j is added with probability
min{1,κ(Xi,X j) logn/n}, where κ > 0 is a fixed kernel. They show that, un-
der reasonably weak assumptions, the connectivity threshold of the model can be
determined.

Lin and Reinert [625] show via a multivariate normal and a Poisson process
approximation that, for graphs which have independent edges, with a possibly
inhomogeneous distribution, only when the degrees are large can we reasonably
approximate the joint counts for the number of vertices with given degrees as in-
dependent (note that in a random graph, such counts will typically be dependent).
The proofs are based on Stein’s method and the Stein–Chen method (see Chapter
26.3) with a new size-biased coupling for such inhomogeneous random graphs.
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Rank one model
An important special case of the general model of Bollobás, Janson and Riordan is
the so called rank one model, where the kernel κ has the form κ(x,y) =ψ(x)ψ(y),
for some function ψ > 0 on S . In particular, this model includes the Chung-Lu
model (expected degree model) discussed earlier in this Chapter. Recall that in
their approach we attach edges (independently) with probabilities

pi j = min
{wiw j

W
,1
}

where W =
n

∑
k=1

wk.

Similarly, Britton, Deijfen and Martin-Löf [197] define edge probabilities as

pi j =
wiw j

W +wiw j
,

while Norros and Reittu [719] attach edges with probabilities

pi j = exp
(
−

wiw j

W

)
.

For those models several characteristics are studied, such as the size of the giant
component ([221], [222] and [719]) and its volume ([221]) as well as spectral
properties ([225] and [226]). It should be also mentioned here that Janson [504]
established conditions under which all those models are asymptotically equiva-
lent.

Recently, van der Hofstad [482], Bhamidi, van der Hofstad and
Hooghiemstra[109], van der Hofstad, Kliem and van Leeuwaarden [484] and
Bhamidi, Sen and Wang [110] undertake systematic and detailed studies of vari-
ous aspects of the rank one model in its general setting.

Finally, consider random dot product graphs (see Young and Scheinerman
[864]) where to each vertex a vector in Rd is assigned and we allow each edge to be
present with probability proportional to the inner product of the vectors assigned
to its endpoints. The paper [864] treats these as models of social networks.

Kronecker Random Graph
Radcliffe and Young [757] analysed the connectivity and the size of the giant
component in a generalized version of the Kronecker random graph. Their results
imply that the threshold for connectivity in Gn,P[k] is β +γ = 1. Tabor [827] proved
that it is also the threshold for a k-factor. Kang, Karoński, Koch and Makai [543]
studied the asymptotic distribution of small subgraphs (trees and cycles) in Gn,P[k] .

Leskovec, Chakrabarti, Kleinberg and Faloutsos [623] and [624] have shown
empirically that Kronecker random graphs resemble several real world networks.
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Later, Leskovec, Chakrabarti, Kleinberg, Faloutsos and Ghahramani [624] fitted
the model to several real world networks such as the Internet, citation graphs and
online social networks.

The R-MAT model, introduced by Chakrabarti, Zhan and Faloutsos [211], is
closely related to the Kronecker random graph. The vertex set of this model is
also Zn

2 and one also has parameters α,β ,γ . However, in this case one needs the
additional condition that α +2β + γ = 1.

The process of generating a random graph in the R-MAT model creates a
multigraph with m edges and then merges the multiple edges. The advantage
of the R-MAT model over the random Kronecker graph is that it can be generated
significantly faster when m is small. The degree sequence of this model has been
studied by Groër, Sullivan and Poole [454] and by Seshadhri, Pinar and Kolda
[798] when m = Θ(2n), i.e. the number of edges is linear in the number of ver-
tices. They have shown, as in Kang, Karoński, Koch and Makai [543] for Gn,P[k] ,
that the degree sequence of the model does not follow a power law distribution.
However, no rigorous proof exists for the equivalence of the two models and in
the Kronecker random graph there is no restriction on the sum of the values of
α,β ,γ .

Further extensions of Kronecker random graphs can be found [130] and [131].
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Fixed Degree Sequence

The graph Gn,m is chosen uniformly at random from the set of graphs with vertex
set [n] and m edges. It is of great interest to refine this model so that all the graphs
chosen have a fixed degree sequence d = (d1,d2, . . . ,dn). Of particular interest
is the case where d1 = d2 = · · · = dn = r, i.e., the graph chosen is a uniformly
random r-regular graph. It is not obvious how to do this and this is the subject of
the current chapter. We discuss the configuration model in the next section and
show its usefulness in (i) estimating the number of graphs with a given degree
sequence and (ii) showing that w.h.p. random d-regular graphs are connected
w.h.p., for 3≤ d = O(1).

We finish by showing in Section 9.5 how for large r, Gn,m can be embedded in
a random r-regular graph. This allows one to extend some results for Gn,m to the
regular case.

9.1 Configuration Model
Let d = (d1,d2, . . . ,dn) where d1 +d2 + · · ·+dn = 2m is even. Let

Gn,d = {simple graphs with vertex set [n] s.t. degree d(i) = di, i ∈ [n]}

and let Gn,d be chosen randomly from Gn,d. We assume that

d1,d2, . . . ,dn ≥ 1 and
n

∑
i=1

di(di−1) = Ω(n).

We describe a generative model of Gn,d due to Bollobás [146]. It is referred to
as the configuration model. Let W1,W2, . . . ,Wn be a partition of a set of points W ,
where |Wi| = di for 1 ≤ i ≤ n and call the Wi’s cells. We will assume some total
order < on W and that x < y if x ∈Wi,y ∈Wj where i < j. For x ∈W define ϕ(x)
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Figure 9.1: Partition of W into cells W1, . . . ,W8.
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Figure 9.2: A partition F of W into m = 12 pairs

by x ∈Wϕ(x). Let F be a partition of W into m pairs (a configuration). Given F
we define the (multi)graph γ(F) as

γ(F) = ([n],{(ϕ(x),ϕ(y)) : (x,y) ∈ F}).

Let us consider the following example of γ(F). Let n = 8 and d1 = 4,d2 = 3,d3 =
4,d4 = 2,d5 = 1,d6 = 4,d7 = 4,d8 = 2. The accompanying diagrams, Figures 9.1,
9.2, 9.3 show a partition of W into W1, . . . ,W8, a configuration and its correspond-
ing multi-graph.

Denote by Ω the set of all configurations defined above for d1+ · · ·+dn = 2m
and notice that

|Ω|= (2m)!
m!2m = (2m−1)!!. (9.1)
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Figure 9.3: Graph γ(F)

To see this, take di “distinct” copies of i for i = 1,2, . . . ,n and take a permutation
σ1,σ2, . . . ,σ2m of these 2m symbols. Read off F , pair by pair {σ2i−1,σ2i} for
i = 1,2, . . . ,m. Each distinct F arises in m!2m ways.

We can also give an algorithmic, construction of a random element F of the
family Ω.

Algorithm F-GENERATOR
begin
U ←−W, F ←− /0
for t = 1,2, . . . ,m do

begin
Choose x arbitrarily from U ;
Choose y randomly from U \{x};
F ←− F ∪{(x,y)};
U ←−U \{(x,y)}

end
end

Note that F arises with probability 1/[(2m−1)(2m−3) · · ·1] = |Ω|−1.

Observe that the following relationship between a simple graph G ∈ Gn,d and
the number of configurations F for which γ(F) = G.

Lemma 9.1. If G ∈ Gn,d, then

|γ−1(G)|=
n

∏
i=1

di! .
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Proof. Arrange the edges of G in lexicographic order. Now go through the se-
quence of 2m symbols, replacing each i by a new member of Wi. We obtain all F
for which γ(F) = G.

The above lemma implies that we can use random configurations to “approxi-
mate” random graphs with a given degree sequence.

Corollary 9.2. If F is chosen uniformly at random from the set of all configura-
tions Ω and G1,G2 ∈ Gn,d then

P(γ(F) = G1) = P(γ(F) = G2).

So instead of sampling from the family Gn,d and counting graphs with a given
property, we can choose a random F and accept γ(F) iff there are no loops or
multiple edges, i.e. iff γ(F) is a simple graph.

This is only a useful exercise if γ(F) is simple with sufficiently high probabil-
ity. We will assume for the remainder of this section that

∆ = max{d1,d2, . . . ,dn} ≤ nα ,α < 1/7.

We will prove later (see Lemma 9.7 and Corollary 9.8) that if F is chosen
uniformly (at random) from Ω,

P(γ(F) is simple) = (1+o(1))e−λ (λ+1), (9.2)

where

λ =
∑di(di−1)

2∑di
.

Hence, (9.1) and (9.2) will tell us not only how large is Gn,d, (Theorem 9.5)
but also lead to the following conclusion.

Theorem 9.3. Suppose that ∆≤ nα ,α < 1/7. For any (multi)graph property P

P(Gn,d ∈P)≤ (1+o(1))eλ (λ+1)P(γ(F) ∈P),

The above statement is particularly useful if λ = O(1), e.g., for random r-
regular graphs, where r is a constant, since then λ = r−1

2 . In the next section
we will apply the above result to establish the connectedness of random regular
graphs.

Before proving (9.2) for ∆ ≤ nα , we feel it useful to give a simpler proof for
the case of ∆ = O(1).
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Lemma 9.4. If ∆ = O(1) then (9.2) holds.

Proof. Let L denote the number of loops and let D denote the number of non-
adjacent double edges in γ(F). Lemma 9.6 below shows that w.h.p. there are no
adjacent double edges. We first estimate that for k = O(1),

E
((

L
k

))
= ∑

S⊆[n]
|S|=k

∏
i∈S

di(di−1)
4m−O(1)

(9.3)

=
1
k!

(
n

∑
i=1

di(di−1)
4m

)k

+O
(

∆4

m

)
≈ λ k

k!
.

Explanation for (9.3): We assume that F-Generator begins with pairing up points
in S. Therefore the random choice here is always from a set of size 2m−O(1).

It follows from Theorem 26.11 that L is asymptotically Poisson and hence that

Pr(L = 0)≈ e−λ . (9.4)

We now show that D is also asymptotically Poisson and asymptotically in-
dependent of L. So, let k = O(1). If Dk denotes the set of collections of 2k
configuration points making up k double edges, then

E
((

D
k

)∣∣∣∣L = 0
)
= ∑

Dk

Pr(Dk ⊆ F | L = 0)

= ∑
Dk

Pr(L = 0 |Dk ⊆ F)Pr(Dk ⊆ F)

Pr(L = 0)
.

Now because k = O(1), we see that the calculations that give us (9.4) will give us
Pr(L = 0 |Dk ⊆ F)≈ Pr(L = 0). So,

E
((

D
k

)∣∣∣∣L = 0
)
≈∑

Dk

Pr(Dk ⊆ F)

=
1
2 ∑

S,T⊆[n]
|S|=|T |=k

S∩T= /0

∑
ϕ:S→T

∏
i∈S

2
(di

2

)(dϕ(i)
2

)
(2m−O(1))2

=
1
k!

(
n

∑
i=1

di(di−1)
4m

)2k

+O
(

∆8

m

)
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≈ λ 2k

k!
.

It follows from Theorem 26.11 that

Pr(D = 0 | L = 0)≈ e−λ 2
(9.5)

and the lemma follows from (9.4) and (9.5).
Bender and Canfield [91] gave an asymptotic formula for |Gn,d| when ∆ =

O(1). The paper [146] by Bollobás gives the same asymptotic formula when
∆ < (2logn)1/2. The following theorem allows for some more growth in ∆. Its
proof uses the notion of switching. Switchings were introduced by McKay [671]
and McKay and Wormald [672] and independently by Frieze [387], The bound
α < 1/7 is not optimal. For example, α < 1/2 in [672].

Theorem 9.5. Suppose that ∆≤ nα ,α < 1/7.

|Gn,d| ≈ e−λ (λ+1) (2m)!!
∏

n
i=1 di!

.

In preparation we first prove

Lemma 9.6. Suppose that ∆≤ nα where α < 1/7. Let F be chosen uniformly (at
random) from Ω. Then w.h.p. γ(F) has

(a) No double loops.

(b) At most ∆ logn loops.

(c) No adjacent loops.

(d) No adjacent double edges.

(e) No triple edges.

(f) At most ∆2 logn double edges.

(g) No vertex incident to a loop and a double edge.

(h) There are at most ∆3 logn triangles.

(i) No vertex is adjacent to two distinct vertices that have loops.

(j) No edge joining two distinct loops.
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Proof. We will use the following inequality repeatedly.
Let fi = {xi,yi}, i = 1,2, . . . ,k be k pairwise disjoint pairs of points. Then,

P( fi ∈ F, i = 1,2, . . . ,k)≤ 1
(2m−2k)k . (9.6)

This follows immediately from

P( fi ∈ F | f1, f2, . . . , fi−1 ∈ F) =
1

2m−2i+1
.

This follows from considering Algorithm F-GENERATOR with x = xi and y = yi
in the main loop.
(a) Using (9.6) we obtain

P(F contains a pair of double loops)≤
n

∑
i=1

(
di

2

)2( 1
2m−8

)2

≤ ∆4n
(2m−8)2 = o(1).

(b) Let k1 = ∆ logn.

P(F has at least k1 loops)

≤ o(1)+ ∑
x1+···+xn=k1,

xi=0,1

n

∏
i=1

((
di

2

)
· 1

2m−2k1

)xi

(9.7)

≤ o(1)+
(

∆

2m

)k1

∑
x1+···+xn=k1,

xi=0,1

n

∏
i=1

dxi
i

≤ o(1)+
(

∆

2m

)k1 (d1 + · · ·+dn)
k1

k1!

≤ o(1)+
(

∆e
k1

)k1

= o(1).

The o(1) term in (9.7) accounts for the probability of having a double loop.
(c)

P(F contains a pair of adjacent loops)

(d)

P(F contains a pair of adjacent double edges)≤
n

∑
i=1

(
di

2

)2(
∆

2m−8

)2

≤
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∆5m
(2m−8)2 = o(1).

(e)

P(F contains a triple edge)≤ ∑
1≤i< j≤n

6
(

di

3

)(
d j

3

)(
1

2m−6

)3

≤

∆5m
(2m−6)3 = o(1).

(f) Let k2 = ∆2 logn.

P(F has at least k2 double edges)

≤ o(1)+ ∑
x1+···+xn=k2,

xi=0,1

n

∏
i=1

((
di

2

)
· ∆

2m−4k2

)xi

(9.8)

≤ o(1)+
(

∆2

m

)k2

∑
x1+···+xn=k2,

xi=0,1

n

∏
i=1

dxi
i

≤ o(1)+
(

∆2

m

)k2 (d1 + · · ·+dn)
k2

k2!

≤ o(1)+
(

2∆2e
k2

)k2

= o(1).

The o(1) term in (9.8) accounts for adjacent multiple edges and triple edges. The
∆/(2m− 4k2) term can be justified as follows: We have chosen two points x1,x2

in Wa in
(di

2

)
ways and this term bounds the probability that x2 chooses a partner

in the same cell as x1.
(g)

P(∃ vertex v incident to a loop and a multiple edge

≤
n

∑
i=1

(
di

2

)2 1
2m−1

∆

2m−5

≤ ∆4m
(2m−1)(2m−5)

= o(1).
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(h) Let X denote the number of triangles in F . Then

E(F)≤
n

∑
i=1

(di
2

)
∆2

2m−4
≤ ∆3m

2m−4
≤ ∆

3.

Now use the Markov inequality.
(i) The probability that there is a vertex adjacent to two loops is at most

n

∑
i=1

di

(
1
2

n

∑
i=1

di(di−1)

)2(
∆

M1−O(1)

)4

≤ M(∆M)2∆4

(M−O(1))4 = o(1).

(i) The probability that there is an edge joining two loops is at most

n

∑
i̸= j=1

(
di

2

)(
d j

2

)
(di−2)(d j−2)
(M1−O(1))3 ≤

(M1∆)2∆4

(M1−O(1))3 = o(1).

Let now Ωi, j be the set of all F ∈Ω such that F has i loops; j double edges, at
most ∆3 logn triangles and no double loops or triple edges and no vertex incident
with two double edges or with a loop and a multiple edge.

Lemma 9.7 (Switching Lemma). Suppose that ∆ ≤ nα ,α < 1/7. Let M1 = 2m
and M2 = ∑i di(di− 1). For i ≤ k1 + 2k2 and j ≤ k2, where k1 = ∆ logn and
k2 = ∆2 logn,

|Ωi+2, j−1|
|Ωi, j|

=
j

(i+2)(i+1)
,

and
|Ωi−1,0|
|Ωi,0|

=
2iM1

M2

(
1+O

(
∆5 logn

M1

))
.

The corollary that follows is an immediate consequence of the Switching
Lemma. It immediately implies Theorem 9.5.

Corollary 9.8. Suppose that ∆≤ nα where α < 1/7. Then,

|Ω0,0|
|Ω|

= (1+o(1))e−λ (λ+1),

where

λ =
M2

2M1
.
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It follows from the Switching Lemma that i≤ k1 and j ≤ k2 implies

|Ωi, j|
|Ω0,0|

=

(
1+ Õ

(
∆3k2

n

))
λ i+2 j

i! j!
= (1+o(1))

λ i+2 j

i! j!
.

Lemma 9.6 implies that

(1−o(1))|Ω|= (1+o(1))|Ω0,0|
k1

∑
i=0

k2

∑
j=0

λ i+2 j

i! j!

= (1+o(1))|Ω0,0|eλ (λ+1).

Wa Wb

x1

x2

x3

x4

Wa Wb

x1

x2

x3

x4

Figure 9.4: d-switch

To prove the Switching Lemma we need to introduce two specific operations on
configurations, called a “d-switch” and an “ℓ-switch”.
Figure 9.4 illustrates the “double edge removal switch” (“d-switch”) operation.
Here we have four points x1,x2,x3,x4 and a double edge associated with the pairs
{x1,x3}, {x2,x4} ∈ F where x1,x2 are in cell Wa and x3,x4 are in cell Wb. The d-
switch operation replaces these pairs by a new set of pairs: {x1,x2}, {x3,x4}. This
replaces a multiple edge by two loops and no other multiple edges are created.

In general, a forward d-switch operation takes F , a member of Ωi, j, to F ′,
a member Ωi+2, j−1, see Figure 9.4. A reverse d-switch operation takes F ′, a
member of Ωi+2, j−1, to F ′, a member Ωi, j. The number of choices η f for a
forward d-switch is j and the number of choices ηr for a reverse d-switch is (i+
2)(i+ 1). Lemma 9.6 implies that no triple edges are produced by the reverse
d-switch.

Now for F ∈ Ωi, j let dL(F) = j denote the number of F ′ ∈ Ωi+2, j−1 that can
be obtained from F by an d-switch. Similarly, for F ′ ∈ Ωi+2, j−1 let dR(F ′) =
(i+1)(i+2) denote the number of F ∈Ωi, j that can be transformed into F ′ by an
d-switch. Then,

∑
F∈Ωi, j

dL(F) = ∑
F ′∈Ωi+2, j−1

dR(F ′).
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So,
|Ωi+2, j−1|
|Ωi, j|

=
j

(i+1)(i+2)
,

which shows that the first statement of the Switching Lemma holds.

Wa

Wb

x1

x2

x3

x4

Wc

Wa

Wb

x1

x2

x3

x4

Figure 9.5: ℓ-switch

Now consider the second operation on configurations, described as a “loop re-
moval switch”(“ℓ-switch”), Figure 9.5. Here we have four points x1,x2,x3,x4 from
three different cells, where x1 and x2 are in cell Wa, x3 is in cell Wb and x4 is in
cell Wc. {x1,x2} ∈ F forms a loop and {x3,x4} ∈ F . The ℓ-switch operation re-
places these pairs by new pairs: {x1,x3}, {x2,x4} or {x1,x4}, {x2,x3} if in these
operations no double edge is created.

We estimate the number of choices η during an ℓ-switch of F ∈ Ωi,0. For a
forward switching operation

i
(
M1−2∆

2−2i
)
≤ η ≤ iM1, (9.9)

while, for the reverse procedure,

M2

2
−3∆

3 logn− i∆2− i∆3 ≤ η ≤ M2

2
. (9.10)

Proof of (9.9):
To see why the above bounds hold, note that in the case of the forward loop re-
moval switch, we have i choices for {x1,x2} and at most M1 choices for {x3,x4}
and there are two choices given these points. This explains the upper bound in
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(9.9). To get the lower bound we subtract the number of “bad” choices. We can
enumerate these bad choices as follows: We consider a fixed loop {x1,x2} con-
tained in cell Wa and we choose a pair x3 ∈Wb and x4 ∈Wc. The transformation
is bad only if there is x ∈Wa \ {x1,x2} (≤ ∆ choices) that is paired in F with
y ∈ (Wb \ {x3})∪ (Wc \ {x4}) (≤ 2∆ choices). We also subtract 2i to account for
avoiding the other i−1 loops in the choice of x3,x4.
Proof of (9.10):
In the reverse procedure, we choose a pair {x1,x2} ⊆Wa in M2/2 ways to arrive
at the upper bound. The points x3 ∈Wb,x4 ∈Wc are those paired with x1,x2 in
F ′. For the lower bound, a choice is bad only if (a,b,c) is a triangle. In this case,
we create a double edge. There are at most ∆3 logn choices for the triangle and
then three choices for a. We subtract a further i∆2 to avoid creating another loop.
Finally, we subtract i∆3 in order to avoid increasing the number of triangles by
choosing an edge that is within distance two of the loop. We also note here that
forward d-switches do not increase the number of triangles.

Now for F ∈ Ω0, j let dL(F) denote the number of F ′ ∈ Ωi−1,0 that can be
obtained from F by an ℓ-switch. Similarly, for F ′ ∈ Ωi−1,0 let dR(F ′) denote the
number of F ∈Ωi,0 that can be transformed into F ′ by an ℓ-switch. Then,

∑
F∈Ωi,0

dL(F) = ∑
F ′∈Ωi−1,0

dR(F ′).

But, Lemma 9.6 implies that i≤ 2∆2 logn and so

iM1|Ωi,0|
(

1− 2∆2 +2∆2 logn
M1

)
≤ ∑

F∈Ωi,0

dL(F)≤ iM1|Ωi,0|,

while(
M2

2
−3∆

3 logn−2∆
2 logn(∆2 +∆

3)

)
≤ |Ωi−1,0| ≤

∑
F ′∈Ωi−1,0

dR(F ′)≤
M2

2
|Ωi−1,0|.

So
|Ωi−1,0|
|Ωi,0|

=
2iM1

M2

(
1+O

(
∆5 logn

M1

))
.

9.2 Connectivity of Regular Graphs
For an excellent survey of results on random regular graphs, see Wormald [859].
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Bollobás [146] used the configuration model to prove the following: Let Gn,r
denote a random r-regular graph with vertex set [n] and r ≥ 3 constant.

Theorem 9.9. Gn,r is r-connected, w.h.p.

Since an r-regular, r-connected graph, with n even, has a perfect matching, the
above theorem immediately implies the following Corollary.

Corollary 9.10. Let Gn,r be a random r-regular graph, r≥ 3 constant, with vertex
set [n] even. Then w.h.p. Gn,r has a perfect matching.

Proof. (of Theorem 9.9)
Partition the vertex set V = [n] of Gn,r into three parts, K,L and V \ (K∪L), such
that L = N(K), i.e., such that L separates K from V \ (K ∪L) and |L|= l ≤ r−1.
We will show that w.h.p. there are no such K,L for k ranging from 2 to n/2. We
will use the configuration model and the relationship stated in Theorem 9.3. We
will divide the whole range of k into three parts.

(i) 2≤ k ≤ 3.

Put S := K ∪L, s = |S| = k+ l ≤ k+ r−1. The set S contains at least 2r−1
edges (k = 2) or at least 3r− 3 edges (k = 3). In both cases this is at least s+ 1
edges.

P(∃S,s = |S| ≤ r+2 : S contains s+1 edges)

≤
r+2

∑
s=4

(
n
s

)(
rs

s+1

)( rs
rn

)s+1
(9.11)

≤
r+2

∑
s=4

ns2rsss+1n−s−1

= o(1).

Explanation for (9.11): Having chosen a set of s vertices, spanning rs points R,
we choose s+ 1 of these points T . rs

rn bounds the probability that one of these
points in T is paired with something in a cell associated with S. This bound holds
conditional on other points of R being so paired.

(ii) 4≤ k ≤ ne−10.
The number of edges incident with the set K, |K| = k, is at least (rk+ l)/2.

Indeed let a be the number of edges contained in K and b be the number of K : L
edges. Then 2a+b = rk and b≥ l. This gives a+b≥ (rk+ l)/2. So,

P(∃K,L)≤
ne−10

∑
k=4

r−1

∑
l=0

(
n
k

)(
n
l

)(
rk

rk+l
2

)(
r(k+ l)

rn

)(rk+l)/2
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≤
ne−10

∑
k=4

r−1

∑
l=0

n−(
r
2−1)k+ l

2
ek+l

kkll 2rk (k+ l)(rk+l)/2

Now (
k+ l

l

)l/2

≤ ek/2 and
(

k+ l
k

)k/2

≤ el/2,

and so
(k+ l)(rk+l)/2 ≤ ll/2krk/2e(lr+k)/2.

Therefore, with Cr a constant,

P(∃K,L)≤Cr

ne−10

∑
k=4

r−1

∑
l=0

n−(
r
2−1)k+ l

2 e3k/2 2rk k(r−2)k/2

=Cr

ne−10

∑
k=4

r−1

∑
l=0

(
n−(

r
2−1)+ l

2k e3/2 2r k
r
2−1
)k

= o(1).

(iii) ne−10 < k ≤ n/2

Assume that there are a edges between sets L and V \ (K∪L). Denote also

ϕ(2m) =
(2m)!
m! 2m ≈ 21/2

(
2m
e

)m

.

Then, remembering that r, l,a = O(1) we can estimate that

P(∃K,L)

≤ ∑
k,l,a

(
n
k

)(
n
l

)(
rl
a

)
ϕ(rk+ rl−a)ϕ(r(n− k− l)+a)

ϕ(rn)
(9.12)

≤Cr ∑
k,l,a

(ne
k

)k(ne
l

)l
×

(rk+ rl−a)rk+rl−a(r(n− k− l)+a)r(n−k−l)+a

(rn)rn

≤C′r ∑
k,l,a

(ne
k

)k(ne
l

)l (rk)rk+rl−a(r(n− k))r(n−k−l)+a

(rn)rn

≤C′′r ∑
k,l,a

(ne
k

)k (ne
l

)l
(

k
n

)rk (
1− k

n

)r(n−k)
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≤C′′r ∑
k,l,a

((
k
n

)r−1

e1−r/2 nr/k

)k

= o(1).

Explanation of (9.12): Having chosen K,L we choose a points in WK∪L =
⋃

i∈K∪LWi
that will be paired outside WK∪L. This leaves rk + rl− a points in WK∪L to be
paired up in ϕ(rk+ rl− a) ways and then the remaining points can be paired up
in ϕ(r(n− k− l)+ a) ways. We then multiply by the probability 1/ϕ(rn) of the
final pairing.

9.3 Existence of a giant component
Molloy and Reed [685] provide an elegant and very useful criterion for when Gn,d
has a giant component. Suppose that there are λin+ o(n3/4) vertices of degree
i = 1,2, . . . ,L. We will assume that L = O(1) and that the λi, i ∈ [L] are constants
independent of n. The paper [685] allows for L = O(n1/4−ε). We will assume that
λ1 +λ2 + · · ·+λL = 1.

Theorem 9.11. Let Λ = ∑
L
i=1 λii(i−2). Let ε > 0 be arbitrary.

(a) If Λ <−ε then w.h.p. the size of the largest component in Gn,d is O(logn).

(b) If Λ > ε then w.h.p. there is a unique giant component of linear size ≈ Θn
where Θ is defined as follows: let K = ∑

L
i=1 iλi and

f (α) = K−2α−
L

∑
i=1

iλi

(
1− 2α

K

)i/2

. (9.13)

Let ψ be the smallest positive solution to f (α) = 0. Then

Θ = 1−
L

∑
i=1

λi

(
1− 2ψ

K

)i/2

.

If λ1 = 0 then Θ = 1, otherwise 0 < Θ < 1.

(c) In Case (b), the degree sequence of the graph obtained by deleting the giant
component satisfies the conditions of (a).

Proof. We consider the execution of F-GENERATOR. We keep a sequence of
partitions Ut ,At ,Et , t = 1,2, . . . ,m of W . Initially U0 = W and A0 = E0 = /0. The
(t+1)th iteration of F-GENERATOR is now executed as follows: it is designed so
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that we construct γ(F) component by component. At is the set of points associated
with the partially exposed vertices of the current component. These are vertices
in the current component, not all of whose points have been paired. Ut is the set of
unpaired points associated with the entirely unexposed vertices that have not been
added to any component so far. Et is the set of paired points. Whenever possible,
we choose to make a pairing that involves the current component.

(i) If At = /0 then choose x from Ut . Go to (iii).
We begin the exploration of a new component of γ(F).

(ii) if At ̸= /0 choose x from At . Go to (iii).
Choose a point associated with a partially exposed vertex of the current com-
ponent.

(iii) Choose y randomly from (At ∪Ut)\{x}.

(iv) F ← F ∪{(x,y)}; Et+1← Et ∪{x,y}; At+1← At \{x}.

(v) If y ∈ At then At+1← At+1 \{y}; Ut+1←Ut .
y is associated with a vertex in the current component.

(vi) If y ∈Ut then At+1← At ∪ (Wϕ(y) \ y); Ut+1←Ut \Wϕ(y).
y is associated with a vertex v = ϕ(y) not in the current component. Add all
the points in Wv \{y} to the active set.

(vii) Goto (i).

(a) We fix a vertex v and estimate the size of the component containing v. We keep
track of the size of At for t = O(logn) steps. Observe that

E(|At+1|− |At | | |At |> 0)≲
∑

L
i=1 iλin(i−2)
M1−2t−1

=
Λn

M1−2t−1
≤−ε

L
. (9.14)

Here M1 = ∑
L
i=1 iλin as before. The explanation for (9.14) is that |A| increases

only in Step (vi) and there it increases by i−2 with probability ≲ iλin
M1−2t . The two

points x,y are missing from At+1 and this explains the -2.
Let ε1 = ε/L and let

Yt =

{
|At |+ ε1t |A1|, |A2|, . . . , |At |> 0.
0 Otherwise.

It follows from (9.14) that if t = O(logn) and Y1,Y2, . . . ,Yt > 0 then

E(Yt+1 | Y1,Y2, . . . ,Yt) = E(|At+1|+ ε1(t +1) | Y1,Y2, . . . ,Yt)≤ |At |+ ε1t = Yt .
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Otherwise, E(Yt+1 | ·) = 0 = Yt . It follows that the sequence (Yt) is a super-
martingale. Next let Z1 = 0 and Zt = Yt −Yt−1 for t ≥ 1. Then we have (i)
−2≤ Zi ≤ L and (ii) E(Zi)≤−ε1 for i = 1,2, . . . , t. Now,

P(Aτ ̸= /0,1≤ τ ≤ t)≤ P(Yt = Z1 +Z2 + · · ·+Zt > 0),

It follows from Lemma 27.16 that if Z = Z1 +Z2 + · · ·+Zt then

P(Z > 0)≤ P(Z−E(Z)≥ tε1)≤ exp
{
−

ε2
1 t2

8t

}
.

It follows that with probability 1−O(n−2) that At will become empty after at most
16ε

−2
1 logn rounds. Thus for any fixed vertex v, with probability 1−O(n−2) the

component contain v has size at most 4ε
−2
1 logn. (We can expose the component

containing v through our choice of x in Step (i).) Thus the probability there is a
component of size greater than 16ε

−2
1 logn is O(n−1). This completes the proof

of (a).
(b)

If t ≤ δn for a small positive constant δ ≪ ε/L3 then

E(|At+1|− |At |)≥
−2|At |+(1+o(1))∑

L
i=1 i(λin−2t)(i−2)

M1−2δn

≥ −2Lδn+(1+o(1))(Λn−2δL3n)
M1−2δn

≥ ε

2L
. (9.15)

Let ε2 = ε/2L and let

Yt =

{
|At |− ε2t |A1|, |A2|, . . . , |At |> 0.
0 Otherwise.

It follows from (9.14) that if t ≤ δn and Y1,Y2, . . . ,Yt > 0 then

E(Yt+1 | Y1,Y2, . . . ,Yt) = E(|At+1|− ε2(t +1) | Y1,Y2, . . . ,Yt)≥ |At |− ε2t = Yt .

Otherwise, E(Yt+1 | ·)= 0=Yt . It follows that the sequence (Yt) is a sub-martingale.
Next let Z1 = 0 and Zt = Yt −Yt−1 for t ≥ 1. Then we have (i) −2 ≤ Zi ≤ L and
(ii) E(Zi)≥ ε2 for i = 1,2, . . . , t. Now,

P(At ̸= /0)≥ P(Yt = Z1 +Z2 + · · ·+Zt > 0),

It follows from Lemma 27.16 that if Z = Z1 +Z2 + · · ·+Zt then

P(Z ≤ 0)≤ P(Z−E(Z)≥ tε2)≤ exp
{
−

ε2
2 t2

2t

}
.
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It follows that if L0 = 100ε
−2
2 then

P
(
∃L0 logn≤ t ≤ δn : Z ≤ ε2t

2

)
≤

P
(
∃L0 logn≤ t ≤ δn : Z−E(Z)≥ ε2t

2

)
≤ nexp

{
−

ε2
2 L0 logn

8

}
= O(n−2).

It follows that if t0 = δn then w.h.p. |At0 |= Ω(n) and there is a giant component
and that the edges exposed between time L0 logn and time t0 are part of exactly
one giant.

We now deal with the special case where λ1 = 0. There are two cases. If in
addition we have λ2 = 1 then w.h.p. Gd is the union of O(logn) vertex disjoint
cycles, see Exercise 10.5.1. If λ1 = 0 and λ2 < 1 then the only solutions to f (α) =
0 are α = 0,K/2. For then 0 < α < K/2 implies

L

∑
i=2

iλi

(
1− 2α

K

)i/2

<
L

∑
i=2

iλi

(
1− 2α

K

)
= K−2α.

This gives Θ = 1. Exercise 10.5.2 asks for a proof that w.h.p. in this case, Gn,d
consists a giant component plus a collection of small components that are cycles
of size O(logn).

Assume now then that λ1 > 0. We show that w.h.p. there are Ω(n) isolated
edges. This together with the rest of the proof implies that Ψ < K/2 and hence
that Θ < 1. Indeed, if Z denotes the number components that are isolated edges,
then

E(Z) =
(

λ1n
2

)
1

2M1−1
and E(Z(Z−1)) =

(
λ1n
4

)
6

(2M1−1)(2M1−3)

and so the Chebyshev inequality (26.3) implies that Z = Ω(n) w.h.p.
Now for i such that λi > 0, we let Xi,t denote the number of entirely unexposed

vertices of degree i. We focus on the number of unexposed vertices of a give
degree. Then,

E(Xi,t+1−Xi,t) =−
iXi,t

M1−2t−1
. (9.16)

This suggests that we employ the differential equation approach of Section 28 in
order to keep track of the Xi,t . We would expect the trajectory of (t/n,Xi,t/n) to
follow the solution to the differential equation

dx
dτ

=− ix
K−2τ

(9.17)
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x(0) = λi. Note that K = M1/n.
The solution to (9.17) is

x = λi

(
1− 2τ

K

)i/2

. (9.18)

In what follows, we use the notation of Section 28, except that we replace λ0
by ξ0 = n−1/4 to avoid confusion with λi.

(P0) D =
{
(τ,x) : 0 < τ < Θ−ε

2 , 2ξ0 < x < 1
}

where ε is small and positive.

(P1) C0 = 1.

(P2) β = L.

(P3) f (τ,x) =− ix
K−2τ

and γ = 0.

(P4) The Lipschitz constant L1 = 2K/(K − 2Θ)2. This needs justification and
follows from

x
K−2τ

− x′

K−2τ ′
=

K(x− x′)+2τ(x− x′)+2x(τ− τ ′)

(K−2τ)(K−2τ ′)
.

Theorem 28.1 then implies that with probability 1−O(n1/4e−Ω(n1/4)),∣∣∣∣∣Xi,t−niλi

(
1− 2t

K

)i/2
∣∣∣∣∣= O(n3/4), (9.19)

up to a point where Xi,t = O(ξ0n). (The o(n3/4) term for the number of vertices
of degree i is absorbed into the RHS of (9.19).)

Now because

|At |= M1−2t−
L

∑
i=1

iXi,t = Kn−2t−
L

∑
i=1

iXi,t ,

we see that w.h.p.

|At |= n

(
K− 2t

n
−

L

∑
i=1

iλi

(
1− 2t

Kn

)i/2
)
+O(n3/4)

= n f
( t

n

)
+O(n3/4), (9.20)

so that w.h.p. the first time after time t0 = δn that |At |= O(n3/4) is as at time t1 =
Ψn+O(n3/4). This shows that w.h.p. there is a component of size at least Θn+
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O(n3/4). Indeed, we simply subtract the number of entirely unexposed vertices
from n to obtain this.

To finish, we must show that this component is unique and no larger than Θn+
O(n3/4). We can do this by proving (c), i.e. showing that the degree sequence of
the graph GU induced by the unexposed vertices satisfies the condition of Case (a).
For then by Case (a), the giant component can only add O(n3/4× logn) = o(n)
vertices from t1 onwards.

We observe first that the above analysis shows that w.h.p. the degree sequence
of GU is asymptotically equal to nλ ′i , i = 1,2, . . . ,L, where

λ
′
i = λi

(
1− 2Ψ

K

)i/2

.

(The important thing here is that the number of vertices of degree i is asymptot-
ically proportional to λ ′i .) Next choose ε1 > 0 sufficiently small and let tε1 =
max{t : |At | ≥ ε1n}. There must exist ε2 < ε1 such that tε1 ≤ (Ψ− ε2)n and
f ′(Ψ− ε2)≤−ε1, else f cannot reach zero. Recall that Ψ < K/2 here and then,

−ε1 ≥ f ′(Ψ− ε2) =−2+
1

K−2(Ψ− ε2)
∑
i≥1

i2λi

(
1− 2Ψ−2ε2

K

)i/2

=−2+
1+O(ε2)

K−2Ψ
∑
i≥1

i2λi

(
1− 2Ψ

K

)i/2

=
1+O(ε2)

K−2Ψ

(
−2 ∑

i≥1
iλi

(
1− 2Ψ

K

)i/2

+∑
i≥1

i2λi

(
1− 2Ψ

K

)i/2
)

=
1+O(ε2)

K−2Ψ
∑
i≥1

i(i−2)λi

(
1− 2Ψ

K

)i/2

=
1+O(ε2)

K−2Ψ
∑
i≥1

i(i−2)λ ′i . (9.21)

This completes the proofs of (b), (c).

9.4 Gn,r is asymmetric
In this section, we prove that w.h.p. Gn,r,r ≥ 3 only has one isomorphism, viz.
the identity isomorphism. This was proved by Bollobás [152]. For a vertex v we
let dk(v) denote the number of vertices at graph distance k from v in Gn,r. We
show that if k0 =

⌈3
5 logr−1 n

⌉
then w.h.p. no two vertices have the same sequence

(dk(v),k = 1,2, . . . ,k0). In the following G =Gn,r.
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Lemma 9.12.
Let ℓ0 =

⌈
100logr−1 logn

⌉
. Then w.h.p., eG(S)≤ |S| for all S⊆ [n], |S| ≤ 2ℓ0.

Proof. Arguing as for (9.11), we have that

P(∃S : |S| ≤ 2ℓ0,eG(S)≥ |S|+1)≤
2ℓ0

∑
s=4

(
n
s

)(
sr

s+1

)(
sr

rn−4ℓ0

)s+1

≤
2ℓ0

∑
s=4

(ne
s

)s
(er)s+1

(
s

n−o(n)

)s+1

≤ 1
n

2ℓ0

∑
s=4

se2s+1+o(1) = o(1).

Let E denote the high probability event in Lemma 9.12. We will condition on
the occurence of E .

Now for v ∈ [n] let Sk(v) denote the set of vertices at distance k from v and let
S≤k(v) =

⋃
j≤k S j(v). We note that

|Sk(v)| ≤ r(r−1)k−1 for all v ∈ [n],k ≥ 1. (9.22)

Furthermore, Lemma 9.12 implies that w.h.p. we have that for all v,w ∈ [n],1 ≤
k ≤ ℓ0,

|Sk(v)| ≥ (r−2)(r+1)(r−1)k−2. (9.23)

|Sk(v)\Sk(w)| ≥ (r−2)(r−1)k−1. (9.24)

This is because there can be at most one cycle in S≤ℓ0(v) and the sizes of the
relevant sets are reduced by having the cycle as close to v,w as possible.

Now consider k > ℓ0. Consider doing breadth first search from v or v,w ex-
posing the configuration pairing as we go. Let an edge be dispensable if exposing
it joins two vertices already known to be in S≤k. Lemma 9.12 implies that w.h.p.
there is at most one dispensable edge in S≤ℓ0 .

Lemma 9.13. With probability 1−o(n−2), (i) at most 20 of the first n2/5 exposed
edges are dispensable and (ii) at most n1/4 of the first n3/5 exposed edges are
dispensable.

Proof. The probability that the kth edge is dispensable is at most (k−1)r
rn−2k , indepen-

dent of the history of the process. Hence,

P(∃ 20 dispensable edges in first n2/5)≤
(

n2/5

20

)(
rn2/5

rn−o(n)

)20

= o(n−2).
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P(∃ n1/4 dispensable edges in first n3/5)≤
(

n3/5

n1/4

)(
rn3/5

rn−o(n)

)n1/4

= o(n−2).

Now let ℓ1 =
⌈

logr−1 n2/5
⌉

and ℓ2 =
⌈

logr−1 n3/5
⌉

. Then we have that, con-

ditional on E , with probability 1−o(n−2),

|Sk(v)| ≥ ((r−2)(r+1)(r−1)ℓ0−2−40))(r−1)k−ℓ0 : ℓ0 < k ≤ ℓ1.

|Sk(v)| ≥ ((r−2)(r+1)(r−1)ℓ1−1−40(r−1)ℓ1−ℓ0−2n1/4)(r−1)k−ℓ1 : ℓ1 < k ≤ ℓ2.

|Sk(w)\Sk(v)| ≥ ((r−2)(r−1)ℓ0−1−40)(r−1)k−ℓ0 : ℓ0 < k ≤ ℓ1.

|Sk(w)\Sk(v)| ≥ ((r−2)(r−1)ℓ1−1−40(r−1)ℓ1−ℓ0−2n1/4)(r−1)k−ℓ1 : ℓ1 < k ≤ ℓ2.

We deduce from this that if ℓ3 =
⌈

logr−1 n4/7
⌉

and k = ℓ3+a,a = O(1) then with

probability 1−o(n−2),

|Sk(w)| ≥ ((r−2)(r+1)−o(1))(r−1)k−2 ≈ (r−2)(r+1)(r−1)a−2n4/7.

|Sk(w)\Sk(v)| ≥ (r−2−o(1))(r−1)k−1 ≈ (r−2)(r−1)a−1n4/7.

Suppose now that we consider the execution of breadth first search up until we
have determined Sk(v), but we have only determined Sk−1(w). When we expose
the unused edges of Sk−1(w), some of these pairings will fall in S≤k(v)∪Sk−1(w).
Expose any such pairings and condition on the outcome. There are at most n1/4

such pairings and the size of |Sk(v)∩Sk(w)| is now determined. Then in order to
have dk(v) = dk(w) there has to be an exact outcome t for |Sk(w) \ Sk(v)|. There
must now be s = Θ(n4/7) pairings between Wx,x ∈ Sk−1(w) and Wy,y /∈ S≤k(v)∪
Sk−1(w). Furthermore, to have dk(v)= dk(w) these s pairings must involve exactly
t of the sets Wy,y /∈ Sk(v)∪Sk(w), where t is determined before the choice of these
s pairings. The following lemma will then be used to show that G is asymmetric
w.h.p.

Lemma 9.14. Let R =
⋃m

i=1 Ri be a partitioning of an rm set R into m subsets of
size r. Suppose that S is a random s-subset of R, where m5/9 < s < m3/5. Let XS
denote the number of sets Ri intersected by S. Then

max
j

P(XS = j)≤ c0m1/2

s
,

for some constant c0.
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Proof. We may assume that s ≥ m1/2. The probability that S has at least 3 ele-
ments in some set Ri is at most

m
(r

3

)(rm−3
s−3

)(rm
s

) ≤ s3

m2 ≤
m1/2

s
.

But

P(XS = j)≤ P
(

max
i
|S∩Ri| ≥ 3

)
+P

(
XS = j and max

i
|S∩Ri| ≤ 2

)
.

So the lemma will follow if we prove that for every j,

Pj = P
(

XS = j and max
i
|S∩Ri| ≤ 2

)
≤ c1m1/2

s
, (9.25)

for some constant c1.
Clearly, Pj = 0 if j < s/2 and otherwise

Pj =

(m
j

)( j
s− j

)
r2 j−s(r

2

)s− j(rm
s

) . (9.26)

Now for s/2≤ j < s we have

Pj+1

Pj
=

(m− j)(s− j)
(2 j+2− s)(2 j+1− s)

2r
r−1

. (9.27)

We note that if s− j ≥ 10s2

m then Pj+1
Pj
≥ 10(r−1)

3r ≥ 2 and so the j maximising Pj is

of the form s− αs2

m where α ≤ 10. If we substitute j = s− αs2

m into (9.27) then we
see that

Pj+1

Pj
∈ 2αr

r−1

[
1± c2

s
m

]
for some absolute constant c2 > 0.

It follows that if j0 is the index maximising Pj then∣∣∣∣ j0−(s− (r−1)s2

2rm

)∣∣∣∣≤ 1.

Furthermore, if j1 = j0− s
m1/2 then

Pj+1

Pj
≤ 1+ c3

m1/2

s
for j1 ≤ j ≤ j0,
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for some absolute constant c3 > 0.
This implies that

Pj≥Pj0

(
1+ c3

m1/2

s

)−( j0− j1)

=Pj0 exp

{
−( j0− j1)

(
c3

m1/2

s
+O

(m
s2

))}
≥Pj0e−2c3.

It follows from this that

Pj0 ≤
e2c3m1/2

s
.

We apply Lemma 9.14 with m = n,s = Θ(n4/7), j = t to show that

P(dk(v) = dk(w),k ∈ [ℓ3, ℓ3 +14])≤

(
c0n1/2

n4/7

)15

= o(n−2).

This proves

Theorem 9.15. W.h.p. Gn,r has a unique trivial automorphism.

9.5 Gn,r versus Gn,p

The configuration model is most useful when the maximum degree is bounded.
When r is large, one can learn a lot about random r-regular graphs from the follow-
ing theorem of Kim and Vu [566]. They proved that if logn≪ r≪ n1/3/(logn)2

then there is a joint distribution G0,G =Gn,r,G1 such that w.h.p. (i) G0 ⊆ G, (ii)
the maximum degree ∆(G1 \G)≤ (1+o(1)) logn

log(ϕ(r)/ logn) where ϕ(r) is any function satis-

fying (r logn)1/2 ≤ ϕ(r)≪ r. Here Gi = Gn,pi, i = 0,1 where p0 = (1− o(1)) r
n

and p1 = (1+o(1)) r
n . In this way we can deduce properties of Gn,r from Gn,r/n.

For example, G0 is Hamiltonian w.h.p. implies that Gn,r is Hamiltonian w.h.p.
Recently, Dudek, Frieze, Ruciński and Šileikis [309] have increased the range of
r for which (i) holds. The cited paper deals with random hypergraphs and here we
describe the simpler case of random graphs.

Theorem 9.16. There is a positive constant C such that if

C
(

r
n
+

logn
r

)1/3

≤ γ = γ(n)< 1,

and m = ⌊(1− γ)nr/2⌋, then there is a joint distribution of G(n,m) and Gn,r such
that

P(Gn,m ⊂Gn,r)→ 1.
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Corollary 9.17. Let Q be an increasing property of graphs such that Gn,m satis-
fies Q w.h.p. for some m = m(n), n logn≪ m≪ n2. Then Gn,r satisfies Q w.h.p.
for r = r(n)≈ 2m

n .

Our approach to proving Theorem 9.16 is to represent Gn,m and Gn,r as the
outcomes of two graph processes which behave similarly enough to permit a good
coupling. For this let M = nr/2 and define

GM = (ε1, . . . ,εM)

to be an ordered random uniform graph on the vertex set [n], that is, Gn,M with a
random uniform ordering of edges. Similarly, let

Gr = (η1, . . . ,ηM)

be an ordered random r-regular graph on [n], that is, Gn,r with a random uniform
ordering of edges. Further, write GM(t) = (ε1, . . . ,εt) and Gr(t) = (η1, . . . ,ηt),
t = 0, . . . ,M.

For every ordered graph G of size t and every edge e ∈ Kn \G we have

Pr(εt+1 = e |GM(t) = G) =
1(n

2

)
− t

.

This is not true if we replace GM by Gr, except for the very first step t = 0.
However, it turns out that for most of time the conditional distribution of the next
edge in the process Gr(t) is approximately uniform, which is made precise in the
lemma below. For 0 < ε < 1, and t = 0, . . . ,M consider the inequalities

Pr(ηt+1 = e |Gr(t))≥
1− ε(n
2

)
− t

for every e ∈ Kn \Gr(t), (9.28)

and define a stopping time

Tε = max{u : ∀t ≤ u condition (9.28) holds } .

Lemma 9.18. There is a positive constant C′ such that if

C′
(

r
n
+

logn
r

)1/3

≤ ε = ε(n)< 1, (9.29)

then
Tε ≥ (1− ε)M w.h.p.

From Lemma 9.18, which is proved in Section 9.5, we deduce Theorem 9.16
using a coupling.
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Proof of Theorem 9.16. Let C = 3C′, where C′ is the constant from Lemma 9.18.
Let ε = γ/3. The distribution of Gr is uniquely determined by the conditional
probabilities

pt+1(e|G) := Pr(ηt+1 = e |Gr(t) = G) , t = 0, . . . ,M−1. (9.30)

Our aim is to couple GM and Gr up to the time Tε . For this we will define a
graph process G′r := (η ′t ), t = 1, . . . ,M such that the conditional distribution of
(η ′t ) coincides with that of (ηt) and w.h.p. (η ′t ) shares many edges with GM.

Suppose that Gr = G′r(t) and GM = GM(t) have been exposed and for every
e /∈ Gr the inequality

pt+1(e|Gr)≥
1− ε(n
2

)
− t

(9.31)

holds (we have such a situation, in particular, if t ≤ Tε ). Generate a Bernoulli
(1− ε) random variable ξt+1 independently of everything that has been revealed
so far; expose the edge εt+1. Moreover, generate a random edge ζt+1 ∈ Kn \Gr
according to the distribution

P(ζt+1 = e|G′r(t) = Gr,GM(t) = GM) :=
pt+1(e|Gr)− 1−ε

(n
2)−t

ε
≥ 0,

where the inequality holds because of the assumption (9.31). Observe also that

∑
e̸∈Gr

P(ζt+1 = e|G′r(t) = Gr,GM(t) = GM) = 1,

so ζt+1 has a well-defined distribution. Finally, fix a bijection fGr,GM : Gr \GM→
GM \Gr between the sets of edges and define

η
′
t+1 =


εt+1, if ξt+1 = 1,εt+1 /∈ Gr,

fGr,GM(εt+1), if ξt+1 = 1,εt+1 ∈ Gr,

ζt+1, if ξt+1 = 0.

Note that
ξt+1 = 1 ⇒ εt+1 ∈G′r(t +1). (9.32)

We keep generating ξt’s even after the stopping time has passed, that is, for t > Tε ,
whereas η ′t+1 is then sampled according to probabilities (9.30), without coupling.
Note that ξt’s are i.i.d. and independent of GM. We check that

P(η ′t+1 = e |G′r(t) = Gr,GM(t) = GM)

= P(εt+1 = e)P(ξt+1 = 1)+P(ζt+1 = e)P(ξt+1 = 0)
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=
1− ε(n
2

)
− t

+

 pt+1(e|Gr)− 1−ε

(n
2)−t

ε

ε

= pt+1(e|Gr)

for all admissible Gr,GM, i.e., such that P(Gr(t) = Gr,GM(t) = GM) > 0, and
for all e ̸∈ Gr.

Further, define a set of edges which are potentially shared by GM and Gr:

S := {εi : ξi = 1 ,1≤ i≤ (1− ε)M} .

Note that

|S|=
⌊(1−ε)M⌋

∑
i=1

ξi

is distributed as Bin(⌊(1− ε)M⌋,1− ε).
Since (ξi) and (εi) are independent, conditioning on |S| ≥ m, the first m edges

in the set S comprise a graph which is distributed as Gn,m. Moreover, if Tε ≥
(1− ε)M, then by (9.32) we have S⊂Gr, therefore

P(Gn,m ⊂Gn,r)≥ P(|S| ≥ m,Tε ≥ (1− ε)M) .

We have E |S| ≥ (1−2ε)M. Recall that ε = γ/3 and therefore m = ⌊(1− γ)M⌋=
⌊(1−3ε)M⌋. Applying the Chernoff bounds and our assumption on ε , we get

P(|S|< m)≤ e−Ω(γ2m) = o(1).

Finally, by Lemma 9.18 we have Tε ≥ (1−ε)M w.h.p., which completes the proof
of the theorem.

Proof of Lemma 9.18
In all proofs of this section we will assume the condition (9.29). To prove Lemma
9.18 we will start with a fact which allows one to control the degrees of the evolv-
ing graph Gr(t).

For a vertex v ∈ [n] and t = 0, . . . ,M, let

degt(v) = |{i≤ t : v ∈ ηi}| .

Lemma 9.19. Let τ = 1− t/M. We have that w.h.p.

∀t ≤ (1− ε)M, ∀v ∈ [n], |degt(v)− tr/M| ≤ 6
√

τr logn. (9.33)

In particular w.h.p.

∀t ≤ (1− ε)M, ∀v ∈ [n], degt(v)≤ (1− ε/2)r. (9.34)
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Proof. Observe that if we fix an r-regular graph H and condition Gr to be a per-
mutation of the edges of H, then X := degt(v) is a hypergeometric random vari-
able with expected value tr/M = (1− τ)r. Using the result of Section 27.5 and
Theorem 27.11, and checking that the variance of X is at most τr, we get

P(|X− tr/M| ≥ x)≤ 2exp
{
− x2

2(τr+ x/3)

}
.

Let x = 6
√

τr logn. From (9.29), assuming C′ ≥ 1, we get

x
τr

= 6

√
logn
τr
≤ 6

√
logn
εr
≤ 6ε,

and so x≤ 6τr. Using this, we obtain

1
2
P(|X− tr/M| ≥ x)≤ exp

{
− 36τr logn

2(τr+2τr)

}
= n−6.

Inequality (9.33) now follows by taking a union bound over nM ≤ n3 choices of t
and v.

To get (9.34), it is enough to prove the inequality for t = (1− ε)M. Inequality
(9.33) implies

deg(1−ε)M(v)≤ (1− ε)r+6
√

εr logn.

Thus it suffices to show that

6
√

εr logn≤ εr/2,

or, equivalently, ε ≥ 144logn/r, which is implied by (9.29) with C′ ≥ 144.
Given an ordered graph G=(e1, . . . ,et), we say that an ordered r-regular graph

H is an extension of G if the first t edges of H are equal to G. Let GG(n,r) be the
family of extensions of G and GG = GG(n,r) be a graph chosen uniformly at
random from GG(n,r).

Further, for a graph H ∈ GG(n,r) and u,v ∈ [n] let

degH|G(u,v) = |{w ∈ [n] : {u,w} ∈ H \G,{v,w} ∈ H}|.

Note that degH|G(u,v) is not in general symmetric in u and v, but for G = /0 coin-
cides with the usual co-degree in a graph H.

The next fact is used in the proof of Lemma 9.21 only.

Lemma 9.20. Let graph G with t ≤ (1− ε)M edges be such that GG(n,r) is
nonempty. For each e /∈ G we have

P(e ∈GG)≤
4r
εn

. (9.35)
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Moreover, if l ≥ l0 := 4r2/(εn), then for every u,v ∈ [n] we have

P
(

degGG|G(u,v)> l
)
≤ 2−(l−l0). (9.36)

Proof. To prove (9.35) define the families

Ge∈ = {H ∈ GG(n,r) : e ∈ H} and Ge/∈ =
{

H ′ ∈ GG(n,r) : e /∈ H ′
}
.

Let us define an auxiliary bipartite graph B between Ge∈ and Ge/∈ in which H ∈Ge∈
is connected to H ′ ∈ Ge/∈ whenever H ′ can be obtained from H by the following
switching operation. Fix an ordered edge {w,x} in H \G which is disjoint from
e = {u,v} and such that there are no edges between {u,v} and {w,x} and replace
the edges {u,v} and {w,x} by {u,w} and {v,x} to obtain H ′. Writing f (H) for
the number of graphs H ′ ∈ Ge/∈ which can be obtained from H by a switching,
and b(H ′) for the number of graphs H ∈ Ge∈ such that H ′ can be obtained H by a
switching, we get that

|Ge∈|min
H

f (H)≤ |E(B)| ≤ |Ge/∈|max
H ′

b(H ′). (9.37)

We have b(H ′) ≤ degH ′(u)degH ′(v) ≤ r2. On the other hand, recalling that t ≤
(1− ε)M, for every H ∈ Ge∈ we get

f (H)≥M− t−2r2 ≥ εM
(

1− 2r2

εM

)
≥ εM

2
,

because, assuming C′ ≥ 8, we have

2r2

εM
≤ 4r

C′n

(n
r

)1/3
≤ 4

C′
≤ 1

2
.

Therefore (9.37) implies that

P(e ∈GG)≤
|Ge∈|
|Ge/∈|

≤ 2r2

εM
=

4r
εn

,

which concludes the proof of (9.35).
To prove (9.36), fix u,v ∈ [n] and define the families

G (l) =
{

H ∈ GG(n,r) : degH|G(u,v) = l
}
, l = 0,1, . . . .

We compare sizes of G (l) and G (l− 1) in a similar way as above. For this we
define the following switching which maps a graph H ∈ G (l) to a graph H ′ ∈
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w

w′

u

v

u′

w

w′

u

v

u′

Figure 9.6: Switching between G (l) and G (l−1): Before and after.

G (l−1). Select a vertex w contributing to degH|G, that is, such that {u,w} ∈H \G
and {v,w} ∈ H; pick an ordered pair u′,w′ ∈ [n] \ {u,v,w} such that {u′,w′} ∈
H \G and there are no edges of H between {u,v,w} and {u′,w′}; replace edges
{u,w} and {u′,w′} by {u,u′} and {w,w′} (see Figure 9.6).

The number of ways to apply a forward switching to H is

f (H)≥ 2l(M− t−3r2)≥ 2lεM
(

1− 3r2

εM

)
≥ lεM,

since, assuming C′ ≥ 12 we have

3r2

εM
=

6r
εn
≤ 6

C′

( r
n

)2/3
≤ 1

2
,

and the number of ways to apply a backward switching is b(H)≤ r3. So,

|G (l)|
|G (l−1)|

≤
maxH∈G (l−1) b(H)

minH∈G (l) f (H)
≤ 2r2

εln
≤ 1

2
,

by the assumption l ≥ l0 := 4r2/(εn). Then

P
(

degGG|G(u,v)> l
)
≤∑

i>l

|G (i)|
|GG(n,r)|

≤∑
i>l

|G (i)|
|G (l0)|

= ∑
i>l

i

∏
j=l0+1

|G ( j)|
|G ( j−1)|

≤∑
i>l

2−(i−l0) = 2−(l−l0),

which completes the proof of (9.36).
For the last lemma, which will be directly used in Lemma 9.18, we need to

provide a few more definitions regarding random r-regular multigraphs.
Let G be an ordered graph with t edges. Let MG(n,r) be a random multigraph

extension of G to an ordered r-regular multigraph. Namely, MG(n,r) is a sequence
of M edges (some of which may be loops), the first t of which comprise G, while
the remaining ones are generated by taking a uniform random permutation Π of
the multiset {1, . . . ,1, . . . ,n, . . . ,n} with multiplicities r− degG(v), v ∈ [n], and
splitting it into consecutive pairs.
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Recall that the number of such permutations is

NG :=
(2(M− t))!

∏v∈[n] (r−degG(v))!
,

and note that if a multigraph extension H of G has l loops, then

P(MG(n,r) = H) = 2M−t−l/NG. (9.38)

Thus, MG(n,r) is not uniformly distributed over all multigraph extensions of G,
but it is uniform over GG(n,r). Thus, MG(n,r), conditioned on being simple, has
the same distribution as GG(n,r). Further, for every edge e /∈ G, let us write

Me =MG∪e(n,r) and Ge = GG∪e(n,r). (9.39)

The next claim shows that the probabilities of simplicity P(Me ∈ Ge) are
asymptotically the same for all e ̸∈ G.

Lemma 9.21. Let G be graph with t ≤ (1− ε)M edges such that GG(n,r) is
nonempty. If ∆G ≤ (1− ε/2)r, then for every e′,e′′ /∈ G we have

P(Me′′ ∈ Ge′′)

P(Me′ ∈ Ge′)
≥ 1− ε

2
.

Proof. Set

M′ =Me′ M′′ =Me′′ , G ′ = Ge′, and G ′′ = Ge′′ , (9.40)

for convenience. We start by constructing a coupling of M′ and M′′ in which they
differ in at most three positions (counting in the replacement of e′ by e′′ at the
(t +1)st position).

Let e′= {u′,v′} and e′′= {u′′,v′′}. Suppose first that e′ and e′′ are disjoint. Let
Π′ be the permutation underlying the multigraph M′. Let Π∗ be obtained from Π′

by replacing a uniform random copy of u′′ by u′ and a uniform random copy of
v′′ by v′. If e′ and e′′ share a vertex, then assume, without loss of generality, that
v′ = v′′, and define Π∗ by replacing only a random u′′ in Π′ by u′. Then define M∗
by splitting Π∗ into consecutive pairs and appending them to G∪ e′′.

It is easy to see that Π∗ is uniform over permutations of the multiset {1, . . . ,
1, . . . ,n, . . . ,n} with multiplicities d− degG∪e′′(v),v ∈ [n], and therefore M∗ has
the same distribution as M′′. Thus, we will further identify M∗ and M′′.

Observe that if we condition M′ on being a simple graph H, then M∗ = M′′
can be equivalently obtained by choosing an edge incident to u′′ in H \ (G∪ e′)
uniformly at random, say, {u′′,w}, and replacing it by {u′,w}, and then repeating
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this operation for v′′ and v′. The crucial idea is that such a switching of edges is
unlikely to create loops or multiple edges.

It is, however, possible, that for certain H this is not true. For example, if e′′ ∈
H \ (G∪ e′), then the random choice of two edges described above is unlikely to
destroy this e′′, but e′ in the non-random part will be replaced by e′′, thus creating
a double edge e′′. Moreover, if almost every neighbor of u′′ in H \ (G∪ e′) is also
a neighbor of u′, then most likely the replacement of u′′ by u′ will create a double
edge. To avoid such instances, we want to assume that

(i) e′′ /∈ H

(ii) max
(

degH|G∪e′(u
′,u′′),degH|G∪e′(v

′,v′′)
)
≤ l0 + log2 n,

where l0 = 4r2/εn is as in Lemma 9.20. Define the following subfamily of simple
extensions of G∪ e′:

G ′nice =
{

H ∈ G ′ : H satisfies (i) and (ii)
}
.

Since M′, conditioned on M′ ∈ G ′, is distributed as GG∪e′(n,r), by Lemma 9.20
and the assumption (9.29) with C′ ≥ 20,

Pr
(
M′ /∈ G ′nice |M′ ∈ G ′

)
= P

(
GG∪e′(n,r) ̸∈ G ′nice

)
≤ 4r

εn
+2×2− log2 n ≤ ε

4
. (9.41)

We have

Pr
(
M′′ ∈ G ′′ |M′ ∈ G ′nice

)
Pr
(
M′ ∈ G ′nice |M′ ∈ G ′

)
=

P(M′′ ∈ G ′′,M′ ∈ G ′nice)

P(M′ ∈ G ′nice)
·
P(M′ ∈ G ′nice,M

′ ∈ G ′)

P(M′ ∈ G ′)
≤

P(M′′ ∈ G ′′)

P(M′ ∈ G ′)
. (9.42)

To complete the proof of the claim, it suffices to show that

Pr
(
M′′ ∈ G ′′ |M′ ∈ G ′nice

)
≥ 1− ε

4
, (9.43)

since plugging (9.41) and (9.43) into (9.42) will complete the proof of the state-
ment.

To prove (9.43), fix H ∈ G ′nice and condition on M′ = H. A loop can only be
created in M′′ when u′′ is incident to u′ in H \ (G∪ e′) and the randomly chosen
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edge is {u′,u′′}, or, provided v′ ̸= v′′, when v′′ is incident to v′ in H \ (G∪ e′) and
we randomly choose {v′,v′′}. Therefore, recalling that ∆G ≤ (1− ε/2)r, we get

Pr
(
M′′ has a loop |M′ = H

)
≤ 1

degH\(G∪e′)(u′′)
+

1
degH\(G∪e′)(v′′)

≤ 4
εr
≤ ε

8
, (9.44)

where the second term is present only if e′ ∩ e′′ = /0, and the last inequality is
implied by (9.29).

A multiple edge can be created in three ways: (i) by choosing, among the
edges incident to u′′, an edge {u′′,w} ∈H \(G∪e′) such that {u′,w} ∈H; (ii) sim-
ilarly for v′′ (if v′ ̸= v′′); (iii) choosing both edges {u′′,v′} and {v′′,u′} (provided
they exist in H \ (G∪ e′)). Therefore, by (ii) and assumption ∆G ≤ (1− ε/2)r,

Pr
(
M′′ has a multiple edge |M′ = H

)
≤

degH|G∪e′(u
′′,u′)

degH\(G∪e′)(u′′)
+

degH|G∪e′(v
′′,v′)

degH\(G∪e′)(v′′)

+
1

degH\(G∪e′)(u′′)degH\(G∪e′)(v′′)

≤ 2
(

8r
ε2n

+
2log2 n

εr

)
+

4
ε2r2 ≤

ε

8
, (9.45)

because (9.29) implies ε >C′(r/n)1/3 and

ε >C′(logn/r)1/3 >C′(logn/r)1/2

and we can choose arbitrarily large C′. (Again, in case when |e′ ∩ e′′| = 1, the
R-H-S of (9.45) reduces to only the first summand.)

Combining (9.44) and (9.45), we have shown (9.43).

Proof of Lemma 9.18. In view of Lemma 9.19 it suffices to show that

Pr(ηt+1 = e |Gr(t) = G)≥ 1− ε(n
2

)
− t

, e /∈ G.

for every t ≤ (1− ε)M and G such that

r(τ +δ )≥ r−degG(v)≥ r(τ−δ )≥ εr
2
, v ∈ [n], (9.46)

where
τ = 1− t/M, δ = 6

√
τ logn/r.
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For every e′,e′′ /∈ G we have (recall the definitions (9.39) and (9.40))

Pr(ηt+1 = e′′ |Gr(t) = G)

Pr(ηt+1 = e′ |Gr(t) = G)
=
|GG∪e′′(n,r)|
|GG∪e′(n,r)|

=
|G ′′|
|G ′|

. (9.47)

By (9.38) we have

P
(
M′ ∈ G ′

)
=
|G ′|2M−t

NG
=
|G ′|2M−t

∏v∈[n](r−degG∪e′(v))!
(2(M− t))!

,

and similarly for the family G ′′. This yields, after a few cancellations, that

|G ′′|
|G ′|

=
∏v∈e′′\e′ (r−degG(v))

∏v∈e′\e′′ (r−degG(v))
· P(M

′′ ∈ G ′′)

P(M′ ∈ G ′)
(9.48)

By (9.46), the ratio of products in (9.48) is at least(
τ−δ

τ +δ

)2

≥
(

1− 2δ

τ

)2

≥ 1−24

√
logn
τr
≥ 1−24

√
logn
εr
≥ 1− ε

2
,

where the last inequality holds by the assumption (9.29). Since by
Lemma 9.21 the ratio of probabilities in (9.48) is

P(M′′ ∈ G ′′)

P(M′ ∈ G ′)
≥ 1− ε

2
,

we have obtained that

Pr(ηt+1 = e′′ |Gr(t) = G)

Pr(ηt+1 = e′ |Gr(t) = G)
≥ 1− ε.

Finally, noting that
max
e′ /∈G

Pr
(
ηt+1 = e′ |Gr(t) = G

)
is at least as large as the average over all e′ /∈ G, which is 1

(n
2)−t

, we conclude that

for every e /∈ G

Pr(ηt+1 = e |Gr(t) = G)≥ (1− ε)max
e′ /∈G

Pr
(
ηt+1 = e′ |Gr(t) = G

)
≥ 1− ε(n

2

)
− t

,

which finishes the proof.
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9.6 Exercises
9.6.1 Show that w.h.p. a random 2-regular graph on n vertices consists of O(logn)

vertex disjoint cycles.

9.6.2 Suppose that in the notation of Theorem 9.11, λ1 = 0,λ2 < 1. Show that
w.h.p. Gn,d consists of a giant component plus a collection of small com-
ponents of size O(logn).

9.6.3 Let H be a subgraph of Gn,r,r ≥ 3 obtained by independently including
each vertex with probability 1+ε

r−1 , where ε > 0 is small and positive. Show
that w.h.p. H contains a component of size Ω(n).

9.6.4 Let x = (x1,x2, . . . ,x2m) be chosen uniformly at random from [n]2m. Let Gx
be the multigraph with vertex set [n] and edges (x2i−1,x2i), i = 1,2, . . . ,m.
Let dx(i) be the number of times that i appears in x.

Show that conditional on dx(i) = di, i ∈ [n], Gx has the same distribution as
the multigraph γ(F) of Section 9.1.

9.6.5 Suppose that we condition on dx(i) ≥ k for some non-negative integer k.
For r ≥ 0, let

fr(x) = ex−1− x−·· ·− xk−1

(k−1)!
.

Let Z be a random variable taking values in {k,k+1, . . . ,} such that

P(Z = i) =
λ ie−λ

i! fk(λ )
for i≥ k,

where λ is arbitrary and positive.

Show that the degree sequence of Gx is distributed as independent copies
Z1,Z2, . . . ,Zn of Z, subject to Z1 +Z2 + · · ·+Zn = 2m.

9.6.6 Show that

E(Z) =
λ fk−1(λ )

fk(λ )
.

Show using the Local Central Limit Theorem (see e.g. Durrett [318]) that
if E(Z) = 2m

n then

P

(
v

∑
j=1

Z j = 2m− k

)
=

1
σ
√

2πn

(
1+O((k2 +1)v−1

σ
−2)
)

where σ2 = E(Z2)−E(Z)2 is the variance of Z.
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9.6.7 Use the model of (i)–(iii) to show that if c = 1+ε and ε is sufficiently small
and ω→∞ then w.h.p. the 2-core of Gn,p, p = c/n does not contain a cycle
C, |C| = ω in which more than 10% of the vertices are of degree three or
more.

9.6.8 Let G = Gn,r,r ≥ 3 be the random r-regular configuration multigraph of
Section 9.2. Let X denote the number of Hamilton cycles in G. Show that

E(X)≈
√

π

2n

(
(r−1)

(
r−2

r

)(r−2)/2
)n

.

9.6.9 Show that if graph G = G1∪G2 then its rainbow connection satisfies rc(G)
≤ rc(G1)+ rc(G2)+ |E(G1)∩E(G2)|. Using the contiguity of Gn,r to the
union of r independent matchings, (see Chapter 25), show that rc(Gn,r) =
O(logr n) for r ≥ 6.

9.6.10 Show that w.h.p. Gn,3 is not planar.

9.7 Notes

Giant Components and Cores

Hatami and Molloy [471] discuss the size of the largest component in the scaling
window for a random graph with a fixed degree sequence.

Cooper [245] and Janson and Luczak [506] discuss the sizes of the cores of
random graphs with a given degree sequence.

Hamilton cycles

Robinson and Wormald [767], [768] showed that random r-regular graphs are
Hamiltonian for 3 ≤ r = O(1). In doing this, they introduced the important new
method of small subgraph conditioning. It is a refinement on the Chebyshev in-
equality. Somewhat later Cooper, Frieze and Reed [272] and Krivelevich, Su-
dakov, Vu Wormald [606] removed the restriction r = O(1). Frieze, Jerrum, Mol-
loy, Robinson and Wormald [396] gave a polynomial time algorithm that w.h.p.
finds a Hamilton cycle in a random regular graph. Cooper, Frieze and Krivelevich
[266] considered the existence of Hamilton cycles in Gn,d for certain classes of
degree sequence.
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Chromatic number
Frieze and Łuczak [405] proved that w.h.p. χ(Gn,r) = (1+ or(1)) r

2logr for r =
O(1). Here or(1)→ 0 as r→ ∞. Achlioptas and Moore [5] determined the chro-
matic number of a random r-regular graph to within three values, w.h.p. Kemkes,
Pérez-Giménez and Wormald [563] reduced the range to two values. Shi and
Wormald [804], [805] consider the chromatic number of Gn,r for small r. In par-
ticular they show that w.h.p. χ(Gn,4) = 3. Frieze, Krivelevich and Smyth [401]
gave estimates for the chromatic number of Gn,d for certain classes of degree se-
quence.

Eigenvalues
The largest eigenvalue of the adjacency matrix of Gn,r is always r. Kahn and
Szemerédi [538] showed that w.h.p. the second eigenvalue is of order O(r1/2).
Friedman [380] proved that w.h.p. the second eigenvalue is at most 2(r−1)1/2 +
o(1). Broder, Frieze, Suen and Upfal [200] considered Gn,d where C−1d ≤ di ≤
Cd for some constant C > 0 and d ≤ n1/10. They show that w.h.p. the second
eigenvalue of the adjacency matrix is O(d1/2).

First Order Logic
Haber and Krivelevich [459] studied the first order language on random d-regular
graphs. They show that if r = Ω(n) or r = nα where α is irrational, then Gn,r
obeys a 0-1 law.

Rainbow Connection
Dudek, Frieze and Tsourakakis [310] studied the rainbow connection of random
regular graphs. They showed that if 4≤ r =O(1) then rc(Gn,r)=O(logn). This is
best possible up to constants, since rc(Gn,r) ≥ diam(Gn,r) = Ω(logn). Kamčev,
Krivelevich and Sudakov [541] gave a simpler proof when r ≥ 5, with a better
hidden constant.
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Chapter 10

Intersection Graphs

Let G be a (finite, simple) graph. We say that G is an intersection graph if we
can assign to each vertex v ∈ V (G) a set Sv, so that {v,w} ∈ E(G) exactly when
Sv∩Sw ̸= /0. In this case, we say G is the intersection graph of the family of sets
S = {Sv : v ∈V (G)}.

Although all graphs are intersection graphs (see Marczewski [653]) some
classes of intersection graphs are of special interest. Depending on the choice
of family S , often reflecting some geometric configuration, one can consider, for
example, interval graphs defined as the intersection graphs of intervals on the real
line, unit disc graphs defined as the intersection graphs of unit discs on the plane
etc. In this chapter we will discuss properties of random intersection graphs,
where the family S is generated in a random manner.

10.1 Binomial Random Intersection Graphs

Binomial random intersection graphs were introduced by Karoński,
Scheinerman and Singer-Cohen in [554] as a generalisation of the classical model
of the binomial random graph Gn,p.

Let n,m be positive integers and let 0 ≤ p ≤ 1. Let V = {1,2, . . . ,n} be the
set of vertices and for every 1 ≤ k ≤ n, let Sk be a random subset of the set
M = {1,2, . . . ,m} formed by selecting each element of M independently with
probability p. We define a binomial random intersection graph G(n,m, p) as the
intersection graph of sets Sk, k = 1,2, . . .n. Here S1,S2, . . . ,Sn are generated in-
dependently. Hence two vertices i and j are adjacent in G(n,m, p) if and only if
Si∩S j ̸= /0.

There are other ways to generate binomial random intersection graphs. For
example, we may start with a classical bipartite random graph Gn,m,p, with vertex
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set bipartition

(V,M),V = {1,2, . . . ,n},M = {1,2, . . . ,m},

where each edge between V and M is drawn independently with probability p.
Next, one can generate a graph G(n,m, p) with vertex set V and vertices i and
j of G(n,m, p) connected if and only if they share a common neighbor (in M)
in the random graph Gn,m,p. Here the graph Gn,m,p is treated as a generator of
G(n,m, p).

One observes that the probability that there is an edge {i, j} in G(n,m, p)
equals 1− (1− p2)m, since the probability that sets Si and S j are disjoint is (1−
p2)m, however, in contrast with Gn,p, the edges do not occur independently of
each other.

Another simple observation leads to some natural restrictions on the choice of
probability p. Note that the expected number of edges of G(n,m, p) is,(

n
2

)
(1− (1− p2)m)≈ n2mp2,

provided mp2 → 0 as n→ ∞. Therefore, if we take p = o((n
√

m)−1) then the
expected number of edges of G(n,m, p) tends to 0 as n→ ∞ and therefore w.h.p.
G(n,m, p) is empty.

On the other hand the expected number of non-edges in G(n,m, p) is(
n
2

)
(1− p2)m ≤ n2e−mp2

.

Thus if we take p = (2logn+ω(n))/m)1/2, where ω(n)→ ∞ as n→ ∞, then
the random graph G(n,m, p) is complete w.h.p. One can also easily show that
when ω(n)→ −∞ then G(n,m, p) is w.h.p. not complete. So, when studying
the evolution of G(n,m, p) we may restrict ourselves to values of p in the range
between ω(n)/(n

√
m) and ((2logn−ω(n))/m)1/2, where ω(n)→ ∞.

Equivalence
One of the first interesting problems to be considered is the question as to when
the random graphs G(n,m, p) and Gn,p have asymptotically the same properties.
Intuitively, it should be the case when the edges of G(n,m, p) occur “almost inde-
pendently”, i.e., when there are no vertices of degree greater than two in M in the
generator Gn,m,p of G(n,m, p). Then each of its edges is induced by a vertex of
degree two in M, “almost” independently of other edges. One can show that this
happens w.h.p. when p = o

(
1/(nm1/3)

)
, which in turn implies that both random
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graphs are asymptotically equivalent for all graph properties P . Recall that a
graph property P is defined as a subset of the family of all labeled graphs on ver-
tex set [n], i.e., P ⊆ 2(

n
2). The following equivalence result is due to Rybarczyk

[783] and Fill, Scheinerman and Singer-Cohen [360].

Theorem 10.1. Let 0≤ a≤ 1, P be any graph property, p = o
(

1/(nm1/3)
)

and

p̂ = 1− exp
(
−mp2(1− p)n−2). (10.1)

Then
P(Gn,p̂ ∈P)→ a

if and only if
P(G(n,m, p) ∈P)→ a

as n→ ∞.

Proof. Let X and Y be random variables taking values in a common finite (or
countable) set S. Consider the probability measures L (X) and L (Y ) on S whose
values at A ⊆ S are P(X ∈ A) and P(Y ∈ A). Define the total variation distance
between L (X) and L (Y ) as

dTV (L (X),L (Y )) = sup
A⊆S
|P(X ∈ A)−P(Y ∈ A)|,

which is equivalent to

dTV (L (X),L (Y )) =
1
2 ∑

s∈S
|P(X = s)−P(Y = s)|.

Notice (see Fact 4 of [360]) that if there exists a probability space on which ran-
dom variables X ′ and Y ′ are both defined, with L (X) = L (X ′) and L (Y ) =
L (Y ′), then

dTV (L (X),L (Y ))≤ P(X ′ ̸= Y ′). (10.2)

Furthermore (see Fact 3 in [360]) if there exist random variables Z and Z′ such
that L (X |Z = z) = L (Y |Z′ = z), for all z, then

dTV (L (X),L (Y ))≤ 2dTV (L (Z),L (Z′)). (10.3)

We will need one more observation. Suppose that a random variable X has distri-
bution the Bin(n, p), while a random variable Y has the Poisson distribution, and
EX = EY . Then

dTV (X ,Y ) = O(p). (10.4)
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We leave the proofs of (10.2), (10.3) and (10.4) as exercises.
To prove Theorem 10.1 we also need some auxiliary results on a special coupon
collector scheme.

Let Z be a non-negative integer valued random variable, r a non-negative inte-
ger and γ a real, such that rγ ≤ 1. Assume we have r coupons Q1,Q2, . . . ,Qr and
one blank coupon B. We make Z independent draws (with replacement), such that
in each draw,

P(Qi is chosen) = γ, for i = 1,2, . . . ,r,

and
P(B is chosen) = 1− rγ.

Let Ni(Z), i = 1,2, . . . ,r be a random variable counting the number of times that
coupon Qi was chosen. Furthermore, let

Xi(Z) =
{

1 if Ni(Z)≥ 1,
0 otherwise.

The number of different coupons selected is given by

X(Z) =
r

∑
i=1

Xi(Z). (10.5)

With the above definitions we observe that the following holds.

Lemma 10.2. If a random variable Z has the Poisson distribution with expec-
tation λ then Ni(Z), i = 1,2, . . . ,r, are independent and identically Poisson dis-
tributed random variables, with expectation λγ . Moreover the random variable
X(Z) has the distribution Bin(r,1− e−λγ).

Let us consider the following special case of the scheme defined above, as-
suming that r =

(n
2

)
and γ = 1/

(n
2

)
. Here each coupon represents a distinct edge

of Kn.

Lemma 10.3. Suppose p = o(1/n) and let a random variable Z be the
Bin
(
m,
(n

2

)
p2(1− p)n−2) distributed, while a random variable Y be the

Bin
((n

2

)
,1− e−mp2(1−p)n−2

)
distributed. Then

dTV (L (X(Z)),L (Y )) = o(1).

Proof. Let Z′ be a Poisson random variable with the same expectation as Z, i.e.,

EZ′ = m
(

n
2

)
p2(1− p)n−2.
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By Lemma 10.2, X(Z′) has the binomial distribution

Bin
((

n
2

)
,1− e−mp2(1−p)n−2

)
,

and so, by (10.3) and (10.4), we have

dTV (L (Y ),L (X(Z)))
= dTV (L (X(Z′)),L (X(Z)))≤ 2dTV (L (Z′),L (Z))

≤ O
((

n
2

)
p2(1− p)n−2

)
= O

(
n2 p2)= o(1).

Now define a random intersection graph G2(n,m, p) as follows. Its vertex set
is V = {1,2, . . . ,n}, while e = {i, j} is an edge in G2(n,m, p) iff in a (generator)
bipartite random graph Gn,m,p, there is a vertex w ∈ M of degree two such that
both i and j are connected by an edge with w.

To complete the proof of our theorem, notice that,

dTV (L (G(n,m, p)),L (Gn,p̂))≤
dTV (L (G(n,m, p)),L (G2(n,m, p)))+dTV (L (G2(n,m, p)),L (Gn,p̂))

where p̂ is defined in (10.1). Now, by (10.2)

dTV (L (G(n,m, p)),L (G2(n,m, p)))
≤ P(L (G(n,m, p)) ̸= L (G2(n,m, p)))

≤ P(∃w ∈M of Gn,m,p s.t. deg(w)> 2)≤ m
(

n
3

)
p3 = o(1),

for p = o(1/(nm1/3).
Hence it remains to show that

dTV (L (G2(n,m, p)),L (Gn,p̂)) = o(1). (10.6)

Let Z be distributed as Bin
(
m,
(n

2

)
p2(1− p)n−2), X(Z) is defined as in (10.5) and

let Y be distributed as Bin
((n

2

)
,1− e−mp2(1−p)n−2

)
. Then the number of edges

|E(G2(n,m, p))|= X(Z) and |E(Gn,p̂))|=Y . Moreover for any two graphs G and
G′ with the same number of edges

P(G2(n,m, p) = G) = P(G2(n,m, p) = G′)
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and
P(Gn,p̂ = G) = P(Gn,p̂ = G′).

Equation (10.6) now follows from Lemma 10.3. The theorem follows immedi-
ately.

For monotone properties (see Chapter 1) the relationship between the classical
binomial random graph and the respective intersection graph is more precise and
was established by Rybarczyk [783].

Theorem 10.4. Let 0 ≤ a ≤ 1, m = nα ,α ≥ 3, Let P be any monotone graph
property. For α > 3, assume

Ω(1/(nm1/3)) = p = O(
√

logn/m)

while for α = 3 assume
(

1/(nm1/3)
)
= o(p). Let

p̂ = 1− exp
(
−mp2(1− p)n−2).

If for all ε = ε(n)→ 0
P(Gn,(1+ε)p̂ ∈P)→ a,

then
P(G(n,m, p) ∈P)→ a

as n→ ∞.

Small subgraphs
Let H be any fixed graph. A clique cover C is a collection of subsets of vertex
set V (H) such that, each induces a complete subgraph (clique) of H, and for every
edge {u,v} ∈ E(H), there exists C ∈ C , such that u,v ∈ C. Hence, the cliques
induced by sets from C exactly cover the edges of H. A clique cover is allowed
to have more than one copy of a given set. We say that C is reducible if for
some C ∈ C , the edges of H induced by C are contained in the union of the
edges induced by C \C, otherwise C is irreducible. Note that if C ∈ C and C is
irreducible, then |C| ≥ 2.

In this section, |C | stands for the number of cliques in C , while ∑C denotes
the sum of clique sizes in C , and we put ∑C = 0 if C = /0.

Let C = {C1,C2, . . . ,Ck} be a clique cover of H. For S ⊆ V (H) define the
following two restricted clique covers

Ct [S] := {Ci∩S : |Ci∩S| ≥ t, i = 1,2, . . . ,k},
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where t = 1,2. For a given S and t = 1,2, let

τt = τt(H,C ,S) =
(

n|S|/∑Ct [S]m|Ct [S]|/∑Ct [S]
)−1

.

Finally, let
τ(H) = min

C
max

S⊆V (H)
{τ1,τ2},

where the minimum is taken over all clique covers C of H. We can in this calcu-
lation restrict our attention to irreducible covers.
Karoński, Scheinerman and Singer-Cohen [554] proved the following theorem.

Theorem 10.5. Let H be a fixed graph and mp2→ 0. Then

lim
n→∞

P(H ⊆ G(n,m, p)) =

{
0 if p/τ(H)→ 0
1 if p/τ(H)→ ∞.

As an illustration, we will use this theorem to show the threshold for complete
graphs in G(n,m, p), when m = nα , for different ranges of α > 0.

Corollary 10.6. For a complete graph Kh with h ≥ 3 vertices and m = nα , we
have

τ(Kh) =

{
n−1m−1/h for α ≤ 2h/(h−1)
n−1/(h−1)m−1/2 for α ≥ 2h/(h−1).

Proof. There are many possibilities for clique covers to generate a copy of a com-
plete graph Kh in G(n,m, p). However in the case of Kh only two play a dominat-
ing role. Indeed, we will show that for α ≤ α0, α0 = 2h/(h−1) the clique cover
C = {V (Kh)} composed of one set containing all h vertices of Kh only matters,
while for α ≥ α0 the clique cover C =

(Kh
2

)
, consisting of

(h
2

)
pairs of endpoints

of the edges of Kh, takes the leading role.
Let V = V (Kh) and denote those two clique covers by {V} and {E}, respec-

tively. Observe that for the cover {V} the following equality holds.

max
S⊆V
{τ1(Kh,{V},S),τ2(Kh,{V},S)}= τ1(Kh,{V},V ). (10.7)

To see this, check first that for |S|= h,

τ1(Kh,{V},V ) = τ2(Kh,{V},V ) = n−1m−1/h.
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For S of size |S| = s, 2 ≤ s ≤ h− 1 restricting the clique cover {V} to S, gives a
single s-clique, so for t = 1,2

τt(Kh,{V},S) = n−1m−1/s < n−1m−1/h.

Finally, when |S|= 1, then τ1 =(nm)−1, while τ2 = 0, both smaller than n−1m−1/h,
and so equation (10.7) follows.
For the edge-clique cover {E} we have a similar expression, viz.

max
S⊆V
{τ1(Kh,{E},S),τ2(Kh,{E},S)}= τ1(Kh,{E},V ). (10.8)

To see this, check first that for |S|= h,

τ1(Kh,{E},V ) = n−1/(h−1)m−1/2.

Let S⊂V , with s = |S| ≤ h−1, and consider restricted clique covers with cliques
of size at most two, and exactly two.

For τ1, the clique cover restricted to S is the edge-clique cover of Ks, plus a
1-clique for each of the h− s external edges for each vertex of Ks, so

τ1(Kh,{E},S)

=
(

ns/[s(s−1)+s(h−s)]m[s(s−1)/2+s(h−s)]/[s(s−1)+s(h−s)]
)−1

=
(

n1/(h−1)m[h−(s+1)/2]/(h−1)
)−1

≤
(

n1/(h−1)mh/(2(h−1))
)−1

<
(

n1/(h−1)m1/2
)−1

,

while for τ2 we have

τ2(Kh,{E},S) =
(

n1/(s−1)m1/2
)−1

<
(

n1/(h−1)m1/2
)−1

,

thus verifying equation (10.8).
Let C be any irreducible clique cover of Kh (hence each clique has size at least

two). We will show that for any fixed α

τ1(Kh,C ,V )≥

{
τ1(Kh,{V},V ) for α ≤ 2h/(h−1)
τ1(Kh,{E},V ) for α ≥ 2h/(h−1).

Thus,
τ1(Kh,C ,V )≥min{τ1(Kh,{V},V ),τ1(Kh,{E},V )} . (10.9)
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Because m = nα we see that

τ1(Kh,C ,V ) = n−xC (α),

where

xC (α) =
h

∑C
+
|C |
∑C

α, x{V}(α) = 1+
α

h
, x{E}(α) =

1
h−1

+
α

2
.

(To simplify notation, below we have replaced x{V},x{E} by xV ,xE , respectively).
Notice, that for α0 = 2h/(h−1) exponents

xV (α0) = xE(α0) = 1+
2

h−1
.

Moreover, for all values of α < α0 the function xV (α)> xE(α), while for α > α0
the function xV (α)< xE(α).

Now, observe that xC (0) = h
∑C ≤ 1 since each vertex is in at least one clique of

C . Hence xC (0)≤ xV (0) = 1. We will show also that xC (α)≤ xV (α) for α > 0.
To see this we need to bound |C |/∑C .

Suppose that u ∈V (Kh) appears in the fewest number of cliques of C , and let
r be the number of cliques Ci ∈ C to which u belongs. Then

∑C = ∑
i:Ci∋u

|Ci|+ ∑
i:Ci ̸∋u

|Ci| ≥ ((h−1)+ r)+2(|C |− r),

where h−1 counts all other vertices aside from u since they must appear in some
clique with u.
For any v ∈V (Kh) we have

∑C + |{i : Ci ∋ v}|− (h−1)≥∑C + r− (h−1)

≥ (h−1)+ r+2(|C |− r)+ r− (h−1)
= 2|C |.

Summing the above inequality over all v ∈V (Kh),

h∑C +∑C −h(h−1)≥ 2h|C |,

and dividing both sides by 2h∑C , we finally get

|C |
∑C
≤ h+1

2h
− h−1

2∑C
.

Now, using the above bound,

xC (α0) =
h

∑C
+
|C |
∑C

(
2h

h−1

)
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≤ h
∑C

+

(
h+1

2h
− h−1

2∑C

)(
2h

h−1

)
= 1+

2
h−1

= xV (α0).

Now, since xC (α) ≤ xV (α) at both α = 0 and α = α0, and both functions are
linear, xC (α)≤ xV (α) throughout the interval (0,α0).

Since xE(α0) = xV (α0) we also have xC (α0) ≤ xE(α0). The slope of xC (α)

is |C |
∑C , and by the assumption that C consists of cliques of size at least 2, this is

at most 1/2. But the slope of xE(α) is exactly 1/2. Thus for all α ≥ α0, xC (α)≤
xE(α). Hence the bounds given by formula (10.9) hold.

One can show (see [781]) that for any irreducible clique-cover C that is not
{V} nor {E},

max
S
{τ1(Kh,C ,S),τ2(Kh,C ,S)} ≥ τ1(Kh,C ,V ).

Hence, by (10.9),

max
S
{τ1(Kh,C ,S),τ2(Kh,C ,S)} ≥min{τ1(Kh,{V},V ),τ1(Kh,{E},V )}.

This implies that

τ(Kh) =

{
n−1m−1/h for α ≤ α0

n−1/(h−1)m−1/2 for α ≥ α0,

which completes the proof of Corollary 10.6.

To add to the picture of asymptotic behavior of small cliques in
G(n,m, p) we will quote the result of Rybarczyk and Stark [781], who with use
of Stein’s method (see Chapter 26.3) obtained an upper bound on the total varia-
tion distance between the distribution of the number of h-cliques and a respective
Poisson distribution for any fixed h.

Theorem 10.7. Let G(n,m, p) be a random intersection graph, where m = nα .
Let c > 0 be a constant and h≥ 3 a fixed integer, and Xn be the random variable
counting the number of copies of a complete graph Kh in G(n,m, p).

(i) If α < 2h
h−1 , p≈ cn−1m−1/h then

λn = EXn ≈ ch/h!

and
dTV (L (Xn),Po(λn)) = O

(
n−α/h

)
;
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(ii) If α = 2h
h−1 , p≈ cn−(h+1)/(h−1) then

λn = EXn ≈
(

ch + ch(h−1)
)
/h!

and
dTV (L (Xn),Po(λn)) = O

(
n−2/(h−1)

)
;

(iii) If α > 2h
h−1 , p≈ cn−1/(h−1)m−1/2 then

λn = EXn ≈ ch(h−1)/h!

and

dTV (L (Xn),Po(λn)) = O
(

n
(

h−α(h−1)
2 − 2

h−1

)
+n−1

)
.

10.2 Random Geometric Graphs

The graphs we consider in this section are the intersection graphs that we obtain
from the intersections of balls in the d-dimensional unit cube, D = [0,1]d where
d ≥ 2. For simplicity we will only consider d = 2 in the text.

We let X = {X1,X2, . . . ,Xn} be independently and uniformly chosen from
D = [0,1]2. For r = r(n) let GX ,r be the graph with vertex set X . We join Xi,X j
by an edge iff X j lies in the disk

B(Xi,r) =
{

X ∈ [0,1]2 : |X−Xi| ≤ r
}
.

Here | | denotes Euclidean distance.
For a given set X we see that increasing r can only add edges and so thresh-

olds are usually expressed in terms of upper/lower bounds on the size of r.
The book by Penrose [733] gives a detailed exposition of this model. Our aim

here is to prove some simple results that are not intended to be best possible.

Connectivity

The threshold (in terms of r) for connectivity was shown to be identical with that
for minimum degree one, by Gupta and Kumar [456]. This was extended to k-
connectivity by Penrose [732]. We do not aim for tremendous accuracy. The
simple proof of connectivity was provided to us by Tobias Müller [699].
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Theorem 10.8. Let ε > 0 be arbitrarily small and let r0 = r0(n) =
√

logn
πn . Then

w.h.p.

GX ,r contains isolated vertices if r ≤ (1− ε)r0 (10.10)
GX ,r is connected if r ≥ (1+ ε)r0 (10.11)

Proof. First consider (10.10) and the degree of X1. Then

P(X1 is isolated)≥ (1−πr2)n−1.

The factor (1−πr2)n−1 bounds the probability that none of X2,X3, . . . ,Xn lie in
B(X1,r), given that B(X1,r)⊆D. It is exact for points far enough from the bound-
ary of D.

Now

(1−πr2)n−1 ≥
(

1− (1− ε) logn
n

)n

= nε−1+o(1).

So if I is the set of isolated vertices then E(|I|)≥ nε−1+o(1)→ ∞. Now

P(X1 ∈ I | X2 ∈ I)≤
(

1− πr2

1−πr2

)n−2

≤ (1+o(1))P(X1 ∈ I).

The expression
(

1− πr2

1−πr2

)
is the probability that a random point does not lie in

B(X1,r), given that it does not lie in B(X2,r), and that |X2−X1| ≥ 2r. Equation
(10.10) now follows from the Chebyshev inequality (26.3).

Now consider (10.11). Let η ≪ ε be a sufficiently small constant and divide
D into ℓ2

0 sub-squares of side length ηr, where ℓ0 = 1/ηr. We refer to these sub-
squares as cells. We can assume that η is chosen so that ℓ0 is an integer. We
say that a cell is good if contains at least i0 = η3 logn members of X and bad
otherwise. We next let K = 100/η2 and consider the number of bad cells in a
K×K square block of cells.

Lemma 10.9. Let B be a K×K square block of cells. The following hold w.h.p.:

(a) If B is further than 100r from the closest boundary edge of D then B contains
at most k0 = (1− ε/10)π/η2 bad cells.

(b) If B is within distance 100r of exactly one boundary edge of D then B contains
at most k0/2 bad cells.
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(c) If B is within distance 100r of two boundary edges of D then B contains no
bad cells.

Proof. (a) There are less than ℓ2
0 < n such blocks. Furthermore, the probability

that a fixed block contains k0 or more bad cells is at most

(
K2

k0

)( i0

∑
i=0

(
n
i

)
(η2r2)i(1−η

2r2)n−i

)k0

≤
(

K2e
k0

)k0
(

2
(

ne
i0

)i0
(η2r2)i0e−η2r2(n−i0)

)k0

. (10.12)

Here we have used Corollary 27.4 to obtain the LHS of (10.12).
Now(
ne
i0

)i0
(η2r2)i0e−η2r2(n−i0)

≤ nO(η3 log(1/η)−η2(1+ε−o(1))/π ≤ n−η2(1+ε/2)/π , (10.13)

for η sufficiently small. So we can bound the RHS of (10.12) by(
2K2en−η2(1+ε/2)/π

(1− ε/10)π/η2

)(1−ε/10)π/η2

≤ n−1−ε/3. (10.14)

Part (a) follows after inflating the RHS of (10.14) by n to account for the number
of choices of block.

(b) Replacing k0 by k0/2 replaces the LHS of (10.14) by(
4K2en−η2(1+ε/2)/π

(1− ε/10)π/2η2

)(1−ε/10)π/2η2

≤ n−1/2−ε/6. (10.15)

Observe now that the number of choices of block is O(ℓ0) = o(n1/2) and then Part
(b) follows after inflating the RHS of (10.15) by o(n1/2) to account for the number
of choices of block.

(c) Equation (10.13) bounds the probability that a single cell is bad. The number
of cells in question in this case is O(1) and (c) follows.
We now do a simple geometric computation in order to place a lower bound on
the number of cells within a ball B(X ,r).
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Lemma 10.10. A half-disk of radius r1 = r(1−η
√

2) with diameter part of the
grid of cells contains at least (1−2η1/2)π/2η2 cells.

Proof. We place the half-disk in a 2r1× r1 rectangle. Then we partition the rect-
angle into ζ1 = r1/rη rows of 2ζ1 cells. The circumference of the circle will cut
the ith row at a point which is r1(1− i2η2)1/2 from the centre of the row. Thus
the ith row will contain at least 2

⌊
r1(1− i2η2)1/2/rη

⌋
complete cells. So the

half-disk contains at least

2r1

rη

1/η

∑
i=1

((1− i2η
2)1/2−η)≥ 2r1

rη

∫ 1/η−1

x=1
((1− x2

η
2)1/2−η)dx

=
2r1

rη2

∫ arcsin(1−η)

θ=arcsin(η)
(cos2(θ)−η cos(θ))dθ

≥ 2r1

rη2

[
θ

2
− sin(2θ)

4
−η

]arcsin(1−η)

θ=arcsin(η)

.

Now
arcsin(1−η)≥ π

2
−2η

1/2 and arcsin(η)≤ 2η .

So the number of cells is at least

2r1

rη2

(
π

4
−η

1/2−η

)
.

This completes the proof of Lemma 10.10.
We deduce from Lemmas 10.9 and 10.10 that

X ∈X implies that B(X ,r1)∩D contains at least one good cell. (10.16)

Now let Γ be the graph whose vertex set consists of the good cells and where cells
c1,c2 are adjacent iff their centres are within distance r1. Note that if c1,c2 are
adjacent in Γ then any point in X ∩c1 is adjacent in GX ,r to any point in X ∩c2.
It follows from (10.16) that all we need to do now is show that Γ is connected.
It follows from Lemma 10.9 that at most π/η2 rows of a K×K block contain a
bad cell. Thus more than 95% of the rows and of the columns of such a block
are free of bad cells. Call such a row or column good. The cells in a good row
or column of some K ×K block form part of the same component of Γ. Two
neighboring blocks must have two touching good rows or columns so the cells in
a good row or column of some block form part of a single component of Γ.
Any other component C must be in a block bounded by good rows and columns.
But the existence of such a component means that it is surrounded by bad cells.
Now consider the half disk H of radius r1 that is centered at c. We can assume (i)
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H is contained entirely in B and (ii) at least (1−2η1/2)π/2η2− (1−η
√

2)/η ≥
(1− 3η1/2)π/2η2 cells in H are bad. Property (i) arises because cells above c
whose centers are at distance at most r1 are all bad and for (ii) we have discounted
any bad cells on the diameter through c that might be in C. This provides half
the claimed bad cells. We obtain the rest by considering a lowest cell of C. Near
the boundary, we only need to consider one half disk with diameter parallel to the
closest boundary. Finally observe that there are no bad cells close to a corner.

Hamiltonicity
The first inroads on the Hamilton cycle problem were made by Diaz, Mitsche and
Pérez-Giménez [291]. Best possible results were later given by Balogh, Bollobás,
Krivelevich, Müller and Walters [64] and by Müller, Pérez-Giménez and
Wormald [700]. As one might expect Hamiltonicity has a threshold at r close to
r0. We now have enough to prove the result from [291].

We start with a simple lemma, taken from [64].

Lemma 10.11. The subgraph Γ contains a spanning tree of maximum degree at
most six.

Proof. Consider a spanning tree T of γ that minimises the sum of the lengths of
the edges joining the centres of the cells. Then T does not have any vertex of
degree greater than 6. This is because, if centre v were to have degree at least
7, then there are two neighboring centres u,w of v such that the angle between
the line segments [v,u] and [v,w] is strictly less than 60 degrees. We can assume
without loss of generality that [v,u] is shorter than [v,w]. Note that if we remove
the edge {v,w} and add the edge {u,w} then we obtain another spanning tree but
with strictly smaller total edge-length, a contradiction. Hence T has maximum
degree at most 6.

Theorem 10.12. Suppose that r ≥ (1+ ε)r0. Then w.h.p. GX ,r is Hamiltonian.

Proof. We begin with the tree T promised by Lemma 10.11. Let c be a good cell.
We partition the points of X ∩ c into 2d roughly equal size sets P1,P2, . . . , P2d
where d ≤ 6 is the degree of c in T . Since, the points of X ∩ c form a clique in
G = GX ,r we can form 2d paths in G from this partition.

We next do a walk W through T e.g. by Breadth First Search that goes through
each edge of T twice and passes through each node of Γ a number of times equal
to twice its degree in Γ. Each time we pass through a node we traverse the vertices
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of a new path described in the previous paragraph. In this way we create a cycle
H that goes through all the points in X that lie in good cells.

Now consider the points P in a bad cell c with centre x. We create a path in G
through P with endpoints x,y, say. Now choose a good cell c′ contained in the ball
B(x,r1) and then choose an edge {u,v} of H in the cell c′. We merge the points in
P into H by deleting {u,v} and adding {x,u} ,{y,v}. To make this work, we must
be careful to ensure that we only use an edge of H at most once. But there are
Ω(logn) edges of H in each good cell and there are O(1) bad cells within distance
2r say of any good cell and so this is easily done.

Chromatic number
We look at the chromatic number of GX ,r in a limited range. Suppose that nπr2 =
logn
ωr

where ωr → ∞,ωr = O(logn). We are below the threshold for connectivity
here. We will show that w.h.p.

χ(GX ,r)≈ ∆(GX ,r)≈ cl(GX ,r)

where will use cl to denote the size of the largest clique. This is a special case of
a result of McDiarmid [665].

We first bound the maximum degree.

Lemma 10.13.
∆(GX ,r)≈

logn
logωr

w.h.p.

Proof. Let Zk denote the number of vertices of degree k and let Z≥k denote the
number of vertices of degree at least k. Let k0 = logn

ωd
where ωd → ∞ and ωd =

o(ωr). Then

E(Z≥k0)≤ n
(

n
k0

)
(πr2)k0 ≤ n

(
neωd logn
nωr logn

) logn
ωd

= n
(

eωd

ωr

) logn
ωd

.

So,

log(E(Z≥k0))≤
logn
ωd

(ωd +1+ logωd− logωr) . (10.17)

Now let ε0 = ω
−1/2
r . Then if

ωd + logωd +1≤ (1− ε0) logωr

then (10.17) implies that E(Zk)→ 0. This verifies the upper bound on ∆ claimed
in the lemma.
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Now let k1 =
logn
ω̂d

where ω̂d is the solution to

ω̂d + log ω̂d +1 = (1+ ε0) logωr.

Next let M denote the set of vertices that are at distance greater than r from any
edge of D. Let Mk be the set of vertices of degree k in M. If Ẑk = |Mk| then

E(Ẑk1)≥ nP(X1 ∈M)×
(

n−1
k1

)
(πr2)k1(1−πr2)n−1−k1.

P(X1 ∈M)≥ 1−4r and so

E(Ẑk1)≥ (1−4r)
n

3k1/2
1

(
(n−1)e

k1

)k1

(πr2)k1e−nπr2/(1−πr2)

≥ (1−o(1))
n1−1/ωr

3k1/2
1

(
eω̂d

ωr

) logn
ω̂d

.

So,

log(E(Ẑk1))≥

−o(1)−O(log logn)+
logn
ω̂d

(
ω̂d +1+ log ω̂d− logωr−

ω̂d

ωr

)
= Ω

(
ε0 logn logωr

ω̂d

)
= Ω

(
logn

ω
1/2
r

)
→ ∞.

An application of the Chebyshev inequality finishes the proof of the lemma. In-
deed,

P(X1,X2 ∈Mk)≤ P(X1 ∈M)P(X2 ∈M)×(
P(X2 ∈ B(X1,r))+

((
n−1

k1

)
(πr2)k1(1−πr2)n−2k1−2

)2
)

≤ (1+o(1))P(X1 ∈Mk)P(X2 ∈Mk).

Now cl(GX ,r) ≤ ∆(GX ,r)+ 1 and so we now lower bound cl(GX ,r) w.h.p.
But this is easy. It follows from Lemma 10.13 that w.h.p. there is a vertex X j

with at least (1−o(1)) logn
log(4ωr)

vertices in its r/2 ball B(X j,r/2). But such a ball

provides a clique of size (1−o(1)) logn
log(4ωr)

. We have therefore proved
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Theorem 10.14. Suppose that nπr2 = logn
ωr

where ωr → ∞,ωr = O(logn). Then
w.h.p.

χ(GX ,r)≈ ∆(GX ,r)≈ cl(GX ,r)≈
logn

logωr
.

We now consider larger r.

Theorem 10.15. Suppose that nπr2 = ωr logn where ωr → ∞,ωr = o(n/ logn).
Then w.h.p.

χ(GX ,r)≈
ωr
√

3logn
2π

.

Proof. First consider the triangular lattice in the plane. This is the set of points
T = {m1a+m2b : m1,m2 ∈ Z}where a=(0,1),b=(1/2,

√
3/2), see Figure 10.1.

Figure 10.1: The small hexagon is an example of a Cv.

As in the diagram, each v ∈ T can be placed at the centre of a hexagon Cv.
The Cv’s intersect on a set of measure zero and each Cv has area

√
3/2 and is

contained in B(v,1/
√

3). Let Γ(T,d) be the graph with vertex set T where two
vertices x,y ∈ T are joined by an edge if their Euclidean distance |x− y|< d.

Lemma 10.16. [McDiarmid and Reed [667]]

χ(Γ(T,d))≤ (d +1)2.

Proof. Let δ = ⌈d⌉. Let R denote a δ ×δ rhombus made up of triangles of T with
one vertex at the origin. This rhombus has δ 2 vertices, if we exclude those at the
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top and right hand end. We give each of these vertices a distinct color and then
tile the plane with copies of R. This is a proper coloring, by construction.

Armed with this lemma we can easily get an upper bound on χ(GX ,r). Let
δ = 1/ω

1/3
r (with this value ns2≫ logn) and let s = δ r. Let sT be the contraction

of the lattice T by a factor s i.e. sT = {sx : x ∈ T}. Then if v ∈ sT let sCv be the
hexagon with centre v, sides parallel to the sides of Cv but reduced by a factor s.
|X ∩ sCv| is distributed as Bin(n,s2

√
3/2). So the Chernoff bounds imply that

with probability 1−o(n−1),

sCv contains ≤ θ =
⌈
(1+ω

−1/8
r )ns2

√
3/2
⌉

members of X . (10.18)

Let ρ = r+2s/
√

3. We note that if x∈Cv and y∈Cw and |x−y| ≤ r then |v−w| ≤
ρ . Thus, given a proper coloring ϕ of Γ(sT,ρ) with colors [q] we can w.h.p.
extend it to a coloring ψ of GX ,r with color’s [q]× [θ ]. If x ∈ sCv and ϕ(x) = a
then we let ψ(x) = (a,b) where b ranges over [θ ] as x ranges over sCv∩X . So,
w.h.p.

χ(GX ,r)≤ θ χ(Γ(sT,ρ)) = θ χ(Γ(T,ρ/s))≤ θ

(
ρ

s
+1
)2
≈

ns2
√

3
2
× r2

s2 =
ωr
√

3logn
2π

. (10.19)

For the lower bound we use a classic result on packing disks in the plane.

Lemma 10.17. Let An = [0,n]2 and C be a collection of disjoint disks of unit area
that touch An. Then |C | ≤ (1+o(1))πn2/

√
12.

Proof. Thue’s theorem states that the densest packing of disjoint same size disks
in the plane is the hexagonal packing which has density λ = π/

√
12. Let C ′

denote the disks that are contained entirely in An. Then we have

|C ′| ≥ |C |−O(n) and |C ′| ≤ πn2
√

12
.

The first inequality comes from the fact that if C ∈ C \C ′ then it is contained in a
perimeter of width O(1) surrounding An.

Now consider the subgraph H of GX ,r induced by the points of X that belong
to the square with centre (1/2,1/2) and side 1− 2r. It follows from Lemma
10.17 that if α(H) is the size of the largest independent set in H then α(H) ≤
(1+o(1))2/r2

√
3. This is because if S is an independent set of H then the disks
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B(x,r/2) for x ∈ S are necessarily disjoint. Now using the Chernoff bounds, we
see that w.h.p. H contains at least (1−o(1))n vertices. Thus

χ(GX ,r)≥ χ(H)≥ |V (H)|
α(H)

≥ (1−o(1))
r2
√

3n
2

= (1−o(1))
ωr
√

3logn
2π

.

This completes the proof of Theorem 10.15.

10.3 Exercises
10.3.1 Show that if p = ω(n)/(n

√
m), and ω(n)→ ∞, then G(n,m, p) has w.h.p.

at least one edge.

10.3.2 Show that if p = (2logn+ω(n))/m)1/2 and ω(n)→−∞ then w.h.p.
G(n,m, p) is not complete.

10.3.3 Prove that the bound (10.2) holds.

10.3.4 Prove that the bound (10.3) holds.

10.3.5 Prove that the bound (10.4) holds.

10.3.6 Prove the claims in Lemma 10.2.

10.3.7 Let X denotes the number of isolated vertices in the binomial random in-
tersection graph G(n,m, p), where m = nα , α > 0. Show that if

p =

{
(logn+ϕ(n))/m when α ≤ 1√

(logn+ϕ(n))/(nm) when α > 1,

then EX → e−c if limn→∞ ϕ(n)→ c, for any real c.

10.3.8 Find the variance of the random variable X counting isolated vertices in
G(n,m, p).

10.3.9 Let Y be a random variable which counts vertices of degree greater than
one in G(n,m, p), with m = nα and α > 1. Show that for p2m2n≫ logn

lim
n→∞

P
(
Y > 2p2m2n

)
= 0.

10.3.10 Suppose that r≥ (1+ε)r0, as in Theorem 10.8. Show that if 1≤ k = O(1)
then GX ,r is k-connected w.h.p.
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10.3.11 Show that if 2≤ k = O(1) and r≫ n−
k

2(k−1) then w.h.p. GX ,r contains a k-

clique. On the other hand, show that if r = o(n−
k

2(k−1) ) then GX ,r contains
no k-clique.

10.3.12 Suppose that r≫
√

logn
n . Show that w.h.p. the diameter of GX ,r = Θ

(1
r

)
.

10.3.13 Suppose that r≥ (1+ε)r0, as in Theorem 10.8. Show that if 2≤ k = O(1)
then GX ,r has k edge disjoint Hamilton cycles w.h.p.

10.3.14 Given X and an integer k we define the k-nearest neighbor graph Gk−NN,X

as follows: We add an edge between x and y of X iff y is one of x’s k near-
est neighbors, in Euclidean distance or vice-versa. Show that if k≥C logn
for a sufficiently large C then Gk−NN,X is connected w.h.p.

10.3.15 Suppose that we independently deposit n random black points Xb and n
random white points Xw into D. Let BXb,Xw,r be the bipartite graph where

we connect x ∈Xb with Xw iff |x− y| ≤ r. Show that if r≫
√

logn
n then

w.h.p. BXb,Xw,r contains a perfect matching.

10.4 Notes

Binomial Random Intersection Graphs
For G(n,m, p) with m = nα , α constant, Rybarczyk and Stark [782] provided a
condition, called strictly α-balanced for the Poisson convergence for the number
of induced copies of a fixed subgraph, thus complementing the results of Theorem
10.5 and generalising Theorem 10.7. (Thresholds for small subgraphs in a related
model of random intersection digraph are studied by Kurauskas [614]).

Rybarczyk [784] introduced a coupling method to find thresholds for many
properties of the binomial random intersection graph. The method is used to
establish sharp threshold functions for k-connectivity, the existence of a perfect
matching and the existence of a Hamilton cycle.

Stark [815] determined the distribution of the degree of a typical vertex of
G(n,m, p), m = nα and showed that it changes sharply between α < 1,α = 1 and
α > 1.

Behrisch [86] studied the evolution of the order of the largest component in
G(n,m, p), m = nα when α ̸= 1. He showed that when α > 1 the random graph
G(n,m, p) behaves like Gn,p in that a giant component of size order n appears
w.h.p. when the expected vertex degree exceeds one. This is not the case when
α < 1. There is a jump in the order of size of the largest component, but not to one



234 Chapter 10. Intersection Graphs

of linear size. Further study of the component structure of G(n,m, p) for α = 1 is
due to Lageras and Lindholm in [616].

Behrisch, Taraz and Ueckerdt [87] study the evolution of the chromatic num-
ber of a random intersection graph and showed that, in a certain range of param-
eters, these random graphs can be colored optimally with high probability using
various greedy algorithms.

Uniform Random Intersection Graphs

Uniform random intersection graphs differ from the binomial random intersection
graph in the way a subset of the set M is defined for each vertex of V . Now for
every k = 1,2, . . . ,n, each Sk has fixed size r and is randomly chosen from the set
M. We use the notation G(n,m,r) for an r-uniform random intersection graph.
This version of a random intersection graph was introduced by Eschenauer and
Gligor [340] and, independently, by Godehardt and Jaworski [439].

Bloznelis, Jaworski and Rybarczyk [123] determined the emergence of the
giant component in G(n,m,r) when n(logn)2 = o(m). A precise study of the
phase transition of G(n,m,r) is due to Rybarczyk [785]. She proved that if c > 0
is a constant, r = r(n) ≥ 2 and r(r− 1)n/m ≈ c, then if c < 1 then w.h.p. the
largest component of G(n,m,r) is of size O(logn), while if c > 1 w.h.p. there is
a single giant component containing a constant fraction of all vertices, while the
second largest component is of size O(logn).

The connectivity of G(n,m,r) was studied by various authors, among them by
Eschenauer and Gligor [340] followed by DiPietro, Mancini, Mei, Panconesi and
Radhakrishnan [298],
Blackbourn and Gerke [112] and Yagan and Makowski [861]. Finally, Rybarczyk
[785] determined the sharp threshold for this property. She proved that if c > 0
is a constant, ω(n)→ ∞ as n→ ∞ and r2n/m = logn+ω(n), then similarly as in
Gn,p, the uniform random intersection graph G(n,m,r) is disconnected w.h.p. if
ω(n)→ ∞, is connected w.h.p. if ω(n)→ ∞, while the probability that G(n,m,r)
is connected tends to e−e−c

if ω(n)→ c. The Hamiltonicity of G(n,m,r) was
studied in [126] and by Nicoletseas, Raptopoulos and Spirakis [718].

If in the uniform model we require |Si∩S j| ≥ s to connect vertices i and j by
an edge, then we denote this random intersection graph by Gs(n,m,r). Bloznelis,
Jaworski and Rybarczyk [123] studied phase transition in Gs(n,m,r). Bloznelis
and Łuczak [125] proved that w.h.p. for even n the threshold for the property that
Gs(n,m,r) contains a perfect matching is the same as that for Gs(n,m,r) being
connected. Bloznelis and Rybarczyk [127] show that w.h.p. the edge density
threshold for the property that each vertex of Gs(n,m,r) has degree at least k is
the same as that for Gs(n,m,r) being k-connected (for related results see [866]).
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Generalized Random Intersection Graphs

Godehardt and Jaworski [439] introduced a model which generalizes both the bi-
nomial and uniform models of random intersection graphs. Let P be a probability
measure on the set {0,1,2, . . . ,m}. Let V = {1,2, . . . ,n} be the vertex set. Let M =
{1,2, . . . ,m} be the set of attributes. Let S1,S2, . . . ,Sn be independent random sub-
sets of M such that for any v ∈V and S⊆M we have P(Sv = S) = P(|S|)/

(m
|S|
)
. If

we put an edge between any pair of vertices i and j when Si∩S j ̸= /0, then we de-
note such a random intersection graph as G(n,m,P), while if the edge is inserted
if |Si ∩ Si| ≥ s, s ≥ 1, the respective graph is denoted as Gs(n,m,P). Bloznelis
[116] extends these definitions to random intersection digraphs.

The study of the degree distribution of a typical vertex of G(n,m,P) is given
in [524], [280] and [114], see also [525]. Bloznelis ( see [115] and [117]) shows
that the order of the largest component L1 of G(n,m,P) is asymptotically equal to
nρ , where ρ denotes the non-extinction probability of a related multi-type Poisson
branching process. Kurauskas and Bloznelis [615] study the asymptotic order of
the clique number of the sparse random intersection graph
Gs(n,m,P).

Finally, a dynamic approach to random intersection graphs is studied by Bar-
bour and Reinert [77], Bloznelis and Karoński [124], Bloznelis and Goetze [121]
and Britton, Deijfen, Lageras and Lindholm [196].

One should also notice that some of the results on the connectivity of random
intersection graphs can be derived from the corresponding results for random hy-
perghraphs, see for example [585], [795] and [440].

Inhomogeneous Random Intersection Graphs

Nicoletseas, Raptopoulos and Spirakis [717] have introduced a generalisation of
the binomial random intersection graph G(n,m, p) in the following way. As before
let n,m be positive integers and let 0≤ pi≤ 1, i= 1,2, . . . ,m. Let V = {1,2, . . . ,n}
be the set of vertices of our graph and for every 1≤ k≤ n, let Sk be a random subset
of the set M = {1,2, . . . ,m} formed by selecting ith element of M independently
with probability pi. Let p = (pi)

m
i=1. We define the inhomogeneous random inter-

section graph G(n,m,p) as the intersection graph of sets Sk, k = 1,2, . . .n. Here
two vertices i and j are adjacent in G(n,m,p) if and only if Si∩ S j ̸= /0. Several
asymptotic properties of the random graph G(n,m,p) were studied, such as: large
independent sets (in [718]), vertex degree distribution (by Bloznelis and Dama-
rackas in [118]), sharp threshold functions for connectivity, matchings and Hamil-
tonian cycles (by Rybarczyk in [784]) as well as the size of the largest component
(by Bradonjić, Elsässer, Friedrich, Sauerwald and Stauffer in [193]).
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To learn more about different models of random intersection graphs and about
other results we refer the reader to recent review papers [119] and [120].

Random Geometric Graphs

McDiarmid and Müller [666] gives the leading constant for the chromatic number
when the average degree is Θ(logn). The paper also shows a “surprising” phase
change for the relation between χ and ω . Also the paper extends the setting to
arbitrary dimensions. Müller [698] proves a two-point concentration for the clique
number and chromatic number when nr2 = o(logn).

Blackwell, Edmonson-Jones and Jordan [113] studied the spectral properties
of the adjacency matrix of a random geometric graph (RGG). Rai [758] studied
the spectral measure of the transition matrix of a simple random walk. Preciado
and Jadbabaie [751] studied the spectrum of RGG’s in the context of the spreading
of viruses.

Sharp thresholds for monotone properties of RGG’s were shown by McColm
[659] in the case d = 1 viz. a graph defined by the intersection of random sub-
intervals. And for all d ≥ 1 by Goel, Rai and Krishnamachari [441].

First order expressible properties of random points
X = {X1,X2, . . . ,Xn} on a unit circle were studied by McColm [658]. The graph
has vertex set X and vertices are joined by an edge if and only if their angu-
lar distance is less than some parameter d. He showed among other things that
for each fixed d, the set of a.s. FO sentences in this model is a complete non-
categorical theory. McColm’s results were anticipated in a more precise paper
[438] by Godehardt and Jaworski, where the case d = 1, i.e., the evolution a ran-
dom interval graph, was studied.

Diaz, Penrose, Petit and Serna [294] study the approximability of several lay-
out problems on a family of RGG’s. The layout problems that they consider are
bandwidth, minimum linear arrangement, minimum cut width, minimum sum cut,
vertex separation, and edge bisection. Diaz, Grandoni and Marchetti-Spaccemela
[293] derive a constant expected approximation algorithm for the β -balanced cut
problem on random geometric graphs: find an edge cut of minimum size whose
two sides contain at least βn vertices each.

Bradonjić, Elsässer, Friedrich, Sauerwald and Stauffer [192] studied the broad-
cast time of RGG’s. They study a regime where there is likely to be a single
giant component and show that w.h.p. their broadcast algorithm only requires
O(n1/2/r+ logn) rounds to pass information from a single vertex, to every vertex
of the giant. They show on the way that the diameter of the giant is Θ(n1/2/r)
w.h.p. Friedrich, Sauerwald and Stauffer [382] extended this to higher dimen-
sions.
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A recent interesting development can be described as Random Hyperbolic
Graphs. These are related to the graphs of Section 10.2 and are posed as mod-
els of real world networks. Here points are randomly embedded into hyperbolic,
as opposed to Euclidean space. See for example Bode, Fountoulakis and Müller
[128], [129]; Candellero and Fountoulakis [208]; Chen, Fang, Hu and Mahoney
[218]; Friedrich and Krohmer [381]; Krioukov, Papadopolous, Kitsak, Vahdat and
Boguñá [588]; Fountoulakis [371]; Gugelmann, Panagiotou and Peter [455]; Pa-
padopolous, Krioukov, Boguñá and Vahdat [727]. One version of this model is
described in [371]. The models are a little complicated to describe and we refer
the reader to the above references.



238 Chapter 10. Intersection Graphs



Chapter 11

Digraphs

In graph theory, we sometimes orient edges to create a directed graph or digraph.
It is natural to consider randomly generated digraphs and this chapter discusses
the component size and connectivity of the simplest model Dn,p. Hamiltonicity is
discussed in the final section.

11.1 Strong Connectivity
In this chapter we study the random digraph Dn,p. This has vertex set [n] and each
of the n(n− 1) possible edges occurs independently with probability p. We will
first study the size of the strong components of Dn,p.

Recall the definition of strong components: Given a digraph D = (V,A) we
define the relation ρ on V by xρy if there is a path from x to y in D and there is a
path from y to x in D. It is easy to show that ρ is an equivalence relation and the
equivalence classes are called the strong components of D.

Strong component sizes: sub-critical region.

Theorem 11.1. Let p = c/n, where c is a constant, c < 1. Then w.h.p.

(i) all strong components of Dn,p are either cycles or single vertices,

(ii) the number of vertices on cycles is at most ω , for any ω = ω(n)→ ∞.

Proof. The expected number of cycles is

n

∑
k=2

(
n
k

)
(k−1)!

(c
n

)k
≤

n

∑
k=2

ck

k
= O(1).
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Part (ii) now follows from the Markov inequality.
To tackle (i) we observe that if there is a component that is not a cycle or a single
vertex then there is a cycle C and vertices a,b ∈C and a path P from a to b that is
internally disjoint from C.
However, the expected number of such subgraphs is bounded by

n

∑
k=2

n−k

∑
l=0

(
n
k

)
(k−1)!

(c
n

)k
k2
(

n
l

)
l!
(c

n

)l+1

≤
∞

∑
k=2

∞

∑
l=0

k2ck+l+1

kn
= O(1/n).

Here l is the number of vertices on the path P, excluding a and b.

Strong component sizes: super-critical region.

We will prove the following beautiful theorem that is a directed analogue of the
existence of a giant component in Gn,p. It is due to Karp [556].

Theorem 11.2. Let p = c/n, where c is a constant, c > 1, and let x be defined by
x < 1 and xe−x = ce−c. Then w.h.p. Dn,p contains a unique strong component of
size ≈

(
1− x

c

)2 n. All other strong components are of logarithmic size.

We will prove the above theorem through a sequence of lemmas.
For a vertex v vet

D+(v) ={w : ∃ path v to w in Dn,p}
D−(v) ={w : ∃ path w to v in Dn,p}.

We will first prove

Lemma 11.3. There exist constants α,β , dependent only on c, such that w.h.p.
̸ ∃ v such that |D±(v)| ∈ [α logn,βn].

Proof. If there is a v such that |D+(v)| = s then Dn,p contains a tree T of size s,
rooted at v such that

(i) all arcs are oriented away from v, and

(ii) there are no arcs oriented from V (T ) to [n]\V (T ).
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The expected number of such trees is bounded above by

s
(

n
s

)
ss−2

(c
n

)s−1(
1− c

n

)s(n−s)
≤ n

cs

(
ce1−c+s/n

)s
.

Now ce1−c < 1 for c ̸= 1 and so there exists β such that when s ≤ βn we can
bound ce1−c+s/n by some constant γ < 1 (γ depends only on c). In which case

n
cs

γ
s ≤ n−3 for

4
log1/γ

logn≤ s≤ βn.

Fix a vertex v ∈ [n] and consider a directed breadth first search from v. Let
S+0 = S+0 (v) = {v} and given S+0 ,S

+
1 = S+1 (v), . . . ,S

+
k = s+k (v) ⊆ [n] let T+

k =

T+
k (v) =

⋃k
i=1 S+i and let

S+k+1 =
{

w ̸∈ T+
k : ∃x ∈ T+

k such that (x,w) ∈ E(Dn,p)
}
.

We similarly define S−0 = S−0 (v),S
−
1 = S−1 (v), . . . ,S

−
k = S−k ,T

−
k (v) ⊆ [n] with re-

spect to a directed breadth first search into v.
Not surprisingly, we can show that the subgraph Γk induced by T+

k is close
in distribution to the tree defined by the first k + 1 levels of a Galton-Watson
branching process with Po(c) as the distribution of the number of offspring from
a single parent. See Chapter 29 for some salient facts about such a process. Here
Po(c) is the Poisson random variable with mean c i.e.

P(Po(c) = k) =
cke−c

k!
for k = 0,1,2, . . . , .

Lemma 11.4. If Ŝ0, Ŝ1, . . . , Ŝk and T̂k are defined with respect to the Galton-
Watson branching process and if k ≤ k0 = (logn)3 and s0,s1, . . . ,sk ≤ (logn)4

then

P
(
|S+i |= si,0≤ i≤ k

)
=

(
1+O

(
1

n1−o(1)

))
P
(
|Ŝi|= si,0≤ i≤ k

)
.

Proof. We use the fact that if Po(a),Po(b) are independent then
Po(a)+Po(b) has the same distribution as Po(a+b). It follows that

P
(
|Ŝi|= si,0≤ i≤ k

)
=

k

∏
i=1

(csi−1)
sie−csi−1

si!
.
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Furthermore, putting ti−1 = s0 + s1 + . . .+ si−1 we have for v /∈ T+
i−1,

P(v ∈ S+i ) = 1− (1− p)si−1 = si−1 p
(

1+O
(
(logn)7

n

))
. (11.1)

P
(
|S+i |= si,0≤ i≤ k

)
= (11.2)

=
k

∏
i=1

(
n− ti−1

si

)(
si−1c

n

(
1+O

(
(logn)7

n

)))si

×
(

1− si−1c
n

(
1+O

(
(logn)7

n

)))n−ti−1−si

Here we use the fact that given si−1, ti−1, the distribution of |S+i | is the binomial
with n− ti−1 trials and probability of success given in (11.1). The lemma follows
by simple estimations.

Lemma 11.5. For 1≤ i≤ (logn)3

(a) P
(
|S+i | ≥ s logn||S+i−1|= s

)
≤ n−10

(b) P
(
|Ŝi| ≥ s logn||Ŝi−1|= s

)
≤ n−10.

Proof.

(a) P
(
|S+i | ≥ s logn||S+i−1|= s

)
≤ P(Bin(sn,c/n)≥ s logn)

≤
(

sn
s logn

)(c
n

)s logn

≤
(

snec
sn logn

)s logn

≤
(

ec
logn

)logn

≤ n−10.

The proof of (b) is similar.

Keeping v fixed we next let

F =
{
∃ i : |T+

i |> (logn)2}
=
{
∃ i≤ (logn)2 : |T+

0 |, |T
+

1 |, . . . , |T
+

i−1|< (logn)2 < |T+
i |
}
.
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Lemma 11.6.
P(F ) = 1− x

c
+o(1).

Proof. Applying Lemma 11.4 we see that

P(F ) = P(F̂ )+o(1), (11.3)

where F̂ is defined with respect to the branching process.
Now let Ê be the event that the branching process eventually becomes extinct. We
write

P(F̂ ) = P(F̂ |¬Ê )P(¬Ê )+P(F̂ ∩ Ê ). (11.4)

To estimate (11.4) we use Theorem 29.1. Let

G(z) =
∞

∑
k=0

cke−c

k!
zk = ecz−c

be the probability generating function of Po(c). Then Theorem 29.1 implies that
ρ = P(Ê ) is the smallest non-negative solution to G(ρ) = ρ . Thus

ρ = ecρ−c.

Substituting ρ = ξ

c we see that

P(Ê ) =
ξ

c
where

ξ

c
= eξ−c, (11.5)

and so ξ = x.
The lemma will follow from (11.4) and (11.5) and P(F̂ |¬Ê ) = 1 and

P(F̂ ∩ Ê ) = o(1).

This in turn follows from
P(Ê | F̂ ) = o(1), (11.6)

which will be established using the following lemma.

Lemma 11.7. Each member of the branching process has probability at least
ε > 0 of producing (logn)2 descendants at depth logn. Here ε > 0 depends only
on c.

Proof. If the current population size of the process is s then the probability that it
reaches size at least c+1

2 s in the next round is

∑
k≥ c+1

2 s

(cs)ke−cs

k!
≥ 1− e−αs
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for some constant α > 0 provided s≥ 100, say.
Now there is a positive probability ε1 say that a single member spawns at least
100 descendants and so there is a probability of at least

ε1

(
1−

∞

∑
s=100

e−αs

)

that a single object spawns (
c+1

2

)logn

≫ (logn)2

descendants at depth logn.

Given a population size between (logn)2 and (logn)3 at level i0, let si denote
the population size at level i0+ i logn. Then Lemma 11.7 and the Chernoff bounds
imply that

P
(

si+1 ≤
1
2

εsi(logn)2
)
≤ exp

{
−1

8
ε

2si(logn)2
}
.

It follows that

P(Ê | F̂ )≤ P

(
∃i : si ≤

(
1
2

ε(logn)2
)i

s0

∣∣∣∣s0 ≥ (logn)2

)

≤
∞

∑
i=1

exp

{
−1

8
ε

2
(

1
2

ε(logn)2
)i

(logn)2

}
= o(1).

This completes the proof (11.6) and of Lemma 11.6.
We must now consider the probability that both D+(v) and D−(v) are large.

Lemma 11.8.

P
(
|D−(v)| ≥ (logn)2 | |D+(v)| ≥ (logn)2)= 1− x

c
+o(1).

Proof. Expose S+0 ,S
+
1 , . . . ,S

+
k until either S+k = /0 or we see that |T+

k | ∈ [(logn)2,
(logn)3]. Now let S denote the set of edges/vertices defined by
S+0 ,S

+
1 , . . . ,S

+
k .

Let C be the event that there are no edges from T−l to S+k where T−l is the
set of vertices we reach through our BFS into v, up to the point where we first
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realise that D−(v) < (logn)2 (because S−i = /0 and |T−i | ≤ (logn)2) or we realise
that D−(v)≥ (logn)2. Then

P(¬C ) = O
(
(logn)4

n

)
=

1
n1−o(1)

and, as in (11.2),

P
(
|S−i |= si, 0≤ i≤ k | C

)
=

=
k

∏
i=1

(
n′− ti−1

si

)(
si−1c

n

(
1+O

(
(logn)7

n

)))si

×
(

1− si−1c
n

(
1+O

(
(logn)7

n

)))n′−ti−1−si

where n′ = n−|T+
k |.

Given this we can prove a conditional version of Lemma 11.4 and continue as
before.

We have now shown that if α is as in Lemma 11.3 and if

S =
{

v : |D+(v)|, |D−(v)|> α logn
}

then the expectation

E(|S|) = (1+o(1))
(

1− x
c

)2
n.

We also claim that for any two vertices v,w

P(v,w ∈ S) = (1+o(1))P(v ∈ S)P(w ∈ S) (11.7)

and therefore the Chebyshev inequality implies that w.h.p.

|S|= (1+o(1))
(

1− x
c

)2
n.

But (11.7) follows in a similar manner to the proof of Lemma 11.8.
All that remains of the proof of Theorem 11.2 is to show that

S is a strong component w.h.p. (11.8)

Recall that any v ̸∈ S is in a strong component of size ≤ α logn and so the second
part of the theorem will also be done.
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We prove (11.8) by arguing that

P
(
∃ v,w ∈ S : w ̸∈ D+(v)

)
= o(1). (11.9)

In which case, we know that w.h.p. there is a path from each v ∈ S to every other
vertex w ̸= v in S.

To prove (11.9) we expose S+0 ,S
+
1 , . . . ,S

+
k until we find that

|T+
k (v)| ≥ n1/2 logn. At the same time we expose S−0 ,S

−
1 , . . . ,S

−
l until we find that

|T−l (w)| ≥ n1/2 logn. If w ̸∈ D+(v) then this experiment will have tried at least(
n1/2 logn

)2
times to find an edge from D+(v) to D−(w) and failed every time.

The probability of this is at most(
1− c

n

)n(logn)2

= o(n−2).

This completes the proof of Theorem 11.2.

Threshold for strong connectivity
Here we prove

Theorem 11.9. Let ω = ω(n), c > 0 be a constant, and let p = logn+ω

n . Then

lim
n→∞

P(Dn,p is strongly connected) =


0 if ω →−∞

e−2e−c
if ω → c

1 if ω → ∞.

= lim
n→∞

P(̸ ∃ v s.t. d+(v) = 0 or d−(v) = 0)

Proof. We leave as an exercise to prove that

lim
n→∞

P(∃ v s.t. d+(v) = 0 or d−(v) = 0) =


1 if ω →−∞

1− e−2e−c
if ω → c

0 if ω → ∞.

Given this, one only has to show that if ω ̸→ −∞ then w.h.p. there does not exist
a set S such that (i) 2 ≤ |S| ≤ n/2 and (ii) E(S : S̄) = /0 or E(S̄ : S) = /0 and (iii)
S induces a connected component in the graph obtained by ignoring orientation.
But, here with s = |S|,

P(∃ S)≤ 2
n/2

∑
s=2

(
n
s

)
ss−2(2p)s−1(1− p)s(n−s)
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≤ 2n
logn

n/2

∑
s=2

(ne
s

)s
ss−2

(
2logn

n

)s

n−s(1−s/n)eωs/n

≤ 2n
logn

n/2

∑
s=2

(2n−(1−s/n)eω/n logn)s

= o(1).

11.2 Hamilton Cycles

Existence of a Hamilton Cycle
Here we prove the following remarkable inequality: It is due to McDiarmid [661]

Theorem 11.10.

P(Dn,p is Hamiltonian)≥ P(Gn,p is Hamiltonian)

Proof. We consider an ordered sequence of random digraphs
Γ0,Γ1,Γ2, . . . ,ΓN , N =

(n
2

)
defined as follows: Let e1,e2, . . . ,eN be an enumera-

tion of the edges of the complete graph Kn. Each ei = {vi,wi} gives rise to two
directed edges−→ei = (vi,wi) and←−ei = (wi,vi). In Γi we include−→e j and←−e j indepen-
dently of each other, with probability p, for j≤ i. While for j > i we include both
or neither with probability p. Thus Γ0 is just Gn,p with each edge {v,w} replaced
by a pair of directed edges (v,w),(w,v) and ΓN = Dn,p. Theorem 11.10 follows
from

P(Γi is Hamiltonian)≥ P(Γi−1 is Hamiltonian).

To prove this we condition on the existence or otherwise of directed edges associ-
ated with e1, . . . ,ei−1,ei+1, . . . ,eN . Let C denote this conditioning.
Either

(a) C gives us a Hamilton cycle without arcs associated with ei, or

(b) not (a) and there exists a Hamilton cycle if at least one of −→ei ,
←−ei is present,

or

(c) ̸ ∃ a Hamilton cycle even if both of −→ei ,
←−ei are present.
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(a) and (c) give the same conditional probability of Hamiltonicity in Γi,Γi−1. In
Γi−1 (b) happens with probability p. In Γi we consider two cases (i) exactly one of
−→ei ,
←−ei yields Hamiltonicity and in this case the conditional probability is p and (ii)

either of −→ei ,
←−ei yields Hamiltonicity and in this case the conditional probability is

1− (1− p)2 > p.
Note that we will never require that both −→ei ,

←−ei occur.

Theorem 11.10 was subsequently improved by Frieze [386], who proved the
equivalent of Theorem 6.5.

Theorem 11.11. Let p = logn+cn
n . Then

lim
n→∞

P(Dn,p has a Hamilton cycle) =


0 if cn→−∞

e−2e−c
if cn→ c

1 if cn→ ∞.

Number of Distinct Hamilton Cycles
Here we give an elegant result of Ferber, Kronenberg and Long [354].

Theorem 11.12. Let p = ω

(
log2 n

n

)
. Then w.h.p. Dn,p contains eo(n)n!pn directed

Hamilton cycles.

Proof. The upper bound follows from the fisrt moment method. Let XH denote the
number of Hamilton cycles in D = Dn,p. Now EXH = (n− 1)!pn, and therefore
the Markov inequality implies that w.h.p. we have XH ≤ eo(n)n!pn.

For the lower bound let α := α(n) be a function tending slowly to infinity
with n. Let S ⊆V (G) be a fixed set of size s, where s≈ n

α logn and let V ′ =V \S.
Moreover, assume that s is chosen so that |V ′| is divisible by integer ℓ= 2α logn.
From now on the set S will be fixed and we will use it for closing Hamilton cycles.
Our strategy is as follows: we first expose all the edges within V ′, and show that
one can find the “correct” number of distinct families P consisting of m := |V ′|/ℓ
vertex-disjoint paths which span V ′. Then, we expose all the edges with at least
one endpoint in S, and show that w.h.p. one can turn “most” of these families into
Hamilton cycles and that all of these cycles are distinct.

We take a random partitioning V ′ = V1 ∪ . . .∪Vℓ such that all the Vi’s are of
size m. Let us denote by D j the bipartite graph with parts Vj and Vj+1. Observe

that D j is distributed as Gm,m,p, and therefore, since p = ω

(
logn

m

)
, by Exercise

11.3.2, with probability 1− n−ω(1) we conclude that D j contains (1− o(1))m
edge-disjoint perfect matchings (in particular, a (1− o(1))m regular subgraph).
The Van der Waerden conjecture proved by Egorychev [328] and by Falikman
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[347] implies the following: Let G = (A∪B,E) be an r-regular bipartite graph
with part sizes |A| = |B| = n. Then, the number of perfect matchings in G is at
least

( r
n

)n n!.
Applying this and the union bound, it follows that w.h.p. each D j contains

at least (1− o(1))mm!pm perfect matchings for each j. Taking the union of one
perfect matching from each of the D j’s we obtain a family P of m vertex disjoint
paths which spans V ′. Therefore, there are

((1−o(1))mm!pm)ℓ = (1−o(1))n−s (m!)ℓ pn−s

distinct families P obtained from this partitioning in this manner. Since this
occurs w.h.p. we conclude (applying the Markov inequality to the number of
partitions for which the bound fails) that this bound holds for (1−o(1))-fraction
of such partitions. Since there are (n−s)!

(m!)ℓ
such partitions, one can find at least

(1−o(1))
(n− s)!

(m!)ℓ
(1−o(1))n−s (m!)ℓ pn−s

= (1−o(1))n−s(n− s)!pn−s = (1−o(1))nn!pn

distinct families, each of which consists of exactly m vertex-disjoint paths of size
ℓ (for the last equality, we used the fact that s = o(n/ logn)).

We show next how to close a given family of paths into a Hamilton cycle.
For each such family P , let A := A(P) denote the collection of all pairs (sP, tP)
where sP is a starting point and tP is the endpoint of a path P ∈P , and define
an auxiliary directed graph D(A) as follows. The vertex set of D(A) is V (A) =
S∪{zP = (sP, tP) : zP ∈ A}. Edges of D(A) are determined as follows: if u,v ∈ S
and (u,v)∈E(D) then (u,v) is an edge of D(A). The in-neighbors (out-neighbors)
of vertices zP in S are the in-neighbors of sP in D (out-neighbors of tP). Lastly,
(zP,zQ) is an edge of D(A) if (tP,sQ) is an edge D.

Clearly D(A) is distributed as Ds+m,p, and that a Hamilton cycle in D(A)
corresponds to a Hamilton cycle in D after adding the corresponding paths be-
tween each sP and tP. Now distinct families P ̸= P ′ yield distinct Hamilton
cycles (to see this, just delete the vertices of S from the Hamilton cycle, to re-
cover the paths). Using Theorem 11.11 we see that for p = ω (logn/(s+m)) =
ω (log(s+m)/(s+m)), the probability that D(A) does not have a Hamilton cycle
is o(1). Therefore, using the Markov inequality we see that for almost all of the
families P , the corresponding auxiliary graph D(A) is indeed Hamiltonian and
we have at least (1−o(1))nn!pn distinct Hamilton cycles, as desired.
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11.3 Exercises
11.3.1 Let p = logn+(k−1) log logn+ω

n for a constant k = 1,2, . . .. Show that w.h.p.
Dnp is k-strongly connected.

11.3.2 The Gale-Ryser theorem states: Let G = (A∪B,E) be a bipartite graph
with parts of sizes |A|= |B|= n. Then, G contains an r-factor if and only
if for every two sets X ⊆ A and Y ⊆ B, we have

eG(X ,Y )≥ r(|X |+ |Y |−n).

Show that if p = ω(logn/n) then with probability 1−n−ω(1), Gn,n,p con-
tains (1−o(1))np edge disjoint perfect matchings.

11.3.3 Show that if p=ω((logn)2/n) then w.h.p. Gn,p contains eo(n)n!pn distinct
Hamilton cycles.

11.3.4 A tournament T is an orientation of the complete graph Kn. In a random
tournament, edge {u,v} is oriented from u to v with probability 1/2 and
from v to u with probability 1/2. Show that w.h.p. a random tournament is
strongly connected.

11.3.5 Let T be a random tournament. Show that w.h.p. the size of the largest
acyclic sub-tournament is asymptotic to 2 log2 n. (A tournament is acyclic
if it contains no directed cycles).

11.3.6 Suppose that 0 < p < 1 is constant. Show that w.h.p. the size of the largest
acyclic tournament contained in Dn,p is asymptotic to 2 logb n where b =
1/p.

11.3.7 Let mas(D) denote the number of vertices in the largest acyclic subgraph
of a digraph D. Suppose that 0 < p < 1 is constant. Show that w.h.p.
mas(Dn,p)≤ 4logn

logq where q = 1
1−p .

11.3.8 Consider the random digraph Dn obtained from Gn,1/2 by orienting edge
(i, j) from i to j when i < j. This can be viewed as a partial order on [n]
and is called a Random Graph Order. Show that w.h.p. Dn contains a path
of length at least 0.51n. (In terms of partial orders, this bounds the height
of the order).

11.3.9 Show that if np≥ log10 n then w.h.p. Dn,p is 1
2±o(1) resilient, i.e.

(1
2 − ε

)
np≤

∆H ≤
(1

2 + ε
)

np. (Hint: just tweak the proof of Theorem 20.4 so that the
lemmas refer to digraphs.)
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11.3.10 Let O represent an orientation of the edges of a Hamilton cycle. Show that

P(Dn,p has a Hamilton cycle with orientation O)≥
P(Gn,p has a Hamilton cycle).

11.4 Notes

Packing
The paper of Frieze [386] was in terms of the hitting time for a digraph process Dt .
It proves that the first time that the δ+(Gt),δ

−(Gt)≥ k is w.h.p. the time when Gt
has k edge disjoint Hamilton cycles. The paper of Ferber, Kronenberg and Long
[354] shows that if p=ω((logn)4/n) then w.h.p. Dn,p contains (1−o(1))np edge
disjoint Hamilton cycles.

Long Cycles
The papers by Hefetz, Steger and Sudakov [479] and by Ferber, Nenadov, Noever,
Peter and Škorić [357] study the local resilience of having a Hamilton cycle. In
particular, [357] proves that if p≫ (logn)8

n then w.h.p. one can delete any subgraph
H of Dn,p with maximum degree at most (1

2 − ε)np and still leave a Hamiltonian
subgraph.

Krivelevich, Lubetzky and Sudakov [597] proved that w.h.p. the random di-
graph Dn,p, p = c/n contains a directed cycle of length (1− (1+ εc)e−c)n where
εc→ 0 as c→ ∞.

Cooper, Frieze and Molloy [268] showed that a random regular digraph with
indegree = outdegree = r is Hamiltonian w.h.p. iff r ≥ 3.

Connectivity
Cooper and Frieze [255] studied the size of the largest strong component in a
random digraph with a given degree sequence. The strong connectivity of an
inhomogeneous random digraph was studied by Bloznelis, Götze and Jaworski in
[122].
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Chapter 12

Hypergraphs

In this chapter we discuss random k-uniform hypergraphs, where k ≥ 3. We are
concerned with the models Hn,p;k and Hn,m;k. For Hn,p;k we consider the hyper-
graph with vertex set [n] in which each possible k-set in

([n]
k

)
is included as an

edge with probability p. In Hn,m;k the edge set is a random m-subset of
([n]

k

)
. The

parameter k is fixed and independent of n throughout this chapter.
Many of the properties of Gn,p and Gn,m have been generalized without too

much difficulty to these models of hypergraphs. Hamilton cycles have only re-
cently been tackled with any success. Surprisingly enough, in some cases it is
enough to use the Chebyshev inequality and we will describe these cases. We
begin however with a more basic question. That is as to when is there a giant
component and when are Hn,m;k,Hn,p;k connected?

12.1 Component Size

We remind the reader that k ≥ 3 here. Suppose that p = c
(n−1

k−1)
and c is constant.

We will prove that if c< 1
k−1 then w.h.p. the maximum component size is O(logn)

and if c > 1
k−1 then w.h.p. there is a unique giant component of size Ω(n). This

generalises the main result of Chapter 2. We will assume then that p = c
(n−1

k−1)
for

the remainder of this section.
Many of the components of a sparse random graph are small trees. The corre-

sponding objects here are called hypertrees. The size of a hypertree is the number
of edges that it contains. An edge is a hypertree of size one. We obtain a hypertree
of size k+ 1 by choosing a hypertree C of size k and a vertex v ∈ V (C) and then
adding a new edge {v,v2,v3, . . . ,vk} where v2,v3, . . . ,vk /∈V (C).
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A hypertree of size 5.

Lemma 12.1. A hypertree of size ℓ contains ℓ(k−1)+1 vertices.

Proof. By induction on ℓ. It is clearly true if ℓ= 1 and if we increase the size by
one, then we add exactly k−1 new vertices.

A proof of the following generalisation of Cayley’s formula for the number of
spanning hypertrees of the complete graph can be found in Selivanov [801] and
Sivasubramanian [807] .

Lemma 12.2. The number Nk(ℓ) of distinct hypertrees with ℓ edges contained in
the complete k-uniform hypergraph on [(k−1)ℓ+1] is given by

Nk(ℓ) = ((k−1)ℓ+1)ℓ−1 ((k−1)ℓ)!
ℓ! ((k−1)!)ℓ

.

We now look into the structure of small components of Hn,p;k.

Lemma 12.3. Let p = c
(n−1

k−1)
where c ̸= 1

k−1 . Suppose that S ⊆ [n] and |S| = s ≤

log4 n. Suppose also that S contains a hypertree C with t = (k− 1)ℓ+ 1 vertices
and ℓ edges. Suppose that in addition, S contains a vertices and b edges that are
not part of C. Suppose also that there are no edges joining C to V \ S. Then, for
some A = A(c)> 0, we have that w.h.p.
(a) b≤ 1 and b(k−2)+1≥ a+1≥ b(k−1).
(b) ℓ < A logn and either (i) a = b = 0 or (ii) b = 1.
(c) |{S : ℓ≤ A logn, b = 1}|= O(logk+1 n).

Proof. We bound the expected number of sets S that violate this by

(
n
s

)(
s
a

)(
s
k

)b

tℓ−1 ((k−1)ℓ)!
ℓ!((k−1)!)ℓ

(
c(n−1

k−1

))ℓ+b(
1− c(n−1

k−1

))t(n−s
k−1)

(12.1)

≤
(ne

s

)s sa+kb

k!b tℓ−1
(

ℓk−2(k−1)k−1

ek−2+o(1)(k−1)!

)ℓ
(

eo(1)c(k−1)!
nk−1

)ℓ+b

e−(c+o(1))t
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≤skb−1cbna+1−b(k−1)ea+1−c

kbt

(
e1−(k−1)c+o(1)c(k−1)k−1ℓk−2t

sk−1

)ℓ

≤skb−1cbna+1−b(k−1)ea+1−c

kbt

(
eo(1)e1−(k−1)cc(k−1)kℓk−1

((k−1)ℓ)k−1

)ℓ

=
skb−1cbna+1−b(k−1)ea+1−c

kbt

(
eo(1)ce1−(k−1)c(k−1)

)ℓ
(12.2)

Now ce−(k−1)c is maximised at c = 1/(k−1) and for c ̸= 1/(k−1) we have

eo(1)ce1−(k−1)c(k−1)≤ 1− εc.

We may therefore upper bound the expression in (12.2) by

na+1−b(k−1)+O(b log logn/ logn)e−εcℓ ≤ n1−b+O(b log logn/ logn)e−εcℓ. (12.3)

For the second expression, we used the fact that a≤ b(k−2). The second expres-
sion in (12.3) tends to zero if b > 1 and so we can assume that b ≤ 1. The first
expression in (12.3) then tends to zero if a+ 1 < b(k− 1) and this verifies Part
(a). Because a+1−b(k−1)≤ 1, we see that Part (b) of the lemma follows with
A = 2/εc. Part (c) follows from the Markov inequality.

Lemma 12.4. W.h.p. there are no components in the range [A logn, log4 n] and all
but logk+1 n of the small components (of size at most A logn) are hypertrees.

Proof. Now suppose that S is a small component of size s which is not a hypertree
and let C be the set of vertices of a maximal hypertree with t =(k−1)ℓ+1 vertices
and ℓ edges that is a subgraph of S. (Maximal in the sense that it is not contained
in any other hypertree of S.) Lemma 12.3 implies that w.h.p. there is at most
one edge e in S that is not part of C but is incident with at least two vertices of
C. Furthermore, Lemma 12.3(c) implies that the number of sets with b = 1 is
O(logk+1 n) w.h.p.

Lemma 12.5. If c < 1
k−1 then w.h.p. the largest component has size O(logn).

Proof. Fix an edge e and do a Breadth First Search (BFS) on the edges starting
with e. We start with L1 = e and let Lt denote the number of vertices at depth t in
the search i.e the neighbors of Lt−1 that are not in Lt−1. Then |Lt+1| is dominated
by (k−1)Bin

(
|Lt |
( n

k−1

)
, p
)
. So,

E(|Lt+1| | Lt)≤ (k−1)|Lt |
(

n
k−1

)
p≤ θ |Lt |
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where θ = (k−1)c < 1. It follows that if t0 =
2logn

log1/θ
then

Pr(∃e : Lt0 ̸= /0)≤ nkθ
t0 = o(1).

So, w.h.p. there are at most t0 levels. Furthermore, if |Lt | ever reaches log2 n then
the Chernoff bounds imply that w.h.p. |Lt+1| ≤ |Lt |. This implies that the maxi-
mum size of a component is O(log3 n) and hence, by Lemma 12.4, the maximum
size is O(logn).

Lemma 12.6. If c > 1
k−1 then w.h.p. there is a unique giant component of size

Ω(n) and all other components are of size O(logn).

Proof. We consider BFS as in Lemma 12.5. We choose a vertex v and begin to
grow a component from it. Sometimes the component we grow has size O(logn),
in which case, we choose a new vertex, not yet seen in the search and grow another
component. We argue that w.h.p. (i) after O(logn) attempts, we grow a component
of size at least log2 n and (ii) this component is of size Ω(n).

We say that we explore Lt \ Lt−1 when we determine Lt+1. With Lt as in
Lemma 12.5, we see that if we have explored at most log4 n vertices then given Lt ,
|Lt+1| dominates Yt = (k− 1)Bin

(
|Lt |
(n−o(n)

k−1

)
, p
)
−Xt where Xt is an overcount

due to vertices outside Lt that are in two edges containing vertices of Lt . We have

E(Xt)≤ n|Lt |2
(

n
k−3

)
p = O

(
log8 n

n

)
.

Now

E(Yt) = (k−1)|Lt |
(

n−o(n)
k−1

)
p = (1−o(1))c|Lt |= θ |Lt | where θ > 1.

The Chernoff bounds
(

applied to Bin
(
|Lt |
(n−o(n)

k−1

)
, p
))

imply that

P
(

Yt ≤
1+θ

2
|Lt |
)
≤ exp

{
−(θ −1)2|Lt |

3(k−1)

}
.

So, for t = O(log logn) we have

P
(
|Lt | ≥

(
1+θ

2

)t)
≥

t

∏
ℓ=1

(
1− exp

{
−
(θ −1)2 (1+θ

2

)ℓ
3(k−1)

})
−O

(
t log8 n

n

)
(12.4)
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≥ γ,

where γ > 0 is a positive constant. This lower bound of γ follows from the fact

that ∑
∞
ℓ=1 exp

{
− (θ−1)2( 1+θ

2 )
ℓ

3(k−1)

}
converges, see Apostol [51], Theorem 8.55. Note

that if t = 2loglogn
log 1+θ

2
then

(1+θ

2

)t
= log2 n. It follows that the probability we fail to

grow a component of size log2 n after s attempts is at most (1− γ)s. Choosing
s = 2logn

log1/(1−γ) we see that after exploring O(log3 n) vertices, we find a component

of size at least log2 n, with probability 1−n−(1−o(1)).
We show next that with (conditional) probability 1−O(n−(1−o(1))) the com-

ponent of size at least log2 n will in fact have at least n0 = n(k−1)/k logn vertices.
We handle Xt ,Yt exactly as above. Going back to (12.4), if we run BFS for another
O(logn) steps then, starting with |Lt0| ≈ log2 n, we have

P
(
|Lt0+t | ≥

(
1+θ

2

)t

log2 n
)

≥
t

∏
ℓ=1

(
1− exp

{
−(θ −1)2 log2 n

3(k−1)

})
−O

(
log9 n

n

)
= 1−n−(1−o(1)). (12.5)

It follows that w.h.p. Hn,p;k only contains components of size O(logn) and Ω(no).
For this we use the fact that we only need to apply (12.5) less than n/n0 times.

We now prove that there is a unique giant component. This is a simple sprin-
kling argument. Suppose that we let (1− p) = (1− p1)(1− p2) where p2 =

1
ωnk−1

for some ω → ∞ slowly. Then we know from Lemma 12.4 that there is a gap in
component sizes for H(n, p1,k). Now add in the second round of edges with prob-
ability p2. If C1,C2 are distinct components of size at least n0 then the probability
there is no C1 : C2 edge added is at most

(1− p2)
∑

k−1
i=1 (

n0
i )(

n0
k−i) ≤ exp

{
−

∑
k−1
i=1
(n0

i

)( n0
k−i

)
ωnk−1

}
≤

exp

{
−

2k−1nk
0

ωnk−1

}
= exp

{
−2k−1 logk n

ω

}
.

So, w.h.p. all components of size at least n0 are merged into one component.

We now look at the size of this giant component. The fact that almost all small
components are hypertrees when c < 1

k−1 yields the following lemma. The proof
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follows that of Lemma 2.13 and is left as Exercise 13.4.9. For c > 0 we define

x = x(c) =

{
c c≤ 1

k−1
The solution in

(
0, 1

k−1

)
to xe−(k−1)x = ce−(k−1)c c > 1

k−1
.

Lemma 12.7. Suppose that c > 0 is constant and c(k−1) ̸= 1 and x is as defined
above. Then

∞

∑
ℓ=0

cℓ((k−1)ℓ+1)ℓe−c((k−1)ℓ+1)

ℓ!((k−1)ℓ+1)
=
(x

c

)1/(k−1)
.

It follows from Lemmas 12.6 and 12.7 that we have

Lemma 12.8. If c > 1
k−1 then w.h.p. there is a unique giant component of size

≈
(

1−
(x

c

)1/(k−1)
)

n.

The connectivity threshold for Hn,p;k coincides with minimum degree at least
one. The proof is straightforward and is left as Exercise 13.4.10.

Lemma 12.9. Let p = logn+cn

(n−1
k−1)

. Then

lim
n→∞

P(Hn,p;k is connected) =


0 cn→−∞.

e−e−c
cn→ c.

1 cn→ ∞.

12.2 Hamilton Cycles
Suppose that 1 ≤ r < k. An r-overlapping Hamilton cycle C in a k-uniform hy-
pergraph H = (V,E ) on n vertices is a collection of mr = n/(k− r) edges of H
such that for some cyclic order of [n] every edge consists of k consecutive vertices
and for every pair of consecutive edges Ei−1,Ei in C (in the natural ordering of
the edges) we have |Ei−1∩Ei| = r. Thus, in every r-overlapping Hamilton cycle
the sets Ci = Ei \Ei−1, i = 1,2, . . . ,mr, are a partition of V into sets of size k− r.
Hence, mr = n/(k− r). We thus always assume, when discussing r-overlapping
Hamilton cycles, that this necessary condition, k− r divides n, is fulfilled. In the
literature, when r = k−1 we have a tight Hamilton cycle and when r = 1 we have
a loose Hamilton cycle.

In this section we will restrict our attention to the case r = k− 1 i.e. tight
Hamilton cycles. So when we say that a hypergraph is Hamiltonian, we mean that
it contains a tight Hamilton cycle. The proof extends easily to r ≥ 2. The case
r = 1 poses some more problems and is discussed in Frieze [390], Dudek, Frieze
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[305] and Dudek, Frieze, Loh and Speiss [307] and in Ferber [352]. Also, see
Section 22. The following theorem is from Dudek and Frieze [306]. Furthermore,
we assume that k ≥ 3.

Theorem 12.10.
(i) If p≤ (1− ε)e/n, then w.h.p. Hn,p;k is not Hamiltonian.

(ii) If k = 3 and np→ ∞ then Hn,p;k is Hamiltonian w.h.p.

(iii) For all fixed ε > 0, if k ≥ 4 and p≥ (1+ ε)e/n, then w.h.p. Hn,p;k is Hamil-
tonian.

Proof. We will prove parts (i) and (ii) and leave the proof of (iii) as an exercise,
with a hint.

Let ([n],E ) be a k-uniform hypergraph. A permutation π of [n] is Hamilton
cycle inducing if

Eπ(i) = {π(i−1+ j) : j ∈ [k]} ∈ E f or all i ∈ [n].

(We use the convention π(n+ r) = π(r) for r > 0.) Let the term hamperm refer to
such a permutation.

Let X be the random variable that counts the number of hamperms π for Hn,p;k.
Every Hamilton cycle induces at least one hamperm and so we can concentrate on
estimating P(X > 0).

Now
E(X) = n!pn.

This is because π induces a Hamilton cycle if and only if a certain n edges are all
in Hn,p;k.

For part (i) we use Stirling’s formula to argue that

E(X)≤ 3
√

n
(np

e

)n
≤ 3
√

n(1− ε)n = o(1).

This verifies part (i).
We see that

E(X)≥
(np

e

)n
→ ∞ (12.6)

in parts (ii) and (iii).
Fix a hamperm π . Let H(π) = (Eπ(1),Eπ(2), . . . ,Eπ(n)) be the Hamilton

cycle induced by π . Then let N(b,a) be the number of permutations π ′ such that
|E(H(π))∩E(H(π ′))| = b and E(H(π))∩E(H(π ′)) consists of a edge disjoint
paths. Here a path is a maximal sub-sequence F1,F2, . . . ,Fq of the edges of H(π)
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such that Fi∩Fi+1 ̸= /0 for 1≤ i < q. The set
⋃q

j=1 Fj may contain other edges of
H(π). Observe that N(b,a) does not depend on π .

Note that

E(X2)

E(X)2 =
n!N(0,0)p2n

E(X)2 +
n

∑
b=1

b

∑
a=1

n!N(b,a)p2n−b

E(X)2 .

Since trivially, N(0,0)≤ n!, we obtain,

E(X2)

E(X)2 ≤ 1+
n

∑
b=1

b

∑
a=1

n!N(b,a)p2n−b

E(X)2 . (12.7)

We show that

n

∑
b=1

b

∑
a=1

n!N(b,a)p2n−b

E(X)2 =
n

∑
b=1

b

∑
a=1

N(b,a)pn−b

E(X)
= o(1). (12.8)

The Chebyshev inequality implies that

P(X = 0)≤ E(X2)

E(X)2 −1 = o(1),

as required.
It remains to show (12.8). First we find an upper bound on N(b,a). Choose a

vertices vi, 1≤ i≤ a, on π . We have at most

na (12.9)

choices. Let
b1 +b2 + · · ·+ba = b,

where bi ≥ 1 is an integer for every 1≤ i≤ a. Note that this equation has exactly(
b−1
a−1

)
< 2b (12.10)

solutions. For every i, we choose a path of length bi in H(π) which starts at vi.
Suppose a path consists of edges F1,F2, . . . ,Fq, q = bi. Assuming that F1, . . . ,Fj
are chosen, we have at most k possibilities for Fj+1. Hence, every such a path can
be selected in most kbi ways. Consequently, we have at most

a

∏
i=1

kbi = kb



12.2. Hamilton Cycles 261

choices for all a paths.
Thus, by the above considerations we can find a edge disjoint paths in H(π)

with the total of b edges in at most

na(2k)b (12.11)

many ways.
Let P1,P2, . . . ,Pa be any collection of the above a paths. Now we count the

number of permutations π ′ containing these paths.
First we choose for every Pi a sequence of vertices inducing this path in π ′.

We see the vertices in each edge of Pi in at most k! orderings. Crudely, every such
sequence can be chosen in at most (k!)bi ways. Thus, we have

a

∏
i=1

(k!)bi = (k!)b (12.12)

choices for all a sequences.
Now we bound the number of permutations containing these

sequences. First note that
|V (Pi)| ≥ bi + k−1.

Thus we have at most

n−
a

∑
i=1

(bi + k−1) = n−b−a(k−1) (12.13)

vertices not in V (P1)∪ ·· · ∪V (Pa). We choose a permutation σ of V \ (V (P1)∪
·· ·∪V (Pa)). Here we have at most

(n−b−a(k−1))!

choices. Now we extend σ to a permutation of [n]. We mark a positions on σ and
then insert the sequences. We can do it in(

n
a

)
a! < na

ways. Therefore, the number of permutations containing P1,P2, . . . ,Pa is smaller
than

(k!)b(n−b−a(k−1))!na. (12.14)

Thus, by (12.11) and (12.14) and the Stirling formula we obtain

N(b,a)< n2a(2k!k)b(n−b−a(k−1))! < n2a(2k!k)b
√

2πn
(n

e

)n−b−a(k−1)
.
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Since
E(X) = n!pn =

√
(2+o(1))πn

(n
e

)n
pn,

we get
N(b,a)pn−b

E(X)
< (1+o(1))n2a(2k!k)b

(e
n

)b+a(k−1)
p−b.

Finally, since a≤ b we estimate eb+a(k−1) ≤ ekb, and consequently,

N(b,a)pn−b

E(X)
<

(
2k!kek

np

)b 1+o(1)
na(k−3)

. (12.15)

Proof of (ii):
Here k = 3 and np≥ ω . Hence, we obtain in (12.15)

N(b,a)pn−b

E(X)
≤ (1+o(1))

(
2k!kek

ω

)b

.

Thus,

n

∑
b=1

b

∑
a=1

N(b,a)pn−b

E(X)
< (1+o(1))

n

∑
b=1

b
(

2k!kek

ω

)b

= o(1). (12.16)

This completes the proof of part (ii).
We prove Part (iii) by estimating N(b,a) more carefully, see Exercise 12.4.2

at the end of the chapter.
Before leaving Hamilton cycles, we note that Allen, Böttcher,

Kohayakawa, and Person [25] describe a polynomial time algorithm for finding a
tight Hamilton cycle in Hn,p;k w.h.p. when p = n−1+ε for a constant ε > 0.

There is a weaker notion of Hamilton cycle due to Berge [101] viz. an alter-
nating sequence v1,e1,v2, . . . ,vn,en of vertices and edges such that (i) v1,v2, . . . ,vn
are distinct and (ii) vi ∈ ei−1∩ei for i = 1,2, . . . ,n. The cycle is weak if we do not
insist that the edges are distinct. Poole [745] proves that the threshold for the ex-
istence of a weak Hamilton cycle in Hn,m;k is equal to the threshold for minimum
degree one.

12.3 Perfect matchings in r-regular s-uniform hy-
pergraphs

In this section we discuss the use of a powerful method called small subgraph
conditioning. This was first employed by Robinson and Wormald [768] to show
that random regular graphs are Hamiltonian w.h.p.
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Given a hypergraph H with vertex set V , for v∈V , let dH(v) = |{i : v∈ Xi}| be
the degree of v. We call H r−regular if dH(v) = r for all v ∈V . Let now V = [sn],
where [k] = {1,2, . . . ,k} for all positive integers k, and let G = G (n,r,s) = {G =
(V,E) : G is r−regular and s−uniform }. Let H = Hn,r,s be chosen uniformly at
random from G . The main aim of this section is to prove the following result of
Cooper, Frieze, Molloy and Reed [269].

Theorem 12.11. Suppose r,s are fixed positive integers, r ≥ 3, then

lim
n→∞

Pr(Hn,r,s has a perfect matching ) =

{
0 s > σr
1 s < σr

where
σr =

logr
(r−1) log

( r
r−1

) +1.

We note that if r is at least 3, then σr is never an integer, and so this result is
best possible.

Next let f (s) = min{r : s < σr}. Thus f (s) gives the threshold in terms of
degree for a s-uniform hypergraph to almost surely have a perfect matching. The
first few values of f (s) are shown in Table 12.1. For s large, note that f (s) is
approximately es−1, for example e8 = 2980.1 and e9 = 8103.1.

s 2 3 4 5 6 7 8 9 10
f (s) 3 7 19 53 146 401 1094 2977 8098

Table 12.1:

Configurations
Let Wv = {v}× [r] for v∈V = [sn] and W =

⋃
v∈V Wv. Each Wv should be regarded

as a block of r fractional edges for each v ∈ V , thus generalising the concept of
half-edges arising from the use of configurations in the context of graphs. In
this paper, a configuration is a partition of W into m = rn subsets S of size s.
Equivalently, a configuration is a set of m disjoint subsets of W , each of size s. Let
Ω = Ω(n,r,s) be the set of all such configurations, and let F = F(n,r,s) be chosen
randomly from Ω.

For x = (v, i) ∈W we let V (x) = v. If F ∈Ω and S ∈ F we let V (S) = {V (x) :
x ∈ S}. We define the multigraph γ(F) = (V,{V (S) : S ∈ F}).

A configuration F is said to be simple, if S ∈ F implies |V (S)|= s and any two
distinct sets S1,S2 ∈ F satisfy V (S1) ̸=V (S2). Thus γ(F) is s-uniform if and only
if F is simple.
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For us the main properties of the connection between configurations and graphs
are the following.

(A) Each G ∈ G arises from precisely (r!)sn simple configurations F .

(B) lim
n→∞

Pr(F is simple ) = e−(s−1)(r−1)/2

The assertion (B) follows from (12.19) with k = 1, applied to Lemma 12.14 (as
|V (S)|< s is a 1-cycle in the context of this paper), and the observation that

lim
n→∞

Pr(∃S1,S2 ∈ F with V (S1) =V (S2)) = 0.

We will say that a perfect matching of F is a set {Si : i ∈ I} ⊆ F such that
(i) |V (Si)|= s, for all i ∈ I,
(ii) i, j ∈ I, i ̸= j implies V (Si)∩V (S j) = /0, and
(iii)

⋃
i∈I V (Si) =V .

Thus if F is simple, it has a perfect matching if and only if γ(F) has a perfect
matching. Hence Theorem 12.11 will follow immediately from (A) and (B) above
and the theorem below.

Theorem 12.12.

lim
n→∞

Pr(F has a perfect matching ) =

{
0 s > σr
1 s < σr

Outline of a Proof of Theorem 12.12
We use the notation α ≈ β to mean α = (1+ o(1))β where the o(1) term tends
to zero as n tends to infinity. All subsequent inequalities are only claimed to hold
for sufficiently large n.

Suppose that F is chosen randomly from Ω. Let Z(F) denote the number
of perfect matchings in F . The proof of the following lemma is left as Exercise
12.4.3.

Lemma 12.13.

E(Z) ≈
√

s

(
r
(

r−1
r

)(s−1)(r−1)
)n

, (12.17)

E(Z2)

E(Z)2 ≈
√

r−1
r− s

, if s < σr. (12.18)

Notice that the (easy) first part of Theorem 1 now follows immediately since
the right-hand side of (1) tends to zero exponentially fast when s > σr.
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To apply the Analysis of Variance technique, we have to decide on a partition
of Ω. We proceed analogously to Robinson and Wormald. For the moment let b,x
be arbitrarily large fixed positive integers.

We now define a k−cycle of F for integer k ≥ 1.

k = 1: S ∈ F is a 1−cycle if |V (S)|< s.

k = 2: S1,S2 ∈ F form a 2−cycle if |V (S1)∩V (S2)| ≥ 2.

k ≥ 3: S1,S2, . . . ,Sk ∈ F form a k−cycle if there exist distinct v1,v2, . . . ,vk ∈ V
such that vi ∈V (Si)∩V (Si+1) for 1≤ i≤ k, (Sk+1 ≡ S1).

Observe that F is simple if and only if it has no 1-cycles and yields no repeated
edges.

Next let Ck denote the number of k−cycles of F for k≥ 1. For c=(c1,c2, . . . ,cb)∈
Nb, where N = {0,1,2, . . .}, let Ωc = {F ∈Ω : Ck = ck,1≤ k ≤ b}. Let

λk =
((s−1)(r−1))k

2k
. (12.19)

The proof of the following lemma is left as Exercise 12.4.4.

Lemma 12.14. Let c be fixed, then

πc = Pr(F ∈Ωc)≈
b

∏
k=1

λ
ck
k e−λk

k!
.

Now, for x > 0, define

S(x) = {c ∈ Nb : |ck−λk| ≤ xλ
2/3
k ,1≤ k ≤ b},

and
Ω =

⋃
c̸∈S(x)

Ωc.

Let
π = Pr(F ∈Ω).

For c ∈ Nb let
Ec = E(Z | F ∈Ωc)

and
Vc = Var(Z | F ∈Ωc).

Then we have
E(Z2) = ∑

c∈Nb

πcVc + ∑
c∈Nb

πcE2
c . (12.20)
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The following two lemmas contain the most important observations. Lemma
12.15 shows that for most groups, the group mean is large and Lemma 19.6 shows
that most of the variance can be explained by the variance between groups. The
proof of the following lemma is left as Exercise 12.4.5.

Lemma 12.15. For all sufficiently large x the following assertions hold.
(a) π ≤ e−αx for some absolute constant α > 0.
(b) c ∈ S(x) implies

Ec ≥ e−(β+γx)E(Z),

for some absolute constants β ,γ > 0. □

The proof of the following lemma is left as Exercise 12.4.6.

Lemma 12.16. If x is sufficiently large then

∑
c∈S(x)

πcE2
c ≥

(
1−be−3γx)(1−

(
s−1
r−1

)b
)(√

r−1
r− s

)
E(Z)2.

where γ is as in Lemma 12.15. □

Hence we have from (12.18) and (12.20),

∑
c∈Nb

πcVc ≤ δ E(Z)2, (12.21)

where δ =
(
be−3γx +( s−1

r−1)
b) The rest is an application of the Chebyshev inequal-

ity. Define the random variable Ẑ(F) by

Ẑ(F) = Ec, if F ∈Ωc.

Then for any t > 0

Pr(|Z− Ẑ| ≥ t) ≤ E((Z− Ẑ)2/t2)

= ∑
c∈Nb

πcVc/t2

≤ δ E(Z)2/t2, (12.22)

where the last inequality follows from (12.21).
Now put t = e−(β+γx)E(Z)/2 where β ,γ are from Lemma 12.15. Applying

Lemma 12.15 we obtain

Pr(Z ̸= 0) ≥ Pr(Z ≥ e−(β+γx)E(Z)/2)
≥ Pr(

∣∣Z− Ẑ
∣∣≤ t ∧ (F ̸∈Ω))
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≥ 1−4δe2(β+γx)−π

Hence, using Lemma 12.15,

lim
n→∞

Pr(Z = 0)≤ 4e2β

(
be−γx +

(
s−1
r−1

)b

e2γx

)
+ e−αx (12.23)

Note that (s− 1)/(r− 1) < 1/2 so putting b = 3γx/ log2 and choosing x large
enough the right-hand side of (12.23) becomes as small as we like. Hence (12.23)
implies that limn→∞ Pr(Z = 0) = 0, proving Theorem 12.12.

At this point we have achieved our objective of introducing the notion of small
subgraph conditioning.

12.4 Exercises
12.4.1 Show that if m = cn logn then (i) ck < 1 implies that Hn,m;k has isolated

vertices w.h.p. and (ii) if ck > 1 then Hn,m;k is connected w.h.p.

12.4.2 Use the configuration model to k-uniform, k ≥ 3, hypergraphs. Use it to
show that if r = O(1) then the number of r-regular, k-uniform hypergraphs
with vertex set [n], k|n is asymptotically equal to

(rn)!
(k!)rn/kr!n(rn/k)!

e−(k−1)(r−1)/2.

12.4.3 Prove Lemma 12.13.

12.4.4 Prove Lemma 12.14.

12.4.5 Prove Lemma 12.15.

12.4.6 Prove lemma 12.16.

12.4.7 Generalise the notion of switchings to k-uniform hypergraphs. Use them to
extend the result of Exercise 12.4.2 to r = nε , for sufficiently small ε > 0.

12.4.8 Extend the result of Exercise 12.4.2 to k-uniform, k≥ 3, hypergraphs with
a fixed degree sequence d = (d1,d2, . . . ,dn), and maximum degree ∆ =
O(1). Let M1 = ∑

n
i=1 di where k|M1 and M2 = ∑

n
i=1 di(di−1). Show that

the number of k-uniform hypergraphs with degree sequence d is asymp-
totically equal to

M1!
k!M1/k (∏n

i=1 di!)(M1/k)!
exp
{
−(k−1)M2

2M1

}
.
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12.4.9 Prove Lemma 12.7.

12.4.10 Prove Lemma 12.9.

12.4.11 Let Hn,d be a random k-uniform hypergraph with a fixed degree sequence.
Suppose that there are λin vertices of of degree i = 1,2, . . . ,L = O(1). Let
Λ = ∑

L
i=1 λii((i−1)(k−1)−1). Prove that for ε > 0, we have

(a) If Λ < −ε then w.h.p. the size of the largest component in Hn,d is
O(logn).

(b) If Λ > ε then w.h.p. there is a unique giant component of linear size
≈Θn where Θ is defined as follows: let K = ∑

L
i=1 iλi and

f (α) = K− kα−
L

∑
i=1

iλi

(
1− kα

K

)i/k

. (12.24)

Let ψ be the smallest positive solution to f (α) = 0. Then

Θ = 1−
L

∑
i=1

λi

(
1− kψ

K

)i/k

.

If λ1 = 0 then Θ = 1, otherwise 0 < Θ < 1.

(c) In Case (b), the degree sequence of the graph obtained by deleting the
giant component satisfies the conditions of (a).

12.4.12 Prove Part (iii) of Theorem 12.10 by showing that

N(b,a)≤ n2a
(

b−1
a−1

)
∑
t≥0

2t+a(n−b−a(k−1)− t)!(k!)a+t

≤ ck(2k!)a(n−b−a(k−1))!,

where ck depends only on k.
Then use (12.7).

12.4.13 In a directed k-uniform hypergraph, the vertices of each edge are totally
order. Thus each k-set has k! possible orientations. Given a permutation
i1, i2, . . . , in of [n] we construct a directed ℓ-overlapping Hamilton cycle
E⃗1 = (i1, . . . , ik), E⃗2 = (ik−ℓ+1 . . . , i2k−ℓ), . . . , E⃗mℓ

= (in−(k−ℓ)+1, . . . , iℓ). Let
H⃗n,p:k be the directed hypergraph in which each possible directed edge is
included with probability p. Use the idea of McDiarmid in Section 11.2 to
show (see Ferber [352]) that

P(H⃗n,p:k contains a directed r-overlapping Hamilton cycle)
≥ P(Hn,p;k contains an r-overlapping Hamilton cycle).
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12.4.14 A hypergraph H = (V,E) is 2-colorable if there exists a partition of V into
two non-empty sets A,B such that e∩A ̸= /0, e∩B ̸= /0 for all e ∈ E. Let
m =

(n
k

)
p. Show that if c is sufficiently large and m = c2kn then w.h.p.

Hn,p;k is not 2-colorable.

12.4.15 Verify (22.3) and (22.4)

12.4.16 Given a hypergraph H, let a vertex coloring be strongly proper if no edge
contains two vertices of the same color. The strong chromatic number
χ1(H) is the minimum number of color’s in a strongly proper coloring.
Suppose that k ≥ 3 and 0 < p < 1 is constant. Show that w.h.p.

χ1(Hn,p;k)≈
d

2logd
where d =

nk−1 p
(k−2)!

.

12.5 Notes

Components and cores

If H =(V,E) is a k-uniform hypergraph and 1≤ j≤ k−1 then two sets J1,J2 ∈
(V

j

)
are said to be j-connected if there is a sequence of serts E1,E2, . . . ,Eℓ such that
J1 ⊆ E1,J2 ⊆ Eℓ and |Ei ∩Ei+1| ≥ j for 1 ≤ i < ℓ. This defines an equivalence
relation on

(V
j

)
and the equivalance classes are called j-components. Karoński

and Łuczak [549] studied the sizes of the 1-components of the random hypergraph
Hn,m;k and proved the existence of a phase transition at m≈ n

k(k−1) . Cooley, Kang
and Koch [240] generalised this to j-components and proved the existence of a

phase transition at m ≈ (n
k)(

(k
j)−1

)
( n

k− j)
. As usual, a phase transition corresponds to

the emergence of a unique giant, i.e. one of order
(n

j

)
.

The notion of a core extends simply to hypergraphs and the sizes of cores
in random hypergraphs has been considered by Molloy [684]. The r-core is the
largest sub-hypergraph with minimum degree r. Molloy proved the existence of
a constant ck,r such that if c < cr,k then w.h.p. Hn,cn;k has no r-core and that if
c > cr,k then w.h.p. Hn,cn;k has a r-core. The efficiency of the peeling algorithm
for finding a core has been considered by Jiang, Mitzenmacher and Thaler [527].
They show that w.h.p. the number of rounds in the peeling algorithm is asymptot-
ically log logn

log(k−1)(r−1) if c < cr,k and Ω(logn) if c > cr,k. Gao and Molloy [423] show

that for |c− cr,k| ≤ n−δ , 0 < δ < 1/2, the number of rounds grows like Θ̃(nδ/2).
In this discussion, (r,k) ̸= (2,2).
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Chromatic number
Krivelevich and Sudakov [602] studied the chromatic number of the random k-
uniform hypergraph Hn,p;k. For 1 ≤ γ ≤ k− 1 we say that a set of vertices S is
γ-independent in a hypergraph H if |S∩ e| ≤ γ . The γ-chromatic number of a
hypergraph H = (V,E) is the minimum number of sets in a partition of V into
γ-independent sets. They show that if d(γ) = γ

(k−1
γ

)(n−1
k−1

)
p is sufficiently large

then w.h.p. d(γ)

(γ+1) logd(γ) is a good estimate of the γ-chromatic number of Hn,p;k.

Dyer, Frieze and Greenhill [322] extended the results of [6] to hypergraphs.
Let uk,ℓ = ℓk−1 logℓ. They show that if uk,ℓ−1 < c < uk,ℓ then w.h.p. the (weak
(γ = k−1)) chromatic number of Hn,cn;k is either k or k+1.

Achlioptas, Kim, Krivelevich and Tetali [3] studied the 2-colorability of H =
Hn,p;k. Let m =

(n
k

)
p be the expected number of edges in H. They show that if

m = c2kn and c > log2
2 then w.h.p. H is not 2-colorable. They also show that if c

is a small enough constant then w.h.p. H is 2-colorable.

Orientability
Gao and Wormald [425], Fountoulakis, Khosla and Panagiotou [373] and
Lelarge [619] discuss the orientability of random hypergraphs. Suppose that 0 <
ℓ < k. To ℓ-orient an edge e of a k-uniform hypergraph H = (V,E), we assign
positive signs to ℓ of its vertices and k− ℓ negative signs to the rest. An (ℓ,r)-
orientation of H consists of an ℓ-orientation of each of its edges so that each
vertex receives at most r positive signs due to incident edges. This notion has
uses in load balancing. The papers establish a threshold for the existence of an
(ℓ,r)-orientation. Describing it it is somewhat complex and we refer the reader to
the papers themselves.

VC-dimension
Ycart and Ratsaby [862] discuss the VC-dimension of H = Hn,p;k. Let p = cn−α

for constants c,α . They give the likely VC-dimension of H for various values of
α . For example if h ∈ [k] and α = k− h(h−1)

h+1 then the VC-dimension is h or h−1
w.h.p.

Erdős-Ko-Rado
The famous Erdős-Ko-Rado theorem states that if n > 2k then the maximum size
of a family of mutually intersecting k-subsets of [n] is

(n−1
k−1

)
and this is achieved
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by all the subsets that contain the element 1. Such collections will be called stars.
Balogh, Bohman and Mubayi [62] considered this problem in relation to the ran-
dom hypergraph Hn,p;k. They consider for what values of k, p is it true that maxi-
mum size intersecting family of edges is w.h.p. a star. More recently Hamm and
Kahn [462], [463] have answered some of these questions. For many ranges of
k, p the answer is as yet unknown.

Bohman, Cooper, Frieze, Martin and Ruszinko [133] and Bohman,
Frieze, Martin, Ruszinko and Smyth [136] studied the k-uniform hypergraph H
obtained by adding random k-sets one by one, only adding a set if it intersects all
previous sets. They prove that w.h.p. H is a star for k = o(n1/3) and were able to
analyse the structure of H for k = o(n5/12).

Hamilton cycles in regular hypergraphs
Dudek, Frieze, Ruciński and Šileikis [308] made some progress on loose Hamilton
cycles in random regular hypergraphs. Their approach was to find an embeddding
of Hn,m;k in a random regular k-uniform hypergraph.
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Chapter 13

Random Subgraphs of the
Hypercube

While most work on random graphs has been on random subgraphs of Kn, a com-
plete graph on n vertices, it is true to say that there has also been a good deal of
work on random subgraphs of the n-cube, Qn. This has vertex set Vn = {0,1}n

and an edge between u,v∈Vn iff they differ in exactly one coordinate. Notice that
Qn has N = 2n vertices and m = n2n−1 edges. To obtain a subgraph, we indepen-
dently delete edges of Qn, each with probability 1− p or, alternatively, we retain
each of its edges independently and with probability p. We denote the resulting
subgraph by Qn

p.

13.1 The Evolution

As we have already learned from Chapter 2 the evolution of Erdős - Rényi-type
random graphs has clearly distinguishable phases. In fact, this is also a character-
istic feature of the evolution of a random subgraph Qn

p. Indeed, in the first phase
(called subcritical) all connected components are small, of order not exceeding
O(n), while after passing a critical edge probability pc and so entering its next
phase (called supercritical), a giant connected component emerges which domi-
nates the structure of Qn

p. The next theorem, due to Ajtai, Komlós and Szeméredi
[10] and Bollobás, Kohayakaya and Łuczak [170], describes this process in de-
tails. A recent, elegant, compact and self-contained proof presented here is due to
Krivelevich [590]

Theorem 13.1. Let c > 0 be constant, and let p = c
n . Then

(i) if c < 1 then w.h.p. the order of the largest component of Qn
p is at most O(n),
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(ii) if c> 1 then w.h.p. Qn
p has a unique giant connected component, whose order

is asymptotic to y2n, where y = y(c) is the (unique) solution in (0,1) of the
equation y = 1− exp{−cy}, while all its remaining connected components
are of order at most O(n).

Proof. We start with a short proof of statement (i).
Let p = c

n where c < 1. Put c = 1−ε , where ε is sufficiently small. Let us run the
Breadth First Search (BFS) algorithm on Qn

p guided by a sequence of random bits
X̄ = (Xi)

m
i=1, where m = n2n−1, and the Xi’s are independent Bernoulli(p) random

variables. We move step by step exposing edges via BFS, each time deciding
whether a given edge queried at step i is an edge of Qn

p if and only if the respective
random bit Xi = 1. Suppose that, after finishing the search, Qn

p has a connected
component K with more than k vertices, where k is a positive integer. Suppose now
that we are in that moment of the process that we has just discovered the (k+1)-th
vertex of K. In the phase of discovering K up until this moment, only the edges of
Qn incident to the set K0 of the first k discovered vertices of K have been queried,
and k−1 edges of Qn

p induced by this set of vertices have been revealed. So there
are at least k−1 edges of Qn spanned by K0. Hence, the total number of edges of
Qn queried so far in this phase is at most kn− (k−1) = k(n−1)+1.

It follows that the sequence X̄ contains k(n− 1)+ 1 consecutive bits Xi out
of which at least k are equal to 1. Probability of such event can be bounded by
standard Chernoff- type bound (see Section 27.4) as follows

P(Binom(k(n−1)+1,(1− ε)/n)≥ k)≤ e−ε2k/4.

Therefore the probability of having at least one interval of length k(n− 1) + 1
in the sequence of m = n2n−1 < 22n random bits with at least k ones is at most
22ne−ε2k/4. Taking k = 9n/ε2, we see that w.h.p. there is no such interval in X̄ ,
and so w.h.p. Qn

p has no component larger than k when c < 1.
Now we proceed to the proof of statement (ii) of Theorem 13.1. Let p = c

n
where c > 1 and assume that t > 1 is a fixed integer. Let v ∈ V (Qn), and denote
by C(v) the connected component Qn

p containing v. Finally, let

W = {v : |C(v)| ≥ nt}.

The main objective of the first part of the proof of statement (ii) is to show that
w.h.p.

(a) all connected components outside W are of order O(n),

(b) |W | = (1+o(1))y2n, where y = y(c) is the (unique) solution in (0,1) of the
equation y = 1− exp{−cy},
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(c) every vertex v ∈V (Qn) is at distance at most 2 (in Qn) from W .

To prove (a), let |C(v)|= k where k ∈
[ n

c−1−lnc ,n
t]. Obviously the connected

component C(v) spans a tree and no vertex of such a tree connects with any vertex
lying outside the component. So, for such an event to occur, there should be a tree
T of order k in Qn with no edges of Qn between V (T ) and V (Qn)\V (T ) present
in Qn

p. There are at least k(n−2log2 k) such edges in Qn (Harper’s isoperimetric
inequality, see Exercise 13.4.2). Notice also that the number of trees T rooted
at vertex v can be bounded by (en)k−1 (see Exercise 13.4.1). Combining both
observations, we get

P
(

2n
c−1− logc

≤ |C(v)| ≤ nt
)
≤

nt

∑
k= 2n

c−1−logc

(en)k−1 pk−1(1− p)k(n−2log2 k)

=
nt

∑
k= 2n

c−1−logc

(en)k−1
(c

n

)k−1
e−

c
n (kn−2k log2 k)

≤
nt

∑
k= 2n

c−1−logc

(
ece−c+ 2c log2 k

n

)k

=
nt

∑
k= 2n

c−1−logc

(
e−c+1+logc+o(1)

)k
= o(2−n).

Applying the union bound over all 2n vertices we see that Qn
p has no com-

ponents of order between 2n
c−1−lnc and nt , and so the statement (a) that w.h.p. all

components outside W are of the order O(n) holds.
To see that statement (b) also holds we first estimate the probability that |C(v)| is
between n1/2 and nt . One can easily see, following the computations above, that

P
(

n1/2 ≤ |C(v)| ≤ nt
)
≤

nt

∑
k=n1/2

(
ece−c+ 2c log2 k

n

)k
= o(1), (13.1)

since ece−c < 1 for c ̸= 1.
Return now to the BFS algorithm on Qn introduced in the proof of statement
(i), starting from v and feeding it with independent Bernoulli(p) bits, one for
each queried edge of Qn. For as long as |C(v)| ≤ n1/2, every vertex u ∈ V (Qn),
queried for neighbors outside of the current component C(v), has at least n−n1/2

potential neighbors to query. Hence the exploration process can be coupled with
a Galton-Watson tree rooted at v with offspring distribution Binom(n− n1/2, p).
Since (n− n1/2)p = c− o(1) the component C(v) grows to n1/2 with the same
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probability as the probability of survival of the respective Galton-Watson tree, i.e.,
with probability asymptotic to y, as specified in (a) (see, for example, Durrett’s
book [317]).
This, combined with (13.1) leads to the conclusion, that

P
(
|C(v)| ≥ nt)= (1−o(1))y,

and hence that
E(|W |) = (1+o(1))y2n.

One can easily check that |W | is highly concentrated around its expectation. In-
deed, applying edge-exposure martingale (see Section 27.7), we see that adding
or deleting an edge can change the value of |W | by at most 2nt . Hence by the
standard martingale inequality (see Theorem 27.16),

P
(
| |W |−E(|W |) |≥ 22n/3

)
≤ 2exp

(
− 24n/3

2n2n−1(2nt)2

)
= o(1).

Therefore w.h.p.
|W |= (1+o(1))y2n.

which completes the proof of (b).
Finally, to see that (c) holds we choose a vertex v0 with all its coordinates

equal to 0 and show that it is at distance at most two from W with probability
1−o(2−n). Set ε = (c−1)/c and let I be the set of first ⌊εn/2⌋ vertex coordinates.
For i ̸= j ∈ I, consider the subcube of Qn

Hn
i j = {v ∈Qn : vi = v j = 1,vk = 0 for all k ∈ I \{i, j}}.

Let ui j be the vertex with 1 in coordinates i and j and 0 in all other coordinates.
Clearly, ui j is at distance 2 from v0 and ui j belongs to Hn

i j. Moreover, the sub-
cubes Hn

i j are vertex disjoint and have dimension n′ = n−⌊εn/2⌋ ≥ (1− ε/2)n.
Generating a random subgraph of Hn

i j with edge probability p = c/n, c > 1 and
observing that n′p≥ (1−ε/2)np= (1−ε/2)c= (c+1)/2, we have that the com-
ponents of Hn

i j containing ui j behave the same as the components C(v) of Qn
p (see

(a)). Therefore

P
(
|C(ui j)| ≥ nt)= (1+o(1))y(n′p) = (1+o(1))

(
c+1

2

)
≥ ,.

for some δ = δ (c)> 0.
These events are independent for distinct pairs {i, j}. Hence the probability that
v0 is not at distance at most two (in Qn) from W is at most

P
(
Binom(ε2n2/5, ). = 0

)
≤ e−Ω(n2) = o(2−n).
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Taking the union bound over vertices v leads to the conclusion that every vertex
v ∈Qn is w.h.p. at distance at most two from W and (c) follows.

In the final step of the proof we will show that in fact the vertices composing
the set W belong not to separate large components but are members of the same
giant component of the order asymptotic to y2n. To this goal we apply the well
known coupling technique, introduced in the first section of Chapter 1, to generate
a random subgraph Qn

p in two steps.
Let p = c/n, c > 1 and probabilities p1 and p2 be defined as follows. Let

p2 = 1/n5 and let p1 be such that (1− p1)(1− p2) = 1− p. Let us generate two
independent random subgraphs Qn

p1
and Qn

p2
on the same set of 2n vertices, and

then take their union. Note that Qn
p1
∪Qn

p2
has the same distribution as Qn

p and

that p1 =
c−o(1)

n .
Define sets C1(v) and W1 in Qn

p1
in an analogous way to C(v) and W in Qn

p, i.e.,
C1(v) denotes the connected component of a random subgraph Qn

p1
containing

vertex v, while
W1 = {v : |C1(v)| ≥ nt}.

Note that Qn
p1

differs only slightly from Qn
p, and therefore the set W1 shares the

properties (a), (b) and (c) with set W , i.e, all connected components outside W1
are of order O(n), |W1|= (1+o(1))y2n, where y = y(c) is the (unique) solution in
(0,1) of the equation y = 1−exp{−cy}, and every vertex v∈V (Qn) is at distance
at most two (in Qn) from W1.

Now, fix t = 41 and generate and expose the edges of Qn
p2

. Under these cir-
cumstances we will show that all components C1(v) with at least n41 vertices
merge into one component in the union of Qn

p1
∪Qn

p1
∼Qn

p.
Assume that it is not true. Then we can partition the components Qn

p1
[W1] of Qn

p1
induced by vertex set W1 into two families A and B such that there are no paths
in Qn

p2
between sets

A :=
⋃

C1∈A
V (C1) and B :=

⋃
C1∈B

V (C1).

Let s ≤ 2n be the total number of components in Qn
p1
[W1], and let r ≤ s/2 be

the number of components in the family with fewer components. Then |A|, |B| ≥
rn41. Now, since every vertex of Qn is at distance at most two from A∪B, we
can partition V (Qn) into sets A′,B′, where A ⊆ A′ and A′ contains all vertices of
V (Qn) \B at distance at most two from A, and every vertex in B′ := V (Qn) \A′

is at distance at most two from B. By Harper’s edge isoperimetric inequality (see
Exercise 13.4.3), Qn has at least min{|A′|, |B′|} ≥ rn41 edges between A′ and B′.
Since every vertex in A′ is at distance at most two from A and every vertex in B′

is at distance at most two from B, we can extend each edge crossing between A′
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and B′ to a path of length at most five between A and B. As every edge of Qn

is contained in less than 5n4 paths of length at most five, by applying a simple
greedy argument we obtain a family of

rn41

5 ·5n4 =
rn37

25

edge disjoint paths of length at most five between A and B. The probability that
none of these paths is in Qn

p2
is at most(
1− p5

2

)rn37/25
≤ ern12/25.

Also s < 2n, and hence the number of ways to partition the components Qn
p1
[W1]

into A and B with r components in one of the families is at most
(s

r

)
. There-

fore the probability that the components of Qn
p1
[W1] do not merge into a single

component in Qn
p is at most

s/2

∑
r=1

(
s
r

)
e−rn12/25 ≤

s/2

∑
r=1

(
se1−n12/25

r

)r

= o(1).

Hence w.h.p. all components of W1 merge into a single giant component L1 with
at least (1+o(1))y2n vertices.
It remains to check the orders of components outside of the set W1. Define an
auxilliary graph Γ whose vertices are the components of Qn

p1
outside of W1, where

two vertices (components) are connected by an edge if Qn
p2

contains at least one
edge between them. By the property (a) all components of Qn

p1
outside of W1 are

of order O(n), and thus, using a very crude estimate, there are w.h.p. O(n2) edges
of Qn between every pair of connected components. Hence every pair of vertices
of Γ are connected by an edge independently and with probability at most

q = 1− (1− p2)
n2
= O(n−3).

It follows that the maximum component size in Γ is at most n. Indeed, the maxi-
mum degree of Γ is ∆ = O(n3) and so

Pr(Γ contains a component of order k)≤ 2n(e∆)kqk = 2nO(kn−2)k. (13.2)

(At most 2n(e∆)k choices for a tree of size k in Γ (see Exercise 13.4.1).) Thus
putting k = n in (13.2) we see that we have the claimed bound on component size
in Γ.

Recalling that w.h.p. every component of Qn
p1

outside of W1 has O(n) vertices,
it follows that w.h.p. all components of Qp

n outside of W1 are of the order O(n2).
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Hence following the proof of property (a), we conclude that in fact all such com-
ponents Li, i≥ 2 satisfy

|Li| ≤
2n

c−1− lnc
.

Finally, by property (b), we can give a high probability upper bound on L1 in Qp
n ,

which is
|L1| ≤ (1+o(1))y2n,

and so the proof of statement (ii) is completed.

13.2 Connectivity

The natural question as to whether connectivity of Qn
p enjoys a threshold property

was answered by Burtin in [205], (and, in the language of boolean functions, by
Saposhenko in [789]) who proved that p = 1/2 is the threshold for connectedness.

Theorem 13.2.

lim
n→∞

P(Qn
p is connected) =

{
0 if p < 1/2,
1 if p > 1/2.

Next Erdős and Spencer [338] proved that the limiting probability that Qn
p is

connected tends to 1/e for p = 1/2 and later Bollobás in [158] established the
hitting time for connectedness. To understand the nature of Bollobás’ result and
why it strengthen Burtin’s threshold theorem, we have to recall the notion of a
random graph process (see Section 2 ), now in the context of the subgraph Qn.
Let Q0 be the empty (no edges) subgraph of Qn. At each step 1 ≤ k ≤ m, where
m = n2n−1, Qn

t is obtained from Qn
t−1 by adding uniformly at random a new edge

from Qn. We call Qn
t the state of a random hypercube process Q̃n

t = {Qn
t }n2n−1

0 at
time t. The hitting time of a monotone increasing non-empty graph property P is
the random variable equal to the time τ for which Qn

τ ∈P , but Qn
τ−1 /∈P .

Theorem 13.3. Consider the random hypercube process Q̃n
t . Let τD denote the

hitting time of minimum degree (at least) one, and let τC be the hitting time for
connectivity of Qn

p. Then, w.h.p., τC = τD.

To prove Bollobás’ result we follow a recent , simplified and self contained
version of the proof by Diskin and Krivelevich, given in [300]
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Proof. (of Theorem 13.3)
Note that τC ≥ τD deterministically. To show that τC ≤ τD we will show that

the final moments of the evolution of random hypercube before it becomes con-
nected, resemble the analogous moments of the evolution of Gn,p. Thus, we show
that there exists t such that w.h.p. Qn

t has a unique connected component of or-
der 2n− o(2n) and all other vertices of Qn

t are isolated vertices whose distance
between them (in Qn) is at least two. Indeed, then any new edge added in the
process either falls within unique giant component or connects an isolated ver-
tex to this component. It implies that a random hypercube becomes connected as
soon as its last isolated vertex disappears, so τC ≤ τD, which implies that w.h.p.
τC = τD.

Let ε > 0 be a sufficiently small constant, and let p≥ 1
2 − ε . Then it is easily

seen that w.h.p. every pair of isolated vertices in Qn
p are at distance at least two

in Qn. To see this, fix an edge {u,v} ∈ Qn. The probability that both u and v are
isolated vertices in in Qn

p is

(1− p)2n−1 =
1

22n−1 (1−2ε)2n−1 ≤ 2−3n/2.

There are n2n−1 edges to consider, thus , by the union bound, the probability that
there are two isolated vertices in Qn

p at distance one in Qn is at most n2n−12−3n/2 =
o(1).

To show that for p≥ 1
2−ε w.h.p. there is a unique giant connected component

in Qn
p on at least (1−o(1))2n vertices while w.h.p. all other components (if there

are any) are isolated vertices, is a bit more complicated.
We will first show that if p≥ 1

2−ε then w.h.p. there are no components in Qn
p

whose order is between 2 and 2n/3.
Let k ∈ [2,2n/3]. Let Ak be the event that there exists a connected component

on k vertices in Qn
p. Obviously such a component spans a tree and no vertex of

such a tree connects with any vertex lying outside the component. So, for Ak to
occur, there should be a tree T of order k in Qn with no edges of Qn between V (T )
and V \V (T ) present in Qn

p. There are at least k(n− 2log2 k) such edges in Qn

(see Exercise 13.4.2). Notice also that the number of trees T can be bounded by
2n(e∆)k−1 = 2n(en)k−1 (see Exercise 13.4.1). Combining both observations, by
the union bound, we get

P

 ⋃
2≤k≤2n/3

Ak

≤ 2n/3

∑
k=2

2n(en)k−1(1− p)k(n−2log2 k)

≤
n

∑
k=2

2n

[
en
(

1
2
+ ε

)n−2log2 k
]k

+
2n/3

∑
n+1

2n

[
en
(

1
2
+ ε

)n/3
]k
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≤ n2−n/3 +2n/32−n2/4

= o(1).

To complete the proof we will apply again a useful coupling technique, which
generates the random graph Qn

p in two steps.
Let p2 = ε , and let p1 be such that

(1− p1)(1− p2) = 1− p =
1
2
+ ε.

Note that Qn
p1
∪Qn

p2
has the same distribution as Qn

p and that p1 ≥ 1
2 −2ε .

The expected number of isolated vertices in Qn
p1

is 2n(1− p1)
n ≤ 29εn. Thus,

by Markov’s inequality, there are w.h.p. at most 210εn isolated vertices in Qn
p1

.
Moreover, w.h.p. in Qn

p1
there are no components of order between 2 and 2n/3.

Let W be the set of vertices in components of Qn
p1

of order at least 2n/3. Note that
the number s of such components can not exceed 22n/3. Let us move to the next
step of the coupling procedure and ”sprinkle” edges of Qn with probability p2.
We will show that as a result w.h.p. all the components of W merge in Qn

p1
∪Qn

p2
.

Indeed, otherwise there would have been a component respecting partition A⊔B=
W , with no edges between A and B in Qn

p2
. Suppose, without loss of generality,

that a = |A| ≤ |B|. Then, one can show (see Exercise 13.4.3) that the number of
edges between A and its complement, e(A,AC)≥ |A|. As there are at most n210εn

edges in Qn touching V \W , we derive e(A,AC ∩W ) ≥ |A|/2. Moreover, there
are at most

a2−n/3

∑
i=1

(
s
i

)
≤ sa2−n/3

≤ 2na2−n/3

ways to partition W into two parts one of which is of order a. Thus, by the union
bound, the probability of this event is at most

2n−1

∑
a=2n/3

2na2−n/3
(1− ε)a/2 ≤

2n−1

∑
a=2n/3

2na2−n/3
e−εa/2 = o(1).

In summary, when t = (2− ε)n for small ε , the random graph Qn
t consists w.h.p.

of (i) a giant component C, (ii) a collection of isolated vertices I such that (iii) all
the Qn potential neighbors of I are in C, and vertices from I can not be joined by
an edge from Qn, since they are at distance at least two from each other in Qn.
Therefore, deterministically, adding more edges to Qn

t either puts them into C or
connects a vertex in I to C. Thus, τC = τD equals the time when the last vertex of
I is connected to C.



282 Chapter 13. Random Subgraphs of the Hypercube

13.3 Perfect Matching
Notice that connectivity and the property of having a perfect matching share in
a random subgraph a simple necessary condition of having no isolated vertices,
which suggests that both properties have the same threshold edge probability. It
was first observed in the case of a random graph Gn,p (see Chapter 4) and it holds,
as it is shown in the next theorem due to Bollobás [158], in a random subgraph
as well. Note that a hypercube Qn is bipartite therefore the main tool to prove
this result is Hall’s Theorem giving the necessary and sufficient condition for a
random subgraph of the hypercube to contain a perfect matching.

Theorem 13.4. Consider the random hypercube process Q̃n
t . Let τD denote the

hitting time of minimum degree (at least) one, while let τM be the hitting time for
having a perfect matching in Qn

t . Then, w.h.p., τM = τD.

Proof. As in the case of connectivity τM ≥ τD deterministically. To complete the
proof we have to show that τM ≤ τD. We will apply a similar approach as in the
proof of Theorem 13.3, i.e., we will consider properties of a random subgraph Qn

p
of Qn, and then use them to pass from Qn

p to a random hypergraph process Qt .
Let us first introduce some necessary notation. We call a vertex v ∈ {0,1}n of
the cube Qn even if an v has an even number of digits equal to 1, and call it odd
otherwise. Given a set W ⊂V (Qn), we write W0 for the set of even vertices of W
and W1 =W \W0 for the set of odd vertices.
Because Qn is a bipartite graph, to decide whether a spanning subgraph of Qn has
a perfect matching a necessary and sufficient condition given by Hall’s Theorem
has to be examined, i.e., one has to show that certain obstructions to the existence
of a perfect matching (PM) are, in the case of Qn

p, w.h.p. not present.
For k ≥ 1, a k-obstruction for a PM in Qn

p is a set W = W0 ∪W1 of k vertices
spanning a connected subgraph of Qn, together with an index i ∈ {0,1} such that
if i = 0 then |W0| ≥ |W1| and all of the neighbors N(W0) of the vertices W0 are in
W1, i.e., N(W0) ⊂W1. Similarly, if i = 1 then |W1| ≥ |W0| and N(W1) ⊂W0. By
Hall’s Theorem, if Qn

p fails to contain a perfect matching then Qn
p has to have an

k-obstruction for some odd k, in the range 1≤ k≤ 2n/2 = 2n−1. We are interested
in minimal k-obstructions only. We first look for k-obstructions with k ≥ 3 and
leave the case of k = 1 (isolated vertices) for further consideration.

Denote by Xk = Xk(Qn
p) the random variable counting k-obstructions in Qn

p.

So ∑
2n−1

k=3 Xk counts all possible obstructions on at least three vertices. By the First
Moment Method (see Lemma 26.2), to show that Qn

p w.h.p. does not contain any
such obstruction it is enough to prove that,

2n−1

∑
k=3

EXk = o(1). (13.3)
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In fact, proving that it holds for

p = p(n) =
1
2

(
1− c(n)

n

)
, where c(n) = log logn, (13.4)

constitutes the main part the proof of Theorem 13.4.

Estimation of the sum (13.3) is quite complicated and it will be divided into
two parts:

2n−1

∑
k=3

EXk =
⌊2n/n9⌋

∑
k=3

EXk +
2n−1

∑
⌊2n/n9⌋+1

EXk (13.5)

First choose 3 ≤ k ≤ ⌊2n/n9⌋. Denote by Ck the number of sets W ⊂ V (Qn),
|W |= k, such that the graph Qn[W ] induced by vertex set W is connected. Observe
that (see Exercise 13.4.5) there must be a set A⊂W such that |A| ≤ ⌊|W |/3⌋ and
the distance of any vertex of W from the set A is at most 2. Moreover there are at
most |A|(n+

(n
2

)
) = |A|n(n+1)/2 vertices not in A but within distance 2 of A and

since ⌊k/3⌋+ ⌈2k/3⌉= k,

Ck ≤
(

2n

⌊k/3⌋

)(
⌊k/3⌋n(n+1)/2
⌈2k/3⌉

)
≤
(

3e2n

k

)k/3(en(n+1)
4

)2k/3

≤
(

n42n+1

k

)k/3

. (13.6)

Let W = W0∪W1 with |Wi| ≥ |W \Wi| for either i = 0 or i = 1. Note that the
subgraph Qn[W ] of Qn has at most k

2 log2 k edges (see Exercise 13.4.4). Qn is an
n-regular graph and therefore Qn has at least k

2 (n− log2 k) edges joining Wi to
V (Qn)\Wi. Hence N(Wi) ⊂W \Wi, if and only if none of these edges are in Qn

p
and so

P(N(Wi)⊂W \Wi)≤ (1− p)
k
2 (n−log2 k) = 2−

k
2 (n−log2 k)

(
1+

c(n)
n

) k
2 (n−log2 k)

≤
(

k
2n

)k/2

(logn)k
(

1− log2 k
n

)
≤

(
k log2(1−log2 k/n) n

2n

)k/2

.

(13.7)

Combining (13.6) and (13.7) and recalling the definition of a k-obstruction we get

EXk ≤ 2
(

n42n+1

k

)k/3(k log2 n
2n

)k/2
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= 2

(
kn8/3 log6 n

2n−2

)k/6

.

Hence it implies that

⌊2n/n9⌋

∑
k=3

EXk ≤ 2
⌊2n/n9⌋

∑
k=3

(
kn8/3 log6 n

2n−2

)k/6

= o(1), (13.8)

and so the first part of the estimation in (13.5) is completed.
Estimation of the second sum, i.e., ∑

2n−1

⌊2n/n9⌋+1EXk, needs much longer computa-

tions. Let ⌊2n/n9⌋+1 ≤ k ≤ 2n−1 and set α = k/2n so that k = α2n. Denote by
Ok the set of all candidates (W, i), i = 0,1, for a k-obstruction, with W =W0∪W1
already distinguished so that for the pair (W, i) to be a k-obstruction we require
that no edge of Qn

p should join Wi to a vertex not in W . Because W ⊂ V (Qn),
ignoring the condition that that Qn[W ] should be connected, we see that

|Ok|< 2
(

2n

k

)
= 2
(

2n

α2n

)
≤
( e

α

)α2n

. (13.9)

Given a k-set W ⊂V (Qn) denote by b = b(W ) = βk the number of edges joining
vertices in W to vertices not in W (i.e., the edge-boundary of W ). Let us estimate
the probability that (W, i) is an obstruction in Qn

p. For either i = 0 or i = 1 we have

P(N(Wi)⊂W \Wi)≤ (1− p)b(W )/2 = (1− p)βk/2 = 2−βk/2
(

1+
c(n)

n

)βk/2

≤ 2−(β−2c(n)/n)k/2 ≤ 2−(β−1)k/2. (13.10)

So by (13.9) and (13.10) we get that if β0 = 2log2(2e/α)+2 then

S1 = ∑
|W |=k

b(W )=βk,β≥β0

P(N(Wi)⊂W \Wi)≤
( e

α

)k
2−(β−1)k/2

≤ 2−(β−1−2log2(e/α))k/2 ≤ 2−k/2. (13.11)

So,
Pr(∃W : |W |= k,b(W ) = βk, β ≥ β0)≤ ∑

k≥2n/n9

2−k/2 = o(1).

So, it remains to find bounds on

S2 = ∑
|W |=k

b(W )=βk,β≤β0

P(N(Wi)⊂W \Wi), (13.12)
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To estimate S2 we will again use the bound (13.7), which, for k = α2n takes the
following form

P(N(Wi)⊆W \Wi)≤ α
k/2(logn)k(log2(1/α))/n. (13.13)

However, when b(W ) ≤ β0k, we need a much better bound on the number of
k-obstructions satisfying this condition.

Denote the set of such obstructions by Ok,β0 . Given a k-set W ⊂ V (Qn), de-
note by b j the number of vertices v = (v1,v2, . . . ,vn) for which the vertex v′ =
(v1, . . . ,v j−1,v′j,v j+1, . . . ,vn) obtained from v by switching the jth digit, does not
belong to W , so

b(W ) =
n

∑
j=1

b j ≤ β0k. (13.14)

Denote by F a 3-element subset of the set [n] = {1,2, . . . ,n} and call W ⊂V (Qn)
an F-cuboid if

∑
j∈F

b j ≤ 3β0k/n,

and let QF be the set of F-cuboids. Clearly, if F,F ′ ∈
([n]

3

)
then |QF |= |QF ′|, and

if (W, i) ∈ Ok,β0 then W ∈QF for some F ∈
([n]

3

)
. Therefore

|Ok,β0| ≤ 2
(

n
3

)
|QF | ≤ n3|QF |. (13.15)

So, to finish the computation of the bound on S2 we just need to estimate |QF |.
For F ∈

([n]
3

)
an F-cube is a set of the form

Fb = {a ∈ {0,1}n : a j = b j for j ∈ [n]\F},

where
b = (b j) ∈ {0,1}[n]\F .

Note that an F-cube contains 8 vertices of the cube Qn, any two F-cubes are
disjoint and and there are 2n−3 = 2n/8 F-cubes and V (Qn) is the union of the
F-cubes. We say that W cuts an F-cube Fb if Fb ∩W ̸= /0 and Fb \W ̸= /0. If W
cuts an F-cube Fb then Fb spans at least 3 boundary edges of W . So if W ∈ QF
then, by the definition of F-cuboid, W cuts at most β0k/n F − cubes. Therefore,
a set W ∈QF contains at least (k−8β0k/n)/8 F-cubes and at most 8β0k/n other
vertices. So,

|QF | ≤
(

2n/8
k/8

)(
2n

8β0k/n

)
≤
( e

α

)k/8
(

en
8β0α

)8β0k/n

. (13.16)
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Combining (13.13), (13.15) and (13.16) we get

S2 ≤ n3
( e

α

)k/8
(

en
8β0α

)8β0k/n

α
k/2(logn)k(log2(1/α))/n,

and so

log2 S2 ≤ (k/8)[24(log2 n)/k+ log2(e/α)+ log2(en/α)64β0/n
−4log2(1/α)+(log logn) log2(1/α)/n],

which implies that
log2 S2 ≤−k/8−1, (13.17)

since 1 < log2(1/α)≤ 9log2 n.
Putting together inequalities (13.11) and (13.17) we have that for
⌊2n/n9⌋+1≤ k ≤ 2n−1 we have

EXk < S1 +S2 ≤ 2−k/8

and so
2n−1

∑
⌊2n/n9⌋+1

EXk ≤ 2−(⌊2
n/n9⌋+1)/8+4 ≤ 2−2n/n10

. (13.18)

Combining (13.5), (13.8) and (13.18) we finally get that

2n−1

∑
k=3

EXk = o(1),

so Qn
p w.h.p. does not contain an k-obstruction for 3≤ k ≤ 2n−1.

To complete the picture we have to consider the remaining obstructions when
k = 1, i.e., isolated vertices. Denote by Y0 = Y0(Qn

p) the number of isolated ver-
tices in Qn

p and let

p =
1
2

(
1− c(n)

n

)
, where |c(n)| ≤ log logn.

Firstly, one can check, applying the Method of Moments (see Chapter 4 for an
analogous result in Gn,p), that Y0 has an asymptotically Poisson distribution with
expected value µ ∼ ec(n).

Secondly, the following observation allows us to transfer results on k-obstructions
for a perfect matching in Qn

p to analogous results in the random hypergraph pro-
cess Q̃n

t . Note that the number of edges in Qn
p has the binomial distribution with
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mean n2n−1 p and, by the Central Limit Theorem, it is concentrated around the
mean as n→ ∞. Thus, in our case, we can assume that Qn

t behaves in a similar
fashion to Qn

p when

t =
1
2

(
1− c(n)

n

)
n2n−1.

Now we are ready to show that in a random hypercube process Q̃n
t the hitting

time τM for a perfect matching does not exceed the hitting time τD of minimum
degree at least one.

Let
c0(n) = (log logn)/2 and t0 = ⌊(1− c0(n)/n)n2n−1⌋.

Then, since the number of isolated vertices in Qn
t0 has an asymptotically Pois-

son distribution with expectation ec0(n) (Exercise 12.4.6), w.h.p. Qn
t0 contains an

isolated vertex, and thus w.h.p.

τD(Qn
t )≥ t0.

Moreover, as we have proved above, Qn
t0 w.h.p. has no k-obstructions for 3 ≤

k ≤ n2n−1, which implies that for process Q̃n
t the hitting time τD ≥ τM. Indeed,

let Qn
t ⊃ Qn

t0 be such that the minimum degree δ (Qn
t ) ≥ 1. Then Qn

t has no 1-
obstruction, and if 3≤ k ≤ 2n−1 then it also has no k-obstruction since Qn

t0 has no
k-obstruction for 3≤ k≤ 2n−1. Thus there is no odd integer k≤ 2n−1 for which Qn

t
contains a k obstruction, Therefore, by Hall’s Theorem, Qn

t has a perfect matching.
Hence, recalling that τD ≤ τM deterministically, we have that w.h.p.

τD = τM,

which completes the proof.

Note that from Theorems 13.4 and 13.3we have that w.h.p.

τC = τM = τD,

where τc is the hitting time for connectedness of Qn
t , i.e, it means that a random

subgraph is w.h.p. connected and has a perfect matching as soon as the last iso-
lated vertex disappears. Thus a simple necessary condition is once again sufficient
w.h.p.

13.4 Exercises
13.4.1 ( see [107] or Lemma 3 of [300]) Let G be a graph of maximum degree

∆, and let k > 0 be an integer. For every vertex v ∈V (G), let t(v,k) be the
number of trees in G on k vertices, rooted at v. Prove that t(v,k)≤ (e∆)k−1.
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13.4.2 (see [468] or Lemma 4 of [300]) Show that for every S⊆V (Qn) the num-
ber e(S,SC) of edges between set S and its complement SC, we have that

e(S,SC)≥ |S|(n−2log2 |S|).

13.4.3 (see [468] or Lemma 5 of [300]) Show that for every S ⊆ V (Qn) with
|S| ≤ 2n−1 we have that

e(S,SC)≥ |S|.

13.4.4 (see [174]) Show that for 1 ≤ k ≤ 2n, a subgraph of Qn spanned by k
vertices has at most k

2 log2 k edges.

13.4.5 (see [158], Lemma 3) Denote the distance between two vertices u and v
of a graph G by dG(u,v), and for a vertex u ∈ V (G) and a set S ⊂ V (G),
write dG(u,S) = minv∈S dG(u,v). Show that if G is a connected graph on
n vertices and 1 ≤ r < n, then there is a set A ⊂ V (G) such that |A| ≤
|V |/(r+1) and dG(u,A)≤ r for every vertex u of G.

13.4.6 Y0 = Y0(Qn
t ) the number of isolated vertices in Qn

t and let

t =
1
2

(
1− c(n)

n

)
n2n−1, where |c(n)| ≤ log logn.

Prove that Y0 has asymptotically (as n→∞) Poisson distribution with mean

µ =

(
1+

c(n)
n

)n

∼ ec(n).

13.5 Notes
Recall, that in their breakthrough paper Ajtai, Komlós and Szemerédi [10] showed
that if pe = (1+ε)/n then w.h.p. there will be a unique giant component of order
2n. Next, their results were tightened in Bollobás, Kohayakawa and Łuczak [170]
where the case ε = o(1) was considered. A self-contained proof of both results,
due to Krivelevich [590], is given in Section 13.1.
Further detailed study on the phase transition in Qn

p extending results from [170]
one can find in papers by van der Hofstad and Slade (see [485] and [486]), which
in turn build on a sequence of papers by Borgs, Chayes, van der Hofstad, Slade
and Spencer (see [181], [182] and [183]). A short overview of these results can
be found in [808]. A final touch on studies of the asymptotic behavior of Qn

p
around the critical edge probability pc was provided by van der Hofstad and
Nachmias in [487]. From previous papers, quoted above, it was known that if
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p = pc(1+O(2−n/3)) then w.h.p. the largest connected component L1 of Qn
p is

of order Θ(22n/3) and that this quantity is not concentrated. They show that for
any sequence εn such that εn = o(1), but εn ≫ 2−2n/3 and p = pc(1+ εn), then
w.h.p. |L1| = (2+ o(1))εn2n and |L2| = o(εn2n), where L2 is the second largest
component. This resolves a conjecture from Borgs et al. paper [183].
Recently, Erde, Kang and Krivelevich in [329] show that w.h.p. the vertex-expansion
of the giant component of Qn

p is inverse polynomial in n. As a consequence they
obtain a polynomial in n bound on the diameter of the giant component and the
mixing time of the lazy random walk on the giant component, answering ques-
tions stated by Bollobás, Kohayakawa and Łuczak in [171].
McDiarmid, Scott and Whiters in [669] consider the supercrital period of the
evolution of a random subgraph Qn

p when the edge probability p is fixed and
p ∈ (0,1/2). Then, w.h.p. Qn

p consists of one giant component together with
many smaller components which form the ”fragment”. They investigate the frag-
ment and, for example, they give asymptotic estimates for the mean numbers of
components in the fragment of each size, and describe their asymptotic distribu-
tions, extending earlier work of Weber on components of Qn

p (see [849],[850] and
[851]).
Anastos, Diskin, Elboim and Krivelevich in [42] show that in Qn

p there is a phase
transition with respect to the length of a longest increasing path around p = e/n,
where P = {v1, . . . ,vk} is an increasing path of length k− 1 in Qn, if for every
i ∈ [k− 1] the edge vivi+1 is obtained by switching some zero coordinate in vi
to a one coordinate in vi+1. In particular they proved that if α is a constant and
p = α/n then, when α < e, there exists δ ∈ [0,1) such that w.h.p. a longest in-
creasing path in Qn

p is of length at most δn. On the other hand, when α > e, w.h.p.
there is a path of length n−2.
Kronenberg and Spinka in [609] study the asymptotic number of independent sets
in Qn

p as n→∞ for a wide range of parameters p, including values of p tending to
zero as fast as C logn/n1/3, constant values of p, and values of p tending to one.

In Section 13.2 we presented a new proof, due to Diskin and Krivelevich [300],
of Burtin’s result [205], referring also to contributions of Saposhenko [789] and
Erdős and Spencer [338]. In further analysis, Bollobás, Kohayakawa and Łuczak
[172] established that w.h.p. the hitting time for k-connectivity coincides with that
of minimum degree at least k. If only vertices are deleted from Qn with proba-
bility 1− pv, then the connectivity threshold is around pv = 1/2, see Saposhenko
[790] or Weber [848]. If both edges and vertices and vertices are deleted then the
connectivity threshold is around pe pv = 1/2, see Dyer, Frieze and Foulds [320].

As we demonstrated in Section 13.3 the threshold for the existence of a prefect
matching at around pe = 1/2 was established by Bollobás [158], while Condon,
Espuny Dı́az, Girão, Kühn and Osthus in their breakthrough paper [236] solved
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a long standing open conjecture of Bollobás, proving that the threshold probabil-
ity for Hamiltonicity in Qn

p equals 1/2. They also show that, w.h.p. for all fixed
p ∈ (0,1] Qn

p contains an almost spanning cycle.
The G-random process on Cartesian products of graphs, Diskin and Geisler in
[299] extends the result of Bollobás from [158] to the G-random process on Carte-
sian products of graphs, showing that w.h.p. the hitting times for minimum degree
(at least) one, connectivity, and the existence of a (nearly-)perfect matching are
the same.



Chapter 14

Randomly Perturbed Dense Graphs

In this chapter we are concerned with the following natural extension of the clas-
sical Erdős-Rényi-Gilbert models Gn,m and Gn,p, introduced by Bohman, Frieze
and Martin in [134]. They start with a fixed graph H = (V,E) on n vertices and
a set R of m edges, chosen uniformly at random from the set E of all

(n
2

)
− |E|

non-edges of H to form a random graph

GH,m = (V,E ∪R).

Alternatively, one can take each non-edge of H and add it independently with
probability p, creating the random graph GH,p. This new class of random graphs
would, for example, model graphs or networks which were basically determin-
istically produced, but for which there is some uncertainty about the complete
structure. Finally, notice that if H is an empty graph then the model reduces to
Gn,m or Gn,p, respectively.

Since this new model starts with any graph H, we may not be able to get
general results for a class produced by this random mechanism. Therefore it is
quite natural to restrict the attention to a specific narrower and meaningful class
of graphs. This is exactly what Bohman, Frieze and Martin did in their paper
[134], which started this line of research. They consider the following scenario:
Let 0 < d < 1 be a fixed positive constant and let G (n,d) denote the set of graphs
with vertex set [n] which have minimum degree δ ≥ dn. Next choose H arbitrarily
from G (n,d) and add a random set R of m edges to create the random graph GH,m.

Obviously, for this new model we can ask similar questions as we do for classi-
cal random graphs. In particular, we may consider a general class P of monotone
graph properties and ask how many random edges m one has to add to H so that
the resulting graph GH,m will have property P w.h.p. We will address such ques-
tions in the next sections dealing with subgraphs, Hamiltonian cycles and vertex
connectivity. We will also point out to another important line of research dealing
with the Ramsey properties of such randomly perturbed dense graphs.
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14.1 Subgraphs
Consider a monotone property P that a random graph GH,m (or GH,p) contains
an isomorphic copy of a fixed graph G. Finding a threshold for such a property in
classic random graph was one of the fundamental questions raised by Erdős and
Rényi in their seminal paper [332] and answered completely by Bollobás in [147]
(see Chapter 5).

Recall first the notion of maximum subgraph density m(G) of a fixed graph G
defined as

m(G) = max{E(F)/V (F) : F ⊆ G}.

For every positive integer r define

mr(G) = min
V (G)=

⋃
i Vi

max
i

m(G[Vi]),

where the minimum is over all partitions of V (G) into at most r parts and Gi =
G[Vi] is a subgraph of G induced by Vi. Note also, that mr(G)< 1/2 if and only if
G is r-colorable.
Denote by G (n,d) the set of all graphs on vertex set [n] and average vertex degree
at least dn, i.e., with at least dn2/2 edges. Obviously, since G (n,d)⊂ G (n,d), all
results for a general class G (n,d) are also valid for G (n,d).
The following result was proved by Krivelevich, Sudakov and Tetali in [605].

Theorem 14.1. Let 0 < d < 1 be a fixed constant and let r ≥ 2 be the unique
integer satisfying d ∈

( r−2
r−1 ,

r−1
r

]
. Let G be a fixed graph.

(i) If H ∈ G (n,d) and m = ω

(
n2−1/mr(G)

)
then GH,m contains a a copy of G

w.h.p.

(ii) There exists a graph H0 ∈G (n,d) with d∼ r−1
r such that m= o

(
n2−1/mr(G)

)
,

and w.h.p. GH0,m fails to contain a copy of G.

Before we reproduce the proof from [605] we need to discuss its two important
elements. Firstly, the asymptotic equivalence of random graphs GH,m and GH,p
stemming from their construction as a union of a dense graph with random edges.
It is well known that for monotone graph properties, random graph Gn,m and Gn,p
are asymptotically equivalent when the expected number of edges of Gn,p is close
to the number of edges of Gn,m (see Theorem 1.4). Similarly, it is also the case
with GH,m and GH,p when m = (

(n
2

)
− |E(H)|)p (see Remark 1.1 of [605] for

details). Since the binomial model is computationally much more tractable, we
switch here and in other parts of this chapter from GH,m to GH,p.
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Another characteristic feature of the proofs of many results for randomly per-
turbed dense graphs is an application of the celebrated Szemerédi Regularity
Lemma (see [823]). The Lemma was originally applied in the context of randomly
perturbed random graphs by Bohman, Frieze, Krivelevich and Martin [135].

For two disjoint vertex sets A and B in graph G, let e(A,B) denote the number
of edges with one vertex in A and the other in B, while

d(A,B) =
e(A,B)
|A||B|

is the density of the pair (A,B)

Definition 14.2. Let ε > 0. Given a graph G and two disjoint vertex sets A⊂V (G)
and B ⊂ V (G), we say that the pair is ε-regular if for every X ⊂ A and Y ⊂ B
satisfying |X |> ε|A| and |Y |> ε|B| we have |d(X ,Y )−d(A,B)|< ε .

We state next two Lemmas without proofs (see [605] for details).

Lemma 14.3. Let r ≥ 2 be an integer and let d > r−2
r−1 be a fixed constant. Then

there exist real constants ε,γ and an integer constant K,n0 such that for all n≥ n0,
every graph G on n vertices with average degree at least dn contains r disjoint
vertex sets A1, . . . ,Ar of cardinality

|A1|= . . .= |Ar| ≥ n/K

such that for each 1≤ i ̸= j≤ r, the pair (Ai,A j) is ε-regular of density at least γ .

Lemma 14.4. For all real ε,γ > 0 and integers r,T > 0 there exists an integer n0
and a real δ such that the following holds for all n ≥ n0. Let G be an r-partite
graph with parts A1, . . . ,Ar of cardinality n. Assume that for each 1 ≤ i ̸= j ≤ r,
the pair (Ai,A j) is ε-regular of density at least γ . For each 1 ≤ i ≤ r choose
a random subset Ui of cardinality T in Ai. Then with probability at least δ the
r-partite subgraph of G with parts U1, . . . ,Ur is complete

Proof. of Theorem 14.1:
In the light of our previous discussion about equivalence of models GH,m and

GH,p it is enough to prove both statements of Theorem 14.1 for GH,p with

p∼ m(n
2

)
− dn

2

= o
(

n−1/mr(G)
)
, by assumption on m.

We prove statement (ii) first. Let us randomly perturb a complete r-partite
graph H0 on n vertices with nearly equal parts V1, . . . ,Vr, with probability p. Ob-
viously, H0 ∈ G (n,d) with d ∼ r

r−1 since,

|E(H0)| ∼
r

r−1
n2

2
.
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Notice that the random graph GH0,p, due to the choice of H0, contains r indepen-
dent copies of the random graph Gn/r,p on sets of vertices V1, . . . ,Vr.

Now, let G1,G2, . . . be a family of subgraphs of G such that m(Gi)≥mr(G) for
all i. By Theorem 5.3 w.h.p. none of the parts Vj, j = 1, . . . ,r contains any of the
finitely many subgraphs Gi of G with maximum subgraph density m(Gi)≥mr(G).
The definition of mr(G), implies that for any partition of the vertex set of G into r
parts one part should induce such a graph Gi, so we conclude that w.h.p. there is
no copy G in GH0,p, which proves statement (ii).

To prove statement (i), fix a partition of the vertex set of graph G into r parts
W1, . . . ,Wr so that m(G j) ≤ mr(G), where G j denotes the subgraph of G induced
by a vertex set Wj, for j = 1, . . . ,r, and let T = max1≤ j≤r |Wj|. Now, let H ∈
G (n,d). Applying Lemma 14.3 to H, we get r disjoint sets A1, . . . ,Ar ⊂ V (H)
of linear size such that all pairs (Ai,A j), 1 ≤ i ̸= j ≤ r, are ε-regular of positive
density γ > 0, for some ε,γ depending only on d.

Recall that the set R of random edges added to H to get GH,p contains every

non-edge of H independently with probability ω

(
n−

1
mr(G)

)
. Thus, for an appro-

priately chosen function ϕ = ϕ(n)→ ∞, we can represent the set R as a union
of ϕ independent sets of random edges Ri, where every non-edge of H is in Ri

randomly and independently with probability which is still ω

(
n−

1
mr(G)

)
Consider now what happens if we add the set Ri to H. By definition, for all

i and j, the edges Ri inside A j form a copy of the random graph G|A j|,p with

p = ω

(
n−

1
mr(G)

)
and all these copies are independent. Thus by Theorem 5.3,

w.h.p. the random set Ri puts a copy of G j inside A j for each j = 1, . . . ,r. Assume
that this is indeed the case, and let U j, j = 1. . . . ,r be the vertex set of such copy.
The sets U j are mutually independent and thus can be considered as random sets
of size |U j| inside A j. Recall that |U j| ≤ T for all j = 1. . . . ,r. Therefore, By
Lemma 14.4 , with probability at least δ , the r-partite graph H[U1 ∪ . . .∪Ur] is
complete, in which case the graph H∪Ri spans a copy of G on U1∪ . . .∪Ur. Thus
with probability at least (1−o(1))δ > δ/2 there is a copy of G in H∪Ri. Observe
that δ > 0 is a constant depending only on d and G. As the random sets Ri are
independent, it follows that the probability that GH,p =H∪R does not have a copy
of G is at most (1−δ/2)ϕ = o(1) and statement (ii) holds.

14.2 Hamiltonicity

We will reproduce here proofs of two theorems, due to Bohman, Frieze and Martin
[134] about the number of edges needed to have GH,m to be Hamiltonian w.h.p.
Since d ≥ 1/2 implies that H itself is Hamiltonian (Dirac’s theorem), this could
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be considered to be a probabilistic generalization of Dirac’s theorem to the case
where d < 1/2. We henceforth assume that d < 1/2. Also, let

θ = lnd−1 ≥ .69.

Theorem 14.5. Suppose 0 < d ≤ 1/2 is constant, H ∈ G (n,d).Then

(i) If m≥ (30θ +13)n then GH,m is Hamiltonian w.h.p..

(ii) For d ≤ 1/10 there exist graphs H ∈ G (n,d) such that if m < θn/3 then
w.h.p. GH,m is not Hamiltonian.

Proof. We will assume from now on that m is exactly ⌈30θn⌉+ 13n. We let the
m random edges added to H be split into two sets R1 and R2, so that R = R1∪R2
where |R1|= m1 = ⌈30θn⌉. Then let GH,m1

= H ∪R1. We first show that

Lemma 14.6. GH,m1 is connected w.h.p..

Proof. Let N =
(n

2

)
. If u,v ∈ [n] then either they are at distance one or two in H or

P(distGH ,m1(u,v)≥ 3)≤
(

1− |R1|
N

)d2n2

≤ e−60θd2n.

Hence,
P(diam(GH,m1)≥ 3)≤ n2e−60θd2n = o(1).

Given a longest path P in a graph G with end-vertices x0,y and an edge {y,v}
where v is an internal vertex of P, we obtain a new longest path P′ = x0..vy..w
where w is the neighbor of v on P between v and y. We say that P′ is obtained
from P by a rotation with x0 fixed.

Let ENDG(x0,P) be the set of end-vertices of longest paths of G which can
be obtained from P by a sequence of rotations keeping x0 as a fixed end-vertex.
Let ENDG(P) = {x0} ∪ ENDG(x0,P). Note that if G is connected and non-
Hamiltonian then there is no edge {x0,y} where y ∈ ENDG(x0,P).

It follows from Pósa [746] that

|NG(ENDG(P))|< 2|ENDG(P)|, (14.1)

where for a graph G and a set S⊆V (G)

NG(S) = {w ̸∈ S : ∃v ∈ S such that vw ∈ E(G)}.

Lemma 14.7. Whp
|NGH,m1

(S)| ≥ 3|S| (14.2)

for all S⊆ [n], |S| ≤ n/5.



296 Chapter 14. Randomly Perturbed Dense Graphs

Proof. Now |NH(S)| ≥ 3|S| for all S⊆ [n], |S| ≤ dn/3. So,

P(∃|S| ≤ n/5 : |NGH,m1
(S)|< 3|S|) ≤

n/5

∑
k=dn/3

(
n
k

)(
n
3k

)(
1− m

N

)k(n−4k)

≤
n/5

∑
k=dn/3

(
n4e4

27k4 e−12θ

)k

= o(1).

It follows from Lemma 14.7 that for any longest path P in a graph G that
contains GH,m1 as a subgraph we have n/5≤ |ENDG(P)| ≤ |P|.

Let P0 be a longest path in GH,m1 of length l0 ≥ dn. Proceeding as in Section
6.2 , we see that

P(GH,m is not Hamiltonian)≤ o(1)+Pr(Bin(13n,2/25)≤ n) = o(1). (14.3)

Proof of (ii) . Let m = cn for some constant c and let H be the complete
bipartite graph KA,B where |A|= dn and |B|= (1−d)n. Let I be the set of vertices
of B which are not incident with an edge in R. If |I| > |A| then GH,m is not
Hamiltonian. Instead of choosing m random edges for R, we choose each possible
edge independently with probability p = 2m

(d2+(1−d)2)n2 .
Then

E(|I|) = (1−d)n(1− p)(1−d)n−1 ∼ (1−d)exp
{
− 2(1−d)m
(d2 +(1−d)2)n

}
n.

It follows from the Chebychev inequality that |I| is concentrated around its mean
and so GH,m will be non-Hamiltonian w.h.p. if c satisfies

c <
1

2(1−d)
(d2 +(1−d)2) ln(d−1−1).

This verifies (ii).

So it seems that we have to add Θ(n) random edges in order to make GH,m
Hamiltonian w.h.p.. Since a random member of G (n,d) is already likely to be
Hamiltonian, this is a little disappointing. Why should we need so many edges in
the worst-case? It turns out that this is due to the existence of a large independent
set. Let α = α(H) be the independence number of H.
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Theorem 14.8. Suppose H ∈ G (n,d) and 1≤ α(H)< d2n/2 and so
d > n−1/2 (d need not be constant in this theorem). If

md3

lnd−1 → ∞ (14.4)

then GH,m is Hamiltonian w.h.p..

Note that if d is constant then Theorem 14.8 implies that m→ ∞ is sufficient.

Proof. (of Theorem 12.12)
We will first show that we can decompose H into a few large cycles.

Lemma 14.9. Suppose that GH,m has minimum degree dn where d ≤ 1/2 and that
α(GH,m) < d2n/2. Let k0 =

⌊ 2
d

⌋
. Then the vertices of GH,m can be partitioned

into at most k0 vertex disjoint cycles.

Proof. Let C1 be the largest cycle in H. |C1| ≥ dn+1 and we now show that the
graph H \C1 has minimum degree ≥ dn−α .

To see this, let C1 = v1, . . . ,vc,vc+1 = v1. Let w ∈ V (H \C1). Because C1 is
maximum sized, no such w is adjacent to both vi and vi+1. Also, if w ∼ vi and
w∼ v j with i < j and vi−1 ∼ v j−1, then

w,v j, . . . ,vc,v1, . . . ,vi−1,v j−1, . . . ,vi,w

is a larger cycle. So the predecessors of N(w) in C1 must form an independent set
and |N(w)∩C1| ≤ α . Similar arguments are to be found in [227].

We can repeat the above argument to create disjoint cycles C1, . . . ,Cr where
|C1| ≥ |C2| ≥ · · · ≥ |Cr| and C j is a maximum sized cycle in the graph H j−1 =
H \

(
C1∪·· ·∪C j−1

)
for j = 1,2, . . . ,r. Now Hk has minimum degree at least

dn− kα and at most n− dn− 1− (dn−α + 1)− ·· · − (dn− (k− 1)α + 1) =
n− k(dn+ 1− (k− 1)α/2) vertices. Since d2n > 2α , Hk0 , if it existed, would
have minimum degree at least 2 and a negative number of vertices.

Let C1, . . . ,Cr be the cycles given by Lemma 14.9. In order to simplify the
analysis, we assume the edges of R are chosen from E by including each e ∈ E
independently with probability p = m

|E| . Because Hamiltonicity is a monotone
property, showing that GH,p is Hamiltonian w.h.p. implies the theorem. We get a
further simplification in the analysis if we choose these random edges in rounds:
set R = R1 ∪ R2 ∪ ·· · ∪ Rr where each edge set Ri is independently chosen by
including e ∈ E with probability p, where 1− (1− p)r = m

|E| . Each Ri will be
used to either extend a path or close a cycle and will only be used for one such
attempt. In this way each such attempt is independent of the previous. To this end
let GH,mt = H ∪

⋃t
s=1 Rt for t = 0,1, . . . ,r. Thus GH,m0 = H and GH,mr = GH,m.
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Let e = {x,y} be an edge of Cr and let Q be the path Cr− e. In each phase
of our procedure, we have a current path P with endpoints x,y together with a
collection of vertex disjoint cycles A1,A2, . . . ,As which cover V . Initially P = Q,
s = r−1 and Ai =Ci, i = 1,2, . . . ,r−1.

Suppose a path P and collection of edge disjoint cycles have been constructed
in GH,mt−1 (initially t = 1). Consider the set Z = ENDGH,mt−1

(x,P) created from
rotations with x as a fixed endpoint, as in the proof of Theorem 14.5. We identify
the following possibilities:

Case 1: There exists z1 ∈ Z, z2 /∈ P such that f = (z1,z2) is an edge of H.
Let Q be the corresponding path with endpoints x,z1 which goes through V (P).
Now suppose that z2 ∈Ci and let f ′ = (z2,z3) be an edge of Ci incident with z2.
Now replace P by the path Q, f ,Q′ where Q′ =Ci− f . This construction reduces
the number of cycles by one.

Case 2: |V (P)| ≤ n/2 and z ∈ Z implies that NGH,mt−1
(z)⊆V (P).

It follows from (14.1) that |Z| ≥ dn/3. Now add the next set Rt of random edges.
Since |V (P)| ≤ n/2, the probability that no edge in Rt joins z1 ∈ Z to z2 ∈V \V (P)
is at most (1− p)(dn/3)(n/2). If there is no such edge, we fail, otherwise we can
use (z1,z2) to proceed as in Case 1. We also replace t by t +1.

Case 3: |V (P)|> n/2 and z ∈ Z implies that NGH,mt−1
(z)⊆V (P).

Now we close P to a cycle. For each z ∈ Z let Az = ENDGH,mt−1
(z,Qz) where

Qz is as defined in Case 1. Each Az is of size at least dn/3. Add in the next set
Rt of random edges. The probability that Rt contains no edge of the form (z,z′)
where z ∈ Z and z′ ∈ Az is at most (1− p)d2n2/10. If there is no such edge, we fail.
Otherwise, we have constructed a cycle C through the set V (P) in the graph GH,mt .
If C is Hamiltonian we stop. Otherwise, we choose a remaining cycle C′, distinct
from C and replace P by C′− e where e is any edge of C′. Now |V (P)|< n/2 and
we can proceed to Case 1 or Case 2.

After at most r executions of each of the above three cases, we either fail or
produce a Hamilton cycle. The probability of failure is bounded by

k0((1− p)(dn/3)(n/2)+(1− p)d2n2/10)

≤ 2d−1

(1− m
|E|

) dn2
6r

+

(
1− m
|E|

) d2n2
10r

≤ 4d−1e−md3/10 = o(1)

provided (14.4) holds.
An observation: We do not actually need the condition that α(H)≤ d2n/2 to

complete this proof. The weaker condition that d2n/2 bounds the independence
number of the neighborhood of each vertex is enough.

Note that Aigner-Horev, Hefetz and Krivelevich in [11] prove several improve-
ments and extensions of the Theorem 12.12. In particular, keeping the bound on
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the independence number α(H) = O(d2n) as in Theorem 12.12 and allowing for
d = Ω(n−1/3), they determine the correct order of magnitude of the number of
random edges whose addition to H w.h.p. yields a pancyclic graph.

14.3 Vertex Connectivity
The next property we consider is vertex connectivity. First note that if d ≥ 1/2
then H ∈ G (n,d) is at least (2⌈dn⌉− n+ 2)-connected. This can be seen by the
fact that, by removing any set of size 2⌈dn⌉−n, the resulting graph has minimum
degree at least half the number of vertices. This means that the resulting graph
has a Hamilton cycle and is, thus, at least 2-connected. Since there are graphs
H which are disconnected but have minimum degree dn (d < 1/2), we focus on
the number of random edges required to make GH,m k-connected for k ≤ cn, for
some constant c = c(d)> 0. The following result was proved by Bohman, Frieze,
Krivelevich and Martin in [135].

Theorem 14.10.

(i) Let H ∈G (n,d). If k =O(1) and m=ω(1) then GH,m is k-connected, w.h.p.
If ω(1)≤ k ≤ d2n/32 and m = 640k/d2 then GH,m is k-connected, w.h.p.

(ii) If d < 1/2 then there exists an H0 ∈ G (n,d) such that w.h.p. GH0,m fails to
be k-connected for all k such that m≤ k

2⌊
n

dn+1⌋.

Let κ(G) denote the vertex connectivity of graph G. We first prove the follow-
ing lemma that may be of independent interest.

Lemma 14.11. Let H = (V,E) be a graph on n vertices with minimum degree
k > 0. Then there exists a partition V =V1∪ . . .∪Vt such that for every 1≤ i≤ t
the set Vi has at least k/8 vertices and the induced subgraph H[Vi] is k2/(16n)-
connected.

Proof. of Lemma 14.11.
Recall the following classical result on vertex connectivity.

Theorem 14.12 (Mader Theorem, see [295]). Every graph of average degree at
least k has a k/4-connected subgraph.

Let (C1, . . . ,Ct) be a family of disjoint subsets of V with the property that each
induced subgraph H[Ci] is k/8-connected and that, among all such families of
subsets, the set of vertices

C def
=

t⋃
i=1

Ci
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is maximal. According to Theorem 14.12, t > 0. Also, |Ci| ≥ k/8 for all i and thus
t ≤ 8n/k.

Let now (V1, . . . ,Vt) be a family of disjoint subsets of V such that Ci ⊆Vi, the
induced subgraph H[Vi] is k2/(16n)-connected for all 1≤ i≤ t and that among all
such families the set of vertices

U def
=

t⋃
i=1

Vi

is maximal. We claim that U = V . Assume to the contrary that there exists a
vertex v ∈ V \U . If |N(v)∩Vi| ≥ k2/(16n) for some i, then adding v to Vi can
be easily seen to keep H[Vi] k2/(16n)-connected, contradicting the maximality
of U . Thus v has less than k2/(16n) neighbors in each of the t ≤ 8n/k sets Vi,
and therefore degV\U(v) > k− (8n/k)(k2/(16n)) = k/2. We conclude that the
minimum degree of the induced subgraph H[V \U ] is at least k/2. Applying
Theorem 14.12, this time to H[V \U ], unveils a k/8-connected subgraph disjoint
from C – a contradiction to the choice of (C1, . . . ,Ct). Hence the family (V1, . . . ,Vt)
covers indeed all the vertices of H and thus forms a required partition.

We remark that the above result is optimal up to constant multiplicative fac-
tors. To see this take ⌈(n− k2/n)/(k+ 1)⌉ disjoint cliques Ci of size k+ 1 each,
add an independent set I on the (at most k2/n) remaining vertices, and connect
each vertex of I with roughly k2/n arbitrarily chosen vertices of Ci, 1 ≤ i ≤
⌈(n− k2/n)/(k + 1)⌉. Denote the obtained graph by H. Let K ⊆ H be a sub-
graph of H containing some vertices from I. If K intersects two distinct cliques
Ci,C j, then deleting V (K)∩ I disconnects V (K)∩Ci from V (K)∩C j, and thus the
connectivity of K does not exceed |V (K)∩ I| ≤ |I| ≤ k2/n. If K intersects a unique
clique Ci, then deleting all neighbors of v ∈ V (K)∩ I from Ci disconnects v from
the rest of K, implying κ(H[K])≤ degCi(v)≤ k2/n.

Proof of Theorem 14.10. Let us begin with part (i). Let H be a graph with min-
imum degree at least dn. Let (V1, . . . ,Vt) be a partition of V (H) such that |Vi| ≥
dn/8 and H[Vi] is (d2n/16)-connected, 1 ≤ i ≤ t. The existence of such a par-
tition is guaranteed by Lemma 14.11. It is enough to show that the graph GH,m
w.h.p. contains a matching of size k in each bipartite graph induced by (Vi,Vj).
Let Fi j be a maximum matching between Vi and Vj in H. If |Fi j| ≥ k we are done.
Assume therefore that |Fi j| < k. Choose a subset A ⊂ Vi \

⋃
e∈Fi j

e and a subset
B ⊂ Vj \

⋃
e∈Fi j

e of cardinalities |A| = |B| = 3dn/32. Obviously H has no edges
connecting A and B due to the maximality of Fi j.

Consider first the case k = O(1). Then the set R contains w.h.p. ω(1) random
edges between A and B. If ω(1) = o(

√
n), then those random edges form w.h.p. a

matching as required.
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Let now k = ω(1). Instead of GH,m we may consider GH,p with p = 1280k
d2n2 .

Then the probability that the set R of random edges does not have a matching of
size k between A and B can be estimated from above by:

k−1

∑
i=0

(3dn
32
i

)2

i!pi(1− p)(
3dn
32 −i)

2

(This expression arises from first choosing the size i < k of a maximum matching
M between A and B in R, then choosing the vertices of M in A and B, then forming
a pairing between them, then requiring all matching edges to be present in R, and
finally requiring all edges lying outside the vertices of the matching to be absent).
We can estimate the above expression from above by:

e−p( 3dn
32 −k)

2
(

1+
k

∑
i=1

(
3edn
32i

)2i

ii pi

)
< e−p

(
3dn
32 −

d2n
32

)2
1+

k

∑
i=1

[(
3edn
32i

)2

ip

]i


< e−
d2n2 p

256

(
1+

k

∑
i=1

(
9e2d2n2 p

1024i

)i
)

= e−5k

(
1+

k

∑
i=1

(
45e2k

4i

)i
)

In the last sum each summand is easily seen to be at least twice as much as the
previous summand, and hence the above estimate is at most

2e−5k
(

45e2k
4k

)k

= o(1).

As to part (ii), let H0 consist of ⌊ n
dn+1⌋ disjoint cliques C1, . . . ,Ct each of size

at least dn+1. If H0∪R is k-connected, then each Ci is incident to at least k edges,
implying |R| ≥ kt

2 = k
2⌊

n
dn+1⌋.

14.4 Ramsey Properties
Let G1 and G2 be two graphs. Following the Erdős and Rado arrow notation we
write that a graph F → (G1,G2) if every Red-Blue coloring of the edges of F
contains a Red copy of G1 or a Blue copy of G2.

In this section, following Krivelevich, Sudakov and Tetali [605], we determine
the threshold function for the number of random edges m one needs to add to a
dense graph H ∈ G (n,d), 0 < d < 1, i.e., a graph with average degree at least dn,
to guarantee that w.h.p. GH,m→ (G1,G2). In particular, we present the result from
[605] which solves the problem for G1 = K3 and G2 = Kt , for t ≥ 3.
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Theorem 14.13. Let 0 < d < 1 and t ≥ 3 be an integer.

(i) Let H ∈ G (n,d) and m = ω

(
n2−2/(t−1)

)
. Then GH,m→ (K3,Kt) w.h.p.

(ii) There exists a graph H0 on n vertices and with n2/4 edges such that if m =

o
(

n2−2/(t−1)
)

, then GH0,m ̸→ (K3,Kt) w.h.p.

We need to first introduce an important definition used throughout the proof
of the above theorem.

Definition 14.14. Let G = (V,E) be a graph and let U be a subset of V . Denote
by

N∗(U) = {v ∈V |(v,u) ∈ E, for every u ∈U},

the common neighborhood of U in G. For a constant 0 < c < 1. a subset V0 ⊂V of
verices is called c− typical if its common neighborhood has size |N∗(V0)| ≥ cn.

Although the main result of this section is for H ∈ G (n,d), in what follows we
assume, without loss of generality, that H ∈ G (n,d/2) for fixed 0 < d < 1, i.e., is
a graph with minimum degree at least dn/2. Indeed, there is no loss of generality
since only estimates on the number of edges in linear-sized (in n) will be used,
whereas every graph H on n vertices with average degree dn contains a subgraph
H ′ on n′ ≥ dn/2 vertices with minimum degree at least dn/2.

Lemma 14.15. Let 0 < d,α,β < 1 be fixed constants. Let H ∈ G (n,d/2), and let
m = ω

(
n2−2/(t−1)

)
. Then there exist constants c1 and c2 depending on d, such

that such GH,m w.h.p.

(i) contains a c1-typical copy of Kt , for t ≥ 4,

(ii) every set U of size |U | ≥ αn contains a c2-typical copy of Kt−1, for t ≥ 4,

(iii) every set U of size |U | ≥ βn satisfies: GH,m[U ]→ (K3,Kt−2), for t ≥ 5.

Proof. We start with proving statement (ii) first, indicating the changes necessary
for the proof of simpler statement (i).
For v ∈ V (H), let degH(v) denotes the degree of v in H. For a subset U ⊆ V (H)
we denote by degH(v,U) the number of neighbors of v in U . Observe that every
collection of a linear number of vertices of H (and hence of GH,m) contains many
subsets of size t− 1 (and also t), which are typical. Indeed, let U ⊂ V (H) be of
size at least αn. Since the minimum degree of H is at least dn/2 we have that

∑
v∈V (H)

degH(v,U) = ∑
u∈U

degH(u)≥
dn
2
|U | ≥ αd

2
n2.
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Therefore

∑
V0⊂U,
|V0|=t−1

|N∗(V0)|= ∑
v∈V (H)

(
degH(v,U)

t−1

)
≥ n
(

∑v∈V (H)
degH(v,U)

n
t−1

)
= n
(

αdn/2
t−1

)
.

As every |N∗(V0)| ≤ n, we conclude that |N∗(V0)| ≥ c2n for at least(
αdn/2
t−1

)
−
(

αn
t−1

)
c2

subsets V0 ⊂U of size t−1. Taking c2 = c2(d) small enough we ensure that the
later quantity is at least c′2nt−1 for some c′2 > 0.

In the final step of of the proof, we switch to the equivalent model GH,p with

p = ω

(
n−2/(t−1)

)
and apply Janson’s inequality (see Section 27.6).

Due to monotonicity we may also assume that edge probability p = p(n) does
not to exceed n−2/(t−1) by much, say p≤ n−2/(t−1) logn.
Let µU denote the expected number of c2-typical copies of Kt−1 in U after adding
R to H. Here we only include a set T of t−1 vertices if T is complete using the
edges of R only. Let ∆U denote the correlation term:

∆U = ∑
T,T ′⊂U

|T |=|T ′|=t−1
|T∩T ′|≥2

P(T and T ′ each induce a c2-typical Kt−1 ∈ GH,p).

It is easy to check that

µU = Θ

(
nt−1 p(

t−1
2 )
)
= ω(n),

and that

∆U = O(n2t−4 p(t−1)(t−2)−1) = O(n2/(t−1)(logn)(t−1)(t−2)−1) = o(µU).

Using the Janson inequality it now follows that

P(there are no c2-typical copies of Kt−1 in U)≤ e−µU+
∆U
2 = e−ω(n).

Therefore with probability 1−2ne−ω(n) = 1−o(1) every set U of size at least αn
contains a c2-typical copy of Kt−1, which completes the proof of (ii).

The proof of statement (i) is obtained along the same lines. Observe that the
expected number µ of c2-typical copies of Kt in GH,p is Θ(nt p(

t
2)) = o(1), and the

correlation term is

∆ = ∑
T,T ′⊂U

|T |=|T ′|=t−1
|T∩T ′|≥2

P(T and T ′ each induce Kt ∈ GH,p) = O
(

n2t−2 p2(t
2)−1

)
= o(1).
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Once again the assertion (i) follows using Janson inequality.
To prove statement (iii) we need the following proposition, which is directly

implied by the results for a random graph Gn,p due to Rödl and Ruciński [771]
and Kohayakawa and Kreuter [578] (or see Theorems 3.5 and 3.6 and Corollary
3.7 of [605])

Proposition 14.16. Let t ≥ 3 be a fixed integer . For every a > 0, there exist C
and N0 such that for n > N0 and p >Cn−(2t−3)/(t(t−1)) we have

P(Gn,p→ (K3,Kt))> 1− e−an3/2
.

Statement (iii) then follows by trivial combination of the union bound with
Proposition 14.16, since the edge probability in our random graph GH,p, p =

n−
2

t−1 ≥ n−
2(t−2)−3
(t−2)(t−3) for t ≥ 5.

We are now ready to prove Theorem 14.13.

Proof. (of Theorem 14.13)
We start with a proof of statement (ii) of the theorem. Let H0 =Kn

2 ,
n
2

and color
all edges of H Red and the random edges of GH0,m Blue. Notice that w.h.p. GH0,m
does not contain a Red copy of K3 nor neither a Blue copy of Kt , t ≥ 3. The later
follows from Theorem 5.3 since w.h.p. the random graph Gn,m does not contain a
complete subgraph Kt if m = o(n2−2/(t−1)).

Notice that for t = 3 the statement (i) of the theorem follows directly from
Theorem 5.3 (see Exercise 14.5.6), while the proof for t ≥ 4 needs much more
effort, and is solely based on Lemma 14.15 under the assumption that we can take
the constants c1,c2,α,β , specified in its statements (i) and (ii), as small as will
be required in the proof.

Consider an arbitrary Blue-Red coloring of the edges of GH,p and assume, by
the way of contradiction, that this coloring contains neither a Red K3 nor a Blue
Kt for fixed t ≥ 4. Observe first, that there is a vertex whose Blue degree in edge
colored GH,p is c1n/2. Indeed, by (i) of Lemma14.15 GH,p contains a c1-typical
copy of Kt , and hence |N∗(V (Kt))| ≥ c1n. Since there is no Blue Kt , at least one
edge inside V (Kt) must be colored Red, and let (u,v) be such an edge. For every
w ∈ N∗(u,v) at least one of (u,w) or (v,w) is Blue - otherwise we get a Red K3.
Therefore the Blue degree of u or v is at least c1n/2.

Let v be the vertex with Blue degree at least c1n/2 and let NB(v) denote v’s
set of Blue neighbors. Applying statement (ii) of Lemma 14.15 greedily, with
α = c1c2/48 and t = 4, we see that NB(v) contains a family of c1n/12 pairwise
disjoint c2-typical copies of K3. Each of these must have a Blue edge - otherwise
we have a Red K3 and we are done. Let these Blue edges be (x1,y1), . . . ,(xs,ys),
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where s = c1n/12. Denote by N∗(xi,yi) the common neighborhood of (xi,yi) for
i = 1, . . . ,s. Note that each N∗(xi,yi) is linear in size, since (xi,yi) is a pair from
from c2-typical K3. Clearly

min
i
|N∗(xi,yi)| ≥ c2n.

Suppose first that for some i ∈ {1, . . . ,s},

|{w ∈ N∗(xi,yi) : (xi,w),(yi,w) are both Blue }| ≥ c2n/2. (14.5)

Then, for such choice of i, we obtain a Blue edge (xi,yi) with common Blue
neighborhood N∗B(xi,yi) ⊆ N∗(xi,yi) of size at least c2n/2. When t = 4, property
(ii) of Lemma 14.15 guarantees that N∗B(xi,yi) contains a copy of Kt−1 = K3. If
at least one of the edges of this K3 is blue, then together with the pair (xi,yi) we
obtain a Blue K4. If not, then we obtain a Red K3 yielding a contradiction.

To arrive at a contradiction when t ≥ 5, we invoke statement (iii) of Lemma
14.15. Since |N∗B(xi,yi)| ≥ c2n/2 = βn, we have

GH,p[N∗B(xi,yi)]→ (K3,Kt−2).

Thus together with the Blue edge (xi,yi) and the fact that N∗B(xi,yi) is the Blue
neighborhood of (xi,yi), we have that GH,p → (K3,Kt), yielding again a contra-
diction with our assumption on the coloring of edges of GH,p.

To finish the proof, we have to answer the remaining question: what happens
if for none of i ∈ {1, . . . ,s} equation (14.5) holds.

Then, for each i, the edge (xi,yi) is incident to c2n/2 Red edges. Moreover
since each Red edge is counted at most twice as we vary i, we infer that a Blue
neighborhood NB(v) of v is incident to at least (1/2)(c1n/12)(c2n/2)= c1c2n2/48
Red edges. Hence there exist a vertex w ∈ V whose Red neighborhood in NB(v)
is of size at least c1c2n/48. Let N be the intersection of the Blue neighborhood of
v and the red neighborhood of w, so that |N| ≥ c1c2n/48. Once more, according
to (ii) of Lemma 14.15, N contains a copy of Kt−1. If this copy has a Red edge,
then this Red edge forms a Red K3 with w. Otherwise, all of the edges of the
above Kt−1 are Blue, forming a Blue Kt together with v, yielding a contradiction
and thus concluding the proof of Theorem 14.13.

14.5 Exercises
14.5.1 Let Let G = Kt be a complete graph on t vertices, an let 2 ≤ r ≤ t. Find

mr(G).

14.5.2 Determine m2(G) when
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(a) G is obtained from a complete bipartite graph Kt,t by adding one edge
to to each part of the bipartition,

(b) G = K2,t,t is a complete 3-partite graph,

(c) G = Kt,t,t,t .

14.5.3 Prove that for monotone graph property P , if GH,p ∈P w.h.p. then also
does GH,m.

14.5.4 Show that (14.3) holds.

14.5.5 Prove statement (i) of Lemma 14.15.

14.5.6 Let H ∈ G (n,d) and m = ω(n). Show that it follows directly from Theo-
rem 14.1 that GH,m→ (K3,K3) w.h.p.

14.6 Notes

Perturbed dense graphs
In this subsection all of the results presented use the notation introduced in the
beginning of this Chapter. Hence, H always stands for an n-vertex (dense) graph
belonging to the family G (n,d) with minimum degree dn, for d > 0, while GH,m
and GH,p are random graphs being respective unions of H with Gn,m and Gn,p.

Spanning subgraphs

Böttcher, Montgomery, Parczyk and Person in [187] prove that for every d > 0
and ∆≥ 5, and for every n-vertex graph F with maximum degree at most ∆, they
show that if p = ω(n−2/(∆+1)) then then GH,p contains a copy of F w.h.p.

Krivelevich, Kwan, and Sudakov in [592] show that for any dense graph G
and bounded-degree tree T on the same number of vertices, a modest random
perturbation of G will typically contain a copy of T . In particular, they prove
that if T is an n-vertex tree with maximum degree ∆, then there exist c = c(d,∆),
such that a random graph GH,m, where m = cn, w.h.p. contain T . Böttcher, Han,
Kohayakawa, Montgomery, Parczyk, and Person [186] proved that the same holds
for all spanning trees simultaneously, while Joos and Kim [530] extended results
from [592] to spanning trees with unbounded maximum degree.

A graph G is called universal for a family of graphs F if it contains every
element F ∈F as a subgraph. Let F (n,2) be the family of all n-vertex graphs
with maximum degree 2. Parczyk [728] proves that for 0 < d < 1, p = ω(n−2/3),
GH,p is F (n,2)-universal w.h.p.
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F-factors

Recall that, given a graph F , a graph G has an F-factor if it contains ⌊ |V (G)|
|V (H)|⌋

pairwise vertex-disjoint copies of F .
Balogh, Treglown, and Wagner proved in [70] that if F is a non-empty graph

and n is divisible by |V (F)|, then for every d > 0 there is c= c(d,F) such that GH,p

has an F-factor w.h.p. if p≥ cn−1/d∗(F), where d∗(F)=max
{

|E(F ′)|
(|V (F ′)|−1) : F ′ ⊆ F, |V (F ′)| ≥ 2

}
.

Böttcher, Parczyk, Sgueglia, and Skokan [188] consider the special case when
F = Cl , where Cl stands for a cycle of length l. They show that for any integer
l ≥ 3, there exist c > 0 such that w.h.p. GH,p contains a Cl-factor if d > 1/l and
p≥ c/n, and also if d = 1/l and c≥ c logn/n. They also show that for any integer
l ≥ 3, there exists c> 0 such that w.h.p. we can find in GH,p, min{δ (GH,p),⌊n/l⌋}
pairwise disjoint copies of Cl , provided that p ≥ c logn/n. See also the earlier
paper [189] of the same authors dealing with a special case for triangles (l = 3).

Han, Montgomery and Treglown in [465] consider the case when F = Kr and
find a sharp threshold for the existence of a Kr-factor in GH,p. Let 2 ≤ k ≤ r
be integers. Then given any 1− k

r < d < 1− k−1
r , GH,p has Kr-factor w.h.p. if

p = ω(n−2/k) and w.h.p. does not have a Kr-factor if p = o(n−2/k).
Extending the perturbation model, Gomez-Leos and Martin in [445] deter-

mined the threshold for the existence of Kr,r-factor, but this time in a randomly
perturbed bipartite graph (with linear minimum degree).

Powers of Hamilton cycles

The main result of Bohman, Frieze and Martin [134] on the existence of Hamilton
cycle in randomly perturbed dense graphs (see Theorem 18.20) opened a wide
avenue of research on the powers of Hamilton cycles in GH,p and GH,m.

In a most recent paper [190], Böttcher, Parczyk, Sgueglia and Skokan investi-
gate the appearance of the square of a Hamilton cycle in the random graph GH,p,
where H ∈ G (n,d) for d ∈ (0,1). They demonstrate that, as d ranges over the
interval (0,1), the perturbed threshold performs a countably infinite number of
”jumps”. This was known earlier when d > 1/2. In the range of d ∈ (1/2,2/3)
the threshold was determined by Dudek, Reiher Ruciński and Schacht [314] while
for d ≥ 2/3 it was established in [584]. Hence [190] completely settles the ques-
tion of determining the perturbed threshold for the square of a Hamilton cycle for
the whole range of d.

Antoniuk, Dudek, Reiher, Ruciński and Schacht in [46] investigate the exis-
tence of powers of Hamiltonian cycles in GH,m. For all integers k ≥ 1, r ≥ 0, and
l ≥ (r+1)r, and for any d ≥ k/(k+1) they show that if m = O(n2−2/l) then GH,m
w.h.p. contains (kl + r)-th power of a Hamiltonian cycle. In particular, for r = 1
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and l = 2 this implies that adding m = O(n) random edges to a graph H ∈ G (n,d)
already ensures the (2k + 1)-st power of a Hamiltonian cycle w.h.p, which was
proved independently by Nenadov and Trujic [715].

Antoniuk, Dudekk and Ruciński in [47] consider a specific case when H is
an n-vertex graph with minimum degree at least (1/2+ ε)n and for every integer
k ≥ 2 precisely estimate the threshold probability for the event that random GH,p
contains the k-th power of a Hamiltonian cycle.

In [187] it is proved that, for every integer k ≥ 2 and d > 0 , there is some
η > 0 for which the k-th power of a Hamilton cycle w.h.p. appears in GH,p when
p = ω(n−1/k−η).

For similar results on Hamilton cycles and existence of their k-th powers in a
related model, when a dense n-vertex graph is perturbed by a random geometric
graph or a random regular graph, see papers [342], [343] and [344], respectively.

Ramsey properties

Krivelevich, Sudakov and Tetali in [605] initiated the study of edge Ramsey prop-
erties of randomly perturbed graphs. Theorem 14.13, proved in Section 14.4,
shows when GH,m → (K3,Kt) w.h.p. for t ≥ 3. Combining their work with re-
sults of Das and Treglown [279] and of Powierski [728], it is known that GH,m→
(Ks,Kt) w.h.p. for all values of (s, t), except for the case when s = 4 and t ≥ 5.
See [279] for other results on this topic.

Das, Morris and Treglown in [278] focus on vertex Ramsey properties of ran-
domly perturbed graphs. In particular they resolve the (F,Kr)v-Ramsey problem
for r ≥ 2 and and arbitrary graph F .

Perturbed sparse graphs
Aigner-Horev, Hefetz and Krivelevich [9] analyse the asymptotic behaviour of the
order of the largest complete minor, the order of the largest complete topological
minor, the vertex-connectivity, and the diameter of (possibly sparse) graphs that
are randomly perturbed using the binomial random graph.

Hahn-Klimroth, Maesaka, Mogge, Mohr and Parczyk [460] consider sparse
n-vertex graph H∗ with minimum vertex degree at most dn, where d = o(1) and
a random perturbed graph GH∗,p being a union of H∗ with a random binomial
graph Gn,p. In particular, they prove the following extension of Theorem 18.20.
Let d = d(n) : N 7→ (0,1),b = b(d) and p = b/n. Then GH∗,p w.h.p. contains a
Hamilton cycle. They also discuss embeddings of bounded degree trees and other
spanning structures in this model.

Krivelevich , Reichman and Samotij [600] consider as a starting point all n-
vertex connected graphs. Given such graph Hc they take its union with Gn,p,
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where p = ε/n and ε > 0 is a small positive constant. Pointing out to the well
known facts that connected graphs can be bad expanders, can have very large di-
ameter, and possibly contain no long paths, they in contrast show that w.h.p. GHc,p
has edge expansion Ω(1/ logn) , diameter O(logn), vertex expansion Ω(1/ logn),
and contains a path of length Ω(n), where for the last two properties one has to
additionally assume that Hc has bounded maximum degree.

Perturbed digraphs
Bohman, FriezeFrieze, A., Krivelevich and Martin in [135] proved the analogous
result to Theorm 18.20 for consistently oriented Hamilton cycles in the randomly
perturbed digraph model. Subsequently, Krivelevich , Kwanwan, M. and Sudakov
[591] extended this result to consistently oriented cycles of any length between
2 and n, while Araujo, Balogh, Krueger, Piga and Treglown in [53], under the
same conditions, proved that the randomly perturbed digraph w.h.p. contains every
orientation of a cycle of every length between 2 and n.

Perturbed hypergraphs
We next present results on randomly perturbed dense k-uniform hypergraphs (briefly,
k-graphs) H = (V,E ), where V is an n-vertex set and the edge set E is a family of
k-vertex subsets of V obtained by taking the union of H with a random binomial
hypergraph Hn,p;k, defined in Chapter 12. In particular, these results deal with
l-overlapping Hamilton cycles, briefly (Hamilton l-cycle), for 1 ≤ l ≤ k− 1. In
particular, a Hamilton (k−1)-cycle is usually called a tight Hamilton cycle while
a Hamilton 1-cycle is called a loose Hamilton cycle (see also Chapter 12).

In the paper [591] Krivelevich, Kwan and Sudakov extended Theorem 18.20 to
hypergraphs. They proved that if d > 0 and H is a k-graph on n∈ (k−1)N vertices
with δk−1(H) ≥ dn, then there exists a function ck = ck(d) such that for p =
ckn−(k−1), H ∪Hn,p;k w.h.p. contains a Hamilton 1-cycle (loose Hamilton cycle).
Here δt stands for the minimum t-degree of H, defined for 1≤ t ≤ k−1 as follows.
Given a k-graph H with a set S of t vertices (where 1≤ t ≤ k−1), let NH(S) be the
collection of (k− t)-sets T such that S∪T ∈ E (H), and let degH(S) := |NH(S)|.
The minimum t-degree δt(H) is the minimum of degH(S) over all t-vertex sets S
in H.

McDowell and Mycroft [670] partially answered the question posed in [591]
whether the above result can be extended for any l and t, 1≤ l, t ≤ k−1, proving
it for t ≥ max{l,k− l}. Finally, Han and Zao in [464] solved the problem com-
pletely. Since the minimum 1-degree condition is the weakest among t-degree
conditions for all t ≥ 1, they stated and proved their result for t = 1 only. They
show that for integers k ≥ 3,1 ≤ l ≤ k− 1 and d > 0 there exist ε > 0 and an
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integer C > 0 such that the following holds for sufficiently large n ∈ (k− 1)N.
Suppose H is a k-graph on n vertices with δ1(H) ≥ dnk−1 and p ≥ n−(k−l)−ε for
l ≥ 2, and p≥Cn−(k−1) for l = 1. Then H ∪Hn,p;k has a Hamilton l-cycle w.h.p.

Recently, Chang, Han and Thoma in [212] extended the above result to r-th
power of Hamilton cycle. They proved that if k ≥ 3,r ≥ 2 and d > 0, there exists
ε > 0 such that if H is an n-vertex k-graph with minimum codegree δk−1(H)≥ dn

and p≥ n−(
k+r−2

k−1 )
−1−ε , then the union H∪Hn,p;k w.h.p. contains the r-th power of

a tight Hamilton cycle. Earlier, BedenknechtHan, Kohayakawa and Oliveira Mota

in [135] proved this result for d ≥ 1−n−(
k+r−2

k−1 )
−1

.
Finally, let us mention that Ramsey properties for randomly perturbed dense

3-uniform hypergrahs have been considered by Aigner-Horev, Hefetz and Schacht
in [12].
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Other models





Chapter 15

Trees

The properties of various kinds of trees are one of the main objects of study in
graph theory mainly due to their wide range of application in various areas of
science. Here we concentrate our attention on the “average” properties of two
important classes of trees: labeled and recursive. The first class plays an important
role in both the sub-critical and super-critical phase of the evolution of random
graphs. On the other hand random recursive trees serve as an example of the very
popular random preferential attachment models. In particular we will point out,
an often overlooked fact, that the first demonstration of a power law for the degree
distribution in the preferential attachment model was shown in a special class of
inhomogeneous random recursive trees.

The families of random trees, whose properties are analyzed in this chapter,
fall into two major categories according to the order of their heights: they are ei-
ther of square root (labeled trees) or logarithmic (recursive trees) height. While
most of square-root-trees appear in probability context, most log-trees are encoun-
tered in algorithmic applications.

15.1 Labeled Trees

Consider the family Tn of all nn−2 labeled trees on vertex set [n] = {1,2, . . . ,n}.
Let us choose a tree Tn uniformly at random from the family Tn. The tree Tn is
called a random tree (random Cayley tree).

The Prüfer code [754] establishes a bijection between labeled trees on vertex
set [n] and the set of sequences [n]n−2 of length n− 2 with items in [n]. Such a
coding also implies that there is a one-to-one correspondence between the number
of labeled trees on n vertices with a given degree sequence d1,d2, . . . ,dn and the
number of ways in which one can distribute n−2 particles into n cells, such that
ith cell contains exactly di−1 particles.
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If the positive integers di, i = 1,2, . . . ,n satisfy

d1 +d2 + · · ·+dn = 2(n−1),

then there exist (
n−2

d1−1,d2−1, . . . ,dn−1

)
(15.1)

trees with n labeled vertices, the ith vertex having degree di.
The following observation is a simple consequence of the Prüfer bijection.

Namely, there are (
n−2
i−1

)
(n−1)n−i−1 (15.2)

trees with n labeled vertices in which the degree of a fixed vertex v is equal to i.
Let Xv be the degree of the vertex v in a random tree Tn, and let X∗v = Xv−

1. Dividing the above formula by nn−2, it follows that, for every i, X∗i has the
Bin(n− 2,1/n) distribution, which means that the asymptotic distribution of X∗i
tends to the Poisson distribution with mean one.

This observation allows us to obtain an immediate answer to the question of
the limiting behavior of the maximum degree of a random tree. Indeed, the proof
of Theorem 3.4 yields:

Theorem 15.1. Denote by ∆ = ∆(Tn) the maximum degree of a random tree. Then
w.h.p.

∆(Tn)≈
logn

log logn
.

The classical approach to the study of the properties of labeled trees chosen
at random from the family of all labeled trees was purely combinatorial, i.e., via
counting trees with certain properties. In this way, Rényi and Szekeres [756],
using complex analysis, found the height of a random labeled tree on n vertices
(see also Stepanov [818], while for a general probabilistic context of their result,
see a survey paper by Biane, Pitman and Yor [111]).

Assume that a tree with vertex set V = [n] is rooted at vertex 1. Then there is
a unique path connecting the root with any other vertex of the tree. The height of
a tree is the length of the longest path from the root to any pendant vertex of the
tree. Pendant vertices are the vertices of degree one.
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Theorem 15.2. Let h(Tn) be the height of a random tree Tn. Then

lim
n→∞

P
(

h(Tn)√
2n

< x
)
= η(x),

where

η(x) =
4π5/2

x3

∞

∑
k=1

k2e−(kπ/x)2
.

Moreover,

Eh(Tn)≈
√

2πn and Varh(Tn)≈
π(π−3)

3
n.

We will now introduce a useful relationship between certain characteristics
of random trees and branching processes. Consider a Galton-Watson branch-
ing process µ(t), t = 0,1, . . . , starting with M particles, i.e., with µ(0) = M, in
which the number of offspring of a single particle is equal to r with probability
pr,∑

∞
r=0 pr = 1. Denote by ZM the total number of offspring in the process µ(t).

Dwass [319] (see also Viskov [841]) proved the following relationship.

Lemma 15.3. Let Y1,Y2, . . . ,YN be a sequence of independent identically dis-
tributed random variables, such that

P(Y1 = r) = pr for r = 1,2, . . . ,N.

Then
P(ZM = N) =

M
N

P(Y1 +Y2 + . . .+YN = N−M).

Now, instead of a random tree Tn chosen from the family of all labeled trees Tn
on n vertices, consider a tree chosen at random from the family of all (n+1)n−1

trees on n+1 vertices, with the root labeled 0 and all other vertices labeled from
1 to n. In such a random tree, with a natural orientation of the edges from the root
to pendant vertices, denote by Vt the set of vertices at distance t from the root 0.
Let the number of outgoing edges from a given vertex be called its out-degree and
X+

r,t be the number of vertices of out-degree r in Vt . For our branching process,
choose the probabilities pr, for r = 0,1, . . ., as equal to

pr =
λ r

r!
e−λ ,

i.e., assume that the number of offspring has the Poisson distribution with mean
λ > 0. Note that λ is arbitrary here.
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Let Zr,t be the number of particles in the tth generation of the process, having
exactly r offspring. Next let X = [mr,t ], r, t = 0,1, . . . ,n be a matrix of non-negative
integers. Let st = ∑

n
r=0 mr,t and suppose that the matrix X satisfies the following

conditions:

(i) s0 = 1,

st = m1,t−1 +2m2,t−1 + . . .nmn,t−1 for t = 1,2, . . .n.

(ii) st = 0 implies that st+1 = . . .= sn = 0.

(iii) s0 + s1 + . . .+ sn = n+1.

Then, as proved by Kolchin [581], the following relationship holds between the
out-degrees of vertices in a random rooted tree and the number of offspring in the
Poisson process starting with a single particle.

Theorem 15.4.
P([X+

r,t ] = X) = P([Zr,t ] = X |Z = n+1).

Proof. In Lemma 15.3 let M = 1 and N = n+1. Then,

P(Z1 = n+1) =
1

n+1
P(Y1 +Y2 + . . .+Yn+1 = n)

=
1

n+1 ∑
r1+...+rn+1=n

n+1

∏
i=1

λ ri

ri!
e−λ

=
(n+1)nλ ne−λ (n+1)

(n+1)!
.

Therefore

P([Zr,t ] = X |Z = n+1) =

=
∏

n
t=0
( st

m0,t ,...,mn,t

)
pm0,t

0 . . . pmn,t
n

P(Z = n+1)

=
(n+1)!∏

n
t=0

st !
m0,t ! m1,t ! ... mn,t ! ∏

n
r=0

(
λ r

r! e−λ

)mr,t

(n+1)nλ ne−λ (n+1)

=
(n+1)! s1! s2! . . . sn!

(n+1)n

n

∏
t=0

n

∏
r=0

1
mr,t! (r!)mr,t

. (15.3)
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On the other hand, one can construct all rooted trees such that [X+
r,t ] = X in the

following manner. We first layout an unlabelled tree in the plane. We choose
a single point (0,0) for the root and then points St = {(i, t) : i = 1,2, . . . ,st} for
t = 1,2, . . . ,n. Then for each t,r we choose mr,t points of St that will be joined to
r points in St+1. Then, for t = 0,1, . . . ,n− 1 we add edges. Note that Sn, if non-
empty, has a single point corresponding to a leaf. We go through St in increasing
order of the first component. Suppose that we have reached (i, t) and this has been
assigned out-degree r. Then we join (i, t) to the first r vertices of St+1 that have
not yet been joined by an edge to a point in St . Having put in these edges, we
assign labels 1,2, . . . ,n to

⋃n
t=1 St . The number of ways of doing this is

n

∏
t=1

st!
∏

n
r=1 mr,t!

×n!.

The factor n! is an over count. As a set of edges, each tree with [X+
r,t ] = X appears

exactly ∏
n
t=0 ∏

n
r=0(r!)mr,t times, due to permutations of the trees below each ver-

tex. Summarising, the total number of tree with out-degrees given by the matrix
X is

n! s1! s2! . . . sn!
n

∏
t=0

n

∏
r=0

1
mr,t! (r!)mr,t

,

which, after division by the total number of labeled trees on n+ 1 vertices, i.e.,
by (n+1)n−1, results in an identical formula to that given for the random matrix
[X r,t

+ ] in the case of [Zr,t ], see (15.3). To complete the proof one has to notice that
for those matrices X which do not satisfy conditions (i) to (iii) both probabilities
in question are equal to zero.

Hence, roughly speaking, a random rooted labeled tree on n vertices has asymp-
totically the same shape as a branching process with Poisson, parameter one in
terms of family sizes. Grimmett [452] uses this probabilistic representation to
deduce the asymptotic distribution of the distance from the root to the nearest
pendant vertex in a random labeled tree Tn, n ≥ 2. Denote this random variable
by d(Tn).

Theorem 15.5. As n→ ∞,

P(d(Tn)≥ k)→ exp

{
k−1

∑
i=1

αi

}
,

where the αi are given recursively by

α0 = 0, αi+1 = eαi− e−1−1.
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Proof. Let k be a positive integer and consider the sub-tree of Tn induced by the
vertices at distance at most k from the root. Within any level (strata) of Tn, order
the vertices in increasing lexicographic order, and then delete all labels, excluding
that of the root. Denote the resulting tree by T k

n .
Now consider the following branching process constructed recursively accord-

ing to the following rules:

(i) Start with one particle (the unique member of generation zero).

(ii) For k ≥ 0, the (k+1)th generation Ak+1 is the union of the families of de-
scendants of the kth generation together with one additional member which
is allocated at random to one of these families, each of the |Ak| families
having equal probability of being chosen for this allocation. As in Theorem
15.4, all family sizes are independent of each other and the past, and are
Poisson distributed with mean one.

Lemma 15.6. As n→ ∞ the numerical characteristics of T k
n have the same dis-

tribution as the corresponding characteristics of the tree defined by the first k
generations of the branching process described above.

Proof. For a proof of Lemma 15.6, see the proof Theorem 3 of [452].

Let Yk be the size of the kth generation of our branching process and let Nk
be the number of members of the kth generation with no offspring. Let i =
(i1, i2, . . . , ik) be a sequence of positive integers, and let

A j = {N j = 0} and B j = {Yj = i j} for j = 1,2, . . . ,k.

Then, by Lemma 15.6, as n→ ∞,

P(d(Tn)≥ k)→ P(A1∩A2∩ . . .∩Ak) .

Now,

P(A1∩A2∩ . . .∩Ak) = ∑
i

k

∏
j=1

P(A j|A1∩ . . .∩A j−1∩B1∩ . . .B j)

×P(B j|A1∩ . . .∩A j−1∩B1∩ . . .B j−1),

Using the Markov property,

P(A1∩A2∩ . . .∩Ak) = ∑
i

k

∏
j=1

P(A j|B j)P(B j|A j−1∩B j−1)
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= ∑
i

k

∏
j=1

(
1− e−1)i j−1

C j(i j), (15.4)

where C j(i j) = P(B j|A j−1∩B j−1) is the coefficient of xi j in the probability gen-
erating function D j(x) of Yj conditional upon Yj−1 = i j−1 and N j = 0. Thus

Y j = 1+Z +R1 + . . .+Ri j−1−1,

where Z has the Poisson distribution and the Ri are independent random variables
with Poisson distribution conditioned on being non-zero. Hence

D j(x) = xex−1
(

ex−1
e−1

)i j−1−1

.

Now,
∞

∑
ik=1

(1− e−1)ik−1Ck(ik) =
Dk(1− e−1)

1− e−1 .

We can use this to eliminate ik in (15.4) and give

P(A1∩A2∩ . . .∩Ak) =

∑
(i1,...,ik−1)

k−1

∏
j=1

β
i j−1
1 C j(i j)eβ1−1

(
eβ1−1
e−1

)ik−1−1

, (15.5)

where β1 = 1− e−1. Eliminating ik−1 from (15.5) we get

P(A1∩A2∩ . . .∩Ak) =

∑
(i1,...,ik−2)

k−2

∏
j=1

β
i j−1
1 C j(i j)eβ1+β2−2

(
eβ2−1
e−1

)ik−2−1

,

where β2 = (eβ1−1). Continuing we see that, for k ≥ 1,

P(A1∩A2∩ . . .∩Ak) = exp

{
k

∑
i=1

(βi−1)

}
= exp

{
k

∑
i=1

αi

}
,

where β0,β1, . . . are given by the recurrence

β0 = 1, βi+1 =
(

eβi−1
)

e−1,

and αi = βi− 1. One can easily check that βi remains positive and decreases
monotonically as i→ ∞, and so αi→−1.
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Another consequence of Lemma 15.3 is that, for a given N, one can associated
with the sequence Y1,Y2, . . . ,YN , a generalized occupancy scheme of distributing
n particles into N cells (see [581]). In such scheme, the joint distribution of the
number of particles in each cell (ν1,ν2, . . . ,νN) is given, for r = 1,2, . . . ,N by

P(νr = kr) = P

(
Yr = kr

∣∣∣∣ N

∑
r=1

Yr = n

)
. (15.6)

Now, denote by X+
r = ∑

n
t=0 X+

r,t the number of vertices of out-degree r in a random
tree on n+1 vertices, rooted at a vertex labeled 0. Denote by Z(r) = ∑

n
t=0 Zr,t , the

number of particles with exactly r offspring in the Poisson process µ(t). Then by
Theorem 15.4,

P(X+
r = kr, r = 0,1, . . . ,n) = P(Z(r) = kr, r = 0,1, . . . ,n|Z1 = n+1).

Hence by equation (15.1), the fact that we can choose λ = 1 in the process
µ(t) and (15.6), the joint distribution of out-degrees of a random tree coincides
with the joint distribution of the number of cells containing the given number of
particles in the classical model of distributing n particles into n+ 1 cells, where
each choice of a cell by a particle is equally likely.

The above relationship, allows us to determine the asymptotic behavior of the
expectation of the number Xr of vertices of degree r in a random labeled tree Tn.

Corollary 15.7.
EXr ≈

n
(r−1)! e

.

15.2 Recursive Trees
We call a tree on n vertices labeled 1,2, . . . ,n a recursive tree (or increasing tree)
if the tree is rooted at vertex 1 and, for 2≤ i≤ n, the labels on the unique path from
the root to vertex i form an increasing sequence. It is not difficult to see that any
such tree can be constructed “recursively”: Starting with the vertex labeled 1 and
assuming that vertices “arrive” in order of their labels, and connect themselves by
an edge to one of the vertices which “arrived” earlier. So the number of recursive
(increasing) trees on n vertices is equal to (n−1)!.

A random recursive tree is a tree chosen uniformly at random from the family
of all (n−1)! recursive trees. Or equivalently, it can be generated by a recursive
procedure in which each new vertex chooses a neighbor at random from previ-
ously arrived vertices. We assume that our tree is rooted at vertex 1 and all edges
are directed from the root to the leaves.
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Let Tn be a random recursive tree and let D+
n,i be the out-degree of the vertex

with label i, i.e the number of “children” of vertex i. We start with the exact
probability distribution of these random variables.

Theorem 15.8. For i = 1,2, . . . ,n and r = 1,2, . . . ,n−1,

P(D+
n,i = r) =

(i−1)!
(n−1)!

n−i

∑
k=r

(
k
r

)
(i−1)k−r|s(n− i,k)| (15.7)

where s(n− i,k) is the Stirling number of the first kind.

Proof. Conditioning on tree Tn−1 we see that, for r ≥ 1,

P(D+
n,i = r) =

n−2
n−1

P(D+
n−1,i = r)+

1
n−1

P(D+
n−1,i = r−1). (15.8)

Fix i and let

Φn,i(z) =
n−i

∑
r=0

P(D+
n,i = r)zr

be the probability generating function of D+
n,i.

Multiplying (15.8) by zr and then summing over r ≥ 1 we see that

Φn,i(z)−P(D+
n,i = 0) =

n−2
n−1

(
Φn−1,i(z)−P(D+

n−1,i = 0)
)
+

z
n−1

Φn−1,i(z).

Notice, that the probability that vertex i is a leaf equals

P(D+
n,i = 0) =

n−1

∏
j=i

(
1− 1

j

)
=

i−1
n−1

. (15.9)

Therefore
Φn,i(z) =

n−2
n−1

Φn−1,i(z)+
z

n−1
Φn−1,i(z).

With the boundary condition,

Φi,i(z) = P(D+
i,i = 0) = 1.

One can verify inductively that

Φn,i(z) =
n−i

∏
k=1

(
z+ i+ k−2

i+ k−1

)
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=
(i−1)!
(n−1)!

(z+ i−1)(z+ i) . . .(z+n−2). (15.10)

Recall the definition of Stirling numbers of the first kind s(n,k). For non-negative
integers n and k

z(z−1) . . .(z−n+1) =
n

∑
k=1

s(n,k)zk.

Hence

Φn,i(z) =
(i−1)!
(n−1)!

n−i

∑
k=1
|s(n− i,k)|(z+ i−1)k

=
(i−1)!
(n−1)!

n−i

∑
k=1

k

∑
r=0

(
k
r

)
zr(i−1)k−r|s(n− i,k)|

=
n−i

∑
r=0

(
(i−1)!
(n−1)!

n−i

∑
k=r

(
k
r

)
(i−1)k−r|s(n− i,k)|

)
zr.

It follows from (15.10), by putting z = 0, that the expected number of vertices
of out-degree zero is

n

∑
i=1

i−1
n−1

=
n
2
.

Then (15.8) with i = r = 1 implies that P(D+
n,1 = 1) = 1/(n−1). Hence, if Ln is

the number of leaves in Tn, then

ELn =
n
2
+

1
n−1

. (15.11)

For a positive integer n, let ζn(s) = ∑
n
k=1 k−s be the incomplete Riemann zeta

function, and let Hn = ζ (1) = ∑
n
k=1 k−1 be the nth harmonic number, and let δn,k

denote the Kronecker function 1n=k.

Theorem 15.9. For 1 ≤ i ≤ n, let Dn,i be the degree of vertex i in a random
recursive tree Tn. Then

EDn,i = Hn−1−Hi−1 +1−δ1,i,

while
VarDn,i = Hn−1−Hi−1−ζn−1(2)+ζi−1(2).
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Proof. Let N j be the label of that vertex among vertices 1,2, . . . j−1 which is the
parent of vertex j. Then for j ≥ 1 and 1≤ i < j

Dn,i =
n

∑
j=i+1

δN j,i. (15.12)

By definition N2,N3, . . . ,Nn are independent random variables and for all i, j,

P(N j = i) =
1

j−1
. (15.13)

The expected value of Dn,i follows immediately from (15.12) and (15.13). To
compute the variance observe that

VarDn,i =
n

∑
j=i+1

1
j−1

(
1− 1

j−1

)
.

From the above theorem it follows that VarDn,i ≤ EDn,i. Moreover, for fixed
i and n large, EDn,i ≈ logn, while for i growing with n the expectation EDn,i ≈
logn− log i. The following theorem, see Kuba and Panholzer [611], shows a
standard limit behavior of the distribution of Dn,i.

Theorem 15.10. Let i≥ 1 be fixed and n→ ∞. Then

(Dn,i− logn)/
√

logn d→ N(0,1).

Now, let i = i(n)→ ∞ as n→ ∞. If

(i) i=o(n), then

(Dn,i− (logn− log i))/
√

logn− log i d→ N(0,1),

(ii) i = cn, 0 < c < 1, then
Dn,i

d→ Po(− logc),

(iii) n− i = o(n), then
P(D+

n,i = 0)→ 1.

Now, consider another parameter of a random recursive tree.
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Theorem 15.11. Let r≥ 1 be fixed and let Xn,r be the number of vertices of degree
r in a random recursive tree Tn. Then, w.h.p.

Xn,r ≈ n/2r,

and
Xn,r−n/2r
√

n
d→ Yr,

as n→ ∞, where Yr has the N(0,σ2
r ) distribution.

In place of proving the above theorem we will give a simple proof of its imme-
diate implication, i.e., the asymptotic behavior of the expectation of the random
variable Xn,r. The proof of asymptotic normality of suitably normalized Xn,r is
due to Janson and can be found in [501]. (In fact, in [501] a stronger statement
is proved, namely, that, asymptotically, for all r ≥ 1, random variables Xn,r are
jointly Normally distributed.)

Corollary 15.12. Let r ≥ 1 be fixed. Then

EXn,r ≈ n/2r.

Proof. Let us introduce a random variable Yn,r counting the number of vertices of
degree at least r in Tn. Obviously,

Xn,r = Yn,r−Yn,r+1. (15.14)

Moreover, using a similar argument to that given for formula (15.7), we see that
for 2≤ r ≤ n,

E[Yn,r|Tn−1] =
n−2
n−1

Yn−1,r +
1

n−1
Yn−1,r−1 (15.15)

Notice, that the boundary condition for the recursive formula (15.15) is, trivially
given by

EYn,1 = n.

We will show, that EYn,r/n→ 2−r+1 which, by (15.14), will imply the theorem.
Set

an,r := n2−r+1−EYn,r. (15.16)

EYn,1 = n implies that an,1 = 0. We see from (15.11) that the expected number of
leaves in a random recursive tree on n vertices is given by

EXn,1 =
n
2
+

1
n−1

.
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Hence an,2 = 1/(n−1) as EYn,2 = n−EXn,1.
Now we show that,

0 < an,1 < an,2 < · · ·< an,n−1. (15.17)

From the relationships (15.15) and (15.16) we get

an,r =
n−2
n−1

an−1,r +
1

n−1
an−1,r−1. (15.18)

Inductively assume that (15.17) holds for some n≥ 3. Now, by (15.18), we get

an,r >
n−2
n−1

an−1,r−1 +
1

n−1
an−1,r−1 = an−1,r−1.

Finally, notice that

an,n−1 = n22−n− 2
(n−1)!

,

since there are only two recursive trees with n vertices and a vertex of degree
n− 1. So, we conclude that a(n,r)→ 0 as n→ ∞, for every r, and our theorem
follows.

Finally, consider the maximum degree ∆n = ∆n(Tn) of a random recursive tree
Tn. It is easy to see that for large n, its expected value should exceed logn, since it
is as large as the expected degree of the vertex 1, which by Theorem 15.9 equals
Hn−1 ≈ logn. Szymański [825] proved that the upper bound is O(log2 n) (see Goh
and Schmutz [442] for a strengthening of his result). Finally, Devroye and Lu (see
[290]) have shown that in fact ∆n ≈ log2 n . This is somewhat surprising. While
each vertex in [1,n1−o(1)] only has a small chance of having such a degree, there
are enough of these vertices to guarantee one w.h.p..

Theorem 15.13. In a random recursive tree Tn, w.h.p.

∆n ≈ log2 n.

The next theorem was originally proved by Devroye [285] and Pittel [740].
Both proofs were based on an analysis of certain branching processes. The proof
below is related to [285].

Theorem 15.14. Let h(Tn) be the height of a random recursive tree Tn. Then
w.h.p.

h(Tn)≈ e logn.
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Proof.
Upper Bound: For the upper bound we simply estimate the number ν1 of vertices
at height h1 = (1+ε)e logn where ε = o(1) but is sufficiently large so that claimed
inequalities are valid. Each vertex at this height can be associated with a path
i0 = 1, i1, . . . , ih of length h in Tn. So, if S = {i1, . . . , ih} refers to such a path, then

Eν1 = ∑
|S|=h1

∏
i∈S

1
i−1

≤ 1
h1!

(
n

∑
i=1

1
i

)h1

≤

(
(1+ logn)e

h1

)h1

= o(1), (15.19)

assuming that h1ε → ∞.
Explanation: If S =

{
i1 = 1, i2, . . . , ih1

}
then the term ∏

h1
j=1 1/i j is the proba-

bility that i j chooses i j−1 in the construction of Tn.
Lower Bound: The proof of the lower bound is more involved. We consider a
different model of tree construction and relate it to Tn. We consider a Yule process.
We run the process for a specific time t and construct a tree Y (t). We begin by
creating a single particle x1 at time 0 this will be the root of a tree Y (t). New
particles are generated at various times τ1 = 0,τ2, . . . ,. Then at time τk there will
be k particles Xk = {x1,x2, . . . ,xk} and we will have Y (t)=Y (τk) for τk≤ t < τk+1.
After xk has been added to Y (τk), each x ∈ Xk is associated with an exponential
random variable Ex with mean one1. If zk is the particle in Xk that minimizes
Ex,x ∈ Xk then a new particle xk+1 is generated at time τk+1 = τk +Ezk and an
edge {zk,xk+1} is added to Y (τk) to create Y (τk+1). After this we independently
generate new random variables Ex,x ∈ Xk+1.

Remark 15.15. The memory-less property of the exponential random variable,
i.e. P(Z ≥ a+ b | Z ≥ a) = P(Z ≥ b), implies that we could equally well think
that at time t ≥ τk the Ex are independent exponentials conditional on being at least
τk. In which case the choice of zk is uniformly random from Xk, even conditional
on the processes prior history.

Suppose then that we focus attention on Y (y;s, t), the sub-tree rooted at y
containing all descendants of y that are generated after time s and before time t.

We observe three things:

(T1) The tree Y (τn) has the same distribution as Tn. This is because each particle
in Xk is equally likely to be zk.

1An exponential random variable Z with mean λ is characterised by P(Z ≥ x) = e−x/λ .
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(T2) If s < t and y ∈ Y (s) then Y (y;s, t) is distributed as Y (t− s). This follows
from Remark 15.15, because when zk /∈Y (y;s, t) it does not affect any of the
the variables Ex,x ∈ Y (y;s, t).

(T3) If x,y ∈ Y (s) then Y (x;s, t) and Y (y;s, t) are independent. This also follows
from Remark 15.15 for the same reasons as in (T2).

It is not difficult to prove (see Exercise (vii) or Feller [350]) that if Pn(t) is the
probability there are exactly n particles at time t then

Pn(t) = e−t(1− e−t)n−1. (15.20)

Next let
t1 = (1− ε) logn.

Then it follows from (15.20) that if ν(t) is the number of particles in our Yule
process at time t then

P(ν(t1)≥ n)≤ ∑
k≥n

e−t1(1− e−t1)k−1 =

(
1− 1

n1−ε

)n−1

= o(1). (15.21)

We will show that w.h.p. the tree Tν(t1) has height at least

h0 = (1− ε)et1

and this will complete the proof of the theorem.
We will choose s→ ∞, s = O(log t1). It follows from (15.20) that if ν0 = εes

then

P(ν(s)≤ ν0) =
ν0

∑
k=0

e−s(1− e−s)k−1 ≤ ε = o(1). (15.22)

Suppose now that ν(s)≥ ν0 and that the vertices of T1;0,s are{
x1,x2, . . . ,xν(s)

}
. Let σ = ν

1/2
0 and consider the sub-trees

A j, j = 1,2, . . . ,τ of T1;0,t1 rooted at x j, j = 1,2, . . . ,ν(s). We will show that

P(Tx1;s,t1 has height at least (1− ε)3e logn)≥ 1
2σ logσ

. (15.23)

Assuming that (15.23) holds, since the trees A1,A2, . . . ,Aτ are independent, by T3,
we have

P(h(Tn)≤ (1− ε)3e logn)≤

o(1)+P(h(T1;0,t1)≤ (1− ε)3e logn)≤ o(1)+
(

1− 1
2σ logσ

)ν0

= o(1).
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To prove all this we will associate a Galton-Watson branching process with each
of x1,x2, . . . ,xτ . Consider for example x = x1 and let τ0 = logσ . The vertex x
will be the root of a branching process Π, which we now define. We will consider
the construction of Y (x;s, t) at times τi = s+ iτ0 for i = 1,2, . . . , i0 = (t1− s)/τ0.
The children of x in Π are the vertices at depth at least (1−ε)eτ0 in Y (x;s,τ1). In
general, the particles in generation i will correspond to particles at depth at least
(1− ε)eτ0 in the tree Y (ξ ;τi−1,τi) where ξ is a particle of Y (x;s, t) included in
generation i−1 of Π.

If the process Π does not ultimately become extinct then generation i0 corre-
sponds to vertices in Y (t) that are at depth

i0× (1− ε)eτ0 = (1− ε)e(t1− s)≥ (1− ε)3e logn.

We will prove that

P(Π does not become extinct)≥ 1
2σ logσ

, (15.24)

and this implies (15.23) and the theorem.
To prove (15.24) we first show that µ , the expected number of progeny of a

particle in Π satisfies µ > 1 and after that we prove (15.24).
Let D(h,m) denote the expected number of vertices at depth h in the tree Tm.

Then for any ξ ∈Π,

µ ≥ D((1− ε)eτ0,σ)×P(ν(τ0)≥ σ). (15.25)

It follows from (15.20) and σ = eτ0 that

P(|Y (ξ ,0,τ0)| ≥ σ) =
∞

∑
k=σ

e−τ0(1− e−τ0)k

= (1− e−τ0)σ ≥ 1
2e

. (15.26)

We show next that for m≫ h we have

D(h,m)≥ (logm− logh−1)h

h!
. (15.27)

To prove this, we go back to (15.19) and write

D(h,m) =
1
h

m

∑
i=2

1
i−1 ∑

S∈([2,m]\{i}
h−1 )

∏
j∈S\{i}

1
j−1
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=
1
h ∑

S∈([2,m]
h−1)

∏
j∈S

1
j−1

m

∑
1̸=k/∈S

1
k−1

≥ 1
h ∑

S∈([2,m]
h−1)

∏
j∈S

1
j−1

m

∑
k=h+1

1
k

≥ logm− logh−1
h

D(h−1,m). (15.28)

Equation (15.27) follows by induction since D(1,m)≥ logm.
Explanation of (15.28): We choose a path of length h by first choosing a

vertex i and then choosing S ⊆ [2,m] \ {i}. We divide by h because each h-set
arises h times in this way. Each choice will contribute ∏ j∈S∪{i}

1
j−1 . We change

the order of summation i,S and then lower bound ∑
m
1 ̸=k/∈S

1
k−1 by ∑

m
k=h+1

1
k .

We now see from (15.25), (15.26) and (15.27) that

µ ≥ (τ0− log((1− ε)eτ0)−1)(1−ε)eτ0

((1− ε)eτ0)!
× 1

2e
≥

1
2e
√

2π
× 1

(1− ε/2)(1−ε)eτ0
≫ 1,

if we take ετ0/ logτ0→ ∞.
We are left to prove (15.24). Let G(z) be the probability generating function

for the random variable Z equal to the number of descendants of a single particle.
We first observe that for any θ ≥ 1,

P(Z ≥ θσ)≤ P(|Y (ξ ,0,τ0)| ≥ θσ) =
∞

∑
k=θσ

e−τ0(1− e−τ0)k ≤ e−θ .

Note that for 0≤ x≤ 1, any k ≥ 0 and a≥ k it holds that(
1− k

a

)
+

k
a

xa ≥ xk.

We then write for 0≤ x≤ 1,

G(x)≤
θσ

∑
k=0

pkxk +P(Z ≥ θσ)≤
θσ

∑
k=0

pkxk + e−θ

≤
θσ

∑
k=0

((
1− k

θσ

)
pk +

k
θσ

pkxθσ

)
+ e−θ

≤
∞

∑
k=0

((
1− k

θσ

)
pk +

k
θσ

pkxθσ

)
+ e−θ

= H(x) = 1− µ

θσ
+

µ

θσ
xθσ + e−θ .



330 Chapter 15. Trees

The function H is monotone increasing in x and so ρ = P(Π becomes extinct)
being the smallest non-negative solution to x = G(x) (see Theorem 29.1) implies
that ρ is at most the smallest non-negative solution q to x = H(x). The convexity
of H and the fact that H(0) > 0 implies that q is at most the value ζ satisfying
H ′(ζ ) = 1 or

q≤ ζ =
1

µ1/(θσ−1)
< 1.

But ρ = G(ρ)≤ G(q)≤ H(q) and so

1−ρ ≥ µ

θσ

(
1− 1

µθσ/(θσ−1)

)
− e−θ ≥ µ−1

θσ
− e−θ ≥ 1

2σ logσ
,

after putting θ = 2logσ and using µ ≫ 1.

Devroye, Fawzi and Fraiman [286] give another proof of the above theo-
rem that works for a wider class of random trees called scaled attachment ran-
dom recursive trees, where each vertex i attaches to the random vertex ⌊iXi⌋ and
X0, . . . ,Xn is a sequence of independent identically distributed random variables
taking values in [0,1).

15.3 Inhomogeneous Recursive Trees

Plane-oriented recursive trees
This section is devoted to the study of the properties of a class of inhomogeneous
recursive trees that are closely related to the Barabási-Albert “preferential attach-
ment model”, see [72]. Bollobás, Riordan, Spencer and Tusnády gave a proper
definition of this model and showed how to reduce it to random plane-oriented
recursive trees, see [177]. In this section we present some results that preceded
[72] and created a solid mathematical ground for the further development of gen-
eral preferential attachment models, which will be discussed later in the book (see
Chapter 18).

Suppose that we build a recursive tree in the following way. We start as before
with a single vertex labeled 1 and add n−1 vertices labeled 2,3, . . . ,n, one by one.
We assume that the children of each vertex are ordered (say, from left to right). At
each step a new vertex added to the tree is placed in a position “in between” old
vertices. A tree built in this way is called a plane-oriented recursive tree. To study
this model it is convenient to introduce an extension of a plane-oriented recursive
tree: given a plane-oriented recursive tree we connect each vertex with external
nodes, representing a possible insertion position for an incoming new vertex. See
Figure 15.3 for a diagram of all plane-oriented recursive trees on n = 3 vertices,
together with their extensions.
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Figure 15.1: Plane-oriented recursive trees and their extensions, n = 3

Assume now, as before that all the edges of a tree are directed toward the
leaves, and denote the out-degree of a vertex v by d+(v). Then the total number
of extensions of an plane-oriented recursive tree on n vertices is equal to

∑
v∈V

(d+(v)+1) = 2n−1.

So a new vertex can choose one those those 2n− 1 places to join the tree and
create a tree on n+1 vertices. If we assume that this choice in each step is made
uniformly at random then a tree constructed this way is called a random plane-
oriented recursive tree. Notice that the probability that the vertex labeled n+ 1
is attached to vertex v is equal to d+(v)+1

2n−1 i.e., it is proportional to the degree of
v. Such random trees, called plane-oriented because of the above geometric in-
terpretation, were introduced by Szymański [824] under the name of non-uniform
recursive trees. Earlier, Prodinger and Urbanek [753] described plane-oriented re-
cursive trees combinatorially, as labeled ordered (or plane) trees with the property
that labels along any path down from the root are increasing. Such trees are also
known in the literature as heap-ordered trees (see Chen and Ni [217], Prodinger
[752], Morris, Panholzer and Prodinger [696]) or, more recently, as scale-free
trees. So, random plane-oriented recursive trees are the simplest example of ran-
dom preferential attachment graphs.

Denote by an the number of plane-oriented recursive trees on n vertices. This
number, for n≥ 2 satisfies an obvious recurrence relation

an+1 = (2n−1)an.
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Solving this equation we get that

an = 1 ·3 ·5 · · (2n−3) = (2n−3)!!.

This is also the number of Stirling permutations, introduced by Gessel and Stanley
[432], i.e. the number of permutations of the multiset
{1,1,2,2,3,3, . . . ,n,n}, with the additional property that, for each value of 1 ≤
i≤ n, the values lying between the two copies of i are greater than i.

There is a one-to-one correspondence between such permutations and plane-
oriented recursive trees, given by Koganov [575] and, independently, by Janson
[503]. To see this relationship consider a plane-oriented recursive tree on n+ 1
vertices labelled 0,1,2, . . . ,n, where the vertex with label 0 is the root of the tree
and is connected to the vertex labeled 1 only, and the edges of the tree are oriented
in the direction from the root. Now, perform a depth first search of the tree in
which we start from the root. Next we go to the leftmost child of the root, explore
that branch recursively, go to the next child in order etc., until we stop at the root.
Notice that every edge in such a walk is traversed twice. If every edge of the
tree gets a label equal to the label of its end-vertex furthest from the root, then
the depth first search encodes each tree by a string of length 2n, where each label
1,2, . . . ,n appears twice. So the unique code of each tree is a unique permutation
of the multiset {1,1,2,2,3,3, . . . ,n,n} with additional property described above.
Note also that the insertion of a pair (n+ 1,n+ 1) into one of the 2n− 1 gaps
between labels of the permutation of this multiset, corresponds to the insertion of
the vertex labeled n+1 into a plane-oriented recursive tree on n vertices.

Let us start with exact formulas for probability distribution of the out-degree
D+

n,i of a vertex with label i, i = 1,2, . . . ,n in a random plane-oriented recursive
tree. Kuba and Panholzer [611] proved the following theorem.

Theorem 15.16. For i = 1,2, . . . ,n and r = 1,2, . . . ,n−1,

P(D+
n,i = r) =

r

∑
k=0

(
r
k

)
(−1)k Γ(n−3/2)Γ(i−1/2)

Γ(i−1− k/2)Γ(n−1/2)
,

where Γ(z) =
∫

∞

0 tz−1e−tdt is the Gamma function. Moreover,

E(D+
n,i) =

(2i−2
i−1

)
4n−i(2n−2

n−1

) −1 (15.29)

For simplicity, we show below that the formula (15.29) holds for i = 1, i.e., the
expected value of the out-degree of the root of a random plane-oriented recursive
tree, and investigate its behavior as n→ ∞. It is then interesting to compare the
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latter with the asymptotic behavior of the degree of the root of a random recursive
tree. Recall that for large n this is roughly logn (see Theorem 15.10).

The result below was proved by Mahmoud, Smythe and Szymański [651].

Corollary 15.17. For n ≥ 2 the expected value of the degree of the root of a
random plane-oriented recursive tree is

E(D+
n,1) =

4n−1(2n−2
n−1

) −1,

and,
E(D+

n,1)≈
√

πn.

Proof. Denote by

un =
4n(2n
n

) = n

∏
i=1

2i
2i−1

=
(2n)!!

(2n−1)!!
.

Hence, in terms of un, we want to prove that E(D+
n,1) = un−1−1.

It is easy to see that the claim holds for n = 1,2 and that

P(D+
n,1 = 1) =

n−1

∏
i=1

(
1− 2

2i−1

)
=

1
2n−3

,

while, for r > 1 and n≥ 1,

P(D+
n+1,1 = r) = (

1− r+1
2n−1

)
P(D+

n,1 = r)+
r

2n−1
P(D+

n,1 = r−1).

Hence

E(D+
n+1,1)

=
n

∑
r=1

r
(

2n− r−2
2n−1

P(D+
n,1 = r)+

r
2n−1

P(D+
n,1 = r−1)

)
=

1
2n−1

(
n−1

∑
r=1

r(2n− r−2)P(D+
n,1 = r)+

n−1

∑
r=1

(r+1)2P(D+
n,1 = r)

)

=
1

2n−1

n

∑
r=1

(2nr+1)P(D+
n,1 = r).
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So, we get the following recurrence relation

E(D+
n+1,1) =

2n
2n−1

E(D+
n,1)+

1
2n−1

and the first part of the theorem follows by induction.
To see that the second part also holds one has to use the Stirling approximation

to check that
un =

√
πn−1+

3
8

√
π/n+ · · · .

The next theorem, due to Kuba and Panholzer [611], summarizes the asymp-
totic behavior of the suitably normalized random variable D+

n,i.

Theorem 15.18. Let i≥ 1 be fixed and let n→ ∞. If

(i) i = 1, then

n−1/2D+
n,1

d→ D1, with density fD1(x) = (x/2)e−x2/2,

i.e., is asymptotically Rayleigh distributed with parameter σ =
√

2,

(ii) i≥ 2, then n−1/2D+
n,i

d→ Di, with density

fDi(x) =
2i−3

22i−1(i−2)!

∫
∞

x
(t− x)2i−4e−t2/4dt.

Let i = i(n)→ ∞ as n→ ∞. If

(i) i = o(n), then the normalized random variable (n/i)−1/2D+
n,i is asymptoti-

cally Gamma distributed γ(α,β ), with parameters α =−1/2 and β = 1,

(ii) i = cn, 0 < c < 1, then the random variable D+
n,i is asymptotically negative

binomial distributed NegBinom(r, p) with parameters r = 1 an p =
√

c,

(iii) n− i = o(n), then P(D+
n,i = 0)→ 1, as n→ ∞.

We now turn our attention to the number of vertices of a given out-degree. The
next theorem shows a characteristic feature of random
graphs built by preferential attachment rule where every new vertex prefers to
attach to a vertex with high degree (rich get richer rule). The proportion of vertices
with degree r in such a random graph with n vertices grows like n/rα , for some
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constant α > 0, i.e., its distribution obeys a so called power law. The next result
was proved by Szymański [824] (see also [651] and [826]) and it indicates such a
behavior for the degrees of the vertices of a random plane-oriented recursive tree,
where α = 3.

Theorem 15.19. Let r be fixed and denote by X+
n,r the number of vertices of out-

degree r in a random plane-oriented recursive tree Tn. Then,

EX+
n,r =

4n
(r+1)(r+2)(r+3)

+O
(

1
r

)
.

Proof. Observe first that conditional on Tn,

E(X+
n+1,r|Tn) = X+

n,r−
r+1

2n−1
X+

n,r +
r

2n−1
X+

n,r−1 +1r=0, (15.30)

which gives

EX+
n+1,r =

2n− r−2
2n−1

EX+
n,r +

r
2n−1

EX+
n,r−1 +1r=0 (15.31)

for r ≥ 1, (X+
n,−1 = 0).

We will show that the difference

an,r
de f
= EX+

n,r−
4n

(r+1)(r+2)(r+3)
.

is asymptotically negligible with respect to the leading term in the statement of
the theorem. Substitute an,r in the equation (15.31) to get that for r ≥ 1,

an+1,r =
2n− r−2

2n−1
an,r +

r
2n−1

an,r−1−
1

2n−1
. (15.32)

We want to show that |an,r| ≤ 2
max{r,1} , for all n ≥ 1,r ≥ 0. Note that this is true

for all n and r = 0,1, since from (15.31) it follows (inductively) that for n≥ 2

EX+
n,0 =

2n−1
3

and so an,0 =−
1
3
.

For n≥ 2,

EX+
n,1 =

n
6
− 1

12
+

3
4(2n−3)

and so an,1 =−
1

12
+

3
4(2n−3)

.

We proceed by induction on r. By definition

ar,r =−
4r

(r+1)(r+2)(r+3)
,
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and so,

|ar,r|<
2
r
.

We then see from (15.32) that for and r ≥ 2 and n≥ r that

|an+1,r| ≤
2n− r−2

2n−1
· 2

r
+

r
2n−1

· 2
r−1

− 1
2n−1

.

=
2
r
− 2

(2n−1)r

(
r+1− r2

r−1
− r

2

)
≤ 2

r
,

which completes the induction and the proof of the theorem.

In fact much more can be proved.

Theorem 15.20. Let ε > 0 and r be fixed. Then, w.h.p.

(1− ε)ar ≤
X+

n,r

n
≤ (1+ ε)ar, (15.33)

where
ar =

4
(r+1)(r+2)(r+3)

.

Moreover, (
X+

n,r−nar
)

√
n

d→ Yr, (15.34)

as n→ ∞, jointly for all r ≥ 0, where the Yr are jointly Normally distributed with
expectations EYr = 0 and covariances σrs = Cov(Yr,Ys) given by

σrs = 2
r

∑
k=0

s

∑
l=0

(−1)k+l

k+ l +4

(
r
k

)(
s
l

)(
2(k+ l +4)!

(k+3)!(l +3)!
−1− (k+1)(l +1)

(k+3)(l +3)

)
.

Proof. For the proof of asymptotic normality of a suitably normalized random
variable X+

n,r, i.e., for the proof of statement (15.34)) see Janson [501]. We will
give a short proof of the first statement (15.33), due to Bollobás, Riordan, Spencer
and Tusnády [177] (see also Mori [694]).

Consider a random plane-oriented recursive tree Tn as an element of a process
(Tt)

∞
t=o. Fix n≥ 1 and r ≥ 0 and for 0≤ t ≤ n define the martingale

Yt = E(X+
n,r|Tt) where Y0 = E(X+

n,r) and Yn = X+
n,r.

One sees that the differences

|Yt+1−Yt | ≤ 2.
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For a proof of this, see the proof of Theorem 18.3. Applying the
Hoeffding- Azuma inequality (see Theorem 27.16) we get, for any fixed r,

P(|X+
n,r−EX+

n,r| ≥
√

n logn)≤ e−(1/8) logn = o(1).

But Theorem 15.19 shows that for any fixed r, EX+
n,r ≫

√
n logn and (15.33)

follows.

Similarly, as for uniform random recursive trees, Pittel [740] established the
asymptotic behavior of the height of a random plane-oriented recursive tree.

Theorem 15.21. Let h∗n be the height of a random plane-oriented recursive tree.
Then w.h.p.

h∗n ≈
logn
2γ

,

where γ is the unique solution of the equation

γeγ+1 = 1,

i.e., γ = 0.27846.., so 1
2γ

= 1.79556....

Inhomogeneous recursive trees: a general model
As before, consider a tree that grows randomly in time. Each time a new vertex
appears, it chooses exactly one of the existing vertices and attaches to it. This way
we build a tree Tn of order n with n+ 1 vertices labeled {0,1, . . . ,n}, where the
vertex labeled 0 is the root. Now assume that for every n≥ 0 there is a probability
distribution

P(n) = (p0, p1, . . . , pn),
n

∑
j=0

p j = 1.

Suppose that Tn has been constructed for some n≥ 1. Given Tn we add an edge
connecting one of its vertices with a new vertex labeled n+1 and thus forming a
tree Tn+1. A vertex vn ∈ {0,1,2, . . . ,n} is chosen to be a neighbor of the incoming
vertex with probability

P(vn = j|Tn) = p j, for j = 0,1, . . . ,n.

Note that for the uniform random recursive tree we have

p j =
1

n+1
, for 0≤ j ≤ n.
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We say that a random recursive tree is inhomogeneous if the attachment rule of
new vertices is determined by a non-uniform probability distribution. Most often
the probability that a new vertex chooses a vertex j ∈ {0,1, . . . ,n} is proportional
to w(dn( j)), the value of a weight function w applied to the degree dn( j) of vertex
j after n-th step. Then the probability distribution P(n) is defined

p j =
w(dn( j))

∑
n
k=0 w(dn(k))

.

Consider a special case when the weight function is linear and, for 0≤ j ≤ n,

w(dn( j)) = dn( j)+β , β >−1, (15.35)

so that the total weight

wn =
n

∑
k=0

(dn(k)+β ) = 2n+(n+1)β . (15.36)

Obviously the model with such probability distribution is only a small gener-
alisation of plane-oriented random recursive trees and we obtain the latter when
we put β = 0 in (15.35). Inhomogeneous random recursive trees of this type are
known in the literature as either scale free random trees or Barabási-Albert ran-
dom trees. For obvious reasons, we will call such graphs generalized random
plane-oriented recursive trees.

Let us focus the attention on the asymptotic behavior of the maximum degree
of such random trees. We start with some useful notation and observations.

Let Xn, j denote the weight of vertex j in a generalized plane-oriented random
recursive tree, with initial values X1,0 = X j, j = 1+β for j > 0. Let

cn,k =
Γ

(
n+ β

β+2

)
Γ

(
n+ β+k

β+2

) , n≥ 1, k ≥ 0,

be a double sequence of normalising constants. Note that
cn+1,k

cn,k
=

wn

wn + k
, (15.37)

and, for any fixed k,
cn,k = n−k/(β+2)(1+O(n−1)).

Let k be a positive integer and

Xn, j;k = cn,k

(
Xn, j + k−1

k

)
.
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Lemma 15.22. Let Fn be the σ -field generated by the first n steps. If n ≥
max{1, j}, then

(
Xn, j;k,Fn

)
is a martingale.

Proof. Because Xn+1, j−Xn, j ∈ {0,1}, we see that(
Xn+1, j + k−1

k

)
=

(
Xn, j + k−1

k

)
+

(
Xn, j + k−1

k−1

)(
Xn+1, j−Xn, j

1

)
=

(
Xn, j + k−1

k

)(
1+

k(Xn+1, j−Xn, j)

Xn, j

)
.

Hence, noting that

P(Xn+1, j−Xn, j = 1|Fn) =
Xn, j

wn
,

and applying (15.37)

E(Xn+1, j;k|Fn) = Xn, j;k
cn+1,k

cn,k

(
1+

k
wn

)
= Xn, j;k,

we arrive at the lemma.

Thus, the random variable Xn, j;k, as a non-negative martingale, is
bounded in L1 and it almost surely converges to Xk

j /k!, where X j is the limit of
Xn, j;1. Since Xn, j;k ≤ cXn, j;2k, where the constant c does not depend on n, it is also
bounded in L2, which implies that it converges in L1. Therefore we can determine
all moments of the random variable X j. Namely, for j ≥ 1,

Xk
j

k!
= lim

n→∞
EXn, j;k = X j, j;k = c j,k

(
β + k

k

)
. (15.38)

Let ∆n be the maximum degree in a generalized random plane-oriented recur-
sive tree Tn and let, for j ≤ n,

∆n, j = max
0≤i≤ j

Xn,i;1 = max
0≤i≤ j

cn,1Xn,i.

Note that since Xn,i is the weight of vertex i, i.e., its degree plus β , we find that
∆n,n = cn,1(∆n +β ). Define

ξ j = max
0≤i≤ j

Xi and ξ = ξ∞ = sup
j≥0

X j. (15.39)

Now we are ready to prove the following result, due to Móri [695].
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Theorem 15.23.
P
(

lim
n→∞

n−1/(β+2)
∆n = ξ

)
= 1.

The limiting random variable ξ is almost surely finite and positive and it has
an absolutely continuous distribution. The convergence also holds in Lp, for all
p, 1≤ p < ∞.

Proof. In the proof we skip the part dealing with the positivity of ξ and the abso-
lute continuity of its distribution.

By Lemma 15.22, ∆n,n is the maximum of martingales, therefore
(∆n,n|F ) is a non-negative sub-martingale, and so

E∆
k
n,n ≤

n

∑
j=0

EXk
n, j;1 ≤

∞

∑
j=0

EXk
j = k!

(
β + k

k

)
∞

∑
j=0

c j,k < ∞,

if k > β + 2. (Note c0,k is defined here as equal to c1,k). Hence (∆n,n|F ) is
bounded in Lk, for every positive integer k, which implies both almost sure con-
vergence and convergence in Lp, for any p≥ 1.

Assume that k > β +2 is fixed. Then, for n≥ k,

E(∆n,n−∆n, j)
k ≤

n

∑
i= j+1

EXn,i;1.

Take the limit as n→ ∞ of both sides of the above inequality. Applying (15.39)
and (15.38), we get

E
(

lim
n→∞

n−1/(β+2)
∆n−ξ j

)k
≤

∞

∑
i= j+1

Eξ
k
i = k!

(
β + k

k

)
∞

∑
i= j+1

c j,k.

The right-hand side tends to 0 as j→ ∞, which implies that
n−1/(β+2)∆n tends to ξ , as claimed.

To conclude this section, setting β = 0 in Theorem 15.23, one can obtain the
asymptotic behavior of the maximum degree of a plane-oriented random recursive
tree.

15.4 Exercises
(i) Use the Prüfer code to show that there is one-to-one correspondence be-

tween the family of all labeled trees with vertex set [n] and the family of all
ordered sequences of length n−2 consisting of elements of [n].

(ii) Prove Theorem 15.1.
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(iii) Let ∆ be the maximum degree of a random labeled tree on n vertices. Use
(15.1) to show that for every ε > 0, P(∆ > (1+ ε) logn/ log logn) tends to
0 as n→ ∞.

(iv) Let ∆ be defined as in the previous exercise and let t(n,k) be the number
of labeled trees on n vertices with maximum degree at most k. Knowing
that t(n,k) < (n− 2)!

(
1+1+ 1

2! + . . .+ 1
(k−1)!

)n
, show that for every ε >

0, P(∆ < (1− ε) logn/ log logn) tends to 0 as n→ ∞.

(v) Determine a one-to-one correspondence between the family of permutations
on {2,3, . . . ,n} and the family of recursive trees on the set [n].

(vi) Let Ln denote the number of leaves of a random recursive tree with n ver-
tices. Show that ELn = n/2 and VarLn = n/12.

(vii) Prove (15.20).

(viii) Show that Φn,i(z) given in Theorem 15.8 is the probability generating func-
tion of the convolution of n− i independent Bernoulli random variables with
success probabilities equal to 1/(i+ k−1) for k = 1,2, . . . ,n− i.

(ix) Let L∗n denotes the number of leaves of a random plane-oriented recursive
tree with n vertices. Show that

EL∗n =
2n−1

3
and VarL∗n =

2n(n−2)
9(2n−3)

.

(x) Prove that L∗n/n (defined above) converges in probability, to 2/3.

15.5 Notes

Labeled trees

The literature on random labeled trees and their generalizations is very extensive.
For a comprehensive list of publications in this broad area we refer the reader to
a recent book of Drmota [303], to a chapter of Bollobás’s book [155] on random
graphs, as well as to the book by Kolchin [583]. For a review of some classical
results, including the most important contributions, forming the foundation of the
research on random trees, mainly due to Meir and Moon (see, for example : [676],
[677]and [679]), one may also consult a survey by Karoński [547].
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Recursive trees

Recursive trees have been introduced as probability models for system genera-
tion (Na and Rapoport [703]), spread of infection (Meir and Moon [678]), pyra-
mid schemes (Gastwirth [426]) and stemma construction in philology (Najock
and Heyde [707]). Most likely, the first place that such trees were introduced
in the literature, is the paper by Tapia and Myers [829], presented there under
the name “concave node-weighted trees”. Systematic studies of random recur-
sive trees were initiated by Meir and Moon ([678] and [693]) who investigated
distances between vertices as well as the process of cutting down such random
trees. Observe that there is a bijection between families of recursive trees and
binary search trees, and this has opened many interesting directions of research,
as shown in a survey by Mahmoud and Smythe [650] and the book by Mahmoud
[648].

Early papers on random recursive trees (see, for example, [703], [426] and
[302]) were focused on the distribution of the degree of a given vertex and of the
number of vertices of a given degree. Later, these studies were extended to the
distribution of the number of vertices at each level, which is referred to as the
profile. Recall, that in a rooted tree, a level (strata) consists of all those vertices
that are at the same distance from the root.

The profile of a random recursive tree is analysed in many papers. For exam-
ple, Drmota and Hwang [304] derive asymptotic approximations to the correlation
coefficients of two level sizes in random recursive trees and binary search trees.
These coefficients undergo sharp sign-changes when one level is fixed and the
other is varying. They also propose a new means of deriving an asymptotic esti-
mate for the expected width, which is the number of nodes at the most abundant
level.

Devroye and Hwang [288] propose a new, direct, correlation-free approach
based on central moments of profiles to the asymptotics of width in a class of
random trees of logarithmic height. This class includes random recursive trees.

Fuchs, Hwang, Neininger [420] prove convergence in distribution for the pro-
file, normalized by its mean, of random recursive trees when the limit ratio α of
the level and the logarithm of tree size lies in [0,e). Convergence of all moments
is shown to hold only for α ∈ (0,1) (with only convergence of finite moments
when α ∈ (1,e)).

van der Hofstadt, Hooghiemstra and Van Mieghem [483] study the covariance
structure of the number of nodes k and l steps away from the root in random
recursive trees and give an analytic expression valid for all k, l and tree sizes n.

For an arbitrary positive integer i ≤ in ≤ n− 1, a function of n, Su, Liu and
Feng [821] demonstrate the distance between nodes i and n in random recursive
trees Tn, is asymptotically normal as n→ ∞ by using the classical limit theory
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method.
Holmgren and Janson [488] proved limit theorems for the sums of functions

of sub-trees of binary search trees and random recursive trees. In particular, they
give new simple proofs of the fact that the number of fringe trees of size k = kn in
a binary search tree and the random recursive tree (of total size n) asymptotically
has a Poisson distribution if k → ∞, and that the distribution is asymptotically
normal for k = o(

√
n). Recall that a fringe tree is a sub-tree consisting of some

vertex of a tree and all its descendants (see Aldous [18]). For other results on that
topic see Devroye and Janson [289].

Feng, Mahmoud and Panholzer [351] study the variety of sub-trees lying on
the fringe of recursive trees and binary search trees by analysing the distributional
behavior of Xn,k, which counts the number of sub-trees of size k in a random tree
of size n, with k = k(n). Using analytic methods, they characterise for both tree
families the phase change behavior of Xn,k.

One should also notice interesting applications of random recursive trees. For
example, Mehrabian [675] presents a new technique for proving logarithmic up-
per bounds for diameters of evolving random graph models, which is based on
defining a coupling between random graphs and variants of random recursive
trees. Goldschmidt and Martin [443] describe a representation of the Bolthausen-
Sznitman coalescent in terms of the cutting of random recursive trees.

Bergeron, Flajolet, Salvy [102] have defined and studied a wide class of ran-
dom increasing trees. A a tree with vertices labeled {1,2, . . . ,n} is increasing if
the sequence of labels along any branch starting at the root is increasing. Ob-
viously, recursive trees and binary search trees (as well as the general class of
inhomogeneous trees, including plane-oriented trees) are increasing. Such a gen-
eral model, which has been intensively studied, yields many important results for
random trees discussed in this chapter. Here we will restrict ourselves to pointing
out just a few papers dealing with random increasing trees authored by Dobrow
and Smythe [301], Kuba and Panholzer [611] and Panholzer and Prodinger [725],
as well as with their generalisations, i.e., random increasing k-trees, published
by Zhang, Rong, and Comellas [865], Panholzer and Seitz [726] and Darrasse,
Hwang and Soria [277],

Inhomogeneous recursive trees

Plane-oriented recursive trees

As we already mentioned in Section 15.3, Prodinger and Urbanek [753], and, in-
dependently, Szymański [824] introduced the concept of plane-oriented random
trees (more precisely, this notion was introduced in an unpublished paper by Don-
dajewski and Szymański [302]), and studied the vertex degrees of such random
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trees. Mahmoud, Smythe and Szymański [651], using Pólya urn models, investi-
gated the exact and limiting distributions of the size and the number of leaves in
the branches of the tree (see [503] for a follow up). Lu and Feng [629] considered
the strong convergence of the number of vertices of given degree as well as of the
degree of a fixed vertex (see also [650]). In Janson’s [501] paper, the distribution
of vertex degrees in random recursive trees and random plane recursive trees are
shown to be asymptotically normal. Brightwell and Luczak [194] investigate the
number Dn,k of vertices of each degree k at each time n, focusing particularly on
the case where k = k(n) is a growing function of n. They show that Dn,k is con-
centrated around its mean, which is approximately 4n/k3, for all k≤ (n logn)−1/3,
which is best possible up to a logarithmic factor.

Hwang [490] derives several limit results for the profile of random plane-
oriented recursive trees. These include the limit distribution of the normalized
profile, asymptotic bimodality of the variance, asymptotic approximation to the
expected width and the correlation coefficients of two level sizes.

Fuchs [419] outlines how to derive limit theorems for the number of sub-trees
of size k on the fringe of random plane-oriented recursive trees.

Finally, Janson, Kuba and Panholzer [505] consider generalized Stirling per-
mutations and relate them with certain families of generalized plane recursive
trees.

Generalized recursive trees

Móri [694] proves the strong law of large numbers and central limit theorem for
the number of vertices of low degree in a generalized random plane-oriented re-
cursive tree. Szymański [826] gives the rate of concentration of the number of
vertices with given degree in such trees. Móri [695] studies maximum degree of
a scale-free trees. Zs. Katona [560] shows that the degree distribution is the same
on every sufficiently high level of the tree and in [559] investigates the width of
scale-free trees.

Rudas, Toth, Valko [780], using results from the theory of general branching
processes, give the asymptotic degree distribution for a wide range of weight func-
tions. Backhausz and Móri [59] present sufficient conditions for the almost sure
existence of an asymptotic degree distribution constrained to the set of selected
vertices and describe that distribution.

Bertoin, Bravo [103] consider Bernoulli bond percolation on a large scale-free
tree in the super-critical regime, i.e., when there exists a giant cluster with high
probability. They obtain a weak limit theorem for the sizes of the next largest
clusters, extending a result in Bertoin [105] for large random recursive trees.

Devroye, Fawzi, Fraiman [286] study depth properties of a general class of
random recursive trees called attachment random recursive trees. They prove
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that the height of such tree is asymptotically given by αmax logn where αmax is a
constant. This gives a new elementary proof for the height of uniform random re-
cursive trees that does not use branching random walk. For further generalisations
of random recursive trees see Mahmoud [649].
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Chapter 16

Mappings

In the evolution of the random graph Gn,p, during its sub-critical phase, tree com-
ponents and components with exactly one cycle, i.e. graphs with the same number
of vertices and edges, are w.h.p. the only elements of its structure. Similarly, they
are the only graphs outside the giant component after the phase transition, until
the random graph becomes connected w.h.p. In the previous chapter we studied
the properties of random trees. Now we focus our attention on random mappings
of a finite set into itself. Such mappings can be represented as digraphs with the
same number of vertices and edges. So the study of their “average” properties
may help us to better understand the typical structure of classical random graphs.
We start the chapter with a short look at the basic properties of random permu-
tations (one-to-one mappings) and then continue to the general theory of random
mappings.

16.1 Permutations
Let f be chosen uniformly at random from the set of all n! permutations on the set
[n], i.e., from the set of all one-to-one functions [n]→ [n]. In this section we will
concentrate our attention on the properties of a functional digraph representing a
random permutation.

Let D f be the functional digraph ([n],(i, f (i))). The digraph D f consists of
vertex disjoint cycles of any length 1,2, . . . ,n. Loops represent fixed points, see
Figure 16.1.

Let Xn,t be the number of cycles of length t, t = 1,2, . . . ,n in the digraph D f .
Thus Xn,1 counts the number of fixed points of a random permutation. One can
easily check that

P(Xn,t = k) =
1

k!tk

⌊n/t⌋

∑
i=0

(−1)i

t ii!
→ e−1/t

tkk!
as n→ ∞, (16.1)
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Figure 16.1: A permutation digraph example

for k = 0,1,2, . . . ,n. Indeed, convergence in (16.1) follows directly from Lemma
26.10 and the fact that

Bi = E
(

Xn,t

i

)
=

1
n!
· n!
(t!)i(n− ti)!

((t−1)!)i(n− ti)!
i!

=
1

t ii!
.

This means that Xn,t converges in distribution to a random variable with Pois-
son distribution with mean 1/t.

Moreover, direct computation gives

P(Xn,1 = j1,Xn,2 = j2, . . . ,Xn,n = jn)

=
1
n!

n!
∏

n
t=1 jt!(t!) jt

n

∏
t=1

((t−1)!) jt

=
n

∏
t=1

(
1
t

) jt 1
jt!
,

for non-negative integers j1, j2, . . . , jn satisfying ∑
n
t=1 t jt = n.

Hence, asymptotically, the random variables Xn,t have independent Poisson
distributions with expectations 1/t, respectively (see Goncharov [447] and Kolchin
[580]).

Next, consider the random variable Xn = ∑
n
j=1 Xn, j counting the total number

of cycles in a functional digraph D f of a random permutation. It is not difficult to
show that Xn has the following probability distribution.
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Theorem 16.1. For k = 1,2, . . . ,n,

P(Xn = k) =
|s(n,k)|

n!
,

where the s(n,k) are Stirling numbers of the first kind, i.e., numbers satisfying the
following relation:

x(x−1) · · ·(x−n+1) =
n

∑
k=0

s(n,k)xk .

Moreover,

EXn = Hn =
n

∑
j=1

1
j
, VarXn = Hn−

n

∑
j=1

1
j2 .

Proof. Denote by c(n,k) the number of digraphs D f (permutations) on n vertices
and with exactly k cycles. Consider a vertex n in D f . It either has a loop (belongs
to a unit cycle) or it doesn’t. If it does, then D f is composed of a loop in n and a
cyclic digraph (permutation) on n−1 vertices with exactly k−1 cycles. and there
are c(n− 1,k− 1) such digraphs (permutations). Otherwise, the vertex n can be
thought as dividing (lying on) one of the n−1 arcs which belongs to cyclic digraph
on n−1 vertices with k cycles and there are (n−1)c(n−1,k) such permutations
(digraphs) of the set [n]. Hence

c(n,k) = c(n−1,k−1)+(n−1)c(n−1,k) .

Now, multiplying both sides by xk, dividing by n! and summing up over all k, we
get

Gn(x) = (x+n−1)Gn−1(x).

where Gn(x) is the probability generating function of Xn. But G1(x) = x, so

Gn(x) =
x(x+1) · · ·(x+n−1)

n!
,

and the first part of the theorem follows. Note that

Gn(x) =
(

x+n−1
n

)
=

Γ(x+n)
Γ(x)Γ(n+1)

,

where Γ is the Gamma function.

The results for the expectation and variance of Xn can be obtained by calcu-
lating the first two derivatives of Gn(x) and evaluating them at x = 1 in a standard
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way but one can also show them using only the fact that the cycles of functional
digraphs must be disjoint. Notice, for example, that

EXn = ∑
/0 ̸=S⊂[n]

P(S induces a cycle)

=
n

∑
k=1

(
n
k

)
(k−1)!(n− k)!

n!
= Hn.

Similarly one can derive the second factorial moment of Xn counting ordered pairs
of cycles (see Exercises 16.3.2 and 16.3.3) which implies the formula for the vari-
ance.

Goncharov [447] proved a Central Limit Theorem for the number Xn of cy-
cles.

Theorem 16.2.

lim
n→∞

P
(

Xn− logn√
logn

≤ x
)
=
∫ x

−∞

e−t2/2dt,

i.e., the standardized random variable Xn converges in distribution to the standard
Normal random variable.

Another numerical characteristic of a digraph D f is the length Ln of its longest
cycle. Shepp and Lloyd [803] established the asymptotic behavior of the expected
value of Ln.

Theorem 16.3.

lim
n→∞

ELn

n
=
∫

∞

0
exp
{
−x−

∫
∞

x

1
y

e−ydy
}

dx = 0.62432965....

16.2 Mappings
Let f be chosen uniformly at random from the set of all nn mappings from [n]→
[n]. Let D f be the functional digraph ([n],(i, f (i))) and let G f be the graph ob-
tained from D f by ignoring orientation. In general, D f has unicyclic components
only, where each component consists of a directed cycle C with trees rooted at
vertices of C, see the Figure 16.2.

Therefore the study of functional digraphs is based on results for permutations
of the set of cyclical vertices (these lying on cycles) and results for forests con-
sisting of trees rooted at these cyclical vertices (we allow also trivial one vertex
trees). For example, to show our first result on the connectivity of G f we will need
the following enumerative result for the forests.
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Figure 16.2: A mapping digraph example

Lemma 16.4. Let T (n,k) denote the number of forests with vertex set [n], consist-
ing of k trees rooted at the vertices 1,2, . . . ,k. Then,

T (n,k) = knn−k−1.

Proof. Observe first that by (15.2) there are
(n−1

k−1

)
nn−k trees with n+ 1 labelled

vertices in which the degree of a vertex n+1 is equal to k. Hence there are(
n−1
k−1

)
nn−k

/(n
k

)
= knn−k−1

trees with n+ 1 labeled vertices in which the set of neighbors of the vertex n+
1 is exactly [k]. An obvious bijection (obtained by removing the vertex n+ 1
from the tree) between such trees and the considered forests leads directly to the
lemma.

Theorem 16.5.

P(G f is connected ) =
1
n

n

∑
k=1

(n)k

nk ≈
√

π

2n
.

Proof. If G f is connected then there is a cycle with k vertices say such that after
removing the cycle we have a forest consisting of k trees rooted at the vertices of
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the cycle. Hence,

P(G f is connected ) = n−n
n

∑
k=1

(
n
k

)
(k−1)! T (n,k)

=
1
n

n

∑
k=1

(n)k

nk =
1
n

n

∑
k=1

k−1

∏
j=0

(
1− j

n

)
=

1
n

n

∑
k=1

uk.

If k ≥ n3/5, then

uk ≤ exp
{
−k(k−1)

2n

}
≤ exp

{
−1

3
n1/6

}
,

while, if k < n3/5,

uk = exp
{
− k2

2n
+O

(
k3

n2

)}
.

So

P(G f is connected ) =
1+o(1)

n

n3/5

∑
k=1

e−k2/2n +O
(

ne−n1/6/3
)

=
1+o(1)

n

∫
∞

0
e−x2/2ndx+O

(
ne−n1/6/3

)
=

1+o(1)√
n

∫
∞

0
e−y2/2dy+O

(
ne−n1/6/3

)
≈
√

π

2n
.

Let Zk denote the number of cycles of length k in a random mapping. Then

EZk =

(
n
k

)
(k−1)! n−k =

1
k

k−1

∏
j=0

(
1− j

n

)
=

uk

k
.

If Z = Z1 +Z2 + · · ·+Zn, then

EZ =
n

∑
k=1

uk

k
≈
∫

∞

x=1

1
x

e−x2/2ndx =
1
2

∫
∞

s=1

1
s

e−s/2nds≈ 1
2

logn.
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(To estimate the integral 1
2
∫

∞

s=1
1
s e−s/2n we break it into I1 + I2 + I3 where I1 =∫ n/ω

s=1 · · ·ds ≈ logn,ω = logn, I2 =
∫

ωn
s=n/ω

· · ·ds ≤ log
(

ωn
n/ω

)
= o(logn) and I3 =∫

∞

s=ωn · · ·ds = o(1).)
Moreover the expected number of vertices of cycles in a random mapping is

equal to

E

(
n

∑
k=1

kZk

)
=

n

∑
k=1

uk ≈
√

πn
2
.

Note that the functional digraph of a random mapping can be interpreted as a
representation of a process in which vertex i∈ [n] chooses its image independently
with probability 1/n. So, it is natural to consider a general model of a random
mapping f̂ : [n]→ [n] where, independently for all i ∈ [n],

P
(

f̂ (i) = j
)
= p j, j = 1,2, . . . ,n, (16.2)

and
p1 + p2 + . . .+ pn = 1.

This model was introduced (in a slightly more general form) independently by
Burtin [206] and Ross [774]. We will first prove a generalisation of Theorem
16.5.

Theorem 16.6.

P(G f̂ is connected ) =

= ∑
i

p2
i

(
1+∑

j ̸=i
p j +∑

j ̸=i
∑

k ̸=i, j
p j pk +∑

j ̸=i
∑

k ̸=i, j
∑

l ̸=i, j,k
p j pk pl + · · ·

)
.

To prove this theorem we use the powerful “Burtin–Ross Lemma”. The short
and elegant proof of this lemma given here is due to Jaworski [517] (His general
approach can be applied to study other characteristics of a random mappings, not
only their connectedness).

Lemma 16.7 (Burtin–Ross Lemma). Let f̂ be a generalized random mapping
defined above and let G f̂ [U ] be the subgraph of G f̂ induced by U ⊂ [n]. Then

P(G f̂ [U ] does not contain a cycle) = ∑
k∈[n]\U

pk.
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Proof. The proof is by induction on r = |U |. For r = 0 and r = 1 it is obvious.
Assume that the result holds for all values less than r, r ≥ 2. Let /0 ̸= S ⊂U and
denote by A the event that G f̂ [S] is the union of disjoint cycles and by B the
event that G f̂ [U \ S] does not contain a cycle . Notice that events A and B are
independent, since the first one depends on choices of vertices from S, only, while
the second depends on choices of vertices from U \S. Hence

P(G f̂ [U ] contains a cycle ) = ∑
/0 ̸=S⊂U

P(A )P(B).

But if A holds then f̂ restricted to S defines a permutation on S. So,

P(A ) = |S|!∏
j∈S

p j.

Since |U \S|< r, by the induction assumption we obtain

P(G f̂ [U ] contains a cycle ) =

= ∑
/0 ̸=S⊂U

|S|!∏
j∈S

p j ∑
k∈[n]\(U\S)

pk

= ∑
/0 ̸=S⊂U

|S|!∏
j∈S

p j

(
1− ∑

k∈(U\S)
pk

)
= ∑

S⊂U, |S|≥1
|S|!∏

k∈S
pk− ∑

S⊂U, |S|≥2
|S|!∏

k∈S
pk

= ∑
k∈U

pk,

completing the induction.

Before we prove Theorem 16.6 we will point out that Lemma 16.4 can be
immediately derived from the above result. To see this, in Lemma 16.7 choose
p j = 1/n, for j = 1,2, · · ·n, and U such that |U |= r = n− k. Then, on one hand,

P(G f [U ] does not contain a cycle) = ∑
i∈[n]\U

1
n
=

k
n
.

On the other hand,

P(G f [U ] does not contain a cycle) =
T (n,k)
nn−k ,

where T (n,k) is the number of forests on [n] with k trees rooted in vertices from
the set [n] \U . Comparing both sides we immediately get the result of Lemma
16.4, i.e., that

T (n,k) = knn−k−1.
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Proof (of Theorem 16.6). Notice that G f̂ is connected if and only if there is a
subset U ⊆ [n] such that U spans a single cycle while there is no cycle on [n]\U .
Moreover, the events “U ⊆ [n] spans a cycle” and “there is no cycle on [n]\U” are
independent. Hence, by Lemma 16.7,

Pr(G f̂ is connected) =

= ∑
/0 ̸=U⊆[n]

P(U ⊂ [n] spans a cycle)P(there is no cycle on [n]\U)

= ∑
/0 ̸=U⊂[n]

(|U |−1)! ∏
j∈U

p j ∑
k∈U

pk (16.3)

= ∑
i

p2
i

(
1+∑

j ̸=i
p j +∑

j ̸=i
∑

k ̸=i, j
p j pk +∑

j ̸=i
∑

k ̸=i, j
∑

l ̸=i, j,k
p j pk pl + · · ·

)
.

Using the same reasoning as in the above proof, one can show the following
result due to Jaworski [517].

Theorem 16.8. Let X be the number of components in G f̂ and Y be the number
of its cyclic vertices (vertices belonging to a cycle). Then for k = 1,2, . . . ,n,

P(X = k) = ∑
U⊂[n]
|U |≥k

∏
j∈U

p j|s(|U |,k)|− ∑
U⊂[n]
|U |≥k+1

∏
j∈U

p j|s(|U |−1,k)||U |,

where s(·, ·) is the Stirling number of the first kind. On the other hand,

P(Y = k) = k! ∑
U⊂[n]
|U |=k

∏
j∈U

p j− (k+1)! ∑
U⊂[n]
|U |=k+1

∏
j∈U

p j.

The Burtin–Ross Lemma has another formulation which we present below.

Lemma 16.9 (Burtin-Ross Lemma - the second version). Let ĝ : [n]→ [n]∪{0}
be a random mapping from the set [n] to the set [n]∪{0}, where, independently
for all i ∈ [n],

P(ĝ(i) = j) = q j, j = 0,1,2, . . . ,n,

and
q0 +q1 +q2 + . . .+qn = 1.

Let Dĝ be the random directed graph on the vertex set [n]∪{0}, generated by
the mapping ĝ and let Gĝ denote its underlying simple graph. Then

P(Gĝ is connected ) = q0.
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Notice that the event that Gĝ is connected is equivalent to the event that Dĝ is
a (directed) tree, rooted at vertex {0}, i.e., there are no cycles in Gĝ[[n]].

We will use this result and Lemma 16.9 to prove the next theorem (for more
general results, see [518]).

Theorem 16.10. Let D f̂ be the functional digraph of a mapping f̂ defined in
(16.2) and let ZR be the number of predecessors of a set R⊂ [n], |R|= r, r ≥ 1, of
vertices of D f̂ , i.e.,

ZR = |{ j ∈ [n] : for some non-negative integer k, f̂ (k)( j) ∈ R}|,

where f̂ (0)( j) = j and for k ≥ 1, f̂ (k)( j) = f̂ ( f̂ (k−1)( j)).
Then, for k = 0,1,2, . . . ,n− r,

P(ZR = k+ r) = ΣR ∑
U⊂[n]\R
|U |=k

(ΣU∪R)
k−1 (1−ΣU∪R)

n−k ,

where for A⊆ [n], ΣA = ∑ j∈A p j.

Proof. The distribution of ZR follows immediately from the next observation and
the application of Lemma 16.9. Denote by A the event that there is a forest
spanned on the set W =U ∪R, where U ⊂ [n]\R, composed of r (directed) trees
rooted at vertices of R. Then

P(ZR = k+ r) = ∑
U⊂[n]\R
|U |=k

P(A |B∩C )P(B)P(C ), (16.4)

where B is the event that all edges that begin in U end in W , while C denotes the
event that all edges that begin in [n]\W end in [n]\W . Now notice that

P(B) = (ΣW )k, while P(C ) = (1−ΣW )n−k .

Furthermore,
P(A |B∩C) = P(Gĝ is connected ),

where ĝ : U→U∪{0}, where {0} stands for the set R collapsed to a single vertex,
is such that for all u ∈U independently,

q j = P(ĝ(u) = j) =
p j

ΣW
, for j ∈U, while q0 =

ΣR

ΣW
.

So, applying Lemma 16.9, we arrive at the thesis.
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We will finish this section by stating the central limit theorem for the number
of components of G f , where f is a uniform random mapping f : [n]→ [n] (see
Stepanov [819]). It is an analogous result to Theorem 16.2 for random permuta-
tions.

Theorem 16.11.

lim
n→∞

P

Xn− 1
2 logn√

1
2 logn

≤ x

=
∫ x

−∞

e−t2/2dt,

the standardized random variable Xn converges in distribution to the standard
Normal random variable.

16.3 Exercises
16.3.1 Prove directly that if Xn,t is the number of cycles of length t in a random

permutation then EXn,t = 1/t.

16.3.2 Find the expectation and the variance of the number Xn of cycles in a ran-
dom permutation using fact that the rth derivative of the gamma function
equals dr

(dx)r Γ(x) =
∫

∞

0 (log t)rtx−1e−tdt,

16.3.3 Determine the variance of the number Xn of cycles in a random permuta-
tion (start with computation of the second factorial moment of Xn, counting
ordered pairs of cycles).

16.3.4 Find the probability distribution for the length of a typical cycle in a ran-
dom permutation, i.e., the cycle that contains a given vertex (say vertex 1).
Determine the expectation and variance of this characteristic.

16.3.5 Find the probability distribution of the number of components in a func-
tional digraph D f of a uniform random mapping f : [n]→ [n].

16.3.6 Show that the length of the cycle containing item 1 in a random permuta-
tion is uniformly distributed in [n].

16.3.7 Show that if X denotes the number of cycles in a random permutation of [n]
then P(X ≥ t)≤ P(Bin(t,1/2)≤ ⌈log2 n⌉). Deduce that for every constant
L > 0, there exists a constant K > 0, such that P(X ≥ K logn)≤ n−L.
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16.3.8 Now let X denote the number of cycles in the digraph D f of a random
mapping f : [n]→ [n]. Show that for every constant L > 0, there exists a
constant K > 0, such that P(X ≥ K logn)≤ n−L.

16.3.9 Determine the expectation and variance of the number of components in a
functional digraph D f̂ of a generalized random mapping f̂ (see Theorem
16.8)

16.3.10 Find the expectation and variance of the number of cyclic vertices in a
functional digraph D f̂ of a generalized random mapping f̂ (see Theorem
16.8).

16.3.11 Prove Theorem 16.8.

16.3.12 Show that Lemmas 16.7 and 16.9 are equivalent.

16.3.13 Prove the Burtin-Ross Lemma for a bipartite random mapping, i.e. a map-
ping with bipartition ([n], [m]), where each vertex i∈ [n] chooses its unique
image in [m] independently with probability 1/m, and, similarly, each ver-
tex j ∈ [m] selects its image in [n] with probability 1/n.

16.3.14 Consider an evolutionary model of a random mapping (see [519],[520]),
i.e., a mapping f̂q[n]→ [n], such that for i, j ∈ [n], P( f̂q(i) = j) = q if i = j
while, P( f̂q(i) = j) = (1−q)/(n−1) if i ̸= j, where 0 ≤ q ≤ 1. Find the
probability that f̂q is connected.

16.3.15 Show that there is one-to-one correspondence between the family of nn

mappings f : [n]→ [n] and the family of all doubly-rooted trees on the
vertex set [n] (Joyal bijection)

16.4 Notes

Permutations
Systematic studies of the properties of random permutations of n objects were ini-
tiated by Goncharov in [446] and [447]. Golomb [444] showed that the expected
length of the longest cycle of D f , divided by n is monotone decreasing and gave
a numerical value for the limit, while Shepp and Lloyd in [803] found the closed
form for this limit (see Theorem 16.3). They also gave the corresponding result
for kth moment of the rth longest cycle, for k,r = 1,2, . . . and showed the limiting
distribution for the length of the rth longest cycle.

Kingman [568] and, independently, Vershik and Schmidt [839], proved that for
a random permutation of n objects, as n→ ∞, the process giving the proportion
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of elements in the longest cycle, the second longest cycle, and so on, converges in
distribution to the Poisson-Dirichlet process with parameter 1 (for further results
in this direction see Arratia, Barbour and Tavaré [54]). Arratia and Tavaré [55]
provide explicit bounds on the total variation distance between the process which
counts the sizes of cycles in a random permutations and a process of independent
Poisson random variables.

For other results, not necessarily of a “graphical” nature, such as, for example,
the order of a random permutation, the number of derangements, or the number of
monotone sub-sequences, we refer the reader to the respective sections of books
by Feller [350], Bollobás [156] and Sachkov [788] or, in the case of monotone
sub-sequences, to a recent monograph by Romik [773].

Mappings

Uniform random mappings were introduced in the mid 1950’s by Rubin and Sit-
graves [775], Katz [561] and by Folkert [369]. More recently, much attention
has been focused on their usefulness as a model for epidemic processes, see for
example the papers of Gertsbakh [431], Ball, Mollison and Scalia-Tomba [68],
Berg [100], Mutafchiev [702], Pittel [737] and Jaworski [520]. The component
structure of a random functional digraph D f has been studied by Aldous [16].
He has shown, that the joint distribution of the normalized order statistics for the
component sizes of D f converges to the Poisson-Dirichlet distribution with pa-
rameter 1/2. For more results on uniform random mappings we refer the reader
to Kolchin’s monograph [582], or a chapter of Bollobás’ [156].

The general model of a random mapping f̂ , introduced by Burtin [206] and
Ross [774], has been intensively studied by many authors. The crucial Burtin-
Ross Lemma (see Lemmas: 16.7 and 16.9) has many alternative proofs (see [45])
but the most useful seems to be the one used in this chapter, due to Jaworski
[517]. His approach can also be applied to derive the distribution of many other
characteristics of a random digraph D f , as well as it can be used to prove gener-
alisations of the Burtin-Ross Lemma for models of random mappings with inde-
pendent choices of images. (For an extensive review of results in that direction
see [518]). Aldous, Miermont, Pitman ([22],[23]) study the asymptotic structure
of D f̂ using an ingenious coding of the random mapping f̂ as a stochastic pro-
cess on the interval [0,1] (see also the related work of Pitman [735], exploring the
relationship between random mappings and random forests).

Hansen and Jaworski (see [466], [467]) introduce a random mapping f D :
[n]→ [n] with an in-degree sequence, which is a collection of exchangeable ran-
dom variables (D1,D2, . . . ,Dn). In particular, they study predecessors and succes-
sors of a given set of vertices, and apply their results to random mappings with
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preferential and anti-preferential attachment.



Chapter 17

k-out

Several interesting graph properties require that the minimum degree of a graph
be at least a certain amount. E.g. having a Hamilton cycle requires that the mini-
mum degree is at least two. In Chapter 6 we saw that Gn,m being Hamiltonian and
having minimum degree at least two happen at the same time w.h.p. One is there-
fore interested in models of a random graph which guarantee a certain minimum
degree. We have already seen d-regular graphs in Chapter 9. In this chapter we
consider another simple and quite natural model Gk−out that generalises random
mappings. It seems to have first appeared in print as Problem 38 of “The Scottish
Book” [657]. We discuss the connectivity of this model and then matchings and
Hamilton cycles. We also consider a related model of “Nearest Neighbor Graphs”.

17.1 Connectivity

For an integer k, 1≤ k≤ n−1, let G⃗k−out be a random digraph on vertex set V =
{1,2, . . . ,n} with arcs (directed edges) generated independently for each v ∈ V
by a random choice of k distinct arcs (v,w), where w ∈ V \ {v}, so that each of
the
(n−1

k

)
possible sets of arcs is equally likely to be chosen. Let Gk−out be the

random graph(multigraph) obtained from G⃗k−out by ignoring the orientation of its
arcs, but retaining all edges.
Note that G⃗1−out is a functional digraph of a random mapping f : [n]→ [n], with
a restriction that loops (fixed points) are not allowed. So for k = 1 the following
result holds.

Theorem 17.1.
lim
n→∞

P(G1−out is connected ) = 0.
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The situation changes when each vertex is allowed to choose more than one
neighbor. Denote by κ(G) and λ (G) the vertex and edge connectivity of a graph
G respectively, i.e., the minimum number of vertices (respectively edges) the dele-
tion of which disconnects G. Let δ (G) be the minimum degree of G. The well
known Whitney’s Theorem states that, for any graph G,

κ(G)≤ λ (G)≤ δ (G).

In the next theorem we show that for random k−out graphs these parameters are
equal w.h.p. It is taken from Fenner and Frieze [358]. The Scottish Book [657]
contains a proof that Gk−out is connected for k ≥ 2.

Theorem 17.2. Let κ = κ(Gk−out),λ = λ (Gk−out) and δ = δ (Gk−out). Then, for
2≤ k = O(1),

lim
n→∞

P(κ = λ = δ = k) = 1.

Proof. In the light of Whitney’s Theorem, to prove our theorem we have to show
that the following two statements hold:

lim
n→∞

P(κ(Gk−out)≥ k) = 1, (17.1)

and
lim
n→∞

P(δ (Gk−out)≤ k) = 1. (17.2)

Then, w.h.p.
k ≤ κ ≤ λ ≤ δ ≤ k,

and the theorem follows.
To prove statement (17.1) consider the deletion of r vertices from the random
graph Gk−out , where 1 ≤ r ≤ k− 1. If Gk−out can be disconnected by deleting r
vertices, then there exists a partition (R,S,T ) of the vertex set V , with | R |= r,
| S |= s and | T |= t = n− r− s, with k− r+1 ≤ s ≤ n− k−1, such that Gk−out
has no edge joining a vertex in S with a vertex in T . The probability of such an
event, for an arbitrary partition given above, is equal to((r+s−1

k

)(n−1
k

) )s((n−s−1
k

)(n−1
k

) )n−r−s

≤
(

r+ s
n

)sk(n− s
n

)(n−r−s)k

Thus

P(κ(Gk−out)≤ r)≤
⌊(n−r)/2⌋

∑
s=k−r+1

n!
s!r!(n− r− s)!

(
r+ s

n

)sk(n− s
n

)(n−r−s)k
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We have replaced n− k−1 by ⌊(n− r)/2⌋ because we can always interchange S
and T so that |S| ≤ |T |.

But, by Stirling’s formula,

n!
s!r!(n− r− s)!

≤ αs
nn

ss(n− r− s)n−r−s

where

αs = α(s,n,r)≤ c
(

n
s(n− r− s)

)1/2

≤ 2c
s1/2 ,

for some absolute constant c > 0.
Thus

P(κ(Gk−out)≤ r)≤ 2c
⌊(n−r)/2⌋

∑
s=k−r+1

1
s1/2

(
r+ s

s

)s( n− s
n− r− s

)(n−r−s)

us

where
us = (r+ s)(k−1)s(n− s)(k−1)(n−r−s)nn−k(n−r).

Now, (
r+ s

s

)s( n− s
n− r− s

)n−r−s

≤ e2r,

and
(r+ s)s(n− s)n−r−s

decreases monotonically, with increasing s, for s ≤ (n− r)/2. Furthermore, if
s≤ n/4 then the decrease is by a factor of at least 2.
Therefore

P(κ(Gk−out)≤ r)≤ 2ce2r

(
n/4

∑
s=k−r+1

2−(k−1)(s−k+r−1)+
2

n1/2 ·
n
4

)
uk−r+1

≤ 5ce2rn1/2uk−r+1 ≤ 5ce2ran3/2−k(k−r),

where
a = (k+1)(k−1)(k−r+1).

It follows that

lim
n→∞

P(κ(Gk−out)≤ r) = lim
n→∞

P(κ(Gk−out)≤ k−1) = 0,

which implies that
lim
n→∞

P(κ(Gk−out)≥ k) = 1,
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i.e., that equation (17.1) holds.
To complete the proof we have to show that equation (17.2) holds, i.e., that

P(δ (Gk−out) = k)→ 1 as n→ ∞.

Since δ ≥ k in Gk−out , we have to show that w.h.p. there is a vertex of degree k in
Gk−out .
Let Ev be the event that vertex v has indegree zero in G⃗k−out . Thus the degree of v
in Gk−out is k if and only if Ev occurs. Now

P(Ev) =

((n−2
k

)(n−1
k

))n−1

=

(
1− k

n−1

)n−1

→ e−k.

Let Z denote the number of vertices of degree k in Gk−out . Then we have shown
that E(Z) ≈ ne−k. Now the random variable Z is determined by kn independent
random choices. Changing one of these choices can change the value of Z by at
most one. Applying the Azuma-Hoeffding concentration inequality – see Section
27.7, in particular Lemma 27.17 we see that for any t > 0

P(Z ≤ E(Z)− t)≤ exp
{
−2t2

kn

}
.

Putting t = ne−k/2 we see that Z > 0 w.h.p. and the theorem follows.

17.2 Perfect Matchings

Non-bipartite graphs
Assuming that the number of vertices n of a random graph Gk−out is even, Frieze
[385] proved the following result.

Theorem 17.3.

lim
n→∞
n even

P(Gk−out has a perfect matching) =

{
0 if k = 1
1 if k ≥ 2.

We will only prove a weakening of the above result to where k≥ 15. We follow
the ideas of Section 6.1. So, we begin by examining the expansion properties of
G =Ga−out ,a≥ 3.

Lemma 17.4. W.h.p. |NG(S)| ≥ |S| for all S⊆ [n], |S| ≤ κan where κa =
1
2

( 1
30

)1/(a−2)
.



17.2. Perfect Matchings 365

Proof. The probability there exists a set S with insufficient expansion is at most

κan

∑
s=3

(
n
s

)(
n

s−1

)(
2s
n

)as

≤
κan

∑
s=3

(ne
s

)2s
(

2s
n

)as

=
κan

∑
s=3

(( s
n

)a−2
e22a

)s

= o(1). (17.3)

Lemma 17.5. Let b =
⌈
(1+κ−2

a )/2
⌉
. Then as n→ ∞, n even, G(a+b)−out has a

perfect matching w.h.p.

Proof. First note that G(a+b)−out contains H = Ga−out ∪Gb−out in the following
sense. Start the construction of G(a+b)−out with H. If there is a v∈ [n] that chooses
edge {v,w} in both Ga−out and Gb−out then add another random choice for v.

Let us show that H has a perfect matching w.h.p. Enumerate the edges of
Gb−out as e1,e2, . . . ,ebn. Here e(i−1)n+ j is the ith edge chosen by vertex j. Let
G0 = Ga−out and let Gi = G0 + {e1,e2, . . . ,ei}. If Gi does not have a perfect
matching, consider the sets A,A(x),x ∈ A defined prior to (6.6). It follows from
Lemma 17.4 that w.h.p. all of these sets are of size at least κan. Thus, P(y ∈
A(x))≥ κan−b

n . We subtract b to account for the previously inspected edges asso-
ciated with x’s choices.

It follows that

P(G(a+b)−out does not have a perfect matching)

≤ P(H does not have a perfect matching)
≤ P(Bin(bκan,κa−b/n)≤ n/2) = o(1).

Putting a = 8 gives b = 7 and a proof that G15−out , n even, has a perfect
matching w.h.p.

Bipartite graphs
We now consider the related problem of the existence of a perfect matching in a
random k-out bipartite graph.
Let U = {u1,u2, . . . ,un},V = {v1,v2, . . . ,vn} and let each vertex from U choose
independently and without repetition, k neighbors in V , and let each vertex from V
choose independently and without repetition k neighbors in U . Denote by B⃗k−out
the digraphs generated by the above procedure and let Bk−out be its underlying
simple bipartite graph.
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Theorem 17.6.

lim
n→∞

P(Bk−out has a perfect matching) =

{
0 if k = 1
1 if k ≥ 2.

We will give two different proofs. The first one - existential- of a combinatorial
nature is due to Walkup [844]. The second one - constructive- of an algorithmic
nature, is due to Karp, Rinnooy-Kan and Vohra [557]. We start with the combina-
torial approach.

Existence proof
Let X denote the number of perfect matchings in Bk−out . Then

P(X > 0)≤ E(X)≤ n! 2n(k/n)n.

The above bound follows from the following observations. There are n! ways
of pairing the vertices of U with the vertices of V . For each such pairing there
are 2n ways to assign directions for the connecting edges, and then each possible
matching has probability (k/n)n of appearing in Bk−out .
So, by Stirling’s formula,

P(X > 0)≤ 3n1/2(2k/e)n,

which, for k = 1 tends to 0 as n→ ∞, and the first statement of our theorem
follows.
To show that Bk−out has a perfect matching w.h.p. notice that since this is an
increasing graph property, it is enough to show that it is true for k = 2. Note also,
that if there is no perfect matching in Bk−out , then there must exist a set R ⊂U
(or R ⊂ V ) such that the cardinality of neighborhood of S = N(R) of R in U (
respectively, in V ) is smaller than the cardinality of the set R itself, i.e., | S |<| R |.
We will call such a pair (R,S) a bad pair, and, in particular, we will restrict our
attention to the “minimal bad pairs”, i.e., such that there is no R′ ⊂ R for which
(R′,N(R′)) is bad.

If (R,S) is a bad pair with R ⊆U then (V \S,U \R) is also a bad pair. Given
this, we can concentrate on showing that w.h.p. there are no bad pairs (R,S) with
2≤ |R| ≤ (n+1)/2.

Every minimal bad pair has to have the following two properties:

(i) | S |=| R | −1,
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(ii) every vertex in S has at least two neighbors in R.

The first property is obvious. To see why property (ii) holds, suppose that there is
a vertex v ∈ S with at most one neighbor u in R. Then the pair (R\{u} ,S\{v}) is
also “bad pair” and so the pair (R,S) is not minimal.

Let r ∈ [2,(n+ 1)/2] and let Yr be the number of minimal bad pairs (R,S),
with | R |= r in Bk−out . To complete the proof of the theorem we have to show that
∑rEYr→ 0 as n→∞. By symmetry, choose (R,S), such that R= {u1,u2, . . .ur}⊂
U and S = {v1,v2, . . .vr−1} ⊂V is a minimal “bad pair”. Then

EYr = 2
(

n
r

)(
n

r−1

)
PrQr, (17.4)

where
Pr = P((R,S) is bad)

and
Qr = P((R,S) is minimal | (R,S) is bad).

We observe that, for any fixed k,

Pr =

((r−1
k

)(n
k

) )r((n−r
k

)(n
k

) )n−r+1

.

Hence, for k = 2,

Pr ≤
( r

n

)2r
(

n− r
n

)2(n−r)

. (17.5)

Then we use Stirling’s formula to show,(
n
r

)(
n

r−1

)
=

r
n− r+1

(
n
r

)2

≤ r
n− r+1

n
r(n− r)

(n
r

)
2r
(

n
n− r

)2(n−r)

. (17.6)

To estimate Qr we have to consider condition (ii) which a minimal bad pair has to
satisfy. This implies that a vertex v ∈ S = N(R) is chosen by at least one vertex
from R (denote this event by Av), or it chooses both its neighbors in R (denote
this event by Bv). Then the events Av,v ∈ S are negatively correlated (see Section
27.2) and the events Bv,v ∈ S are independent of other events in this collection.
Let S = {v1,v2, . . . ,vr−1}. Then we can write

Qr≤P

(
r−1⋂
i=1

(Avi ∪Bvi)

)
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=
r−1

∏
i=1

P

(
Avi ∪Bvi

∣∣∣∣ i−1⋂
j=1

(Av j ∪Bv j)

)

≤
r−1

∏
i=1

P(Avi ∪Bvi)

=
(
1−P(Ac

v1
)P(Bc

v1
)
)r−1

≤

(
1−
(

r−2
r−1

)2r
(

1−
(r

2

)(n
2

)))r−1

≤ η
r−1 (17.7)

for some absolute constant 0 < η < 1 when r ≤ (n+1)/2.
Going back to (17.4), and using (17.5), (17.6), (17.7)

(n+1)/2

∑
r=2

EXr ≤ 2
(n+1)/2

∑
r=2

ηr−1n
(n− r)(n− r+1)

= o(1).

Hence ∑rEXr → 0 as n→ ∞, which means that w.h.p. there are no bad pairs,
implying that Bk−out has a perfect matching w.h.p.

Frieze and Melsted [408] considered the related question. Suppose that M,N
are disjoint sets of size m,n and that each v ∈ M chooses d ≥ 3 neighbors in N.
Suppose that we condition on each vertex in N being chosen at least twice. They
show that w.h.p. there is a matching of size equal to min{m,n}. Fountoulakis and
Panagiotou [372] proved a slightly weaker result, in the same vein.

Algorithmic Proof
We will now give a rather elegant algorithmic proof of Theorem 17.6. It is due to
Karp, Rinnooy-Kan and Vohra [557]. We do this for two reasons. First, because
it is a lovely proof and second this proof is the basis of the proof that 2-in,2-out
is Hamiltonian in [252]. In particular, this latter example shows that constructive
proofs can sometimes be used to achieve results not obtainable through existence
proofs alone.

Start with the random digraph B⃗2−out and consider two multigraphs, GU and
GV with labeled vertices and edges, generated by B⃗2−out on the sets of the bipar-
tition (U,V ) in the following way. The vertex set of the graph GU is U and two
vertices, u and u′, are connected by an edge, labeled v, if a vertex v ∈V chooses u
and u′ as its two neighbors in U . Similarly, the graph GV has vertex set V and we
put an edge labeled u between two vertices v and v′, if a vertex u ∈U chooses v
and v′ as its two neighbors in V . Hence graphs GU and GV are random multigraphs
with exactly n labeled vertices and n labeled edges.
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We will describe below, a randomized algorithm which w.h.p. finds a perfect
matching in B2−out in O(n) expected number of steps.

Algorithm PAIR

• Step 0. Set HU = GU and let HV be empty graph on vertex set V . Initially
all vertices in HU are unmarked and all vertices in GV are unchecked. Let
CORE denote the set of edges of GU that lie on cycles in GU i.e. the edges
of the 2-core of GU .

• Step 1. If every isolated tree in HU contains a marked vertex, go to Step
5. Otherwise, select any isolated tree T in HU in which all vertices are
unmarked. Pick a random vertex u in T and mark it.

• Step 2. Add the edge {x,y} ,x,y ∈V that has label u to the graph HV .

• Step 3. Let Cx,Cy be the components of HV just before the edge labeled
u is added. Let C = Cx ∪Cy. If all vertices in C are checked, go to Step
6. Otherwise, select an unchecked vertex v in C. If possible, select an
unchecked vertex v for which the edge labeled v in HU belongs to CORE.

• Step 4. Delete the edge labeled v from HU , return to Step 1.

• Step 5. STOP and declare success.

• Step 6. STOP and declare failure.

We next argue that Algorithm PAIR, when it finishes at Step 5, does indeed
produce a perfect matching in B2−out . There are two simple invariants of this
process that explain this:

(I1) The number of marked vertices plus the number of edges in HU is equal to n.

(I2) The number of checked vertices is equal to the number of edges in HV .

For I1, we observe that each round marks one vertex and deletes one edge of HU .
Similarly, for I2, we observe that each round checks one vertex and adds one edge
to HV .

Lemma 17.7. Up until (possible) failure in Step 6, the components of HV are
either trees with a unique unchecked vertex or are unicyclic components with all
vertices checked. Also, failure in Step 6 means that PAIR tries to add an edge to a
unicyclic component.
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Proof. This is true initially, as initially HV has no edges and all vertices are
unchecked. Assume this to be the case when we add an edge {x,y} to HV . If
Cx ̸= Cy are both trees then we will have a choice of two unchecked vertices in
C = Cx ∪Cy and C will be a tree. After checking one vertex, our claim will still
hold. The other possibilities are that Cx is a tree and Cy is unicyclic. In this case
there is one unchecked vertex and this will be checked and C will be unicyclic. The
other possibility is that C =Cx =Cy is a tree. Again there is only one unchecked
vertex and adding {x,y} will make C unicyclic.

Lemma 17.8. If HU consists of trees and unicyclic components then all the trees
in HU contain a marked vertex.

Proof. Suppose that HU contains k trees with marked vertices and ℓ trees with no
marked vertices and that the rest of the components are unicyclic. It follows that
HU contains n− k− ℓ edges and then (I1) implies that ℓ= 0.

Lemma 17.9. If the algorithm stops in Step 5, then we can extract a perfect match-
ing from HU ,HV .

Proof. Suppose that we arrive at Step 5 after k rounds. Suppose that there are k
trees with a marked vertex. Let the component sizes in HU be n1,n2, . . . ,nk for the
trees and m1,m2, . . . ,mℓ for the remaining components. Then,

n1 +n2 + · · ·+nk +m1 +m2 + · · ·+mℓ = |V (HU)|= n.
|E(HU)|= n− k,

from I1 and so
(n1−1)+(n2−1)+ · · ·+(nk−1)+

(≥ m1)+(≥ m2)+(≥ mℓ) = n− k.

It follows that the components of HU that are not trees with a marked vertex have
as many edges as vertices and so are unicyclic.

We now show, given that HU ,HV only contain trees and unicyclic components,
that we can extract a perfect matching. The edges of HU define a matching of
B2−out of size n− k. Consider a tree T component with marked vertex ρ . Orient
the edges of T away from ρ . Now consider an edge {x,y} of T , oriented from x
to y. Suppose that this edge has label z ∈V . We add the edge {y,z} to M1. These
edges are disjoint: z appears as the label of exactly one edge and y is the head of
exactly one oriented edge.

For the unicyclic components, we orient the unique cycle
C = (u1,u2, . . . ,us) arbitrarily in one of two ways. We then consider the trees
attached to each of the ui and orient them away from the ui. An oriented edge
{x,y} with label z yields a matching edge {y,z} as before.
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The remaining k edges needed for a perfect matching come from HV . We
extract a set of k matching edges out of HV in the same way we extracted n− k
edges from HU . We only need to check that these k edges are disjoint from those
chosen from HU . Let {y,z} be such an edge, obtained from the edge {x,y} of HV ,
which has label z. z is marked in HU and so is the root of a tree and does not
appear in any matching edge of M1. y is a checked vertex and so the edge labelled
y has been deleted from HU and this prevents y appearing in a matching edge of
M1.

Lemma 17.10. W.h.p. Algorithm PAIR cannot reach Step 6 in fewer than 0.49n
iterations.

Proof. It follows from Lemma 2.10 that w.h.p. after ≤ 0.499n rounds, HV only
contains trees and unicyclic components. The lemma now follows from Lemma
17.7.

To complete our analysis, it only remains to show

Lemma 17.11. W.h.p., at most 0.49n rounds are needed to make HU the union of
trees and unicyclic components.

Proof. Recall that each edge of HU corresponds to an unchecked vertex of HV ,
the edges corresponding to checked vertices having been deleted. Moreover, each
tree component T of HV has one unchecked vertex, uT say. If uT is the label of
an edge of HU belonging to CORE then due to the choice rule for vertex checking
in Step 3, every vertex of T must be the label of an edge of CORE. Hence the
number of edges left in CORE, after a given iteration of the algorithm, is equal
to the number of tree components of HV , where every vertex labels an edge of
CORE. We use this to estimate the number of edges of CORE that remain in HU
after .49n iterations.

Let xe−x = 2e−2, where 0 < x < 1. One can easily check that 0.40 < x < 0.41.
It follows from Lemma 2.16 that w.h.p. |CORE| ≈

(
1− x

2

)2 n, which implies, that
0.63 n≤ |CORE| ≤ 0.64 n.
Let Z be the number of tree components in HV made up of vertices which are the
labels of edges belong to CORE. Then, after at most 0.49n rounds,

EZ ≤ o(1)+
(logn)2

∑
k=1

(
n
k

)
kk−2

(
0.49n
k−1

)
(k−1)!

(0.64)k(n
2

)k−1 ×

×

(
1− k(n− k)(n

2

) ).49n−(k−1)

(17.8)

≤ (1+o(1))n
(logn)2

∑
k=1

kk−2

k!
(0.64)ke−0.98k
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≤ (1+o(1))n×[(
0.64θ +

(0.64θ)2

2
+

(0.64θ)3

2
+

2(0.64θ)4

3

)
+

∞

∑
k=5

(
(0.64)e.02)k

2k5/2

]
where θ = e−0.98

≤ (1+o(1))n
[

0.279+
1

2×55/2 (1− (0.64)e.02)

]
≤ (1+o(1))n [0.279+0.026]
≤ (0.305)n.

Explanation of (17.8); The o(1) term corresponds to components of size greater
than (logn)2 and w.h.p. there are none of these. For the summand, we choose k
vertices and a tree on these k vertices in

(n
k

)
kk−2 ways. The term

(0.49n
k−1

)
(k− 1)!

gives the number of sequences of edge choices that lead to a given tree. The
term

(n
2

)−(k−1) is the probability that these edges exist and (0.64)k bounds the
probability that the vertices of the tree correspond to edges in CORE. The final
term is the probability that the tree is actually a component.

So after 0.49n rounds, in expectation, the number of edges left in CORE, is at
most 0.305

0.63 < 0.485 of its original size, and the Chebyshev inequality (applied to
Z) can be used to show that w.h.p. it is at most 0.49 of its original size. However,
randomly deleting approximately 0.51 fraction of the edges of CORE will w.h.p.
leave just trees and unicyclic components in HU . To see this, observe that if we
delete 0.505n random edges from GU then we will have a random graph in the
sub-critical stage and so w.h.p. it will consist of trees and unicyclic components.
But deleting 0.505n random edges will w.h.p. delete less than a 0.51 fraction of
CORE.

This completes the proof that w.h.p. Algorithm PAIR finishes before 0.49n
rounds with a perfect matching. In summary,

Theorem 17.12. W.h.p. the algorithm PAIR finds a perfect matching in the ran-
dom graph B2−out in at most .49n steps.

One can ask whether one can w.h.p. secure a perfect matching in a bipartite
random graph having more edges then B1−out , but less than B2−out . To see that it
is possible, consider the following two-round procedure. In the first round assume
that each vertex from the set U chooses exactly one neighbor in V and, likewise,
every vertex from the set V chooses exactly one neighbor in U . In the next round,
only those vertices from U and V which have not been selected in the first round
get a second chance to make yet another random selection. It is easy to see that,
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for large n, such a second chance is, on the average, given to approximately n/e
vertices on each side. I.e, that the average out-degree of vertices in U and V
is approximately 1+ 1/e. Therefore the underlying simple graph is denoted as
B(1+1/e)−out , and Karoński and Pittel [550] proved that the following result holds.

Theorem 17.13. With probability 1−O(n−1/2) a random graph B(1+1/e)−out con-
tains a perfect matching.

17.3 Hamilton Cycles
Bohman and Frieze [138] proved the following:

Theorem 17.14.

lim
n→∞

P(Gk−out has a Hamiltonian Cycle) =

{
0 if k ≤ 2
1 if k ≥ 3.

To see that this result is best possible note that one can show that w.h.p. the
random graph G2−out contains a vertex adjacent to three vertices of degree two,
which prevents the existence of a Hamiltonian Cycle. The proof that G3−out w.h.p.
contains a Hamiltonian Cycle is long and complicated, we will therefore prove the
weaker result given below which has a straightforward proof, using the ideas of
Section 6.2. It is taken from Frieze and Łuczak [403].

Theorem 17.15.

lim
n→∞

P(Gk−out has a Hamiltonian Cycle) = 1, if k ≥ 5.

Proof. Let H = G0∪G1∪G2 where Gi = Gki−out , where (i) k0 = 1,k1 = k2 = 2
and (ii) G0,G1,G2 are generated independently of each other. Then we can couple
the construction of H and G5−out so that H ⊆ G5−out . This is because in the
construction of H, some random choices in the construction of the associated
digraphs might be repeated. In which case, having constructed H, we can give
G5−out some more edges.

It follows from Theorem 17.3 that w.h.p. Gi, i = 1,2 contain perfect matchings
Mi, i = 1,2. Here we allow n to be odd and so a perfect matching may leave one
vertex isolated. By symmetry M1,M2 are uniform random
matchings. Let M = M1∪M2. The components of M are cycles. There could be
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degenerate 2-cycles consisting of two copies of the same edge and there may be a
path in the case n is odd.

Lemma 17.16. Let X be the number of components of M. Then w.h.p.

X ≤ 3logn.

Proof. Let C be the cycle containing vertex 1. We show that

P
(
|C| ≥ n

2

)
≥ 1

2
. (17.9)

To see this note that

P(|C|= 2k) =
k−1

∏
i=1

(
n−2i

n−2i+1

)
1

n−2k+1
<

1
n−2k+1

.

Indeed, consider the M1-edge {1 = i1, i2} ∈C containing vertex 1. Let {i2, i3} ∈C
be the M2-edge containing i2, Now, P(i3 ̸= 1) = (n− 2)/(n− 1). Assume that
i3 ̸= 1 and let {i3, i4} ∈ C be the M1-edge containing i3. Let {i4, i5} ∈ C be the
M2-edge containing i4. Then P(i5 ̸= 1) = (n−4)/(n−3), and so on until we close
the cycle with probability 1/(n−2k+1). Hence

P
(
|C|< n

2

)
<
⌊n/4⌋

∑
k=1

1
n−2k+1

<
1
2
,

and the bound given in (17.9) follows.
Consider next the following experiment. Choose the size s of the cycle containing
vertex 1. Next choose the size of the cycle containing a particular vertex from the
remaining n− s vertices. Continue until the cycle chosen contains all remaining
vertices. Observe now, that deleting any cycle from M leaves a random pair of
matchings of the remaining vertices. So, by this observation and the fact that the
bound (17.9) holds, whatever the currently chosen cycle sizes, with probability at
least 1/2, the size of the remaining vertex set halves, at least. Thus,

P(X ≥ 3logn)≤ P(Bin(3logn,1/2)≤ log2 n) = o(1).

We use rotations as in Section 6.2. Lemma 17.16 enables us to argue that
we only need to add random edges trying to find x,y where y ∈ END(x), at most
O(logn) times. We show next that H1 = G1∪G2 has sufficient expansion.
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Lemma 17.17. W.h.p. S⊆ [n], |S| ≤ n/1000 implies that |NH1(S)| ≥ 2|S|.

Proof. Let X be the number of vertex sets that violate the claim. Then,

EX ≤
n/1000

∑
k=1

(
n
k

)(
n
2k

)( (3k
2

)(n−1
2

))2
k

≤
n/1000

∑
k=1

(
e3n3

4k3
81k4

n4

)k

=
n/1000

∑
k=1

(
81e3k

4n

)k

= o(1).

If n is even then we begin our search for a Hamilton cycle by choosing a cycle
of H1 and removing an edge. This will give us our current path P. If n is odd
we use the path P joining the two vertices of degree one in M1 ∪M2. We can
ignore the case where the isolated vertex is the same in M1 and M2 because this
only happens with probability 1/n. We run Algorithm Pósa of Section 6.2 and
observe the following: At each point of the algorithm we will have a path P plus a
collection of vertex disjoint cycles spanning the vertices not in P. This is because
in Step (d) the edge {u,v} will join two cycles, one will be the newly closed cycle
and the other will be a cycle of M. It follows that w.h.p. we will only need to
execute Step (d) at most 3 logn times.

We now estimate the probability that we reach the start of Step (d) and fail to
close a cycle. Let the edges of G0 be {e1,e2, . . . ,en} where ei is the edge chosen
by vertex i. Suppose that at the beginning of Step (d) we have identified END. We
can go through the vertices of END until we find x ∈ END such that ex = {x,y}
where y ∈ END(x). Because G0 and H1 are independent, we see by Lemma 17.17
that we can assume P(y ∈ END(x)) ≥ 1/1000. Here we use the fact that adding
edges to H1 will not decrease the size of neighborhoods. It follows that with
probability 1−o(1/n) we will examine fewer than (logn)2 edges of G0 before we
succeed in closing a cycle.

Now we tryclosing cycles O(logn) times and w.h.p. each time we look at
O((logn)2) edges of G0. So, if we only examine an edge of G0 once, we will
w.h.p. still always have n/1000−O((logn)3) edges to try. The probability we
fail to find a Hamilton cycle this way, given that H1 has sufficient expansion,
can therefore be bounded by P(Bin(n/1000−O((logn)3),1/1000) ≤ 3logn) =
o(1).
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17.4 Nearest Neighbor Graphs
Consider the complete graph Kn, on vertex set V = {1,2, , . . . ,n}, in which each
edge is assigned a cost Ci, j, i ̸= j, and the costs are independent identically dis-
tributed continuous random variables. Color an edge green if it is one of the
k shortest edges incident to either end vertex, and color it blue otherwise. The
graph made up of the green edges only is called the k-th nearest neighbor graph
and is denoted by Gk−nearest . Note that in the random graph Gk−nearest the edges
are no longer independent, as in the case of Gk−out or in the classical model Gn,p.
Assume without loss of generality that the Ci, j are exponential random variables
of mean one. Cooper and Frieze [251] proved

Theorem 17.18.

lim
n→∞

P(Gk−nearest is connected ) =


0 if k = 1,
γ if k = 2,
1 if k ≥ 3,

where 0.99081≤ γ ≤ 0.99586.

A similar result holds for a random bipartite k-th nearest neighbor graph,
generated in a similar way as Gk−nearest but starting with the complete bipartite
graph Kn,n with vertex sets V1,V2 = {1,2, , . . . ,n}, and denoted by Bk−nearest . The
following result is from Pittel and Weishar [744].

Theorem 17.19.

lim
n→∞

P(Bk−nearest is connected ) =


0 if k = 1,
γ if k = 2,
1 if k ≥ 3,

where 0.996636≤ γ .

The paper [744] contains an explicit formula for γ .

Consider the related problem of the existence of a perfect matching in the bi-
partite k-th nearest neighbor graph Bk−nearest . For convenience, to simplify com-
putations, we will assume here that the Ci, j are iid exponential random variables
with rate 1/n. Coppersmith and Sorkin [274] showed that the expected size of the
largest matching in B1−nearest (which itself is a forest) is w.h.p. asymptotic to(

2− e−e−1
− e−e−e−1

)
n≈ 0.807n.
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The same expression was obtained independently in [744]. Also, w.h.p.,
B2−nearest does not have a perfect matching. Moreover, w.h.p., in a maximal
matching there are at least 2logn

13loglogn unmatched vertices, see [744].
The situation changes when each vertex chooses three, instead of one or two, of
its “green” edges. Then the following theorem was proved in [744]:

Theorem 17.20. B3−nearest has a perfect matching, w.h.p.

Proof. The proof is analogous to the proof of Theorem 17.6 and uses Hall’s Theo-
rem. We use the same terminology. We can, as in Theorem 17.6, consider only bad
pairs of “size” k ≤ n/2. Consider first the case when k < εn, where ε < 1/(2e2),
i.e., “small” bad pairs. Notice, that in a bad pair, each of the k vertices from V1
must choose its neighbors from the set of k− 1 vertices from V2. Let Ak be the
number of such sets. Then,

EAk ≤ 2
(

n
k

)(
n

k−1

)(
k
n

)3k

≤ 2
n2k

(k!)2

(
k
n

)3k

≤ 2
(

ke2

n

)k

.

(The factor 2 arises from allowing R to be chosen from V1 or V2.)
Let Pk be the probability that there is a bad pair of size k in B3−nearest . Then the

probability that B3−nearest contains a bad pair of size less than t = ⌊εn⌋ is, letting
l = ⌊(logn)2⌋, at most

t

∑
k=4

Pk ≤ 2
t

∑
k=4

(
ke2

n

)k

= 2
l

∑
k=4

(
ke2

n

)k

+2
t

∑
k=l+1

(
ke2

n

)k

≤ 2
l

∑
k=4

(
le2

n

)k

+2
t

∑
k=l+1

(
εe2)k

≤ 2l2e8

n4 +
(
εe2)l

.

So, if ε < 1/(2e2), then
⌊εn⌋

∑
k=4

Pk→ 0.

It suffices to show that
n/2

∑
k=⌊εn⌋+1

Pk→ 0.

To prove that there are no “large” bad pairs, note that for a pair to be bad it must
be the case that there is a set of n− k+1 vertices of V2 that do not choose any of
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the k vertices from V1. Let R ⊂ V1, |R| = k and S ⊂ V2, |S| = k− 1. Without loss
of generality, assume that R = {1,2, . . .k},S = {1,2, . . .k− 1}. Then let Yi, i =
1,2, . . .k be the smallest weight in Kn,n among the weights of edges connecting
vertex i ∈ R with vertices from V2 \S, and let Z j, j = k,k+1, . . .n be the smallest
weight among the weights of edges connecting vertex j ∈V2\S with vertices from
R. Then, each Yi has an exponential distribution with rate (n− k+1)/n and each
Z j has the exponential distribution with rate k/n.
Notice that in order for there not to be any edge in B3−nearest between respective
sets R and V2\S the following property should be satisfied: each vertex i∈R has at
least three neighbors in Kn,n with weights smaller than Yi and each vertex j ∈V2\S
has at least three neighbors in Kn,n with weights smaller than the corresponding
Z j. If we condition on the value Yi = y, then the probability that vertex i has at
least three neighbors with respective edge weight smaller than Yi, is given by

Pn,k(y) = 1−
(

e−y/n
)k−1

− (k−1)
(

1− e−y/n
)(

e−y/n
)k−2

−
(

k−1
2

)(
1− e−y/n

)2(
e−y/n

)k−3

Putting a = k/n

Pn,k(y)≈ f (a,y) = 1− e−ay−aye−ay− 1
2

a2y2e−ay.

Similarly, the probability that there are three neighbors of vertex j ∈ V2 \ S with
edge weights smaller than Z j is ≈ f (1−a,Z j).
So, the probability that there is a bad pair in B3−nearest can be bounded by

Pk ≤ 2
(

n
k

)(
n

k−1

)
Ek,

where, by the Cauchy-Schwarz inequality and independence separately of Y1,
. . . ,Yn and Z1, . . . ,Zn,

Ek = E

(
k

∏
i=1

f (a,Yi)
n

∏
j=k

f (1−a,Z j)

)

≤

(
E

(
k

∏
i=1

f 2(a,Yi)

))1/2(( n

∏
j=k

f 2(1−a,Z j)

))1/2

=
k

∏
i=1

E( f 2(a,Yi))
1/2

n

∏
j=k

E( f 2(1−a,Z j))
1/2

= E( f 2(a,Y1))
k/2E( f 2(1−a,Zn))

(n−k+1)/2.
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Asymptotically, Y1 has an exponential (1−a) distribution, so

E( f 2(a,Y1))

≈
∫

∞

0

(
1− e−ay−aye−ay− 1

2
a2y2e−ay

)2

(1−a)e−(1−a)ydy

= (1−a)
∫

∞

0
(e−(1−a)y−2ey−2aye−y−a2y2e−y + e−(1+a)y

+2aye−(1+a)y +2a2y2e−(1+a)y +a3y3e−(1+a)y +
1
4

a4y4e−(1+a)y)dy.

Now using ∫
∞

0
yie−cydy =

i!
ci+1 ,

we obtain

E( f 2(a,Y1)) = (1−a)
(

1
1−a

−2−2a−2a2 +
1

1+a

+
2a

(1+a)2 +
4a2

(1+a)3 +
6a3

(1+a)4 +
6a4

(1+a)5

)
=

2a6(10+5a+a2)

(1+a)5 .

Letting
g(a) = E( f 2(a,Y1))

a/2,

we have

Pk ≤ 2
(

n
k

)(
n

k−1

)
(g(a)g(1−a))n ≈ 2

(
g(a)g(1−a)

a2a(1−a)2(1−a)

)n

= 2h(a)n.

Numerical examination of the function h(a) shows that it is bounded below 1 for
a in the interval [δ ,0.5], which implies that the expected number of bad pairs is
exponentially small for any k > δn, with k ≤ n/2. Taking δ < ε < 1/(2e2), we
conclude that, w.h.p., there are no bad pairs in B3−nearest , and so we arrive at the
theorem.

17.5 Exercises
17.5.1 Let p = logn+(m−1) log logn+ω

n where ω→∞. Show that w.h.p. it is possible
to orient the edges of Gn,p to obtain a digraph D such that the minimum
out-degree δ+(D)≥ m.
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17.5.2 The random digraph Dk−in,ℓ−out is defined as follows: each vertex v ∈
[n] independently randomly chooses k in-neighbors and ℓ out-neighbors.
Show that w.h.p. Dm−in,m−out is m-strongly connected for m ≥ 2 i.e. to
destroy strong connectivity, one must delete at least m vertices.

17.5.3 Show that w.h.p. the diameter of Gk−out is asymptotically equal to log2k n
for k ≥ 2.

17.5.4 For a graph G = (V,E) let f : V →V be a G-mapping if (v, f (v)) is an edge
of G for all v ∈ V . Let G be a connected graph with maximum degree d.
Let H =

⋃k
i=0 Hi where (i) k ≥ 1, (ii) H0 is an arbitrary spanning tree of G

and (iii) H1,H2, . . . ,Hk are independent uniform random G-mappings. Let
θk = 1−

(
1− 1

d

)2k
and let α = 16/θk. Show that w.h.p. for every A⊂V ,

we have

|eH(A)| ≥
θk

16logn
· |eG(A)|.

where eG(A) (resp. eH(A)) is the number of edges of G (resp. H) with
exactly one endpoint in A.

17.5.5 Let G be a graph with n vertices and minimum degree (1
2 + ε)n for some

fixed ε > 0. Let H =
⋃k

i=1 Hi where (i) k ≥ 2 and (ii) H1,H2, . . . ,Hk are
independent uniform random G-mappings. Show that w.h.p. H is con-
nected.

17.5.6 Show that w.h.p. Gk−out contains k edge disjoint spanning trees. (Hint:
Use the Nash-Williams condition [708] – see Frieze and Łuczak [404]).

17.5.7 In the random digraph Gk−in,k−out each v ∈ [n] independently chooses k
uniformly random in-neighbors and k uniformly random out-neighbors.
Show that Gk−in,k−out is k-strongly connected for k ≥ 2,k = O(1).

17.6 Notes

k-out process
Jaworski and Łuczak [521] studied the following process that generates Gk−out
along the way. Starting with the empty graph, a vertex v is chosen uniformly at
random from the set of vertices of minimum out-degree. We then add the arc
(v,w) where w is chosen uniformly at random from the set of vertices that are
not out-neighbors of v. After kn steps the digraph in question is precisely G⃗k−out .
Ignoring orientation, we denote the graph obtained after m steps by U(n,m). The
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paper [521] studied the structure of U(n,m) for n ≤ m ≤ 2m. These graphs sit
between random mappings and G2−out .

Nearest neighbor graphs
There has been some considerable research on the nearest neighbor graph gener-
ated by n points X = {X1,X2, . . . ,Xn} chosen randomly in the unit square. Given
a positive integer k we define the k-nearest neighbor graph GX ,k by joining ver-
tex X ∈X to its k nearest neighbors in Euclidean distance. We first consider the
existence of a giant component. Teng and Yao [830] showed that if k ≥ 213 then
there is a giant component w.h.p. Balister and Bollobás [65] reduced this num-
ber to 11. Now consider connectivity. Balister, Bollobás, Sarkar and Walters [67]
proved that there exists a critical constant c∗ such that if k≤ c logn and c< c∗ then
w.h.p. GX ,k is not connected and if k ≥ c logn and if c > c∗ then w.h.p. GX ,k is
connected. The best estimates for c∗ are given in Balister, Bollobás, Sarkar and
Walters [66] i.e. 0.3043 < c∗ < 0.5139.

When distances are independently generated then the situation is much clearer.
Cooper and Frieze [251] proved that if k = 1 then the k-nearest neighbor graph O1
is not connected; the graph O2 is connected with probability γ ∈ [.99081, .99586];
for k ≥ 2, the graph Ok is k-connected w.h.p.

Directed k-in, ℓ-out
There is a natural directed version of Gk−out called Dk−in,ℓ−out where each vertex
randomly chooses k in-neighbors and ℓ out-neighbors.
Cooper and Frieze [249] studied the connectivity of such graphs. They prove for
example that if 1≤ k, ℓ≤ 2 then

lim
n→∞

P(Dk−in,ℓ−out is strongly connected) =

(1− (2− k)e−ℓ)(1− (2− ℓ)e−k).

In this result, one can in a natural way allow k, ℓ ∈ [1,2]. Hamiltonicity was dis-
cussed in [252] where it was shown that w.h.p. D2−in,2−out is Hamiltonian.

The random digraph Dn,p as well as G⃗k−out are special cases of a random di-
graph where each vertex, independently of others, first chooses its out-degree d
according to some probability distribution and then the set of its images - uni-
formly from all d-element subsets of the vertex set. If d is chosen according to
the binomial distribution then it is Dn,p while if d equals k with probability 1, then
it is G⃗k−out . Basic properties of the model (monotone properties, k-connectivity),
were studied in Jaworski and Smit [523] and in Jaworski and Palka [522] .
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k-out subgraphs of large graphs
Just as in Section 6.5, we can consider replacing the host graph Kn by graphs of
large degree. Let an n vertex graph G be strongly Dirac if its minimum degree
is at least cn for some constant c > 1/2. Frieze and Johansson [397] consider
the subgraph Gk obtained from G by letting each vertex independently choose k
neighbors in G. They show that w.h.p. Gk is k-connected for k ≥ 2 and that Gk
is Hamiltonian for k sufficiently large. The paper by Frieze, Goyal, Rademacher
and Vempala [392] shows the use of Gk as a cut-sparsifier.

k-out with preferential attachment
Peterson and Pittel [734] considered the following model: Vertices
1,2, . . . ,n in this order, each choose k random out-neighbors one at a time, subject
to a “preferential attachment” rule: the current vertex selects vertex i with proba-
bility proportional to a given parameter α = α(n) plus the number of times i has
already been selected. Intuitively, the larger α gets, the closer the resulting k-out
mapping is to the uniformly random k-out mapping. They prove that α = Θ(n1/2)
is the threshold for α growing “fast enough” to make the random digraph approach
the uniformly random digraph in terms of the total variation distance. They also
determine an exact limit of this distance for α = βn1/2.
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Real World Networks

There has recently been an increased interest in the networks that we see around
us in our every day lives. Most prominent are the Internet or the World Wide
Web or social networks like Facebook and Linked In. The networks are con-
structed by some random process. At least we do not properly understand their
construction. It is natural to model such networks by random graphs. When first
studying so-called “real world networks”, it was observed that often the degree
sequence exhibits a tail that decays polynomially, as opposed to classical random
graphs, whose tails decay exponentially. See, for example, Faloutsos, Faloutsos
and Faloutsos [348]. This has led to the development of other models of random
graphs such as the ones described below.

18.1 Preferential Attachment Graph
Fix an integer m> 0, constant and define a sequence of graphs G1,G2, . . . ,Gt . The
graph Gt has vertex set [t] and G1 consists of m loops on vertex 1. Suppose we
have constructed Gt . To obtain Gt+1 we apply the following rule. We add vertex
t + 1 and connect it to m randomly chosen vertices y1,y2, . . . ,ym ∈ [t] in such a
way that for i = 1,2, . . . ,m,

P(yi = w) =
deg(w,Gt)

2mt
,

where deg(w,Gt) is the degree of w in Gt .
In this way, Gt+1 is obtained from Gt by adding vertex t +1 and m randomly

chosen edges, in such a way that the neighbors of t +1 are biased towards higher
degree vertices.

When m = 1, Gt is a tree and this is basically a plane-oriented recursive tree
as considered in Section 15.5.
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This model was considered by Barabási and Albert [72]. This was followed by
a rigorous analysis of a marginally different model in Bollobás, Riordan, Spencer
and Tusnády [177].

Expected Degree Sequence: Power Law
Fix t and let Vk(t) denote the set of vertices of degree k in Gt , where m ≤ k =
Õ(t1/2). Let Dk(t) = |Vk(t)| and D̄k(t) = E(Dk(t)). Then (compare with (15.30)
when m = 1)

E(Dk(t +1)|Gt) =

Dk(t)+m
(
(k−1)Dk−1(t)

2mt
− kDk(t)

2mt

)
+1k=m + ε(k, t). (18.1)

Explanation of (18.1): The total degree of Gt is 2mt and so
(k−1)Dk−1(t)

2mt is the probability that yi is a vertex of degree k− 1, creating a new
vertex of degree k. Similarly, kDk(t)

2mt is the probability that yi is a vertex of degree
k, destroying a vertex of degree k. At this point t + 1 has degree m and this
accounts for the term 1k=m. The term ε(k, t) is an error term that accounts for the
possibility that yi = y j for some i ̸= j.

Thus

ε(k, t) = O
((

m
2

)
k

mt

)
= Õ(t−1/2). (18.2)

Taking expectations over Gt , we obtain

D̄k(t +1) = D̄k(t)+1k=m +m
(
(k−1)D̄k−1(t)

2mt
− kD̄k(t)

2mt

)
+ ε(k, t). (18.3)

Under the assumption D̄k(t) ≈ dkt (justified below) we are led to consider the

recurrence

dk =


1k=m +

(k−1)dk−1−kdk
2 if k ≥ m,

0 if k < m,

(18.4)

or

dk =


k−1
k+2dk−1 +

2·1k=m
k+2 if k ≥ m,

0 if k < m.

Therefore

dm =
2

m+2
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dk = dm

k

∏
l=m+1

l−1
l +2

=
2m(m+1)

k(k+1)(k+2)
. (18.5)

So for large k, under our assumption D̄k(t)≈ dkt, we see that

D̄k(t)≈
2m(m+1)

k3 t.

We now show that the assumption D̄k(t) ≈ dkt can be justified. Note that the

following theorem is vacuous for k≫ t1/6.

Theorem 18.1.
|D̄k(t)−dkt|= Õ(t1/2) for k = Õ(t1/2).

Proof. Let
∆k(t) = D̄k(t)−dkt.

Then, replacing D̄k(t) by ∆k(t)+dkt in (18.3) and using (18.2) and (18.4) we get

∆k(t +1) =
k−1

2t
∆k−1(t)+

(
1− k

2t

)
∆k(t)+ Õ(t−1/2). (18.6)

Now assume inductively on t that for every k ≥ 0

|∆k(t)| ≤ At1/2(log t)β ,

where (log t)β is the hidden power of logarithm in Õ(t−1/2) of (18.6) and A is an
unspecified constant.

This is trivially true for k < m also for small t if we make A large enough. So,
replacing Õ(t−1/2) in (18.6) by the more explicit αt−1/2(log t)β we get

∆k(t +1)≤

≤
∣∣∣∣k−1

2t
∆k−1(t)

∣∣∣∣+ ∣∣∣∣(1− k
2t

)
∆k(t)

∣∣∣∣+αt−1/2(log t)β

≤ k−1
2t

At1/2(log t)β +

(
1− k

2t

)
At1/2(log t)β +αt−1/2(log t)β

≤ (log t)β (At1/2 +αt−1/2).

Note that if t is sufficiently large then

(t +1)1/2 = t1/2
(

1+
1
t

)1/2

≥ t1/2 +
1

3t1/2 ,
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and so

∆k(t +1)≤ (log(t +1))β

(
A
[
(t +1)1/2− 1

3t1/2

]
+

α

t1/2

)
≤ A(log(t +1))β (t +1)1/2,

assuming that A≥ 3α .
In the next section, we will justify our bound of Õ(t1/2) for vertex degrees.

After that we will prove concentration of the number of vertices of degree k, for
small k.

Maximum Degree
Fix s ≤ t and let Xl be the degree of vertex s in Gl for s ≤ l ≤ t. We prove the
following high probability upper bound on the degree of vertex s.

Lemma 18.2.

P(Xt ≥ Aem(t/s)1/2(log(t +1))2) = O(t−A).

Proof. Note first that Xs = m. If 0 < λ < εt =
1

log(t+1) then,

E
(

eλXl+1|Xl

)
= eλXl

m

∑
k=0

(
m
k

)(
Xl

2ml

)k(
1− Xl

2ml

)m−k

eλk

≤ eλXl
m

∑
k=0

(
m
k

)(
Xl

2ml

)k(
1− Xl

2ml

)m−k

(1+ kλ (1+ kλ ))

= eλXl

(
1+

λ (1+λ )Xl

2l
+

(m−1)λ 2X2
l

4ml2

)
≤ eλXl

(
1+

λXl

2l
(1+mλ )

)
, since Xl ≤ 2ml,

≤ eλ

(
1+ (1+mλ )

2l

)
Xl .

We define a sequence λ = (λs,λs+1, . . . ,λt) where

λ j+1 =

(
1+

1+mλ j

2 j

)
λ j < εt .



18.1. Preferential Attachment Graph 387

Here our only choice will be λs. We show below that we can find a suitable value
for this, but first observe that if we manage this then

E
(

eλsXt
)
≤ E

(
eλs+1Xt−1

)
· · · ≤ E

(
eλtXs

)
≤ 1+o(1).

Now

λ j+1 ≤
(

1+
1+mεt

2 j

)
λ j,

implies that

λt = λs

t

∏
j=s

(
1+

1+mεt

2 j

)
≤ λs exp

{
t

∑
j=s

1+mεt

2 j

}
≤ em

( t
s

)1/2
λs.

So a suitable choice for λ = λs is

λs = e−m
εt

(s
t

)1/2
.

This gives
E
(

exp
{

e−m
εt(s/t)1/2Xt

})
≤ 1+o(1).

So,

P
(

Xt ≥ Aem(t/s)1/2(log(t +1))2)
)
≤

e−λsAem(t/s)1/2(log(t+1)2)E
(

eλsXt
)
= O(t−A).

Thus with probability 1− o(1) as t → ∞ we have that the maximum degree
in Gt is O(t1/2(log t)2). This is not best possible. One can prove that w.h.p. the
maximum degree is O(t1/2ω(t)) and Ω(t1/2/ω(t)) for any ω(t) → ∞, see for
example Flaxman, Frieze and Fenner [364].

Concentration of Degree Sequence
Fix a value k for a vertex degree. We show that Dk(t) is concentrated around its
mean D̄k(t).

Theorem 18.3.

P(|Dk(t)− D̄k(t)| ≥ u)≤ 2exp
{
− u2

8mt

}
. (18.7)
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Figure 18.1: Constructing G⃗ from G.

Proof. Let Y1,Y2, . . . ,Ymt be the sequence of edge choices made in the construction
of Gt , and for Y1,Y2, . . . ,Yi let

Zi = Zi(Y1,Y2, . . . ,Yi) = E(Dk(t) | Y1,Y2, . . . ,Yi). (18.8)

We will prove next that |Zi−Zi−1| ≤ 4 and then (18.7) follows directly from the
Azuma-Hoeffding inequality, see Section 27.7. Fix Y1,Y2, . . . ,Yi and Ŷi ̸= Yi. We
define a map (measure preserving projection) ϕ of

Y1,Y2, . . . ,Yi−1,Yi,Yi+1, . . . ,Ymt

to
Y1,Y2, . . . ,Yi−1,Ŷi,Ŷi+1, . . . ,Ŷmt

such that
|Zi(Y1,Y2, . . . ,Yi)−Zi(Y1,Y2, . . . ,Ŷi)| ≤ 4. (18.9)

In the preferential attachment model we can view vertex choices in the graph G as
random choices of arcs in a digraph G⃗, which is obtained by replacing every edge
of G by a directed 2-cycle (see Figure 18.1).

Indeed, if we choose a random arc and choose its head then v will be chosen
with probability proportional to the number of arcs with v as head i.e. its degree.
Hence Y1,Y2, . . . can be viewed as a sequence of arc choices. Let

Yi = (x,y) where x > y

Ŷi = (x̂, ŷ) where x̂ > ŷ.

Note that x = x̂ if i mod m ̸= 1.
Now suppose j > i and Y j = (u,v) arises from choosing (w,v). Then we define

ϕ(Yj) =

{
Yj (w,v) ̸= Yi

(w, ŷ) (w,v) = Yi
(18.10)
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This map is measure preserving since each sequence ϕ(Y1,Y2, . . . ,Yt) occurs with
probability ∏

tm
j=i+1 j−1. Only x, x̂,y, ŷ change degree under the map ϕ so Dk(t)

changes by at most four.
We will now study the degrees of early vertices.

Degrees of early vertices

Let dt(s) denote the degree of vertex s at time t. Then we have ds(s) = m and

E(dt+1(s)|Gt) = dt(s)+
mdt(s)

2mt
= dt(s)

(
1+

1
2t

)
.

So, because
22s+1s!(s−1)!

(2s)!
≈ 2

(
π

s

)1/2
for large s,

we have

E(ds(t)) = m
t−1

∏
i=s

2i+1
2i

= mA(s)
(2t−1)!

22t((t−1)!)2 ≈ m
( t

s

)1/2
for large s. (18.11)

For random variables X ,Y and a sequence of random variables Z = Z1,Z2, . . . ,Zk
taking discrete values, we write

X ≻ Y to mean that Pr(X ≥ a)≥ Pr(Y ≥ a)

and

X |Z ≻Y |Z to mean that Pr(X ≥ a |Zl = zl, l = 1, . . . ,k)≥Pr(Y ≥ a |Zl = zl, l = 1, . . . ,k),

for all choices of a,z.

Fix i≤ j−2 and let X = d j−1(t),Y = d j(t) and Zl = dl(t), l = i, . . . , j−2.

Lemma 18.4. X |Z ≻ Y |Z .

Proof. Consider the construction of G j+1,G j+2, . . . ,Gt . We condition on those
edge choices of j + 1, j + 2, . . . , t that have one end in i, i+ 1, . . . , j− 2. Now if
vertex j does not choose an edge ( j− 1, j) then the conditional distributions of
d j−1(t),d j(t) are identical. If vertex j does choose edge ( j−1, j) and we do not
include this edge in the value of the degree of j−1 at times j+1 onwards, then the
conditional distributions of d j−1(t),d j(t) are again identical. Ignoring this edge
will only reduce the chances of j− 1 being selected at any stage and the lemma
follows.

Corollary 18.5. If j ≥ i−2 then di(t) ≻ (di+1(t)+ · · ·+d j(t))/( j− i).
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Proof. Fix i≤ l ≤ j and then we argue by induction that

di+1(t)+ · · ·+dl(t)+( j− l)dl+1(t)≺ di+1(t)+ · · ·+( j− l +1)dl(t). (18.12)

This is trivial for j = l as the LHS is then the same as the RHS. Also, if true for
l = i then

di+1(t)+ · · ·+d j(t)≺ ( j− i)di+1(t)≺ ( j− i)di(t)

where the second inequality follows from Lemma 18.4 with j = i+1.
Putting Z = di+1(t), . . . ,dl−1(t) we see that (18.12) is implied by

dl(t)+( j− l)dl+1(t) |Z≺ ( j− l +1)dl(t) |Z or dl+1(t) |Z≺ dl(t) |Z ,

after subtracting ( j− l)dl+1(t). But the latter follows from Lemma 18.4.

Lemma 18.6. Fix 1 ≤ s = O(1) and let ω = log2 t and let Ds(t) = ∑
s+ω

i=s+1 ds(t).
Then w.h.p. Ds(t)≈ 2m(ωt)1/2.

Proof.
We have from (18.11) that

E(Ds(t))≈ m
s+ω

∑
i=s+1

(t
i

)1/2
≈ 2m(ωt)1/2.

Going back to the proof of Theorem 18.3 we consider the map ϕ as defined in
(18.10). Unfortunately, (18.9) does not hold here. But we can replace 4 by 10log t,
most of the time. So we let Y1,Y2, . . . ,Ymt be as in Theorem 18.3. Then let ψi
denote the number of times that (w,ν) =Yi in equation (18.10). Now ψ j is the sum
of mt− j independent Bernouilli random variables and E(ψi) ≤ ∑

mt
j=i+1 1/m j ≤

m−1 logmt. It follows from Hoeffding’s inequality that Pr(ψi ≥ 10log t) ≤ t−10.
Given this, we define a new random variable d̂s(t) and let D̂s(t) = ∑

ω
j=1 d̂s+ j(t).

Here d̂s+ j(t) = ds+ j(t) for j = 1,2, . . . ,ω unless there exists i such that ψi ≥
10log t. If there is an i such that ψi ≥ 10log t then assuming that i is the first
such we let D̂s(t) = Zi(Y1,Y2, . . . ,Yi) where Zi is as defined in (18.8), with Dk(t)
replaced by D̂s(t). In summary we have

Pr(D̂s(t) ̸= Ds(t))≤ t−10. (18.13)

So,
|E(D̂s(t))−E(Ds(t)| ≤ t−9.

And finally,
|Zi−Zi−1| ≤ 20log t.
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This is because each Yi,Ŷi concerns at most two of the vertices s+1,s+2, . . . ,s+
ω . So,

Pr(|D̂s(t)−E(D̂s(t))| ≥ u)≤ exp
{
− u2

800mt log2 t

}
. (18.14)

Putting u = ω3/4t1/2 into (18.14) yields the claim.
Combining Corollary 18.5 and Lemma 18.6 we have the following theorem.

Theorem 18.7. Fix 1≤ s=O(1) and let ω = log2 t. Then w.h.p. di(t)≥mt1/2/ω1/2

for i = 1,2, . . . ,s.

Proof. Corollary 18.5 and (18.13) implies that di(t)≻Di(t)/ω . Now apply Lemma
18.6.

18.2 Spatial Preferential Attachment
The Spatial Preferential Attachment (SPA) model, was introduced by Aiello, Bon-
ato, Cooper, Janssen and Prałat in [8]. This model combines preferential attach-
ment with geometry by introducing ”spheres of influence” of vertices, whose vol-
umes depend on their in-degrees.
We first fix parameters of the model. Let m ∈ N be the dimension of space Rm,
p ∈ [0,1] be the link (arc) probability and fix two additional parameters A1,A2,
where A1 < 1/p while A2 > 0. Let S be the unit hypercube in Rm, with the torus
metric d(·, ·) derived from the L∞ metric. In particular, for any two points x and y
in S,

d(x,y) = min{∥x− y+u∥∞ : u ∈ {−1,0,1}m} . (18.15)

For each positive real number α < 1, and u ∈ S, define the ball around u with
volume α as

Bα(u) = {x ∈ S : d(u,x)≤ rα},

where rα = α1/m/2, so that rα is chosen such that Bα has volume α .
The SPA model generates a stochastic sequence of directed graphs {Gt}, where

Gt = (Vt ,Et) and Vt ⊂ S, i.e., all vertices are placed in the m-dimensional hyper-
cube S = [0,1]m.

Let deg−(v; t) be the in-degree of the vertex v in Gt , and deg+(v; t) its out-
degree. Then, the sphere of influence S(v; t) of the vertex v at time t ≥ 1 is the ball
centered at v with the following volume:

|S(v, t)|= min
{

A1deg−(v; t)+A2

t
,1
}
. (18.16)
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In order to construct a sequence of graphs we start at t = 0 with G0 being the
null graph. At each time step t we construct Gt from Gt−1 by, first, choosing a
new vertex vt uniformly at random (uar) from the cube S and adding it to Vt−1 to
create Vt . Then, independently, for each vertex u ∈Vt−1 such that vt ∈ S(u, t−1),
a directed link (vt ,u) is created with probability p. Thus,the probability that a link
(vt ,u) is added in time-step t equals p|S(u, t−1)|.

Power law and vertex in-degrees

Theorem 18.8. Let Ni,n be the number of vertices of in-degree i in the SPA graph
Gt at time t = n, where n≥ 0 is an integer. Fix p ∈ (0,1]. Then for any i≥ 0,

E(Ni,n) = (1+o(1))cin, (18.17)

where
c0 =

1
1+ pA2

, (18.18)

and for 1≤ i≤ n,

ci =
pi

1+ pA2 + ipA1

i−1

∏
j=0

jA1 +A2

1+ pA2 + jpA1
. (18.19)

In [8] a stronger result is proved which indicates that fraction Ni,n/n follows a
power law. It is shown that for i = 0,1, . . . , i f , where i f = (n/ log8 n)pA1/(4pA1+2),
w.h.p.

Ni,n = (1+o(1))cin.

Since, for some constant c,

ci = (1+o(1))ci−(1+1/pA1),

it shows that for large i the expected proportion Ni,n/n follows a power law with
exponent 1+ 1

pA1
, and concentration for all values of i up to i f .

To prove Theorem 18.8 we need the following result of Chung and Lu (see
[224], Lemma 3.1) on real sequeances

Lemma 18.9. If {αt},{βt}and{γt} are real sequences satisfying the relation

αt+1 =

(
1− βt

t

)
αt + γt .

Furthermore, suppose limt→∞ βt = β > 0 and limt→∞ γt = γ . Then limt→∞
αt
t exists

and
lim
t→∞

αt

t
=

γ

1+β
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Proof of Theorem 18.8
The equations relating the random variables Ni,t are described as follows.

Since G1 consists of one isolated node, N0,1 = 1, and Ni,1 = 0 for i > 0. For
all t > 0, we derive that

E(N0,t+1−N0,t |Gt) = 1− pN0,t
A2

t
, (18.20)

while

E(Ni,t+1−Ni,t |Gt) = pNi−1,t
A1i+A2

t
− pNi,t

A1(i−1)+A2

t
. (18.21)

Now applying Lemma 18.9 to (18.20) with

αt = E(N0,t) βt = pA2 and γt = 1,

we get that
E(N0,t) = c0 +o(t),

where c0 as in (18.18).
For i > 0 Lemma 18.9 can be inductively applied with

αt = E(Ni,t), βt = p(A1i+A2) and γt = E(Ni−1,t)
A1(i−1)+A2

t
,

to show that
E(Ni,t) = ci +o(t),

where

ci = pci−1
A1(i−1)+A2

1+ p(A1i+A2)
.

One can easily verify that the expressions for c0, and ci, i ≥ 1, given in (18.18)
and (18.19), satisfy the respective recurrence relations derived above.

Knowing the expected in-degree of a node, given its age, can be used to an-
alyze geometric properties of the SPA graph Gt . Let us note also that the result
below for i≫ 1 was proved in [515] and extended to all i≥ 1 in [270]. As before,
let vi be the node added at time i.

Theorem 18.10. Suppose that i = i(t)≫ 1 as t→ ∞. Then,

E(deg−(vi, t)) = (1+o(1))
A2

A1

(t
i

)pA1
− A2

A1
,

(18.22)
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E(|S(vi, t)|) = (1+o(1))A2t pA1−1i−pA1.

Moreover, for all i≥ 1,

E(deg−(vi, t)) ≤
eA2

A1

(t
i

)pA1
− A2

A1
,

(18.23)
E(|S(vi, t)|) ≤ (1+o(1))eA2t pA1−1i−pA1.

Proof. In order to simplify calculations, we make the following substitution:

X(vi, t) = deg−(vi, t)+
A2

A1
. (18.24)

It follows from the definition of the process that

X(vi, t +1) =

{
X(vi, t)+1, with probability pA1X(vi,t)

t
X(vi, t), otherwise.

We then have,

E(X(vi, t +1) | X(vi, t)) = (X(vi, t)+1)
pA1X(vi, t)

t
+X(vi, t)

(
1− pA1X(vi, t)

t

)
= X(vi, t)

(
1+

pA1

t

)
.

Taking expectations over X(vi, t), we get

E(X(vi, t +1)) = E(X(vi, t))
(

1+
pA1

t

)
.

Since all nodes start with in-degree zero, X(vi, i) = A2
A1

. Note that, for 0 < x < 1,
log(1+ x) = x−O(x2). If i≫ 1, one can use this to get

E(X(vi, t)) =
A2

A1

t−1

∏
j=i

(
1+

pA1

j

)
= (1+o(1))

A2

A1
exp

(
t−1

∑
j=i

pA1

j

)
,

and in all cases i≥ 1,

E(X(vi, t))≤
A2

A1
exp

(
t−1

∑
j=i

pA1

j

)
.
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Therefore, when i≫ 1,

E(X(vi, t)) = (1+o(1))
A2

A1
exp
(

pA1 log
(t

i

))
= (1+o(1))

A2

A1

(t
i

)pA1
,

and (18.22) follows from (18.24) and (18.16). Moreover, for any i≥ 1

E(X(vi, t))≤
A2

A1
exp
(

pA1

(
log
(t

i

)
+1/i

))
≤ eA2

A1

(t
i

)pA1
,

and (18.23) follows from (18.24) and (18.16) as before, which completes the
proof.

Directed diameter
Consider the graph Gt produced by the SPA model. For a given pair of vertices
vi,v j ∈ Vt (1 ≤ i < j ≤ t), let l(vi,v j) denote the length of the shortest directed
path from v j to vi if such a path exists, and let l(vi,v j) = 0 otherwise. The directed
diameter of a graph Gt is defined as

D(Gt) = max
1≤i< j≤t

l(vi,v j).

We next prove the following upper bound on D(Gt) (see [270]):

Theorem 18.11. Consider the SPA model. There exists an absolute constant c1 >
0 such that w.h.p.

D(Gt)≤ c1 log t.

Proof. Let C = 18max(A2,1). We prove that with probability 1−o(t−2) we have
that for any 1 ≤ i < j ≤ t, Gt does not contain a directed (vi,v j)-path of length
exceeding k∗ = C log t. As there are at most t2 pairs vi,v j, Theorem 18.11 will
follow.

In order to simplify the notation, we use v to denote the vertex added at step
v≤ t. Let vPu be a directed (v,u)-path of length given by vPu=(v, tk−1, tk−2, . . . , t1,u),
let t0 = u, tk = v.

Pr(vPu exists) =
k

∏
i=1

p
(

A1 deg−(ti−1, ti)+A2

ti

)
.

Let N(v,u,k) be the number of directed (v,u)-paths of length k, then

E(N(v,u,k)) = ∑
u<t1<···<tk−1<v

pkE

(
k

∏
i=1

(
A1 deg−(ti−1, ti)+A2

ti

))
.
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We first consider the case where u tends to infinity together with t. It follows from
Theorem 18.10 that

E(deg−(ti−1, ti)) = (1+o(1))
A2

A1

(
ti

ti−1

)pA1

− A2

A1
.

Thus

E(N(v,u,k)) = ∑
u<t1<···<tk−1<v

pk
k

∏
i=1

1
ti

(
A1E(deg−(ti−1, ti))+A2

)
= ∑

u<t1<···<tk−1<v
(1+o(1))k(A2 p)k

k

∏
i=1

1
ti

(
ti

ti−1

)pA1

= (1+o(1))k(A2 p)k
(v

u

)pA1 1
v ∑

u<t1<···<tk−1<v

k−1

∏
i=1

1
ti
.

However

∑
u<t1<···<tk−1<v

k−1

∏
i=1

1
ti
≤ 1

(k−1)!

(
∑

u<s<v

1
s

)k−1

≤ 1
(k−1)!

(logv/u+1/u)k−1

≤
(

e(logv/u+1/u)
k−1

)k−1

.

Let k∗ = C log t, where C = 18max(1,A2). Assuming t sufficiently large, and
recalling that pA1 < 1, we have

∑
k>k∗

E(N(v,u,k))≤ 2A2 ∑
k>k∗

(
(1+o(1))A2 pe(logv/u+1/u)

k−1

)k−1

≤ 2A2

(
(1+o(1))A2e(logv/u+1/u)

C log t

)k∗ 1
1−3A2/C

(18.25)

= O(6−18log t) (18.26)

= o(t−4).

The result follows for u tending to infinity. In the case where u is a constant, it
follows from Theorem 18.10 that a multiplicative correction of e can be used in
E(deg−(ti−1, ti)), leading to replacing e by e2 in (18.25) and then 6 in (18.26) by
2, giving a bound of O(2−18log t) = o(t−4) as before. This finishes the proof of the
theorem.



18.3. Preferential Attachment with Deletion 397

18.3 Preferential Attachment with Deletion
In this section we consider models where edges or vertices are deleted as well
as added as the process continues. Random vertex deletions were considereed in
Chung and Lu [223] and by Cooper, Frieze and Vera [273]. These papers show
that power laws for the degree sequence persist, assuming that vertices arrive at a
greater rate than vertices are deleted. The arguments are based on the analysis of
equations like (18.1). This is complicated by the fact that the number of edges is
now a random variable.

Random Edge Deletion
The model we consider here is as follows: suppose that α < 1 is such that αm
is an integer. Suppose that after adding vertex t + 1 and its m incident edges, we
randomly delete αm edges from the current graph. The effect of this is to replace
(18.1) by

E(Dk(t +1)|Gt) =

Dk(t)+m
(
(k−1)Dk−1(t)

2m(1−α)t
− kDk(t)

2m(1−α)t

)
+1k=m + ε(k, t). (18.27)

Here the error ε(k, t) has also to absorb the possibility that we delete and edge
incident with t +1. This is O(1/t) and so is negligible. Given this, we follow the
subsequent analysis and obtain

D̄k(t)≈
2(1−α)m((1−α)m+1)

k3 t. (18.28)

We repeat that random vertex deletion is more difficult to analyse. Deletion of a
vertex results in the deletion of a random number of edges and we have to handle
the distribution of the inverse of the number of edges.

Adversarial Vertex Deletion
One can also consider adversarial deletions as studied in Flaxman, Frieze and
Vera [367] and this will be the topic of this section. We will consider the process
P , which generates a sequence of graphs Gt = (Vt ,Et), for t = 1,2, . . . ,n. It is
follows the construction of Gt in Section 18.1 except that after each addition of
a vertex, an adversary is allowed to delete a (possibly empty) set of at most δn
vertices.
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Theorem 18.12. For any sufficiently small constant δ there exists a sufficiently
large constant m = m(δ ) and a constant θ = θ(δ ,m) such that w.h.p. Gn has a
“giant” connected component with size at least θn.

The proof of this is quite complicated, but it does illustrate some new ideas
over and above what we have seen so far in this book.

In the theorem above, the constants are phrased to indicate the suspected rela-
tionship, although we do not attempt to optimize them. Our unoptimized calcula-
tions work for δ ≤ 1/50 and m≥ δ−2×108 and θ = 1/30.

The proof of Theorem 18.12 is based on an idea developed by Bollobas and
Riordan in [176]. There they couple the graph Gn with G(n, p), the Bernoulli
random graph, which has vertex set [n] and each pair of vertices appears as an
edge independently with probability p. We couple a carefully chosen induced
subgraph of Gn with G(n′, p).

To describe the induced subgraph in our coupling, we now make a few defi-
nitions. We say that a vertex v of Gt is good if it was created after time t/2 and
the number of its original edges that remain undeleted exceeds m/6. By original
edges of v, we mean the m edges that were created when v was added. Let Γt
denote the set of good vertices of Gt and γt = |Γt |. We say that a vertex of Gt is
bad if it is not good. Notice that once a vertex becomes bad it remains bad for
the rest of the process. On the other hand, a vertex that was good at time t1 can
become bad at a later time t2, simply because it was created at a time before t2/2.

Let
p =

m
1500n

and let ∼ denote “has the same distribution as”.

Theorem 18.13. For any sufficiently small constant δ there exists a sufficiently
large constant m = m(δ ) such that we can couple the construction of Gn and a
random graph Hn, with vertex set Γn, such that Hn ∼G(γn, p) and w.h.p. |E(Hn)\
E(Gn)| ≤ 10−3e−δ 2m/107

mn.

In Section 18.3 we prove Theorem 18.13. In Section 18.3 we prove a lower
bound on the number of good vertices, a key ingredient for the proof of Theorem
18.12, given in section 18.3.

Proof of Theorem 18.12.

We will prove the following two lemmas in Section 18.3.

Lemma 18.14. Let G obtained by deleting fewer than n/100 edges from a real-
ization of Gn,c/n. If c≥ 10 then w.h.p. G has a component of size at least n/3.
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Lemma 18.15. W.h.p., for all t with n/2 < t ≤ n we have γt ≥ t/10.

With these lemmas, the proof of Theorem 18.12 is only a few lines:
Let G=Gn and H =G(γn, p) be the graphs constructed in Theorem 18.13. Let

G′ = G∩H. Then E(H)\E(G′) = E(H)\E(G) and so w.h.p. |E(H)\E(G′)| ≤
10−3e−δ 2m/107

mn. By Lemma 18.15,|G′| = γn ≥ n/10 w.h.p. Since m is large
enough, p = m/1500n > 10/γn and 10−3e−δ 2m/107

mn < n/1000≤ γn/100. Then,
by Lemma 18.14, w.h.p. G′ (and therefore G) has a component of size at least
|G′|/3≥ n/30. □

The Coupling: Proof of Theorem 18.13.

We construct G[k]∼ Gk and H[k]∼ G(γk, p) for k ≥ n/2 inductively. G[k] will be
constructed by following the definition of the preferential attachment process P
and H[k] will be constructed by coupling its construction with the construction of
G[k].

For k ≤ n/2, we only make the size of H[k] correct and do not try to make the
edge structure look like G[k]. Thus we just take H[n/2] to be an independent copy
of G(γn/2, p) with vertex set Γn/2.

For k > n/2, having constructed G[k] and H[k] with G[k] ∼ Gk and H[k] ∼
G(γk, p), we construct G[k+1] and H[k+1] as follows: Let G[k] = (Vk,Ek), and
let νk = |Vk|, ηk = |Ek| and recall that the number of good vertices is denoted
γk = |Γk|.

If γk < k/10 then we call this a failure of type 0 and generate G[n] and H[n]
independently. (By Lemma 18.15 the probability of occurrence of this event is
o(1).)

Otherwise we have γk ≥ k/10. In this case, to construct G[k+ 1] process P
adds vertex xk+1 to G[k] and links it to vertices t1, . . . , tm ∈ Vk chosen accord-
ing to the preferential attachment rule. To construct H[k + 1], let {t1, . . . , tr} =
{t1, . . . , tm} ∩Γk be the subset of selected vertices that are good at time k. Let
ε0 = 1/120. If r, the number of good vertices selected, is less than (1− δ )ε0m
then we call this a type 1 failure and generate H[k+ 1] by joining xk+1 to each
vertex in H[k] independently with probability p.

Since the number of good vertices |Γk| = γk ≥ k/10 and any v ∈ Γk is still
incident to at least m/6 of its original edges and ηk ≤ mk, we have

Pr(ti ∈ Γk) = ∑
v∈Γk

degG[k](v)

2ηk
≥ k

10
m
6

1
2mk

= ε0.

So, by comparing r with a Binomial random variable, we obtain an exponential
upper bound on the probability of a type 1 failure:
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Pr(r ≤ mε0(1−δ/2))≤ Pr(Bin(m,ε0)≤ (1−δ/2)mε0)

≤ e−δ 2ε0m/8 = e−δ 2m/960.

Now for every i = 1, . . . ,m and for every v ∈ Γk,

Pr(ti = v) =
degG[k](v)

2ηk
≥ m

12mk
=

1
12k

Let ⊥ be a new symbol. For each i = 1, . . . ,r we choose si ∈ Γk ∪{⊥} such
that for each v ∈ Γk we have Pr(si = v) = 1

12k . We couple the selection of the
si’s with the selection of the ti’s such that if si ̸=⊥ then si = ti. Let S = {si : i =
1, . . . ,r}\{⊥} and X = |S|. Let Y ∼ Bin(γk, p). If r ≥ mε0(1−δ/2) then

E(X)≥ r
γk

12k
−
(

m
2

)
1
γk
≥ (1−δ/2)ε0m

γk

12n
− 200m2

n2

≥ (1+δ )γk p = (1+δ )E(Y ).

Since E(X)≥ (1+δ )E(Y ), the probability that (1+δ/2)Y > X is at most the
probability that X or Y deviates from its mean by a factor of δ/5. And, since

E(X)≥ E(Y ) = γk p≥ k
10

m
1500n

≥ m
30000

.

By Chernoff’s bound, Pr(Y ≥ (1+δ/5)E[Y ]) is at most e−δ 2m/107
.

It follows from Azuma’s inequality that for any u > 0, Pr(|X − E(X)| > u) ≤
e−u2/(2r). This is because X is determined by r independent trials and changing
the outcome of a single trial can only change X by at most 1. Putting u= δ E(X)/5
we get

Pr(X ≤ (1−δ/5)E(X))≤ e−δ 2r/50 ≤ e−δ 2m/12000.

We say we have a type 2 failure if Y > X , so we have a type 2 failure with proba-
bility at most 2e−δ 2m/107

. In which case we generate H[k+1] by joining xk+1 to
each vertex in H[k] independently with probability p.

Conditioning on X , the si’s form a subset S of Γk of size X chosen uniformly
at random from all of these subsets. We choose S1 uniformly at random between
all the subsets of Γk of size Y , coupling the selection of S1 to the selection of S
such that S1 ⊆ S when Y ≤ X . Now, to generate H[k+ 1], we join xk+1 to every
vertex in S1 (deterministically).

After the adversary deletes a (possible empty) set of vertices in G[k], we delete
all the vertices H[k] that don’t belong to Γk+1, possibly including x⌊(k+1)/2⌋, sim-
ply because of its age.
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For k ≥ n/2 this process yields an H[k] with vertex set Γk and identically
distributed with G(γk, p), so we have H[n]∼ G(γn, p).

We call an edge e in H[n] misplaced if e is not an edge of G[n]. We are
interested in bounding the number of misplaced edges. Misplaced edges can only
be created when we have a failure. The probability of having a type 1 or 2 failure at
step k is at most 3e−δ 2m/107

. Let Mk denote the number of misplaced edges created
between good vertices when we have a failure of type 1 or 2 at step k. Then Mk is
stochastically smaller than Yk ∼ Bin(γk, p) and thus stochastically dominated by
Zk ∼ Bin(n, p) , a binomial random variable with E[Zk] = np = m/1500.

Let M denote the total number of misplaced edges at time n. Let θk be the
indicator for an error of type 1 or 2 at step k. Thus,

M ≤
n

∑
k=n/2

Mk ≤
n

∑
k=n/2

Zkθk.

Note that Zk is independent of θk and Pr(θk = 1)≤ ρ = 3e−δ 2m/107
, regardless of

the value of θk′, k′ ̸= k. Thus M is stochastically dominated by

M∗ =
n

∑
k=n/2

Zkζk

where the ζk are independent Bernouilli random variables with Pr(ζk = 1) = ρ .

E(M∗)≤
n

∑
k=n/2

3e−δ 2m/107
m/1500 =

ρmn
3000

.

and

Pr
(

M∗ >
(1+δ )ρmn

3000

)
≤ Pr

(
M∗ >

(1+δ )ρmn
3000

∣∣∣∣ n

∑
k=n/2

ζk ≤
n
2

ρ

(
1+

δ

3

))
+Pr

(
n

∑
k=n/2

ζk >
n
2

ρ

(
1+

δ

3

))

≤ Pr(Bin
(

n2

2
ρ

(
1+

δ

3

)
, p
)
>

(
1+

δ

3

)2 n2

2
ρ p)+Pr

(
Bin
(n

2
,ρ
)
>

n
2

ρ

(
1+

δ

3

))

≤ exp

−δ 2n2ρ

(
1+ δ

3

)
p

54

+ exp
(
−nρδ 2

54

)

= exp

−δ 2nmρ

(
1+ δ

3

)
90000

+ exp
(
−nρδ 2

54

)
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≤ exp
(
−10−5

δ
2
(

1+
δ

3

)
nmρ

)
□

Bounding the number of good vertices: Proof of Lemma 18.15.

We now prove Lemma 18.15, which is restated here for convenience.

Lemma 18.16. W.h.p., for all t with n/2 < t ≤ n we have γt ≥ t/10.

Proof. Let zt denote the total number of edges created after time t/2 that have
been deleted by the adversary, up to time t. Let ν ′t and η ′t be the number of
vertices and edges respectively in Gt that were created after time t/2. Notice
that η ′t = mt/2− zt and ν ′t ≤ t/2. Also, since each vertex contributes at most m
edges, and bad vertices (not in Γt) contribute at most m/6 edges, we have η ′t ≤
mγt +m(ν ′t − γt)/6. So

γt ≥
6η ′t −mν ′t

5m
≥ 3mt−6zt−mt/2

5m
=

t
2
− 6zt

5m
,

So if zt ≤ mt/3 then γt ≥ t/10. Thus, to prove the lemma, it is sufficient to
show that

Pr
(

zt ≥
mt
3

)
≤ e−δ 2mn/10. (18.29)

To show that inequality (18.29) holds, we will compare our process with another
process P⋆ in which the adversary deletes no vertices until time t and then deletes
the same set of vertices as in P .

Fix t ≥ n/2. We begin by showing that we can couple the P and P⋆ in such
way that for

t0 = 1000δn,

Pr(zt(P)≥ zt(P
⋆)+mt0) = O

(
ne−δ 2mn/7

)
. (18.30)

(The reason for this choice of t0 is inequality (18.32) in Lemma 18.17).
Generate Gs for s = 1, . . . , t by process P . Let D1,D2, . . . be the sequence of

vertex sets deleted by the adversary in this realization of P . Let D =
⋃t

τ=1 Dτ

denote the set of vertices deleted by the adversary by time t.
We define G⋆

s inductively. To begin, generate G⋆
t0 according to preferential

attachment (with no adversary). For every s with t0 ≤ s < t let Gs = (Vs,Es) and
G⋆

s = (V ⋆
s ,E

⋆
s ). Define Xs = E⋆

s \Es, the set of edges that have been deleted by the
adversary’s moves.

Selecting a vertex by preferential attachment is equivalent to choosing an edge
uniformly at random and then randomly selecting one of the end points of the



18.3. Preferential Attachment with Deletion 403

edge. So we can view the transition from Gs to Gs+1 as adding xs+1 to Gs, choos-
ing m edges e1, . . . ,em (here with replacement), and for each i, selecting a random
endpoint yi of ei and adding an edge between xs+1 and yi.

To construct G⋆
s+1, we first add xs+1 to G⋆

s . To choose y⋆1, . . . ,y
⋆
m we apply the

following procedure, for each i:

• With probability 1−|Xs|/(ms) we set e⋆i = ei and y⋆i = yi

• With probability |Xs|/(ms), we choose e⋆i uniformly at random from Xs.
Notice that e⋆i has already been deleted from Gs by the adversary and there-
fore it is incident to at least one deleted vertex, vi ∈ D. Now, we randomly
choose y⋆i from the two end points of e⋆i . If the total degree Ts of the vertices
Vs∩D that P will delete in the future is at most ms/2 then Pr(yi ∈D)≤ 1/2
and we can couple the (random) decisions in such way that if yi is going to
be deleted by time t then y⋆i = vi. Otherwise we say we have a failure and
choose y⋆i independently of yi.

In the coupling, after time t0 and before the first failure, an edge incident with
xs+1 and destined for deletion in P is matched with an edge incident with xs+1
and destined for deletion in P⋆. So, until the first failure, Ts is bounded by T ⋆

s , the
corresponding total degree of Vs∩D in G⋆

s . In Lemma 18.17 below, we prove that
Pr(T ⋆

s > sm/2) = O
(

e−δ 2mn/6
)

and therefore the probability of having a failure

is O
(

ne−δ 2mn/6
)
= O

(
e−δ 2mn/7

)
.

To repeat, if there is no failure and if ei is deleted in P before time t we have
two possibilities: xs+1 is deleted or yi is deleted. In either case, xs+1 or y⋆i will
be deleted by time t in P⋆ and therefore e⋆i will be deleted, and Equation (18.30)
follows.

We will show that

Pr
(

zt(P
⋆)≥ mt

4

)
≤ O(e−δ 2mn), (18.31)

and then Inequality (18.29) follows from Equation (18.30).
To prove Inequality (18.31) let s be such that t/2≤ s≤ t and xs ̸∈D. We want

to upper bound the probability in the process P⋆ that an edge created at time s
chooses its end point in D. For i = 1, . . . ,m,

Pr(y⋆i ∈ D | T ⋆
s ) =

T ⋆
s

2ms
.

By Lemma 18.17 (below), we have Pr(T ⋆
s ≥ mt/2)≤ O(e−δ 2mn) so

Pr(y∗i ∈ D)≤ 1
4
+o(1).
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Therefore zt(P⋆) is stochastically dominated by Bin
(mt

2 , 1
4 +o(1)

)
. Inequality

(18.31) now follows from Chernoff’s bound. This completes the proof of Lemma
18.16.

Lemma 18.17. Let A⊂ {x1, . . . ,xt}, with |A| ≤ δn. Let t ≥ 1000δn and let Gt be
a graph generated by preferential attachment (i.e. the process P , but without an
adversary). Let TA denote the total degree of the vertices in A. Then

Pr(∃A : TA ≥ mt/2) = O
(

e−δ 2mn
)
.

Proof. Let A′ = {x1, . . . ,xδn} be the set of the oldest δn vertices. We can couple
the construction of Gt with G′t , another graph generated by preferential attach-
ment, such that TA′ ≥ TA. Therefore Pr(TA ≥ mt) ≤ Pr(TA′ ≥ mt), and we can
assume A = A′.

Now we consider the process P in δ−1 rounds, Each round consisting of δn
steps. Let Ti be the total degree of A at the end of the ith round. Notice that
T1 = 2δmn and T2 ≤ 3δmn. For i ≥ 2, fix s with iδn < s ≤ (i+ 1)δn. Then
the probability that xs chooses a vertex in A is at most Ti+δmn

2iδmn . So given Ti, the

difference Ti+1−Ti is stochastically dominated by Yi ∼ Bin
(

δmn, Ti+δmn
2iδmn

)
.

Therefore, for i≥ 2,

Pr(Ti+1 ≥ 3i2/3
δmn)≤ Pr(Ti+1 ≥ 3i2/3

δmn | Ti ≤ 3(i−1)2/3
δmn)

+Pr(Ti ≥ 3(i−1)2/3
δmn)

≤ Pr(Ti+1 ≥ 3i2/3
δmn | Ti = 3(i−1)2/3

δmn)

+Pr(Ti ≥ 3(i−1)2/3
δmn).

Now, for i≥ 2, we have 3(i2/3− (i−1)2/3)≤ 2i−1/3 and then

Pr(Ti+1 ≥ 3i2/3
δmn | Ti = 3(i−1)2/3

δmn)

≤ Pr(Yi ≥ 3(i2/3− (i−1)2/3)δmn | Ti = 3(i−1)2/3
δmn)

≤ Pr(Yi ≥ 2i−1/3
δmn | Ti = 3(i−1)2/3

δmn)

As Yi ∼ Bin
(

δmn, Ti+δmn
2iδmn

)
E[Yi|Ti = 3(i−1)2/3

δmn] =

(
3(i−1)2/3 +1

2i

)
δmn≤ 4

3
i−1/3

δmn.

Since and i≤ δ−1, by Chernoff’s bound we have

Pr(Ti+1 ≥ 3i2/3
δmn | Ti = 3(i−1)2/3

δmn)≤ e−δ 4/3mn/9.
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Hence, for any k ≤ δ−1,

Pr(Tk > 3(k−1)2/3
δmn)≤

k−2

∑
i=2

e−δ 4/3mn/9 ≤ e−2δ 2mn.

Now, if t ≥ t0 then
k =

⌊ t
δn

⌋
≥ 103 (18.32)

and so
3(k−1)2/3

δmn≤ tm/2.

Thus
Pr(Tt ≥ tm/2)≤ e−2δ 2mn.

We inflate the above by
( n

δn

)
to get the bound in the lemma.

Proof of Lemma 18.14 If after deleting n/100 edges the maximum com-
ponent size is at most n/3 then Gn,c/n contains a set S of size n/3 ≤ s ≤ n/2
such that there are at most n/100 edges joining S to V \S. The expected number
of edges across this cut is s(n− s)c/n so when 1− ε = 9

200c we have n/100 ≤
(1− ε)s(n− s)c/n and by applying the union bound and Chernoff’s bound we
have

Pr(∃S)≤
n/2

∑
s=n/3

(
n
s

)
e−ε2s(n−s)c/(2n)

≤
n/2

∑
s=n/3

(ne
s

e−ε2(n−s)c/(2n)
)s

= o(1).

□

18.4 Bootstrap Percolation
This is a simplified mathematical model of the spread of a disease through a
graph/network G = (V,E). Initially a set A0 of vertices are considered to be in-
fected. This is considered to be round 0. Then in round t > 0 any vertex that has
at least r neighbors in At−1 will become infected. No-one recovers in this model.
The main question is as to how many vertices eventually end up getting infected.
There is a large literature on this subject with a variety of graphs G and ways of
defining A0.

Here we will assume that each vertex s is placed in A0 with probability p,
independent of other vertices. The proof of the following theorem relies on the fact
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that with high probability all of the early vertices of Gt become infected during
the first round. Subsequently, the connectivity of the random graph is enough
to spread the infection to the remaining vertices. The following is a simplified
version of Theorem 1 of Abdulla and Fountoulakis [1].

Theorem 18.18. If r ≤ m and ω = log2 t and p≥ ωt−1/2 then w.h.p. all vertices
in Gt get infected.

Proof. Given Theorem 18.7 we can assume that ds(t)≥mt1/2/ω1/2 for 1≤ s≤m.
In which case, the probability that vertex s≤m is not infected in round 1 is at most

m−1

∑
i=1

(
mt1/2/ω1/2

i

)
pi(1− p)mt1/2/ω1/2−i ≤

m−1

∑
i=1

ω
i/2e−(1−o(1))mω1/2

= o(1).

So, w.h.p. 1,2, . . . ,m are infected in round 1. After this we use induction and the
fact that every vertex i > s has m neighbors j < i.

18.5 A General Model of Web Graphs
In the model presented in the previous section a new vertex is added at time t and
this vertex chooses m random neighbors, with probability proportional to their
current degree. Cooper and Frieze [254] generalise this in the following ways:
they allow (a) new edges to be inserted between existing vertices, (b) a variable
number of edges to be added at each step and (c) endpoint vertices to be chosen
by a mixture of uniform selection and copying. This results in a large number of
parameters, which will be described below. We first give a precise description of
the process.

Initially, at step t = 0, there is a single vertex v0. At any step t = 1,2, . . . ,T, . . . ,
there is a birth process in which either new vertices or new edges are added.
Specifically, either a procedure NEW is followed with probability 1−α , or a pro-
cedure OLD is followed with probability α . In procedure NEW, a new vertex v is
added to Gt−1 with one or more edges added between v and Gt−1. In procedure
OLD, an existing vertex v is selected and extra edges are added at v.

The recipe for adding edges at step t typically permits the choice of initial
vertex v (in the case of OLD) and of terminal vertices (in both cases) to be made
from Gt−1 either u.a.r (uniformly at random) or according to vertex degree, or a
mixture of these two based on further sampling. The number of edges added to
vertex v at step t by the procedures (NEW, OLD) is given by distributions specific
to the procedure.

Notice that the edges have an intrinsic direction, arising from the way they are
inserted, which one can ignore or not. Here the undirected model is considered
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with a sampling procedure based on vertex degree. The process allows multiple
edges, and self-loops can arise from the OLD procedure. The NEW procedure, as
described, does not generate self-loops, although this could easily be modified.

Sampling parameters, notation and main properties

Our undirected model Gt has sampling parameters α,β ,γ,δ , p,q whose meaning
is given below:

Choice of procedure at step t.
α: Probability that an OLD vertex generates edges.
1−α: Probability that a NEW vertex is created.

Procedure NEW

p = (pi : i≥ 1): Probability that the new node generates i new edges.
β : Probability that choices of terminal vertices are made uniformly.
1− β : Probability that choices of terminal vertices are made according to

degree.
Procedure OLD

q = (qi : i≥ 1): Probability that the old node generates i new edges.
δ : Probability that the initial node is selected uniformly.
1−δ : Probability that the initial node is selected according to degree.
γ: Probability that choices of terminal vertices are made uniformly.
1− γ: Probability that choices of terminal vertices are made according to

degree.
The models require α < 1 and p0 = q0 = 0. It is convenient to assume a

finiteness condition for the distributions {p j}, {q j}. This means that there exist
j0, j1 such that p j = 0, j > j0 and q j = 0, j > j1. Imposing the finiteness condition
helps simplify the difference equations used in the analysis.

The model creates edges in the following way: An initial vertex v is selected.
If the terminal vertex w is chosen u.a.r, we say v is assigned uniformly to w. If the
terminal vertex w is chosen according to its vertex degree, we say v is copied to
w. In either case the edge has an intrinsic direction (v,w), which we may choose
to ignore. Note that sampling according to vertex degree is equivalent to selecting
an edge u.a.r and then selecting an endpoint u.a.r.

Let

µp =
j0

∑
j=1

jp j, µq =
j1

∑
j=1

jq j

be the expected number of edges added by NEW or OLD and let

θ = 2((1−α)µp +αµq).
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To simplify subsequent notation, we introduce new parameters as follows:

a = 1+β µp +
αγµq

1−α
+

αδ

1−α
,

b =
(1−α)(1−β )µp

θ
+

α(1− γ)µq

θ
+

α(1−δ )

θ
,

c = β µp +
αγµq

1−α
,

d =
(1−α)(1−β )µp

θ
+

α(1− γ)µq

θ
,

e =
αδ

1−α
,

f =
α(1−δ )

θ
.

We note that
c+ e = a−1 and b = d + f . (18.33)

Now define the sequence (d0,d1, . . . ,dk, . . .) by d0 = 0, and for k ≥ 1

dk(a+bk) = (1−α)pk +(c+d(k−1))dk−1+
k−1

∑
j=1

(e+ f (k− j))q jdk− j. (18.34)

For convenience we define dk = 0 for k < 0. Since a≥ 1, this system of equations
has a unique solution.

The main quantity we study is the random variable Dk(t), the number of ver-
tices of degree k at step t. Cooper and Frieze [254] prove that, as t→∞, for small
k, Dk(t)≈ dkt.

Theorem 18.19. There exists a constant M > 0 such that almost surely for all
t, k ≥ 1

|Dk(t)− tdk| ≤Mt1/2 log t.

This will be proved in Section 18.5.
It is shown in (18.35), that the number of vertices ν(t) at step t is w.h.p. asymp-

totic to (1−α)t. It follows that the proportion of vertices of degree k is w.h.p.
asymptotic to

d̄k =
dk

1−α
.

The next theorem summarises what is known about the sequence (dk) defined by
(18.34).



18.5. A General Model of Web Graphs 409

Theorem 18.20. There exist constants C1,C2,C3,C4 > 0 such that

(i) C1k−ζ ≤ dk ≤C2 min{k−1,k−ζ/ j1} where ζ = (1+d + f µq)/(d + f ).

(ii) If j1 = 1 then dk ≈C3k−(1+1/(d+ f )).

(iii) If f = 0 then dk ≈C4k−(1+1/d).

Evolution of the degree sequence of Gt

Let ν(t) = |V (t)| be the number of vertices and let η(t) = |2E(t)| be the total
degree of the graph at the end of step t. Eν(t) = (1−α)t and Eη(t) = θ t. The
random variables ν(t), η(t) are sharply concentrated provided t→∞. Indeed ν(t)
has distribution Bin(t,1−α) and so by Theorem 27.6 and its corollaries,

P(|ν(t)− (1−α)t| ≥ t1/2 log t) = O(t−K) (18.35)

for any constant K > 0.
Similarly, η(t) has expectation θ t and is the sum of t independent random

variables, each bounded by max{ j0, j1}. Hence, by Theorem 27.6 and its corol-
laries,

P(|η(t)−θ t| ≥ t1/2 log t) = O(t−K) (18.36)

for any constant K > 0.
These results are almost sure in the sense that they hold for all t ≥ t0 with

probability 1−O(t−K+1
0 ). Thus we can focus on processes such that this is true.

We remind the reader that Dk(t) is the number of vertices of degree k at step
t and that Dk(t) is its expectation. Here D j(t) = 0 for all j ≤ 0, t ≥ 0, D1(0) =
1, Dk(0) = 0, k ≥ 2.

Using (18.35) and (18.36) we see that

Dk(t +1) = Dk(t)+(1−α)pk +O(t−1/2 log t) (18.37)

+(1−α)
j0

∑
j=1

p j

(
β

(
jDk−1(t)
(1−α)t

− jDk(t)
(1−α)t

)
+ (1−β )

(
j(k−1)Dk−1(t)

θ t
− jkDk(t)

θ t

))
(18.38)

−α

(
δDk(t)
(1−α)t

+
(1−δ )kDk(t)

θ t

)
+α

j1

∑
j=1

q j

(
δDk− j(t)
(1−α)t

+
(1−δ )(k− j)Dk− j(t)

θ t

)
(18.39)
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+α

j1

∑
j=1

jq j

(
γ

(
Dk−1(t)
(1−α)t

− Dk(t)
(1−α)t

)
+

(1− γ)

(
(k−1)Dk−1(t)

θ t
− kDk(t)

θ t

))
. (18.40)

Here (18.38), (18.39), (18.40) are (respectively) the main terms of the change in
the expected number of vertices of degree k due to the effect on: terminal vertices
in NEW, the initial vertex in OLD and the terminal vertices in OLD. Rearranging
the right hand side, we find:

Dk(t +1) = Dk(t)+(1−α)pk +O(t−1/2 log t)

− Dk(t)
t

(
β µp +

αγµq

1−α
+

αδ

1−α
+

(1−α)(1−β )µpk
θ

+

+
α(1− γ)µqk

θ
+

α(1−δ )k
θ

)
+

Dk−1(t)

t

(
β µp +

αγµq

1−α
+

(1−α)(1−β )µp(k−1)
θ

+

+
α(1− γ)µq(k−1)

θ

)
+

j1

∑
j=1

q j
Dk− j(t)

t

(
αδ

1−α
+

α(1−δ )(k− j)
θ

)
.

Thus for all k ≥ 1 and almost surely for all t ≥ 1,

Dk(t +1) = Dk(t)+(1−α)pk +O(t−1/2 log t) (18.41)

+
1
t
((1− (a+bk))Dk(t)+(c+d(k−1))Dk−1(t)

+
j1

∑
j=1

q j(e+ f (k− j))Dk− j(t)).

The following Lemma establishes an upper bound on dk given in Theorem
18.20(i).

Lemma 18.21. The solution of (18.34) satisfies dk ≤ C2
k .

Proof. Assume that k > k0 where k0 is sufficiently large, and thus pk = 0. Smaller
values of k can be dealt with by adjusting C2. We proceed by induction on k. From
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(18.34),

(a+bk)dk ≤ (c+d(k−1))
C2

k−1
+

j1

∑
j=1

(e+ f (k− j))q j
C2

k− j

≤ C2(d + f )+
C2(c+ e)

k− j1

= C2b+
C2(a−1)

k− j1
,

from (18.33). So

dk−
C2

k
≤ C2b

a+bk
+

C2(a−1)
(k− j1)(a+bk)

−C2

k

=
C2(a−1)

(k− j1)(a+bk)
− C2a

k(a+bk)
≤ 0,

for k ≥ j1a.
We can now prove Theorem 18.19, which is restated here for convenience.

Theorem 18.22. There exists a constant M > 0 such that almost surely for t, k≥ 1,

|Dk(t)− tdk| ≤Mt1/2 log t. (18.42)

Proof. Let ∆k(t) = Dk(t)− tdk. It follows from (18.34) and (18.41) that

∆k(t +1) = ∆k(t)
(

1− a+bk−1
t

)
+O(t−1/2 log t)

+
1
t

(
(c+d(k−1))∆k−1(t)+

j1

∑
j=1

(e+ f (k− j))q j∆k− j(t)

)
. (18.43)

Let L denote the hidden constant in O(t−1/2 log t). We can adjust M to deal with
small values of t, so we assume that t is sufficiently large. Let k0(t) =

⌊ t+1−b
a

⌋
. If

k > k0(t) then we observe that (i) Dk(t)≤ t max{ j0, j1}
k0(t)

=O(1) and (ii) tdk ≤ t C2
k0(t)

=

O(1) follows from Lemma 18.21, and so (18.42) holds trivially.
Assume inductively that ∆κ(τ) ≤ Mτ1/2 logτ for κ + τ ≤ k+ t and that k ≤

k0(t). Then (18.43) and k ≤ k0 implies that for M large,

|∆k(t +1)| ≤ L
log t
t1/2 +Mt1/2 log t ×



412 Chapter 18. Real World Networks

(
1+

1
t

(
c+dk+

j1

∑
j=1

(e+ f k)q j− (a+bk−1)

))

= L
log t
t1/2 +Mt1/2 log t

≤M(t +1)1/2 log(t +1)

provided M≫ 2L. We have used (18.33) to obtain the second line.
This completes the proof by induction.

A general power law bound for dk

The following lemma completes the proof of Theorem 18.20(i).

Lemma 18.23. For k > j0 we have,

(i) dk > 0.

(ii) C1k−(1+d+ f µq)/b ≤ dk ≤C2k−(1+d+ f µq)/b j1 .

Proof. (i) Let κ be the first index such that pκ > 0, so that, from (18.34), dκ > 0.
It is not possible for both c and d to be zero. Therefore the coefficient of dk−1 in
(18.34) is non-zero and thus dk > 0 for k ≥ κ .

(ii) Re-writing (18.34) we see that for k > j0, pk = 0 and then dk satisfies

dk = dk−1
c+d(k−1)

a+bk
+

j1

∑
j=1

dk− jq j
e+ f (k− j)

a+bk
, (18.44)

which is a linear difference equation with rational coefficients (see [683]).
We let di = 0 for i < 0 to handle the cases where k− j < 0 in the above sum.
Let y = 1+d + f µq, then

c+d(k−1)
a+bk

+
j1

∑
j=1

q j
e+ f (k− j)

a+bk
= 1− y

a+bk
≥ 0

and thus(
1− y

a+bk

)
min{dk−1, . . . ,dk− j1} ≤ dk ≤(

1− y
a+bk

)
max{dk−1, . . . ,dk− j1}. (18.45)

It follows that
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d j0

k

∏
j= j0+1

(
1− y

a+b j

)
≤ dk ≤

max{d1,d2, . . . ,d j0}
⌊(k− j0)/ j1⌋

∏
s=0

(
1− y

a+b(k− s j1)

)
. (18.46)

The lower bound in (18.46) is proved by induction on k. It is trivial for k = j0 and
for the inductive step we have

dk ≥ d j0

(
1− y

a+bk

)
min

i= j0,...,k−1

{
i

∏
j= j0+1

(
1− y

a+b j

)}

= d j0

k

∏
j= j0+1

(
1− y

a+b j

)
.

The upper bound in (18.46) is proved as follows: Let di1 = max{dk−1, . . . , dk− j1},
and in general, let dit+1 = max{dit−1, . . . ,dit− j1}. Using (18.45) we see there is a
sequence k−1≥ i1 > i2 > · · ·> ip > j0 ≥ ip+1 such that |it − it−1| ≤ j1 for all t,
and p≥ ⌊(k− j0)/ j1⌋. Thus

dk ≤ dip+1

p

∏
t=0

(
1− y

a+bit

)
,

and the RHS of (18.46) now follows.
Now consider the product in the LHS of (18.46).

k

∏
j= j0+1

(
1− y

a+b j

)

= exp

{
k

∑
j= j0+1

(
− y

a+b j
− 1

2

(
y

a+b j

)2

−·· ·

)}

= exp

{
O(1)−

k

∑
j= j0+1

y
a+b j

}
=C1k−y/b.

This establishes the lower bound of the lemma. The upper bound follows simi-
larly, from the upper bound in (18.46).

The case j1 = 1

We prove Theorem 18.20(ii). When q1 = 1, p j = 0, j > j0 = Θ(1), the general
value of dk, k > j0 can be found directly, by iterating the recurrence (18.34). Thus

dk =
1

a+bk
(dk−1 ((a−1)+b(k−1)))
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= dk−1

(
1− 1+b

a+bk

)
= d j0

k

∏
j= j0+1

(
1− 1+b

a+ jb

)
.

Thus, for some constant C6 > 0,

dk ≈C6(a+bk)−x

where
x = 1+

1
b
= 1+

2
α(1−δ )+(1−α)(1−β )+α(1− γ)

.

The case f = 0

We prove Theorem 18.20(iii). The case ( f = 0) arises in two ways. Firstly if
α = 0 so that a new vertex is added at each step. Secondly, if α ̸= 0 but δ = 1 so
that the initial vertex of an OLD choice is sampled u.a.r.

Observe that b = d now, see (18.33).
We first prove that for a sufficiently large absolute constant A2 > 0 and for all

sufficiently large k, that

dk

dk−1
= 1− 1+d

a+dk
+

ξ (k)
k2 (18.47)

where |ξ (k)| ≤ A2.
We first re-write (18.34) as

dk

dk−1
=

c+d(k−1)
a+dk

+
j1

∑
j=1

eq j

a+dk

k−1

∏
t=k− j+1

dt−1

dt
. (18.48)

(We assume here that k > j0, so that pk = 0.)
Now use induction to write

k−1

∏
t=k− j+1

dt−1

dt
= 1+( j−1)

d +1
a+dk

+
ξ ∗( j,k)

k2 (18.49)

where |ξ ∗( j,k)| ≤A3 for some constant A3 > 0. (We use the fact that j1 is constant
here.)

Substituting (18.49) into (18.48) gives

dk

dk−1
=

c+d(k−1)
a+dk

+
e

a+dk
+

e(µq−1)(d +1)
(a+dk)2 +

ξ ∗∗(k)
(a+dk)k2
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where |ξ ∗∗(k)| ≤ eA3.
Equation (18.47) follows immediately from this and c+e= a−1. On iterating

(18.47) we see that for some constant C7 > 0,

dk ≈C7k−(1+ 1
d ).

]

18.6 Small World
In an influential paper Milgram [682] describes the following experiment. He
chose a person X to receive mail and then randomly chose a person Y to send it.
If Y did not know X then Y was to send the mail to someone he/she thought more
likely to know X and so on. Surprisingly, the mail got through in 64 out of 296
attempts and the number of links in the chain was relatively small, between 5 and
6. More recently, Kleinberg [572] described a model that attempts to explain this
phenomenon.

Watts-Strogatz Model
Milgram’s experiment suggests that large real-world networks although being
globally sparse, in terms of the number edges, have their nodes/vertices connected
by relatively short short paths. In addition, such networks are locally dense, i.e.
vertices lying in a small neighborhood of a given vertex are connected by many
edges. This observation is called the ”small world” phenomenon and it has gener-
ated many attempts, both theoretical and experimental to build and study appro-
priate models of small world networks. Unfortunately, for many reasons, the clas-
sical Erdős-Rényi- Gilbert random graph Gn,p is missing many important char-
acteristics of such networks. The first attempt to build more realistic model was
introduced by Watts and Strogatz in 1998 in Nature (see [847]).
The Watts-Strogatz model starts with a kth power of a n-vertex cycle, denoted
here as Ck

n. To construct it fix n and k, n ≥ k ≥ 1 and take the vertex set as
V = [n] = {1,2, . . . ,n} and edge-set E = {{i, j} : i+1≤ j ≤ i+ k}, where the ad-
ditions are taken modulo n.
In particular, C1

n = Cn is a cycle on n vertices. For an example of a square C2
n of

Cn see Figure 18.6 below.

Notice, that for n > 2k graph Ck
n is 2k-regular and has nk edges. Now choose

each of nk edges of Ck
n, one by one, and independently with small probability p
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Figure 18.2: C8 and C8 after two re-wirings

decide to ”rewire” it or leave it unchanged. The procedure goes as follows. We
start, say, at vertex labeled 1, and move clockwise k times around the cycle. At
the ith pasage of the cycle, at each visted vertex, we take the edge connecting
it to its neighbour at distance i to the right and decide, with probability p, if its
other endpoint should be replaced by a uniformly random vertex of the cycle.
Not however allowing the creation a double edges. Notice that after this k round
procedure is completed the number of edges of the Watts-Strogatz random graph
is kn, i.e., the same as in ”starting” graph Ck

n. To study properties the original
Watts-Strogatz model on a formal mathematical ground has proved rather difficult.
Therefore Newman and Watts (see [716]) proposed a modified version, where
instead of rewiring the edges of Ck

n each of
(n

2

)
− nk edges not in Ck

n is added
independently probability p. In fact this modification, when k = 1 was introduced
earlier by Ball, Mollison and Scalia-Tomba in [68] as “the great circle” epidemic
model. For a rigorous results on typical distances in such random graph see the
seminal papers of Barbour and Reinert [78] and [79].

Much earlier Bollobás and Chung in [160] took a similar approach to introduc-
ing ”shortcuts” in Cn. Namely, let Cn be a cycle with n vertices labeled clockwise
1,2, . . . ,n, so that vertex i is adjacent to vertex i+1 for 1≤ i≤ n−1. Consider the
graph Gn obtained by adding a randomly chosen perfect matching to Cn. (We will
assume that n is even. For odd n one can add a random near prefect matching.)
Note that the graphs generated by this procedure are 3-regular (see Figure 18.3
below).

It is easy to see that a cycle Cn itself has diameter n/2. Bollobás and Chung
proved that the diameter drops dramatically after adding to Cn such system of
random ”shortcuts”.

Theorem 18.24. Let Gn be formed by adding a random perfect matching M to an
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Figure 18.3: C8∪M

n-cycle Cn. Then w.h.p.

diam(Gn)≤ log2 n+ log2 logn+10.

Proof. For a vertex u of Gn define sets

Si(u) = {v : dist(u,v) = i} and S≤i(u) =
⋃
j≤i

S j(u),

where dist(u,v) = distGn(u,v) denotes the length of a shortest path between u and
v in Gn.
Now define the following process for generating sets Si(u) and S≤i(u) in Gn, Start
with a fixed vertex u and ”uncover” the chord (edge of M) incident to vertex u.
This determines set S1(u). Then we add the neighbours of S1(u) one by one to
determine S2(u) and proceed to determine Si(u).
A chord incident to a vertex in Si(u) is called ”inessential at level i” if the other
vertex in Si(u) is within distance 3log2 n in Cn of the vertices determined so far.
Notice that |S≤i(u)≤ 3 ·2i and so

P(a chord is inessential at level i | S≤i−1(u))≤
18 ·2i+1 log2 n

n
. (18.50)

Denote by A the event that for every vertex u at most one of the chords chosen
in S≤i(u) is inessential and suppose that i≤ 1

5 log2 n. Then

P(A c) = P(∃u : at least two of the chords chosen in S≤i(u) are inessential)

≤ n
(

3 ·2i+1

2

)(
18 ·2i+1 log2 n

n

)2

= O
(

n−1/5(logn)2
)
.

For a fixed vertex u, consider those vertices v in Si(u) for which there is a
unique path from u to v of length i, say u = u0,u1, . . . ,ui−1,ui = v, such that



418 Chapter 18. Real World Networks

(i) if ui−1 is adjacent to v on the cycle Cn then S≤i(u) contains no vertex on
Cn within distance 3log2 n on the opposite side to v (denote the set of such
vertices v by Ci(u)),

(ii) if {ui−1,v} is a chord then S≤i(u)\{v} contains no vertex within distance,
3 log2 n both to the left and to the right of v (denote the set of such verices
by Di(u)).

Obviously,
Ci(u)∪Di(u)⊆ Si(u).

Notice that if the event A holds then, for i≤ 1
5 log2 n,

|Ci(u)| ≥ 2i−2 and |Di(u)| ≥ 2i−3. (18.51)

Let 1
5 log2 n ≤ i ≤ 3

5 log2 n. Denote by B the event that for every vertex u, at
most 2in−1/10 inessential chords leave Si(u). There are at most 2i chords leaving
Si(u) for such i’s and so by (18.50), for large n,

P(Bc) = P(∃u : at least 2in−1/10 inessntial chords leave Si(u))

≤ n
(

2i

2i n−1/10

)(
n−1/6

)2i n−1/10

≤ n
(

en1/10n−1/6
)2i n−1/10

≤ n
(

en−1/15
)n1/10

= O
(
n−2) .

For v ∈Ci(u) a new neighbor of v in Cn is a potential element of Ci+1(u) and a
new neighbor, which is the end-vertex of the chord from v, is a potential element of
Di+1(u). Also if v ∈Di(u), then the two neigbors of v in Cn are potential elements
of Ci+1(u). Here ”potential” means that the vertices in question become elements
of Ci+1(u) and Di+1(u) unless the corresponding edge is inessential.

Assuming that the events A and B both hold and 1
5 log2 n≤ i≤ 3

5 log2 n, then

|Ci+1(u)| ≥ |Ci(u)|+2|Di(u)|−2i+1n−1/10

|Di+1(u)| ≥ |Ci(u)|−2i+1n−1/10,

while for i ≤ 1
5 log2 n the bounds given in (18.51) hold. Hence for all 3 ≤ i ≤

3
5 log2 n we have

|Ci(u)| ≥ 2i−3 and |Di(u)| ≥ 2i−4.

To finish the proof set

i0 =
⌈

log2 n+ log2 logn+ c
2

⌉
,
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where c≥ 9 is a constant.
Let us choose chords leaving Ci0(u) one by one. At each choice the probability
of not selecting the other end-vertex in Ci0(u) is at most 1− (2i0−3/n). Since we
have to make at least |Ci0(u)|/2≥ 2i0−4 such choices, we have

P(dist(u,v)> 2i0 +1|A ∩B)≤
(

1− 2i0−3

n

)2i0−4

≤ exp(−22i0−7/n)

≤ exp(−(logn)2c−7)≤ n−4.

Hence,

P(diam(Gn)> 2i0 +1)≤ P(A c)+P(Bc)+∑
u,v

P(dist(u,v)> 2i0 +1|A ∩B)

≤ c1(n−1/5(logn)2)+ c2n−2 +n−2 = o(1).

Therefore w.h.p. the random graph Gn has diameter at most

2
⌈

log2 n+ log2 n logn+9
2

⌉
≤ log2 n+ log2 n logn+10,

which completes the proof of Theorem 18.24.

In fact, based on the contiguity of a random 3-regular graph and graph Gn
defined above, one can prove more precise bounds, showing (see Wormald [859]),
that w.h.p. diam(Gn) is highly concentrated, i.e., that

log2 n+ log2 n logn−4≤ diam(Gn)≤ log2 n+ log2 n logn+4.

Kleinberg’s Model
The model can be generalized significantly, but to be specific we consider the
following. We start with the n× n grid G0 which has vertex set [n]2 and where
(i, j) is adjacent to (i′, j′) iff d((i, j),(i′, j′)) = 1 where d((i, j),(k, ℓ)) = |i− k|+
| j− ℓ|. In addition, each vertex u = (i, j) will choose another random neighbor
ϕ(u) where

P(ϕ(u) = v = (k, ℓ)) =
d(u,v)−2

Du

where
Dx = ∑

y̸=x
d(x,y)−2.

The random neighbors model “long range contacts”. Let the grid G0 plus the extra
random edges be denoted by G.
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It is not difficult to show that w.h.p. these random contacts reduce the diameter
of G to order logn. This however, would not explain Milgram’s success. Instead,
Kleinberg proposed the following decentralized algorithm A for finding a path
from an initial vertex u0 = (i0, j0) to a target vertex uτ = (iτ , jτ): when at u move
to the neighbor closest in distance to uτ .

Theorem 18.25. Algorithm A finds a path from initial to target vertex of order
O((logn)2), in expectation.

Proof. Note that each step of A finds a node closer to the target than the current
node and so the algorithm must terminate with a path.

Observe next that for any vertex x of G we have

Dx ≤
2n−2

∑
j=1

4 j× j−2 = 4
2n−2

∑
j=1

j−1 ≤ 4log(3n).

As a consequence, v is the long range contact of vertex u, with probability at least
(4log(3n)d(u,v)2)−1.

For 0 < j≤ log2 n, we say that the execution of A is in Phase j if the distance
of the current vertex u to the target is greater than 2 j, but at most 2 j+1. We say
that A is in Phase 0 if the distance from u to the target is at most 2.

Let B j denote the set of nodes at distance 2 j or less from the target. Then

|B j| ≥ 1+
2 j

∑
i=1

i > 22 j−1.

Note that by the triangle inequality, each member of B j is within distance 2 j+1 +
2 j < 22 j+2 of u.

Let X j ≤ 2 j+1 be the time spent in Phase j. Assume first that
log2 log2 n ≤ j ≤ log2 n. Phase j will end if the long range contact of the current
vertex lies in B j. The probability of this is at least

22 j−1

4log(3n)22 j+4 =
1

128log(3n)
.

We can reveal the long range contacts as the algorithm progresses. In this way,
the long range contact of the current vertex will be independent of the previous
contacts of the path. Thus

EX j =
∞

∑
i=1

P(X j ≥ i)≤
∞

∑
i=1

(
1− 1

128log(3n)

)i

< 128log(3n).
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Now if 0≤ j ≤ log2 log2 n then X j ≤ 2 j+1 ≤ 2log2 n. Thus the expected length of
the path found by A is at most 128log(3n)× log2 n.

In the same paper, Kleinberg showed that replacing d(u,v)−2 by
d(u,v)−r for r ̸= 2 led to non-polylogarithmic path length.

18.7 Exercises

18.7.1 Show that w.h.p. the Preferential Attachment Graph of Section 18.1 has
diameter O(logn). (Hint: Using the idea that vertex t chooses a random
edge of the current graph, observe that half of these edges appeared at time
t/2 or less).

18.7.2 For the next few questions we modify the Preferential Attachment Graph
of Section 18.1 in the following way: First let m = 1 and preferentially
generate a sequence of graphs Γ1,Γ2, . . . ,Γmn. Then if the edges of Γmn are
(ui,vi), i= 1,2, . . . ,mn let the edges of Gn be (u⌈i/m⌉,v⌈i/m⌉), i= 1,2, . . . ,mn.
Show that (18.1) continues to hold.

18.7.3 Show that Gn of the previous question can also be generated in the follow-
ing way:

(a) Let π be a random permutation of [2mn]. Let
X = {(ai,bi), i = 1,2, . . . ,mn} where ai = min{π(2i−1),π(2i)} and
bi = max{π(2i−1),π(2i)}.

(b) Let the edges of Gn be (a⌈i/m⌉,b⌈i/m⌉), i = 1,2, . . . ,mn.

This model was introduced in [177].

18.7.4 Show that the edges of the graph in the previous question can be generated
as follows:

(a) Let ζ1,ζ2, . . . ,ζ2mn be independent uniform [0,1] random variables.
Let {xi < yi}= {ζ2i−1,ζ2i} for i = 1,2, . . . ,mn. Sort the yi in increas-
ing order R1 < R2 < · · ·< Rmn and let R0 = 0. Then let

Wj = Rm j and I j = (Wj−1,Wj] for j = 1,2, . . . ,n.

This model was introduced in [176].

(b) The edges of Gn are (ui,vi), i = 1,2, . . . ,mn where xi ∈ Iui,yi ∈ Ivi .
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18.7.5 Prove that (R1,R2, . . . ,Rmn) can be generated as

Ri =

(
ϒi

ϒmn+1

)1/2

where ϒN = ξ1 + ξ2 + · · ·+ ξN for N ≥ 1 and ξ1,ξ2, . . . ,ξmn+1 are inde-
pendent exponential copies of EXP(1).

18.7.6 Let L be a large constant and let ω = ω(n)→ ∞ arbitrarily slowly. Then
let E be the event that

ϒk ≈ k for
k
m
∈ [ω,n] or k = mn+1.

Show that

(a) P(¬E ) = o(1).

(b) Let ηi = ξ(i−1)m+1 +ξ(i−1)m+2 + · · ·+ξim. If E occurs then

(1) Wi ≈
(

i
n

)1/2

for ω ≤ i≤ n, and

(2) wi =Wi−Wi−1 ≈
ηi

2m(in)1/2 for ω ≤ i≤ n.

(c) ηi ≤ logn for i ∈ [n] w.h.p.

(d) ηi ≤ log logn for i ∈ [(logn)10] w.h.p.

(e) If ω ≤ i < j ≤ n then P(edge i j exists)≈ ηi
2(i j)1/2 .

(f) ηi ≥ 1
loglogn and i≤ n

ω(logn)3 implies the degree dn(i)≈ ηi
(n

i

)1/2
.

18.8 Notes
There are by now a vast number of papers on different models of “Real World
Networks”. We point out a few additional results in the area. The books by
Durrett [316] and Bollobás, Kozma and Miklós [173] cover the area. See also van
der Hofstadt [481].

Preferential Attachment Graph
Perhaps the most striking result is due to Bollobás and Riordan [176]. There they
prove that the diameter of Gn is asymptotic to logn

log logn w.h.p. To prove this they
introduced the model in question 4 above. Cooper [246] and Peköz, Röllin and
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Ross [731] discuss the degree distribution of Gn in some detail. Flaxman, Frieze
and Fenner [364] show that the if ∆k,λk are the kth largest degree, eigenvalue
respectively, then k≈ ∆

1/2
k for k = O(1). The proof follows ideas from Mihail and

Papadimitriou [681] and Chung, Lu and Vu [225], [226].
Cooper and Frieze [254] discussed the likely proportion of vertices visited by

a random walk on a growing preferential attachment graph. They show that w.h.p.
this is just over 40% at all times. Borgs, Brautbar, Chayes, Khanna and Lucier
[180] discuss “local algorithms” for finding a specific vertex or the largest degree
vertex. Frieze and Pegden [411] describe an algorithm for the same problem, but
with reduced storage requirements.

Geometric models

Some real world graphs have a geometric constraint. Flaxman, Frieze and Vera
[365], [366] considered a geometric version of the preferential attachment model.
Here the vertices X1,X2, . . . ,Xn are randomly chosen points on the unit sphere
in R3. Xi+1 chooses m neighbors and these vertices are chosen with probability
P(deg,dist) dependent on (i) their current degree and (ii) their distance from Xi+1.
van den Esker [345] added fitness to the models in [365] and [366]. Jordan [531]
considered more general spaces than R3. Jordan and Wade [532] considered the
case m = 1 and a variety of definitions of P that enable one to interpolate between
the preferential attachment graph and the on-line nearest neighbor graph.

The SPA model was introduced by Aiello, Bonato, Cooper, Janssen and Pralat
[8]. Here the vertices are points in the unit hyper-cube D in Rm, equipped with
a toroidal metric. At time t each vertex v has a domain of attraction S(v, t) of
volume A1 deg−(v,t)+A2

t . Then at time t we generate a uniform random point Xt+1
as a new vertex. If the new point lies in the domain S(v, t) then we join Xt+1 to
v by an edge directed to v, with probability p. The paper [8] deals mainly with
the degree distribution. The papers by Jannsen, Pralat and Wilson [515], [516]
show that for graphs formed according to the SPA model it is possible to infer the
metric distance between vertices from the link structure of the graph. The paper
Cooper, Frieze and Pralat [270] shows that w.h.p. the directed diameter at time t
lies between c1 log t

log log t and c2 log t.
Random Apollonian networks were introduced by Zhou, Yan and Wang [867].

Here we build a random triangulation by inserting a vertex into a randomly chosen
face. Frieze and Tsourakakis [416] studied their degree sequence and eigenvalue
structure. Ebrahimzadeh, Farczadi, Gao, Mehrabian, Sato, Wormald and Zung
[325] studied their diameter and length of the longest path. Cooper and Frieze
[264] gave an improved longest path estimate and this was further improved by
Collevecchio, Mehrabian and Wormald [238].
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Interpolating between Erdős-Rényi and Preferential Attachment
Pittel [741] considered the following model: G0,G1, . . . ,Gm is a random (multi)
graph growth process Gm on a vertex set [n]. Gm+1 is obtained from Gm by in-
serting a new edge e at random. Specifically, the conditional probability that e
joins two currently disjoint vertices, i and j, is proportional to (di +α)(d j +α),
where di, d j are the degrees of i, j in Gm, and α > 0 is a fixed parameter. The
limiting case α = ∞ is the Erdős-Rényi graph process. He shows that w.h.p. Gm
contains a unique giant component iff c := 2m/n > cα = α/(1 + α), and the
size of this giant is asymptotic to n

[
1−

(
α+c∗
α+c

)α], where c∗ < cα is the root of
c

(α+c)2+α = c∗
(α+c∗)2+α . A phase transition window is proved to be contained, essen-

tially, in [cα−An−1/3,cα +Bn−1/4], and he conjectured that 1/4 may be replaced
with 1/3. For the multigraph version, MGm, he showed that MGm is connected
w.h.p. iff m≫ mn := n1+α−1

. He conjectured that, for α > 1, mn is the threshold
for connectedness of Gm itself. Janson and Warnke [514] verified this conjecture.
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Weighted Graphs

There are many cases in which we put weights Xe,e∈ E on the edges of a graph or
digraph and ask for the minimum or maximum weight object. The optimisation
questions that arise from this are the backbone of Combinatorial Optimisation.
When the Xe are random variables we can ask for properties of the optimum value,
which will be a random variable. In this chapter we consider three of the most
basic optimisation problems viz. minimum weight spanning trees; shortest paths
and minimum weight matchings in bipartite graphs.

19.1 Minimum Spanning Tree
Let Xe, e ∈ E(Kn) be a collection of independent uniform [0,1] random variables.
Consider Xe to be the length of edge e and let Ln be the length of the minimum
spanning tree (MST) of Kn with these edge lengths.

Frieze [383] proved the following theorem. The proof we give utilises the
rather lovely integral formula (19.1) due to Janson [498], (see also the related
equation (7) from [406])˙

Theorem 19.1.
lim
n→∞

ELn = ζ (3) =
∞

∑
k=1

1
k3 = 1.202 · · ·

Proof. Suppose that T = T ({Xe}) is the MST, unique with probability one. We
use the identity

a =
∫ 1

0
1{x<a}dx.

Therefore

Ln = ∑
e∈T

Xe
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= ∑
e∈T

∫ 1

p=0
1{p<Xe}d p

=
∫ 1

p=0
∑
e∈T

1{p<Xe}d p

=
∫ 1

p=0
|{e ∈ T : Xe > p}|d p

=
∫ 1

p=0
(κ(Gp)−1)d p,

where κ(Gp) denote the number of components of graph Gp. Here Gp is the
graph induced by the edges e with Xe ≤ p, i.e., Gp ≡ Gn,p. The last line may be
considered to be a consequence of the fact that the greedy algorithm solves the
minimum spanning tree problem. This algorithm examines edges in increasing
order of edge weight. It builds a tree, adding one edge at a time. It adds the edge
to the forest F of edges accepted so far, only if the two endpoints lie in distinct
components of F . Otherwise it moves onto the next edge. Thus the number of
edges to be added given F , is κ(F)−1 and if the longest edge in e ∈ F has Xe = p
then κ(F) = κ(Gp), which follows by an easy induction. Hence

ELn =
∫ 1

p=0
(Eκ(Gp)−1)d p. (19.1)

We therefore estimate Eκ(Gp). We observe first that

p≥ 6logn
n
⇒ Eκ(Gp) = 1+o(1).

Indeed, 1≤ Eκ(Gp) and

Eκ(Gp)≤ 1+nP(Gp is not connected)

≤ 1+n
n/2

∑
k=1

(
n
k

)
kk−2 pk−1(1− p)k(n−k)

≤ 1+
n
p

n/2

∑
k=1

(
ne
k

6k logn
n

1
n3

)k

= 1+o(1).

Hence, if p0 =
6logn

n then

ELn =
∫ p0

p=0
(Eκ(Gp)−1)d p+o(1)
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=
∫ p0

p=0
Eκ(Gp)d p+o(1).

Write

κ(Gp) =
(logn)2

∑
k=1

Ak +
(logn)2

∑
k=1

Bk +C,

where Ak stands for the number of components which are k vertex trees, Bk is the
number of k vertex components which are not trees and, finally, C denotes the
number of components on at least (logn)2 vertices. Then, for 1≤ k≤ (logn)2 and
p≤ p0,

EAk =

(
n
k

)
kk−2 pk−1(1− p)k(n−k)+(k

2)−k+1

= (1+o(1))nk kk−2

k!
pk−1(1− p)kn.

EBk ≤
(

n
k

)
kk−2

(
k
2

)
pk(1− p)k(n−k)

≤ (1+o(1))(npe1−np)k

≤ 1+o(1).

C ≤ n
(logn)2 .

Hence ∫ 6logn
n

p=0

(logn)2

∑
k=1

EBkd p≤ 6logn
n

(logn)2(1+o(1)) = o(1),

and ∫ 6logn
n

p=0
Cd p≤ 6logn

n
n

(logn)2 = o(1).

So

ELn = o(1)+(1+o(1))
(logn)2

∑
k=1

nk kk−2

k!

∫ 6logn
n

p=0
pk−1(1− p)knd p.

But

(logn)2

∑
k=1

nk kk−2

k!

∫ 1

p= 6logn
n

pk−1(1− p)knd p
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≤
(logn)2

∑
k=1

nk kk−2

k!

∫ 1

p= 6logn
n

n−6kd p

= o(1).

Therefore

ELn = o(1)+(1+o(1))
(logn)2

∑
k=1

nk kk−2

k!

∫ 1

p=0
pk−1(1− p)knd p

= o(1)+(1+o(1))
(logn)2

∑
k=1

nk kk−2

k!
(k−1)!(kn))!
(k(n+1))!

= o(1)+(1+o(1))
(logn)2

∑
k=1

nkkk−3
k

∏
i=1

1
kn+ i

= o(1)+(1+o(1))
(logn)2

∑
k=1

1
k3

= o(1)+(1+o(1))
∞

∑
k=1

1
k3 .

One can obtain the same result if the uniform [0,1] random variable is replaced
by any random non-negative random variable with distribution F having a deriva-
tive equal to one at the origin, e.g. an exponential variable with mean one, see
Steele [816].

19.2 Shortest Paths
Let the edges of the complete graph Kn on [n] be given independent lengths Xe, e∈
[n]2. Here Xe is exponentially distributed with mean 1. The following theorem was
proved by Janson [500]:

Theorem 19.2. Let Xi j be the distance from vertex i to vertex j in the complete
graph with edge weights independent EXP(1) random variables. Then, for every
ε > 0, as n→ ∞,

(i) For any fixed i, j,

P
(∣∣∣∣ Xi j

logn/n
−1
∣∣∣∣≥ ε

)
→ 0.

(ii) For any fixed i,

P
(∣∣∣∣max j Xi j

logn/n
−2
∣∣∣∣≥ ε

)
→ 0.
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(iii)

P
(∣∣∣∣maxi, j Xi j

logn/n
−3
∣∣∣∣≥ ε

)
→ 0.

Proof. First, recall the following two properties of the exponential X :

(P1) P(X > α +β |X > α) = P(X > β ).

(P2) If X1,X2, . . . ,Xm are independent EXP(1) exponential random variables then
min{X1,X2, . . . ,Xm} is an exponential with mean 1/m.

Suppose that we want to find shortest paths from a vertex s to all other vertices in a
digraph with non-negative arc-lengths. Recall Dijkstra’s algorithm. After several
iterations there is a rooted tree T such that if v is a vertex of T then the tree path
from s to v is a shortest path. Let d(v) be its length. For x /∈ T let d(x) be the
minimum length of a path P that goes from s to v to x where v ∈ T and the sub-
path of P that goes to v is the tree path from s to v. If d(y) = min{d(x) : x /∈ T}
then d(y) is the length of a shortest path from s to y and y can be added to the tree.

Suppose that vertices are added to the tree in the order v1,v2, . . . ,vn and that
Yj = dist(v1,v j) for j = 1,2, . . . ,n. It follows from property P1 that

Yk+1 = min
i=1,2,...,k
v̸=v1,...,vk

[Yi +Xvi,v] = Yk +Ek

where Ek is exponential with mean 1
k(n−k) and is independent of Yk.

This is because Xvi,v j is distributed as an independent exponential X condi-
tioned on X ≥ Yk−Yi. Hence

EYn =
n−1

∑
k=1

1
k(n− k)

=
1
n

n−1

∑
k=1

(
1
k
+

1
n− k

)
=

2
n

n−1

∑
k=1

1
k

=
2logn

n
+O(n−1).

Also, from the independence of Ek,Yk,

VarYn =
n−1

∑
k=1

VarEk
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=
n−1

∑
k=1

(
1

k(n− k)

)2

≤ 2
n/2

∑
k=1

(
1

k(n− k)

)2

≤ 8
n2

n/2

∑
k=1

1
k2

= O(n−2)

and we can use the Chebyshev inequality (26.3) to prove (ii).
Now fix j = 2. Then if i is defined by vi = 2, we see that i is uniform over
{2,3, . . . ,n}. So

EX1,2 =
1

n−1

n

∑
i=2

i−1

∑
k=1

1
k(n− k)

=
1

n−1

n−1

∑
k=1

n− k
k(n− k)

=
1

n−1

n−1

∑
k=1

1
k

=
logn

n
+O(n−1).

For the variance of X1,2 we have

X1,2 = δ2Y2 +δ3Y3 + · · ·+δnYn,

where

δi ∈ {0,1}; δ2 +δ3 + · · ·+δn = 1; P(δi = 1) =
1

n−1
.

VarX1,2 =
n

∑
i=2

Var(δiYi)+∑
i ̸= j

Cov(δiYi,δ jY j)

≤
n

∑
i=2

Var(δiYi).

The last inequality holds since

Cov(δiYi,δ jYj) = E(δiYiδ jYj)−E(δiYi)E(δ jYj) =−E(δiYi)E(δ jYj)≤ 0.
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So

VarX1,2 ≤
n

∑
i=2

Var(δiYi)

≤
n

∑
i=2

1
n−1

i−1

∑
k=1

(
1

k(n− k)

)2

= O(n−2).

We can now use the Chebyshev inequality.
We turn now to proving (iii). We begin with a lower bound. Let

Yi = min
{

Xi, j : i ̸= j ∈ [n]
}

. Let A =
{

i : Yi ≥ (1−ε) logn
n

}
. Then we have that for

i ∈ [n],

Pr(i ∈ A) = exp
{
−(n−1)

(1− ε) logn
n

}
= n−1+ε+o(1). (19.2)

An application of the Chebyshev inequality shows that |A| ≈ nε+o(1) w.h.p. Now
the expected number of paths from a1 ∈ A to a2 ∈ A of length at most (3−2ε) logn

n
can be bounded by

n2ε+o(1)×n2×n−3ε+o(1)× 2log2 n
n2 = n−ε+o(1). (19.3)

Explanation for (19.3): The first factor n2ε+o(1) is the expected number of pairs
of vertices a1,a2 ∈ A. The second factor is a bound on the number of choices
b1,b2 for the neighbors of a1,a2 on the path. The third factor F3 is a bound on the
expected number of paths of length at most α logn

n from b1 to b2, α = 1−3ε . This
factor comes from

F3 ≤ ∑
ℓ≥0

nℓ
(

α logn
n

)ℓ+1 1
(ℓ+1)!

.

Here ℓ is the number of internal vertices on the path. There will be at most nℓ

choices for the sequence of vertices on the path. We then use the fact that the
exponential mean one random variable stochastically dominates the uniform [0,1]
random variable U . The final two factors are the probability that the sum of ℓ+1
independent copies of U sum to at most α logn

n . Continuing we have

F3,k ≤
α logn

n ∑
ℓ≥0

(α logn)ℓ

ℓ!
=

α logn
n
· eα logn = n−1+α+o(1).

The final factor in (19.3) is a bound on the probability that Xa1b1 +Xa2b2 ≤
(2+ε) logn

n .
For this we use the fact that Xaibi, i = 1,2 is distributed as (1−ε) logn

n +Ei where
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E1,E2 are independent exponential mean one. Now Pr(E1+E2≤ t)≤ (1−e−t)2≤
t2 and taking t = (k+2)ε logn

n justifies the final factor of (19.3).
It follows from (19.3) that w.h.p. the shortest distance between a pair of ver-

tices in A is at least (3−2ε) logn
n w.h.p., completing our proof of the lower bound in

(iii).
We now consider the upper bound. Let now Y1 = dk3 where k3 = n1/2 logn.

For t < 1− 1+o(1
n we have that

E(etnY1) = E

(
exp

{
tn

k3

∑
i=1

EXP
(

1
i(n− i)

)})
=

k

∏
i=1

(
1− (1+o(1))t

i

)−1

Then for any α > 0 and for we have

Pr
(

Y1 ≥
α logn

n

)
≤ E(etnY1−tα logn)≤ e−tα logn

k3

∏
i=1

(
1− (1+o(1))t

i

)−1

= e−tα logn exp

{
k3

∑
i=1

(1+o(1))t
i

+O
(

1
i2

)}
=O(1)×exp

{(
1
2
+o(1)−α

)
t logn

}
.

It follows, on taking α = 3/2+o(1) that w.h.p.

Yj ≤
(3+o(1)) logn

2n
for all j ∈ [n].

Letting Tj be the set corresponding to Sk3 when we execute Dijkstra’s algoritm
starting at j, then we have that for j ̸= k where Tj∩Tk = /0,

Pr

(̸
∃e ∈ (Tj : Tk) : Xe ≤

log1/2 n
n

)
≤ exp

{
−

k2
3 log1/2 n

n

}
= e− log5/2 n = o(n−2)

and this is enough to complete the proof of (iii).
We can as for Spanning Trees, replace the exponential random variables by

random variables that behave like the exponential close to the origin. The paper
of Janson [500] allows for any random variable X satisfying P(X ≤ t) = t + o(t)
as t→ 0.

19.3 Minimum Weight Assignment
Consider the complete bipartite graph Kn,n and suppose that its edges are assigned
independent exponentially distributed weights, with rate 1. (The rate of an ex-
ponential variable is one over its mean). Denote the minimum total weight of
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a perfect matching in Kn,n by Cn. Aldous [17], [20] proved that limn→∞ECn =
ζ (2) = ∑

∞
k=1

1
k2 . The following theorem was conjectured by Parisi [729]. It was

proved independently by Linusson and Wästlund [628] and Nair, Prabhakar and
Sharma [706]. The proof given here is from Wästlund [846].

Theorem 19.3.

ECn =
n

∑
k=1

1
k2 = 1+

1
4
+

1
9
+

1
16

+ · · ·+ 1
n2 (19.4)

From the above theorem we immediately get the following corollary, first
proved by Aldous [20].

Corollary 19.4.

lim
n→∞

ECn = ζ (2) =
∞

∑
k=1

1
k2 =

π2

6
= 1.6449 · · ·

Let EXP(λ ) denote an exponential random variable of rate λ i.e. Pr(EXP(λ )≥
x) = e−λx. Consider the complete bipartite graph Kn,n, with bipartition (A,B),
where A = {a1,a2, . . . ,an} and B = {b1,b2, . . . ,bn}, and with edge weights which
are independent copies of EXP(1). We assume that a1,a2, . . . ,an is a random
permutation of A. So Ar = {a1,a2, . . . ,ar} is a random r-subset of A.

We add a special vertex b∗ to B, with edges to all n vertices of A. Each edge
adjacent to b∗ is assigned an EXP(λ ) weight independently, λ > 0.

For r ≥ 1 we let Mr be the minimum weight matching of Ar into B and M∗r be
the minimum weight matching of Ar into B∗ = B∪{b∗}. (As λ → 0 it becomes
increasingly unlikely that any of the extra edges are actually used in the minimum
weight matching.) We denote this matching by M∗r and we let B∗r denote the
corresponding set of vertices of B∗ that are covered by M∗r . We let C(n,r) denote
the weight of Mr.

Define P(n,r) as the normalized probability that b∗ participates in M∗r , i.e.

P(n,r) = lim
λ→0

Pr(b∗ ∈ B∗r )
λ

. (19.5)

Its importance lies in the following lemma:
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Lemma 19.5.
E(C(n,r)−C(n,r−1)) =

P(n,r)
r

. (19.6)

Proof. Choose i randomly from [r] and let B̂i ⊆ Br be the B-vertices in the mini-
mum weight matching of (Ar \{ai}) into B∗. Let X =C(n,r) and let Y =C(n,r−
1). Let wi be the weight of the edge (ai,b∗), and let Ii denote the indicator variable
for the event that the minimum weight of an Ar matching that contains this edge
is smaller than the minimum weight of an Ar matching that does not use b∗. We
can see that Ii is the indicator variable for the event {Yi +wi < X}, where Yi is
the minimum weight of a matching from Ar \ {ai} to B. Indeed, if (ai,b∗) ∈M∗r
then wi < X−Yi. Conversely, if wi < X−Yi and no other edge from b∗ has weight
smaller than X−Yi, then (ai,b∗)∈M∗r , and when λ → 0, the probability that there
are two distinct edges from b∗ of weight smaller than X−Yi is of order O(λ 2). In-
deed, let F denote the existence of two distinct edges from b∗ of weight smaller
than X and let Fi, j denote the event that (ai,b∗) and a j,b∗) both have weight
smaller than X .

Then,

Pr(F )≤ n2EX(max
i, j

Pr(Fi, j | X)) = n2E((1− e−λX)2)≤ n2
λ

2E(X2), (19.7)

and since E(X2) is finite and independent of λ , this is O(λ 2).
Note that Y and Yi have the same distribution. They are both equal to the mini-

mum weight of a matching of a random (r−1)-set of A into B. As a consequence,
E(Y ) =E(Yi) =

1
r ∑ j∈Ar E(Yj). Since wi is EXP(λ ) distributed, as λ → 0 we have

from (19.7) that

P(n,r) = lim
λ→0

(
1
λ

∑
j∈Ar

Pr(w j < X−Yj)+O(λ )

)
=

lim
λ→0

E

(
1
λ

∑
j∈Ar

(
1− e−λ (X−Y j)

))
= ∑

j∈Ar

E(X−Yi) = rE(X−Y ).

We now proceed to estimate P(n,r). Fix r and assume that b∗ /∈B∗r−1. Suppose
that M∗r is obtained from M∗r−1 by finding an augmenting path P = (ar, . . . ,aσ ,bτ)
from ar to B\Br−1 of minimum additional weight. We condition on (i) σ , (ii) the
lengths of all edges other than (aσ ,b j),b j ∈ B\Br−1 and
(iii) min

{
w(aσ ,b j) : b j ∈ B\Br−1

}
. With this conditioning Mr−1 = M∗r−1 will

be fixed and so will P′ = (ar, . . . ,aσ ). We can now use the following fact: Let
X1,X2, . . . ,XM be independent exponential random variables of rates λ1,λ2, . . . ,λM.
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Then the probability that Xi is the smallest of them is λi/(λ1+λ2+ · · ·+λM). Fur-
thermore, the probability stays the same if we condition on the value of min{X1,X2, . . . ,XM}.
Indeed, for any α > 0,

Pr(Xi = min{X1,X2, . . . ,XM} |min{X1,X2, . . . ,XM}= α)

=
Pr(Xi = α ≤min{X1,X2, . . . ,XM})

∑
M
j=1 Pr(X j = α ≤min{X1,X2, . . . ,XM})

=
λie−λiα ∏ j ̸=i e−λ jα

∑
M
j=1 λ je−λ jα ∏l ̸= j e−λlα

=
λi

λ1 +λ2 + · · ·+λM
.

Thus

Pr(b∗ ∈ B∗r | b∗ /∈ B∗r−1) =
λ

n− r+1+λ
.

Lemma 19.6.
P(n,r) =

1
n
+

1
n−1

+ · · ·+ 1
n− r+1

. (19.8)

Proof.

lim
λ→0

λ
−1 Pr(b∗ ∈ B∗r ) = lim

λ→0
λ
−1
(

1− n
n+λ

· n−1
n−1+λ

· · · n− r+1
n− r+1+λ

)
= lim

λ→0
λ
−1

(
1−
(

1+
λ

n

)−1

· · ·
(

1+
λ

n− r+1

)−1
)

= lim
λ→0

λ
−1
((

1
n
+

1
n−1

+ · · ·+ 1
n− r+1

)
λ +O(λ 2)

)
=

1
n
+

1
n−1

+ · · ·+ 1
n− r+1

. (19.9)

It follows from Lemmas 19.5 and 19.6 that

ECn =
n

∑
r=1

1
r

r

∑
i=1

1
n− i+1

.

It follows that

E(Cn+1−Cn) =
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=
1

n+1

n+1

∑
i=1

1
n− i+2

+
n

∑
r=1

1
r

r

∑
i=1

(
1

n− i+2
− 1

n− i+1

)
=

1
(n+1)2 +

n+1

∑
i=2

1
(n+1)(n− i+2)

+
n

∑
r=1

1
r

(
1

n+1
− 1

n− r+1

)
,

=
1

(n+1)2 . (19.10)

E(C1) = 1 and so (19.4) follows from (19.10).

19.4 Exercises
19.4.1 Suppose that the edges of the complete digraph K⃗n are given independent

uniform [0,1] edge costs. Show that if Ln is the cost of the minimum
spanning arborescence, then limn→∞ELn = 1.
(An arborescence is an oriented spanning tree where each edge is oriented
away from the root.)

19.4.2 Suppose that the edges of the complete bipartite graph Kn,n are given in-
dependent uniform [0,1] edge costs. Show that if L(b)

n is the cost of the
minimum spanning tree, then

lim
n→∞

EL(b)
n = 2ζ (3).

19.4.3 Let G=Kαn,βn be the complete unbalanced bipartite graph with bipartition
sizes αn,βn. Suppose that the edges of G are given independent uniform
[0,1] edge costs. Show that if L(b)

n is the length of the minimum spanning
tree, then

lim
n→∞

EL(b)
n = γ +

1
γ
+ ∑

i1≥1,i2≥1

(i1 + i2−1)!
i1!i2!

γ i1ii2−1
1 ii1−1

2
(i1 + γi2)i1+i2

,

where γ = α/β .

19.4.4 Tighten Theorem 19.1 and prove that

ELn = ζ (3)+O
(

1
n

)
.

19.4.5 Suppose that the edges of Kn are given independent uniform [0,1] edge
costs. Let Zk denote the minimum total edge cost of the union of k edge-
disjoint spanning trees. Show that limk→∞ Zk/k2 = 1.
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19.4.6 Show that if the edges of the complete bipartite graph Kn,n are given i.i.d.
costs then the minimum cost perfect matching is uniformly random among
all n! perfect matchings.

19.4.7 Suppose that the edges of Kn or Kn,n are given independent uniform [0,1]
edge costs. Show that w.h.p. no edge in the minimum cost perfect match-
ing has cost more than ω logn

n where ω → ∞.

19.4.8 Show that a random permutation π gives rise to a digraph
Dπ = ([n],{(i,π(i)) : i ∈ [n]}) that w.h.p. consists of O(logn) vertex dis-
joint cycles that cover [n].

19.4.9 Consider the Asymmetric Traveling Salesperson Problem (ATSP) where
the costs C(i, j) are independent uniform [0,1]. Use the claimed results of
the previous two problems to show that Karp’s patching algorithm finds a
tour that is within (1+o(1)) of minimal cost w.h.p.
The ATSP asks for the minimum total cost of a directed Hamilton cycle
through the complete digraph K⃗n.
Karp,s algorithm starts by solving the assignment problem with costs C(i, j).
It interprets the perfect matching as the union of disjoint cycles in K⃗n and
then patches them together cheaply.
Given cycles C1,C2 and edges ei = (xi,yi)∈Ci, i= 1,2, a patch replaces re-
moves e1,e2 and replaces them with (x2,y1) plus (x1,y2) creating a single
cycle.

19.4.10 Suppose that the edges of Gn,p where 0 < p ≤ 1 is a constant, are given
exponentially distributed costs with rate 1. Show that if Xi j is the shortest
distance from i to j then

(a) For any fixed i, j,

P
(∣∣∣∣ Xi j

logn/n
− 1

p

∣∣∣∣≥ ε

)
→ 0.

(b)

P
(∣∣∣∣max j Xi j

logn/n
− 2

p

∣∣∣∣≥ ε

)
→ 0.
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19.4.11 The quadratic assignment problem is to

Minimise
Z = ∑

n
i, j,p,q=1 ai jpqxipx jq

Sub ject to
∑

n
i=1 xip = 1 p = 1,2, . . . ,n

∑
n
p=1 xip = 1 i = 1,2, . . . ,n

xip = 0/1.

Suppose now that the ai jpq are independent uniform [0,1] random vari-
ables. Show that w.h.p. Zmin ≈ Zmax where Zmin (resp. Zmax) denotes the
minimum (resp. maximum) value of Z, subject to the assignment con-
straints.

19.4.12 The 0/1 knapsack problem is to

Maximise
Z = ∑

n
i=1 aixi

Sub ject to
∑

n
i=1 bixi ≤ L

xi = 0/1 for i = 1,2, . . . ,n.

Suppose that the (ai,bi) are chosen independently and uniformly from
[0,1]2 and that L = αn. Show that w.h.p. the maximum value of Z, Zmax,
satisfies

Zmax ≈


α1/2n

2 α ≤ 1
4 .

(8α−8α2−1)n
2

1
4 ≤ α ≤ 1

2
n
2 α ≥ 1

2

.

19.4.13 Suppose that X1,X2, . . . ,Xn are points chosen independently and uniformly
at random from [0,1]2. Let Zn denote the total Euclidean length of the
shortest tour (Hamilton cycle) through each point. Show that there exist
constants c1,c2 such that c1n1/2 ≤ Zn ≤ c2n1/2 w.h.p.

19.4.14 Prove equation (19.12) below.
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19.5 Notes

Shortest paths

There have been some strengthenings and generalisations of Theorem 19.2. For
example, Bhamidi and van der Hofstad [108] have found the (random) second-
order term in (i), i.e., convergence in distribution with the correct norming. They
have also studied the number of edges in the shortest path.

Spanning trees

Beveridge, Frieze and McDiarmid [107] considered the length of the minimum
spanning tree in regular graphs other than complete graphs. For graphs G of
large degree r they proved that the length MST (G) of an n-vertex randomly edge
weighted graph G satisfies MST (G)= n

r (ζ (3)+or(1)) w.h.p., provided some mild
expansion condition holds. For r regular graphs of large girth g they proved that
if

cr =
r

(r−1)2

∞

∑
k=1

1
k(k+ρ)(k+2ρ)

,

then w.h.p. |MST (G)− crn| ≤ 3n
2g .

Frieze, Ruszinko and Thoma [414] replaced expansion in [107] by connectiv-
ity and in addition proved that MST (G) ≤ n

r (ζ (3)+ 1+ or(1)) for any r-regular
graph.

Cooper, Frieze, Ince, Janson and Spencer [265] show that Theorem 19.1 can
be improved to yield ELn = ζ (3)+ c1

n + c2+o(1)
n4/3 for explicit constants c1,c2.

Bollobás, Gamarnik, Riordan and Sudakov [169] considered the
Steiner Tree problem on Kn with independent random edge weights, Xe,e∈E(Kn).
Here they assume that the Xe have the same distribution X ≥ 0 where P(X ≤ x) =
x+o(x) as x→ 0. The main result is that if one fixes k = o(n) vertices then w.h.p.
the minimum length W of a sub-tree of Kn that includes these k points satisfies
W ≈ k−1

n log n
k .

Angel, Flaxman and Wilson [44] considered the minimum length of a span-
ning tree of Kn that has a fixed root and bounded depth k. The edges weights Xe
are independent exponential mean one. They prove that if k ≥ log2 logn+ω(1)
then w.h.p. the minimum length tends to ζ (3) as in the unbounded case. On the
other hand, if k ≤ log2 logn−ω(1) then w.h.p. the weight is doubly exponential
in log2 logn− k. They also considered bounded depth Steiner trees.

Using Talagrand’s inequality, McDiarmid [663] proved that for any real t > 0
we have P(|Ln−ζ (3)| ≥ t)≤ e−δ1n where δ1 = δ2(t). Flaxman [363] proved that
P(|Ln−ζ (3)| ≤ ε)≥ e−δ2n where δ1 = δ2(ε).
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Assignment problem
Walkup [845] proved if the weights of edges are independent uniform [0,1] then
ECn ≤ 3 (see (19.3)) and later Karp [555] proved that ECn ≤ 2. Dyer, Frieze and
McDiarmid [323] adapted Karp’s proof to something more general: Let Z be the
optimum value to the linear program:

Minimise
n

∑
j=1

c jx j,subject to x ∈ P = {x ∈ Rn : Ax = b,x≥ 0} ,

where A is an m×n matrix. As a special case of [323], we have that if c1,c2, . . . ,
cn are independent uniform [0,1] random variables and x∗ is any member of P,
then E(Z)≤ m(max j x∗j). Karp’s result can easily be deduced from this.

The assignment problem can be generalized to multi-dimensional versions:
We replace the complete bipartite graph Kn,n by the complete k-partite hypergraph
K(k)

n with vertex partition V = V1 ⊔V2 ⊔ ·· · ⊔Vk where each Vi is of size n. We
give each edge of K(k)

n an independent exponential mean one value. Assume for
example that k = 3. In one version of the 3-dimensional assignment problem we
ask for a minimum weight collection of hyper-edges such that each vertex v ∈ V
appears in exactly one edge. The optimal total weight Z of this collection satisfies

Z = Θ

(
1
n

)
w.h.p. (19.11)

(The upper bound uses the result of [529], see Section 22).
Frieze and Sorkin [415] give an O(n3) algorithm that w.h.p. finds a solution

of value 1
n1−o(1) .

In another version of the 3-dimensional assignment problem we ask for a min-
imum weight collection of hyper-edges such that each pair of vertices v,w ∈ V
from different sets in the partition appear in exactly one edge. The optimal total
weight Z of this collection satisfies

Ω(n)≤ Z ≤ O(n logn) w.h.p. (19.12)

(The upper bound uses the result of [323] to greedily solve a sequence of restricted
assignment problems).
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Further topics





Chapter 20

Resilience

Sudakov and Vu [822] introduced the idea of the local resilience of a monotone
increasing graph property P . Suppose we delete the edges of some graph H
on vertex set [n] from Gn,p. Suppose that p is above the threshold for Gn,p to
have the property. What can we say about the value ∆ so that w.h.p. the graph
G = ([n],E(Gn,p) \ E(H)) has property P for all H with maximum degree at
most ∆? We will denote the maximum ∆ by ∆P

In this chapter we discuss the resilience of various properties. In Section 20.2
we discuss the resilience of having a perfect matching. In Section 20.3 we discuss
the resileince of having a Hamilton cycle. In Section 20.4 we discuss the resilience
of the chromatic number.

20.1 Connectivity
We begin with a simple result. Let C denote the property of being connected.

Theorem 20.1. Suppose that np≫ logn. Then w.h.p. in Gn,p,
(1

2 − ε
)

np≤ ∆C ≤(1
2 + ε

)
np for any positive constant ε .

Proof. For the upper bound we partition [n] into A = {1,2, . . . ,⌊n/2⌋} and B =
[n]\A. The Chernoff bounds imply that each a ∈ A has (1+o(1))np/2 neighbors
in B. It is therefore possible for H to contain all A : B edges and then G will be
disconnected.

For the lower bound observe that w.h.p.

e(S : S̄)≥ k(n− k)p(1− ε/10) for every set S of k ≤ n/2 vertices (20.1)

Indeed,

Pr(¬(20.1))≤
n/2

∑
k=1

(
n
k

)
e−k(n−k)pε2/100 ≤

n/2

∑
k=1

(
ne1−npε2/200

k

)k

= o(1).
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Now suppose that H is not connected. Then there exist S with |S| ≤ n/2 such that
all edges between S and [n]\S are contained in H. But this means that

|S|(1/2− ε)np≥ |S|(n−|S|)p(1− ε/10)≥ |S|(n/2)p(1− ε/10),

contradiction.

20.2 Perfect Matchings
Sudakov and Vu [822] proved that if M denotes the property of having a perfect
matching then

Theorem 20.2. Suppose that n = 2m is even and that np≫ logn. Then w.h.p. in
Gn,p,

(1
2 − ε

)
np≤ ∆M ≤

(1
2 + ε

)
np for any positive constant ε .

Proof. The upper bound ∆M ≤
(1

2 + ε
)

np is easy to prove. Randomly partition
[n] into two subsets X ,Y of sizes m+ 1 and m− 1 respectively. Now delete all
edges inside X so that X becomes an independent set. Clearly, the remaining
graph contains no perfect matching. The Chernoff bounds, Corollary 27.7, imply
that we have deleted ≈ np/2 edges incident with each vertex.

The lower bound requires a little more work. Theorem 3.4 implies that w.h.p.
the minimum degree in G is at least (1−o(1))

(1
2 + ε

)
np. We randomly partition

[n] into two sets X ,Y of size m. We have that w.h.p.

PM1 dY (x)≳
(1

4 +
ε

2

)
np for all x ∈ X and dX(y)≳

(1
4 +

ε

2

)
np for all y ∈ Y .

PM2 e(S,T )≤
(
1+ ε

3

) np
4 |S| for all S⊆ X ,T ⊆ Y, |S|= |T | ≤ n/4.

Property PM1 follows immediately from the Chernoff bounds, Corollary 27.7,
and the fact that dG(v)≳

(1
2 + ε

)
np≫ logn.

Property PM2 is derived as follows:

Pr
(
∃S,T : e(S,T )≥ |S|

(
1+

ε

3

) np
4

)
≤

n/4

∑
s=1

(
n
s

)2

e−4ε2snp/27

≤
n/4

∑
s=1

(
n2e2−4ε2np/27

s2

)s

= o(1).

Given, PM1, PM2, we see that if there exists S⊆ X , |S| ≤ n/4 such that |NX(S)| ≤
|S| then for T = NX(S),(

1
4
+

ε

2

)
np|S|≲ e(S,T )≤

(
1+

ε

3

) np
4
|S|,

contradiction. We finish the proof that Hall’s condition holds, i.e. deal with |S|>
n/4 just as we did for |S|> n/2 in Theorem 6.1.
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20.3 Hamilton Cycles
Sudakov and Vu [822] proved that if np≫ log4 n and H denotes the Hamil-
tonicity property, then w.h.p. ∆H =

(1
2 −o(1)

)
np. This is the optimal value for

∆H but a series of papers culminating in the following theorem due to Lee and
Sudakov.

Theorem 20.3. If np≫ logn, then w.h.p. ∆H =
(1

2 −o(1)
)

np.

Going even further, Montgomery [689] and Nenadov, Steger and Trujić [714]
have given tight hitting time versions. The proofs in these papers rely on the use of
Pósa rotations, as in Chapter 6. Some recent papers have introduced the use of the
absorbing method from extremal combinatorics to related problems. The method
was initiated by Rödl, Ruciński and Szemerédi [770]. Our purpose in this section
is to give an example of this important technique. Our exposition closely follows
the paper of Ferber, Nenadov, Noever, Peter and Trujić [357]. They consider the
resilience of Hamiltonicity in the context of random digraphs, but their proof can
be adapted and simplified when considering graphs. Their proof in turn utilises
ideas from Montgomery [689].

Theorem 20.4. Suppose that p≥ log10 n
n . Then w.h.p. in Gn,p,(

1
2
− ε

)
np≤ ∆H ≤

(
1
2
+ ε

)
np

for any positive constant ε .

From our previous remarks, we can see that log10 n is not optimal. The proof
we give can be tightened, but probably not down to logn. The proof of Theorem
20.4 takes up the remainder of this section.

The proof of the upper bound is essentially the same as for Theorem 20.2.
After making X independent, there is no possibility of a Hamilton cycle.

The lower bound requires more work.

A pseudo-random condition
We say that a graph G = (V,E) with |V |= n is (n,α, p)-pseudo-random if

Q1 dG(v)≥
(1

2 +α
)

np for all v ∈V (G).

Q2 eG(S)≤ |S| log3 n for all S⊆V, |S| ≤ 10log2 n
p .

Q3 eG(S,T )≤
(
1+ α

4

)
|S||T |p for all disjoint S,T ⊆V , |S|, |T | ≥ log2 n

p .
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Lemma 20.5. Let α be an arbitrary small positive constant. Suppose that p ≥
log10 n

n . Let H be a subgraph of G = Gn,p with maximum degree
(1

2 −3α
)

np and
let G =G−H. Then w.h.p. G is (n,α, p)-pseudo-random.

Proof. Q1: This follows from the fact that w.h.p. every vertex of Gn,p has degree
(1+o(1))np, see Theorem 3.4(ii).

Q2: We show that this is true w.h.p. in G and hence in G. Indeed,

P
(
∃S : eG(S)≥ |S| log3 n and |S| ≤ 10log2 n

p

)
≤

10p−1 log2 n

∑
s=logn

(
n
s

)( (s
2

)
s log3 n

)
ps log3 n ≤

10p−1 log2 n

∑
s=logn

(
ne
s

(
sep

2log3 n

)log3 n
)s

≤

10p−1 log2 n

∑
s=logn

(
ne
s

(
5e

logn

)log3 n
)s

= o(1).

Q3: We show that this is true w.h.p. in G and hence in G. We first note that
the Chernoff bounds, Corollary 27.7, imply that

P
(

eG(S,T )≥
(

1+
α

4

)
|S||T |p

)
≤ e−α2|S||T |p/50.

So,

P
(
∃S,T : |S|, |T | ≥ log2 n

p
and eG(S,T )≥ (1+α)|S||T |p

)
≤

n

∑
s,t=p−1 log2 n

(
n
s

)(
n
t

)
e−α2st p/50≤

n

∑
s,t=p−1 log2 n

(
ne1−α2t p/100

s

)s(
ne1−α2sp/100

t

)t

≤

n

∑
s,t=p−1 log2 n

(
ne1−α2 log2 n/100

s

)s(
ne1−α2 log2 n/100

t

)t

≤

 n

∑
s=p−1 log2 n

(
ne1−α2 log2 n/100

s

)s
2

= o(1).

Pseudo-random implies Hamiltonian
The rest of this section is devoted to the proof that if G = ([n],E) is (n,α, p)-
pseudo-random then G is Hamiltonian.
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We randomly partition [n] into sets let Vi, i = 1,2, . . . ,5 such that

|V1|=
⌈

4log3 n
p

⌉
, |Vi|=

αn
5(1+2α)

, i = 2,3,4

so that

|V5|=
5+7α

5+10α
n−O

(
n

log7 n

)
≈ 5+7α

5+10α
n.

The number of neighbors of v in Vi is distributed as the binomial
Bin(dG(v), |Vi|/n). Thus for all v ∈ [n] we have, using our assumption that np ≥
log10 n,

E(dVi(v)) =
|Vi|
n

dG(v)≥
(

1
2
+α

)
|Vi|p≥

(
1
2
+α

)
np

log2 n
≫ logn

and so the Chernoff bounds imply that w.h.p.

dVi(v)≳
(

1
2
+α

)
|Vi|p for all v ∈ [n] (20.2)

The proof now rests on two lemmas: the following quantities are fixed for the
remainder of the proof:

ℓ= 12⌈logn⌉+3 and t =
⌈

4log3 n
p

⌉
(20.3)

Lemma 20.6. [Connecting Lemma] Let {ai,bi} , i = 1,2, . . . , t be a family of pairs
of vertices from [n] with ai ̸= a j and bi ̸= b j for every distinct i, j ∈ [t], (ai = bi is
allowed). Let L =

⋃t
i=1 {ai,bi}. Assume that K ⊆ [n]\L is such that

C1 |K| ≫ ℓt log t.

C2 For every v ∈ K∪L we have |dK(v)|≳
(1

2 +α
)

p|K|.

Then there exist t internally disjoint paths P1,P2, . . . ,Pt such that Pi connects ai to
bi and V (Pi)\{ai,bi} ⊆ K. Furthermore, each path is of length ℓ.

Lemma 20.7. [Absorbing Lemma] There is a path P∗ with V (P∗) ⊆ V2∪V3∪V4
such that for every W ⊆V1 there is a path P∗W such that V (P∗W ) =V (P∗)∪W and
such that P∗ and P∗W have the same endpoints.

With these two lemmas in hand, we can show that G is Hamiltonian. Let P∗

be as in Lemma 20.7 and let U = (V2∪V3∪V4∪V5)\V (P∗). If v ∈U then
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dU(v)≥ dV5(v)≳
(

1
2
+α

)
|V5|p

≳

(
1
2
+α

)
5+7α

5+10α
np≥

(
1
2
+

3α

4

)
|U |p. (20.4)

Next let k =
⌊
|U | log5 n

n

⌋
and s =

⌊
n

log5 n

⌋
. Randomly choose disjoint sets

S1,S2, . . . ,Sk ⊆ U of size s and let S =
⋃k

i=1 Si and S′ = U \ S. It follows from
(20.4) and the Chernoff bounds and the fact that

E(dSi(v)) =
|Si|dU(v)
|U |

≳

(
1
2
+

3α

4

)
|Si|p≫ logn

that w.h.p.

dSi(v)≥
(

1
2
+

α

2

)
|Si|p for all i ∈ [k],v ∈U. (20.5)

Claim 6. Assuming (20.5), we see that there is a perfect matching Mi between
Si,Si+1 for 1≤ i < k.

We prove the claim below. The matchings M1,M2, . . . ,Mk−1 combine to give
us s vertex disjoint paths Qi from S1 to Sk for i = 1,2, . . . ,s. Together with a 0-
length path for each v ∈ |S′| we have t ′ = s+ |S′| ≤ 2s internally disjoint paths Qi
from xi to yi, i = 1,2, . . . , t ′ that cover U . Now let t = t ′+1 and suppose that xt ,yt
are the endpoints of P∗. Applying Lemma 20.6 with K =V1 and ai = yi,bi = xi+1
for i ∈ [t] we obtain a cycle C = (Q1,P1,Q2,P2, . . . ,Qt ′,P∗,Pt) (here xt+1 = x1)
that covers V2∪V3∪V4∪V5, see Figure 20.1. Putting W =V1 \V (C) and using the
fact that P∗ ⊆C, we can use Lemma 20.7 to extend C to a Hamilton cycle of G.

Proof of Claim 6
Fix i and now consider Hall’s theorem. We have to show that
|N(X ,Si+1)| ≥ |X | for X ⊆ Si.
Case 1: |X | ≤ 10p−1 log2 n. Let Y = N(X ,Si+1) and suppose that |Y | < |X |. We
now have

eG(X ∪Y )≥
(

1
2
+

α

2

)
|X ||Si|p ≳

|X ∪Y | log5 n
4

,

which contradicts Q2.
Case 2: 10p−1 log2 n≤ |X | ≤ s/2. In this case we have

eG(X ,Y )≥
(

1
2
+

α

2

)
|Si||X |p≥

(
1
2
+

α

2

)
|X ||Y |p,

which contradicts Q3. (If |Y |< p−1 log2 n then we can add arbitrary vertices from
Si+1 \Y to Y so that we can apply Q3.)



20.3. Hamilton Cycles 449

P∗

Q1

Q2

Qs

x1 y1

x2 y2

xs ys

xt ′ = yt ′

xt yt

P1

P2

Qt ′

Pt ′−1xs+1

Pt

Figure 20.1: Cycle C = (Q1,P1,Q2,P2, . . . ,Qt ′,P∗,Pt)

The case |X |> s/2 is dealt with just as we did for |S|> n/2 in Theorem 6.1. This
completes the proof of Claim 6.
End of proof of Claim 6

Proof of Lemma 20.6

We begin with some lemmas on expansion. For sets X ,Y and integer ℓ, let Nℓ
G(X ,Y )

be the set of vertices y ∈ Y for which there exists x ∈ X and a path P of length ℓ
from x to y such that V (P)\{x} ⊆ Y . We let NG(X ,Y ) = N1

G(X ,Y ) denote the set
of neighbors of X in Y . The sets X ,Y need not be disjoint in this definition.

Lemma 20.8. Suppose that X ,Y ⊆ [n] are (not necessarily disjoint) sets such that
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|X |=
⌊

log2 n
p

⌋
, |Y | ≥ 3log3 n

α p and that |NG(x,Y )| ≥
(1

2 +
α

2

)
p|Y | for all x ∈ X. Then

|NG(X ,Y )| ≥
(

1
2
+

α

3

)
|Y |. (20.6)

Proof. Let Z = X ∪NG(X ,Y ). We have

eG(Z)≥ ∑
x∈X

NG(x,Y )− eG(X)≥
(

1
2
+

α

2

)
p|X ||Y |− |X | log3 n≥(

3
2α

+
3
2

)
|X | log3 n =

(
3

2α
+

3
2

)
|X |
|Z|

log3 n · |Z|

If |Z|< 10log2 n
p then we see that eG(Z)≳ 3

20α
log3 n. This contradicts Q2 for small

α and so we can assume that |Z| ≥ 10log2 n
p and therefore |NG(X ,Y )| ≥ 9log2 n

p . On
the other hand, if (20.6) fails then from Q3 we have(

1
2
+

α

2

)
p|X ||Y | ≤ eG(X ,Y \X)+2eG(X)≤

eG(X ,Y \X)+2|X | log3 n≤
(

1+
α

4

)
|X |
(

1
2
+

α

3

)
|Y |p+2|X | log3 n,

contradiction.

Lemma 20.9. Suppose that X ,Y ⊆ [n] are disjoint sets such that

D1 |Y | ≥ 3log3 n
α p .

D2 |NG(X ,Y )| ≥ 2log2 n
p .

D3 |NG(S,Y )| ≥
(1

2 +
α

4

)
|Y | for all S⊆ Y, |S| ≥ log2 n

p .

Then there exists x ∈ X such that |Nℓ
G(x,Y )| ≥

(1
2 +

α

8

)
|Y |

Proof. We first show that there exists x ∈ X such that |Nℓ−1
G (x,Y )| ≥ 2log2 n

p . For
this we use the following claim:

Claim 7. Let i < ℓ and A⊆ X be such that |Ni
G(A,Y )| ≥

2log2 n
p . Then there exists

A′ ⊆ A such that |A′| ≤ ⌈|A|/2⌉ and |Ni+1
G (A′,Y )| ≥ 2log2 n

p .
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We prove the claim below. Using D2 and the claim ℓ− 2 times, we obtain a set
X ′ ⊆ X such that |X ′| ≤

⌈
|X |/2ℓ−2⌉ and |Nℓ−1

G (X ′,Y )| ≥ 2log2 n
p . But ℓ−2≥ log2 n

and so we have |X ′|= 1. Let X ′ = {x} and M ⊆ NG(x,Y ) be of size
⌈

log2 n
p

⌉
.

By definition, there is a path Pw of length ℓ− 1 from x to each w ∈M. Let V ∗ =
(
⋃

w∈M V (Pw))\{x}. Then D2 and D3 imply

|Nℓ
G(x,Y )| ≥ |NG(M,Y \V ∗)| ≥

(
1
2
+

α

4

)
|Y |− ℓ|M| ≥

(
1
2
+

α

8

)
|Y |.

Proof of Claim 7
First note that if A1,A2 is a partition of A with |A1|= ⌈|A|/2⌉ then we have

|Ni
G(A1,Y )|+ |Ni

G(A2,Y )| ≥ |Ni
G(A,Y )| ≥

2log2 n
p

.

We can assume therefore that there exists A′⊆A, |A′| ≤ ⌈|A|/2⌉ such that |Ni
G(A

′,Y )| ≥
log2 n

p .

Choose B⊆Ni
G(A

′,Y ), |B|=
⌈

log2 n
p

⌉
. Then D3 implies that |NG(B,Y )| ≥

(1
2 +

α

4

)
|Y |.

Each v ∈ B is the endpoint of a path Pv of length i from a vertex in A′. Let
V ∗ =

⋃
v∈BV (Pv). Then,

|Ni+1
G (A′,Y )| ≥ |NG(B,Y )|− |V ∗| ≥

(
1
2
+

α

4

)
|Y |− ℓ|B| ≥ 2log2 n

p
.

End of proof of Claim 7
We are now ready to prove an approximate version of Lemma 20.6. Let t, ℓ be as
in (20.3).

Lemma 20.10. Let {ai,bi}, i = 1,2, . . . , t be a family of pairs of vertices from [n]
with ai ̸= a j and bi ̸= b j for every distinct i, j ∈ [t]. Furthermore, let RA,RB ⊆
[n]\

⋃t
i=1 {ai,bi} be disjoint and such that

E1 |RA|, |RB| ≥ 48tℓ
α

.

E2 For Z = A,B, |NG(S,RZ)| ≥
(1

2 +
α

4

)
|RZ| for all S ⊆ RA ∪RB ∪

⋃t
i=1 {ai,bi}

such that |S| ≥ log2 n
p .

Then there exists a set I ⊆ [t], |I|= ⌊t/2⌋ and internally disjoint paths Pi, i∈ I such
that Pi connects ai to bi and V (Pi)\{ai,bi} ⊆ RA∪RB.



452 Chapter 20. Resilience

Proof. We prove this by induction. Assume that we have found s < ⌊t/2⌋ paths
Pi from ai to bi for i ∈ J ⊆ I, |J|= s. Then let

R′A = RA \
⋃
i∈J

V (Pi), R′B = RB \
⋃
i∈J

V (Pi).

Choose hA,hB ≥ 2logn so that hA +hB +1 = ℓ.

Claim 8. There exists i ∈ K = [t]\ J such that

|NhA
G (ai,R′A)| ≥

(
1
2
+

α

8

)
|R′A| and |NhB

G (bi,R′B)| ≥
(

1
2
+

α

8

)
|R′B|.

We verify Claim 8 below. Assume its truth for now. Let S = NhA
G (ai,R′A). Then

|S| ≥
(

1
2
+

α

8

)
(RA− sℓ)≥

(
1
2
+

α

8

)
47tℓ

α
≥ log2 n

p
.

Now from E2 we obtain

|NhA+1
G (ai,R′B)| ≥ |NG(S,R′B)|− ℓ≥ |NG(S,RB)|− tℓ

≥
(

1
2
+

α

4

)
|RB|− tℓ≥

(
1
2
+

α

8

)
|RB| ≥

(
1
2
+

α

8

)
|R′B|.

Now from Claim 8 we have that |NhB
G (bi,R′B)| ≥

(1
2 +

α

8

)
|R′B| and so

NhA+1
G (ai,R′B)∩NhB

G (bi,R′B) ̸= /0 and there is a path as claimed.
It only remains to prove Claim 8. Assume inductively that we have found v1,v2, . . . ,vk ∈
{ai : i ∈ K} such that |NhA

G (vi,R′A)| ≥
(1

2 +
α

16

)
|R′A| for i ∈ [k]. The base case is

k = 0. We apply Lemma 20.9 with Y = R′A and X = {ai : i ∈ K}\{v1,v2, . . . ,vk}.
We check that the lemma’s conditions are satisfied. |R′A| ≥

48tℓ
α
− tℓ≥ 47ℓ log3 n

α p and
so D1 is satisfied. On the other hand E2 implies that if S⊆ R′A∪{ai : i ∈ K} is of

size at least log2 n
p then

|NG(S,R′A)| ≥ |NG(S,RA)|− tℓ≥
(

1
2
+

α

4

)
|RA|− tℓ≥

(
1
2
+

α

8

)
|RA| ≫

log2 n
p

.

So, D3 is satisfied and also D2 if |X | ≥ log2 n
p i.e. if k ≤ t/2, completing the

induction. So, we obtain IA ⊆ [t], |IA|= ⌊t/2⌋+1 such that

|NhA(ai,R′A)| ≥
(

1
2
+

α

8

)
|R′A| for i ∈ IA.

A similar argument proves the existence of IB ⊆ [t], |IB| = ⌊t/2⌋+ 1 such that
|NhB(bi,R′B)| ≥

(1
2 +

α

8

)
|R′B| for i∈ IB and the claim follows, since IA∩ IB ̸= /0 and

we can therefore choose i ∈ IA∩ IB.
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Completing the proof of Lemma 20.6
We now define some parameters that will be used for the remainder of the proof:

m = ⌈log2 t⌉+1, si = 2t, i ∈ [2m], s2m+1 = s2m+2 =
|K|
4
, k = 2m+2.

We randomly choose disjoint sets Si ⊆ K, |Si| = si, i ∈ [k]. The Chernoff bounds
and C2 imply that w.h.p.

|NG(v,Si)| ≥
(

1
2
+

α

2

)
psi for v ∈ K∪L, i ∈ [k]. (20.7)

We prove the following lemma at the end of this section:

Lemma 20.11. Given sets [t] = I1 ⊇ I2 ⊇ ·· · Im such that |I j| =
⌈
|I j−1|/2

⌉
, G

contains complete binary trees TA(i),TB(i), i ∈ [t] such that

F1 The depth of TA(i),TB(i), i ∈ Is is s−1.

F2 TA(i) is rooted at ai and TB(i) is rooted at bi for i ∈ [t].

F3 The vertices TA(i, j) at depth j ∈ [0,m] in TA(i) are contained in S j.

F4 The vertices TB(i, j) at depth j ∈ [0,m] in TB(i) are contained in Sm+ j.

F5 The trees are vertex disjoint.

Assuming the truth of the lemma, we proceed as follows. We repeatedly use
Lemma 20.10 to find vertex disjoint paths. We first find ⌊t/2⌋ paths P1 of length
ℓ from ai to bi for i∈ J1. We then let I2 = I1 \J1 and construct the trees TA(i),TB(i)
for i ∈ I2 and then use Lemma 20.10 once more to find |I2| vertex disjoint paths
Q2 of length ℓ− 2 from TA(i,1) to TB(i,1) for i ∈ I2. We can now select at least
half of the Q2 to make ⌈|I2|/2⌉ paths P2 from ai to bi for i ∈ J2 and then let
I3 = I2 \ J2. We repeat this process until we have constructed the required set of
paths.
We now check that Lemma 20.10 can be applied as claimed. To simplify notation
we use the convention that

TA(i, j) = TB(i, j) = /0 for i ∈
j⋃

l=1

Il.

With this convention, we let

Ms = K
∖(( t⋃

i=1

s−1⋃
j=1

(TA(i, j)∪TB(i, j))

)
∪

(
s−1⋃
i=1

⋃
Q∈Qi

V (Q)

))
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and then in round s we apply Lemma 20.10 with ai,bi, i = 1,2, . . . , t replaced by
x j,y j, j = 1,2, . . . , t where the x j are made up of the TA(i,s) for i ∈ Is and the y j
are made up of the TB(i,s) for i ∈ Is and

RA = S2m+1 \Ms and RB = S2m+2 \Ms.

Thus

|RA| ≥
|K|
4
−O

(
t

∑
i=1

s−1

∑
j=1

t
2 j ·2

jℓ

)
=
|K|
4
−O(ℓt log t)≥ |K|

5
≫ ℓt log t,

and similarly for |SB| and so E1 holds.
Now suppose that S ⊆ RA ∪RB ∪

⋃t
i=1
{

x j,y j
}

with |S| ≥ log2 n
p . We can apply

Lemma 20.8 with X = S and Y =RA because E1 holds and because of Assumption
C2 and (20.7). It follows that

|NG(S,RA)| ≥
(

1
2
+

α

3

)
|RA|

and similarly for RB and so E2 holds. It now follows from Lemma 20.10 that there
are ⌊t/2⌋ indices i for which there is a path from x j to y j and these yield at least
⌈t/2s⌉ indices Is and a path from ai to bi for i ∈ Is.
It remains only to prove Lemma 20.11.

Proof. Let VA(s) denote the endpoints of Qs in Ss. Because of (20.7), we can re-
duce this to the following: given a bipartite graph Γ with bipartion X =

{
x1,x2, . . . ,x⌊t/2⌋

}
⊆

Ss\VA(s), B= Ss+1 = {y1,y2, . . . ,y2t} and minimum degree at least
(1

2 +
α

2

)
psi+1≥

4log3 n and such that Q2, Q3 hold, there exists a partition of B into t pairs{
zi,1,zi,2

}
, i ∈ [t] such that both edges

{
xi,zi,l

}
, l = 1,2 exist in Γ. (The reader

can check that after each round, there are t/2 vertices that are leaves of the current
active trees, and need two neighbors to grow the tree. We say that a tree is active
if its root is not the endpoint of a path in Qs.)
We need to verify the following condition:

S⊆ A implies |NΓ(S,B)| ≥ 2|S|. (20.8)

Case 1: |S| ≤ 2log2 n
3p .

Let T = NΓ(S,B). If (20.8) fails then |S∪T | ≤ 2log2 n
p and eG(S∪T ) > |S| log3 n,

violating Q2.
Case 2: |S|> 2log2 n

3p .
If (20.8) fails then(

1
2
+

α

2

)
si|S|p≤ eG(S,T )≤ 2

(
1+

α

4

)
|S|2 p. (20.9)
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sx x

s1
x t1

x s2
x t2

x si
x t i

x s2k
x t2k

x

tx

Figure 20.2: The absorber for k1 = 3. The cycle Cx is drawn with solid lines. The
dashed lines represent paths. The part inside the rectangle can be repeated to make
larger absorbers.

The lower bound is from (20.7) and the upper bound in (20.9) is from Q3. Equa-
tion (20.9) is a contradiction, because si = 2t ≥ 4|S|.

Proof of Lemma 20.7
Let ℓx be an integer and Ax a graph with |V (Ax)|= ℓx+1. Ax is called an absorber
if there are vertices x,sx, tx such that Ax contains paths Px,P′x of lengths ℓx, ℓx− 1
from sx to tx such that x /∈V (P′x).

Let k, ℓ be integers and consider the graph Ax with 3+ 2k(ℓ+ 1) vertices con-
structed as follows:

S1 Ax contains a cycle Cx of length 4k+3, the solid lines in Figure 20.3.

S2 Ax contains 2k pairwise disjoint si
x, t

i
x paths, P1,P2, . . . ,P2k, each of which is of

length ℓ, the dashed lines in Figure 20.3.

Lemma 20.12. Ax is an absorber for vertex x.

Proof. We take

Px = sx,x,sx
1,P1, tx

1,s
2
x ,P2, . . . , t2k

x , tx.

P′x = sx,s2
x ,P2, t2

x ,s
4
x ,P4, . . . ,s2k

x ,P2k, t2k
x ,s1

x ,P1, t1
x ,s

3
x ,P3, . . . , t2k−1

x , tx.

We first apply Lemma 20.6 to find Cx,x∈V1. We let L =V1 and let ai = bi = x, x∈
V1. We let K = V2 and k = 3⌈logn⌉ so that ℓ = 4k+ 3. The lemma is applicable
as |K|= αn

5(1+2α) ≫ ℓt log t and (20.2) implies that C2 holds.
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We next apply Lemma 20.6 to connect ai = si
x to bi = t i

x by a path of length ℓ
for i ∈ [2k],x ∈ V1. We let K = V3 and note that |K| = αn

5(1+2α) ≫ ℓt log t and that
(20.2) implies that C2 holds, once more.
At this point we have paths Px,P′x for x∈V1. We finally construct P∗, using Lemma
20.6 to connect the paths P′x,x ∈V1. We let t = h−1 where V1 = {x1,x2, . . . ,xh}.
We take ai = txi and bi = sxi+1 for i ∈ [h−1] and K =V4.
It is easy to see that this construction has the desired property. Where necessary,
we can absorb x ∈V1 by replacing P′x by Px.

20.4 The chromatic number
In this section we consider adding the edges of a fixed graph H to Gn,p. We
examine the case where p is constant and where ∆ = ∆(H) is sufficiently small.
We will see that under some circumstances, we can add quite a few edges without
increasing the chromatic number by very much.

Theorem 20.13. Suppose that H is a graph on vertex set [n] with maximum degree
∆ = no(1). Let p be constant and let G =Gn,p +H. Then w.h.p. χ(G)≈ χ(Gn,p),
for all choices of H.

Proof. We first observe that

W.h.p. every set of t ≤ n
10log2 n

vertices, spans fewer than

2npt
log2 n

edges of Gn,p. (20.10)

Indeed,

Pr(∃ a set negating (20.10))≤
n/10log2 n

∑
t=2np/ log2 n

(
n
t

)( (t
2

)
2npt/ log2 n

)
p2npt/ log2 n

≤
n/10log2 n

∑
t=2np/ log2 n

(ne
t

)t
(

t2ep log2 n
4npt

)2npt/ log2 n

≤

n/10log2 n

∑
t=2np/ log2 n

(
ne
t
·
( te

4n

)2np/ log2 n
)t

= o(1).

We let s = 20∆ log2 n and randomly partition [n] into s sets V1,V2, . . . ,Vs of size
n/s. Let Y denote the number of edges of H that have endpoints in the same set of
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the partition. Then E(Y ) ≤ |E(H)|
s ≤ ∆n

2s . Therefore, by the Markov inequality, at
least one half of partitions have Y ≤∆n/s. So, if we choose logn random partitions
then w.h.p. at least one will satisfy Y ≤ ∆n/s. Furthermore, it follows from (7.21),
that w.h.p. the subgraphs Gi of Gn,p induced by each Vi have chromatic number
≈ n/s

2logb(n/s) . Indeed, this will be true for all logn partitions.
Given V1,V2, . . . ,Vs, we color G as follows: we color the edges of Gi with ≈

n/s
2logb(n/s) colors, using different colors for each set and ≈ n

2logb(n/s) ≈
n

2logb(n)
≈

χ(Gn,p) colors overall. We must of course deal with the at most Y edges that could
be improperly colored. Let W denote the endpoints of these edges. Then |W | ≤

n
10log2 n

. It follows from (20.10) that we can write W = {w1.w2, . . . ,wm} such that

wi has at most 2np
log2 n

+∆ neighbors in {w1,w2, . . . ,wi−1} i.e. the coloring number

of the subgraph of Gn,p induced by W is at most 2np
log2 n

+∆. It follows that we can

re-color the Y badly colored edges using at most 2np
log2 n

+∆+1 = o(χ(Gn,p)) new
colors.

20.5 Exercises
20.5.1 Prove that if p≥ (1+η) logn

n for a postive constant η then ∆C ≥
(1

2 − ε
)

np,
where C denotes connectivity. (See Haller and Trujić [461].)

20.5.2 Show that for every ε > 0 there exists cε > 0 such that the following is true
w.h.p. If c≥ cε and p = c/n and we remove any set of at most (1−ε)cn/2
edges from Gn,p, then the remaining graph contains a component of size
at least εn/4.

20.6 Notes
Sudakov and Vu [822] were the first to discuss local resilience in the context of
random graphs. Our examples are taken from this paper except that we have given
a proof of hamiltonicity that introduces the absorbing method.

Hamiltonicity

Sudakov and Vu proved local resilience for p ≥ log4 n
n and ∆H = (1−o(1))np

2 . The
expression for ∆H is best posible, but the needed value for p has been lowered.
Frieze and Krivelevich [399] showed that there exist constants K,α such that
w.h.p. ∆H ≥ αnp for p ≥ K logn

n . Ben-Shimon, Krivelevich and Sudakov [97]
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improved this to α ≥ 1−ε

6 holds w.h.p. and then in [98] they obtained a result
on resilience for np− (logn+ log logn)→ ∞, but with K close to 1

3 . (Vertices
of degree less than np

100 can lose all but two incident edges.) Lee and Sudakov
[617] proved the sought after result that for every positive ε there exists C =C(ε)

such that w.h.p. ∆H ≥ (1−ε)np
2 holds for p≥ C logn

n . Condon, Espuny Dı́az, Kim,
Kühn and Osthus [239] refined [617]. Let H be a graph with degree sequence
d1 ≥ d2 ≥ ·· · ≥ dn where di ≤ (n− i)p− εnp for i < n/2. They say that G is
ε-Pósa-resilient if G−H is Hamiltonian for all such H. Given ε > 0 there is a
constant C =C(ε) such that if p≥ C logn

n then Gn,p is ε-Pósa-resilient w.h.p. The
result in [617] has now been improved to give a hitting time result, see Mont-
gomery [689] and Nenadov, Steger and Trujić [714]. The latter paper also proves
the optimal resilience of the 2-core when p = (1+ε) logn

3n .
Fischer, Škorić, Steger and Trujić [361] have shown that there exists C > 0 such
that if p≥ C log3 n

n1/2 then not only is there the square of a Hamilton cycle w.h.p., but
containing a square is resilient to the deletion of not too many triangles incident
with each vertex.
Krivelevich, Lee and Sudakov [593] proved that G = Gn,p, p≫ n−1/2 remains
pancyclic w.h.p. if a subgraph H of maximum degree (1

2 − ε)np is deleted, i.e.
pancyclicity is locally resilient. The same is true for random regular graphs when
r≫ n1/2.
Hefetz, Steger and Sudakov [478] began the study of the resilience of Hamiltonic-
ity for random digraphs. They showed that if p≫ logn

n1/2 then w.h.p. the Hamil-
tonicity of Dn,p is resilient to the deletion of up to (1

2 − o(1))np edges incident

with each vertex. The value of p was reduced to p≫ log8 n
n by Ferber, Nenadov,

Noever, Peter and Škorić [357]. Finally, Montgomery [691] proved that in the ran-
dom digraph process, at the hitting time for Hamiltonicity, the property is resilient
w.h.p.



Chapter 21

Extremal Properties

A typical question in extremal combinatorics can be viewed as “how many edges
of the complete graph (or hypergraph) on n vertices can a graph have without
having some property P”. In recent years research has been carried out where
the complete graph is replaced by a random graph.

21.1 Containers

Ramsey theory and the Turán problem constitute two of the most important areas
in extremal graph theory. For a fixed graph H we can ask how large should n be
so that in any r-coloring of the edges of Kn can we be sure of finding a monochro-
matic copy of H – a basic question in Ramsey theory. Or we can ask for the
maximum α > 0 such that we take an α proportion of the edges of Kn without
including a copy of H – a basic question related to the Turán problem. Both of
these questions have analogues where we replace Kn by Gn,p.

There have been recent breakthroughs in transferring extremal results to the
context of random graphs and hypergraphs. Conlon and Gowers [241], Schacht
[793], Balogh, Morris and Samotij [69] and Saxton and Thomason [791] have
proved general theorems enabling such transfers. We make use of a new short
proof of the container theorem due to Nenadov and Pham [710]. Our exposition
has been much improved by the comments of Robert Krueger [610].

In this section, we present a special case of Theorem 2.3 of [791] that will
enable us to deal with Ramsey and Turán properties of random graphs. For a
graph H with e(H)≥ 2 we let

m2(H) = max
H ′⊆H,e(H ′)>1

e(H ′)−1
v(H ′)−2

. (21.1)
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Next let

π(H) = lim
n→∞

ex(n,H)(n
2

) (21.2)

where as usual, ex(n,H) is the maximum number of edges in an H-free subgraph
of Kn.

Theorem 21.1. For every ε > 0 there exists h > 0 such that the following holds:
Let H be a graph with e(H)≥ 2. Then for every H-free graph I there exist graphs
C,F such that C =C(F) and F ⊆ I ⊆C such that

(i) |F | ≤ hn2−1/m2(H).

(ii) For every graph C, the number of copies of H in C is at most εnv(H).

(iii) For every graph C, e(C)≤ (π(H)+ ε)
(n

2

)
.

(Note that Proposition 21.13 below means that we only need to verify (ii).)
We prove Theorem 21.1 in Section 21.4. But first we give a couple of examples

of the use of this theorem.

21.2 Ramsey Properties
The investigation of the Ramsey properties of Gn,p was initiated by Łuczak, Ruciński
and Voigt [645]. Later, Rödl and Ruciński [769], [772] proved that the following
holds w.h.p. for some constants 0 < c <C. Here H is some fixed graph containing
at least one cycle. Suppose that the edges of Gn,m are colored with r colors. If
m < cn2−1/m2(H) then w.h.p. there exists an r-coloring without a mono-chromatic
copy of H, while if m > Cn2−1/m2(H) then w.h.p. in every r-coloring there is a
monochromatic copy of H.

We will give a proof of the 1-statement based on Theorem 21.1. We will
closely follow the argument in a recent paper of Nenadov and Steger [711]. The
notation G→ (H)e

r means that in every r-coloring of the edges of G there is a copy
of H with all edges the same color. Rödl and Ruciński [772] proved the following

Theorem 21.2. For any graph H with e(H)≥ v(H) and r≥ 2, there exist c0,c1 > 0
such that

P(Gn,p→ (H)e
r) =

{
o(1) p≤ c0n−1/m2(H)

1−o(1) p≥ c1n−1/m2(H)

The density p0 = n−1/m2(H) is the threshold for every edge of Gn,p to be con-
tained in a copy of H. When p ≤ cp0 for small c, the copies of H in Gn,p will
be spread out and the associated 0-statement is not so surprising. We will use
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Theorem 21.1 to prove the 1-statement for p≥ c1 p0. The proof of the 0-statement
follows [711] and is given in Exercises 21.5.1 to 21.5.6.

We begin with a couple of lemmas:

Lemma 21.3. For every graph H and r ≥ 2 there exist constants α > 0 and n0
such that for all n≥ n0 every r-coloring of the edges of Kn contains at least αnv(H)

monochromatic copies of H.

Proof. From Ramsey’s theorem we know that there exists N = N(H,r) such that
every r-coloring of the edges of KN contains a monochromatic copy of H. Thus,
in any r-coloring of Kn, every N-subset of the vertices of Kn contains at least one
monochromatic copy of H. As every copy of H is contained in at most

(n−v(H)
N−v(H)

)
N-subsets, the theorem follows with α = 1/Nv(H).

From this we get

Corollary 21.4. For every graph H and every positive integer r there exist con-
stants n0 and δ ,ε > 0 such that the following is true: If n ≥ n0, then for any
E1,E2, . . . ,Er ⊆ E(Kn) such that for all 1≤ i≤ r the set Ei contains at most εnv(H)

copies of H, we have

|E(Kn)\ (E1∪E2∪·· ·∪Er)| ≥ δn2.

Proof. Let α and n0 be as given in Lemma 21.3 for H and r + 1. Further, let
Er+1 = E(Kn)\ (E1∪E2∪·· ·∪Er), and consider the coloring f : E(Kn)→ [r+1]
given by f (e) = mini∈[r+1] {e ∈ Ei}. By Lemma 21.3 there exist at least αnv(H)

monochromatic copies of H under coloring f , and so by our assumption on the
sets Ei,1 ≤ i ≤ r, Er+1 must contain at least αnv(H) copies. As every edge is
contained in at most e(H)nv(H)−2 copies and E1 ∪ E2 ∪ ·· ·Er contains at most
rεnv(H) copies of H, we see that Er+1 contains at least (α− rεe(H))nv(H) copies

of H. It follows that |Er+1| ≥ (α−rεe(H))nv(H)

e(H)nv(H)−2 and so the corollary follows with

δ = α−re(H)ε
e(H) . Here we take ε ≤ α

2re(H) .

Proof. We can now proceed to the proof of the 1-statement of Theorem 21.2. If
Gn,p ̸→ (H)e

r then there must exist a coloring f : E(Gn,p)→ [r] such that for all
1≤ i≤ r the set Ei = f−1(i) does not contain a copy of H. By Theorem 21.1 we
have that for every such Ei there exists Fi and a container Ci such that Fi ⊆ Ei ⊆Ci.
The crucial observation is that Gn,p completely avoids E0 = E(Kn) \ (C1 ∪C2 ∪
·· ·∪Cr), which by Corollary 21.4 and a choice of ε has size at least δn2.
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Therefore, we can bound P(Gn,p ̸→ (H)e
r) by the probability that there ex-

ist F = {F1, . . . ,Fr} and C = {Ci =C(Ti) : i = 1,2, . . . ,r} such that E0 is edge-
disjoint from Gn,p. Thus,

P((Gn,p ̸→ (H)e
r)≤ ∑

Fi,1≤i≤r
P(Ti ⊆Gn,p,1≤ i≤ r∧E(Gn,p)∩E0 = /0).

Note that the two events in the above probability are independent and can thus be
bounded by pa(1− p)b where a = |

⋃
i Ti| and b = δn2. The sum can be bounded

by first deciding on a≤ rhn2−1/m2(H) (h from Theorem 21.1) and then choosing a
edges (

((n
2)
a

)
choices) and then deciding for every edge in which Ti it appears (ra

choices). Thus,

P((Gn,p ̸→ (H)e
r)≤ e−δn2 p

rhn2−1/m2(H)

∑
a=0

((n
2

)
a

)
(rp)a

≤ e−δn2 p
rhn2−1/m2(H)

∑
a=0

(
en2rp

2a

)a

.

Recall that p = c1n−1/m2(H). By choosing c1 sufficiently large with respect to h
we get

rhn2−1/m2(H)

∑
a=0

(
en2rp

2a

)a

≤ n2
(erc1

2rh

)(rh/c1)n2 p

= n2
((ec1

2h

)2rh/c1δ
)δn2 p/2

≤ eδn2 p/2,

and thus P((Gn,p ̸→ (H)e
r) = o(1) as desired. Recall that (eA/x)x is unimodal with

a maximum at x = A and that c1 is large. This implies that n2rp/2> rhn2−1/m2(H),
giving the first inequality and

(ec1
2h

)2rh/c1δ
< e, giving the second inequality.

21.3 Turán Properties
Early success on the Turán problem for random graphs was achieved by Haxell,
Kohayakawa and Łuczak [472], [473], Kohayakawa, Kreuter and Steger [576],
Kohayakawa, Łuczak and Rödl [577], Gerke, Prömel, Schickinger and Steger
[428], Gerke, Schickinger and Steger [429], Łuczak [641]. It is only recently
that Turán’s theorem in its full generality has been transferred to Gn,p.

From its definition, every H-free graph with n vertices will have
(π(H)+o(1))

(n
2

)
edges. In this section we prove a corresponding result for ran-

dom graphs. Our proof is taken from [791], although Conlon and Gowers [241]
gave a proof for 2-balanced H and Schacht [793] gave a proof for general H.
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Theorem 21.5. Suppose that 0 < γ < 1 and H is not a matching. Then there exists
A > 0 such that if p ≥ An−1/m2(H) and n is sufficiently large then the following
event occurs with probability at least 1− e−γ3(n

2)p/384:

Every H-free subgraph of Gn,p has at most (π(H)+ γ)

(
n
2

)
p edges.

If H is a matching then m2(H) = 1/2 and then the lower bound on p in the
theorem is O(n−2) we would not be claiming a high probability result.

To prove the theorem, we first prove the following lemma:

Lemma 21.6. Given 0 < η < 1 and h ≥ 1, there is a constant ϕ = ϕ(η ,h) such
that the following holds: Let M be a set, |M| = N and let I ⊆ 2M. Let t ≥ 1,
ϕt/N ≤ p ≤ 1 and let ηN/2 ≤ d ≤ N. Suppose there exists C : 2M → 2M and
T ⊆

(M
≤t

)
such that for each I ∈ I there exists TI ∈ T such that TI ⊆ I and

CI = C(TI) ⊆ M, where |CI| ≤ d. Let X ⊆ M be a random subset where each
element is chosen independently with probability p. Then

P(∃I ∈I : |CI ∩X |> (1+η)pd and I ⊆ X)≤ e−η2d p/24. (21.3)

Proof. For T ∈T let ET be the event that

T ⊆ X and |C(T )∩X | ≥ (1+η)pd.

The event ET is contained in FT ∩GT where FT is the event that T ⊆ X and GT is
the event that |(C(T )\T )∩X | ≥ (1+η)d p−|T |. Since FT and GT are indepen-
dent, P(ET ) ≤ P(FT )P(GT ). Now |T | ≤ t ≤ N p/ϕ ≤ 2d p/ϕη ≤ ηd p/2 if ϕ is
large. So by the Chernoff bound, see Lemma 27.6,

P(GT )≤ P(Bin(d, p)≥ (1+η/2)d p)≤ e−η2d p/12.

Note that P(FT ) = p|T |. Let x = N p/t ≥ ϕ , so that t ≤ N p/x ≤ 2d p/ηx. If ϕ is
large we may assume that p(N− t)> t. So

∑
T
P(FT )≤

t

∑
i=0

(
N
i

)
pi ≤ 2

(
eN p

t

)t

= 2(xe)t ≤ 2(xe)2d p/ηx ≤ eη2d p/24,

if ϕ , and therefore x, is large. If there exists I ⊆ X , I ∈ I with |C(TI)∩X | ≥
(1+η)d p then the event ET holds. Hence the probability in (21.3) is bounded by

∑
T
P(FT )P(GT )≤ eη2d p/24e−η2d p/12 = e−η2d p/24.
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With this lemma in hand, we can complete the proof of Theorem 21.5.
Let I be the set of H-free graphs on vertex set [n]. We take M =

([n]
2

)
and

X = E(Gn,p) and N =
(n

2

)
. For I ∈I , let TI and h = h(H,ε) be given by Theorem

21.1. Each H-free graph I ∈ I is contained in CI and so if Gn,p contains an H-
free subgraph with (π(H)+ γ)N p edges then there exists I such that |X ∩CI| ≥
(π(H)+ γ)N p. Our aim is to apply Lemma 21.6 with

η =
γ

2
, d =

(
π(H)+

γ

4

)
N, t = hn2−1/m2(H).

The conditions of Lemma 21.6 then hold after noting that d ≥ ηN/2 and that
p ≥ An−1/m2(H) ≥ ϕt/N if A is large enough. Note also that |CI| ≤ d. Now
(1+η)d p≤ (π(H)+ γ)N p, and so the probability that the event in the statement
of the theorem fails to occur is bounded by

e−η2d p/24 ≤ exp
{
−γ3N p

384

}
completing the proof.

21.4 Containers and the proof of Theorem 21.1
Let V be a finite set. Given a subset X ⊆V , let ⟨X⟩= {S⊆V : X ⊆ S}. Throughout
this section we use V = V (H ) and N = |V |, where H is a given hypergraph. If
all edges in a hypergraph H have size at most ℓ, we say that H is an (≤ ℓ)-
graph. In an ℓ-graph or ℓ-uniform hypergraph, all edges are of size exactly ℓ. The
following is a re-arrangement of the proof due to Nenadov and Pham [710].

We say a probability measure µ over 2V is (p,K)-uniformly-spread if we have

µ(⟨X⟩)≤ K p|X |−1

N
for every non-empty X ⊆V . (21.4)

Remark 21.7. Note that if µ is the uniform distribution on the edges of H , then
µ(v) = deg(v)/|H |. Requiring this to be at most K/N is equivalent to the maxi-
mum degree being at most K times the average degree. Then the higher co-degrees
each shrink by a factor of p.

If S ⊆ V then H [C] is the sub-hypergraph ofH made up of the edges of H
that are contained in S.

Theorem 21.8. For every ℓ ∈ N and K,ε > 0 there exists h > 0 such that the
following holds. Suppose H is an (≤ ℓ)-graph, and let µ be (p,K)-uniformly-
spread measure over 2V , supported on H . Then for every independent set I ⊆
V (H ) there exist F ⊆ I ⊆C =C(F)⊆V such that
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(a) |F | ≤ hN p.

(b) µ(H [C])< ε .

Theorem 21.8 follows by iterated application of the following lemma, known
as the hypergraph container lemma.

Lemma 21.9. For every ℓ∈N and K > 1 there exists δ > 0 such that the following
holds. Suppose H is an (≤ ℓ)-graph, and let µ be a (p,K)-uniformly-spread
measure over 2V , supported on H . Then for every independent set I ⊆ V there
exists F ⊆ I ⊆C =C(F)⊆V such that

(a) |F | ≤ ℓN p.

(b) µ(C)≤ (1−δ ).

Moreover, C can be unambigously constructed from any F ⊆ F̂ ⊆ I.

Proof of Lemma 21.9. We prove the lemma by induction on ℓ. For ℓ = 1, take
F = /0 and C ⊆V to be the set of all vertices v ∈V with µ(v) = 0. As there are at
least N/K vertices with strictly positive measure, the lemma holds for δ = 1/K,
since (21.4) implies that µ(⟨x⟩) ≤ K/N. We now prove the lemma for ℓ ≥ 2.
Without loss of generality, we may assume |I| ≥ N p, since otherwise we can take
F = I =C.

Set F = /0 ⊆ I, L = /0 ⊆ 2V , and D ,H ′ = /0 ⊆H . Repeat the following for
N p rounds:

Step 1 Take v ∈ I \F to be a largest vertex with respect to µ(⟨v⟩ ∩R), where
R = H [V \ F ] \D (tie-breaking done in some canonical way, e.g. by
agreeing on the ordering of V ).
The larger the degree, the more vertices are ruled out from C.

Step 2 Add v to F .

Step 3 Set H ′ = H ′∪ (⟨v⟩∩R).

Step 4 For each X ∈ 2V \L of size |X | ≤ ℓ−1 such that

µ(⟨X⟩∩H ′)>
K p|X |

N
, (21.5)

add X to L and set D = D ∪ (⟨X⟩∩R).
We remove the edges of D from consideration so that hypergraph H ′′

below has a uniformly spread measure in Case 1, below. After whch we
can apply induction.
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After this we will construct C. There are two cases. Let α = 2−ℓ−2. If µ(H ′)
is large, then we can apply the inductive hypothesis to an appropriate (≤ ℓ− 1)-
graph, otherwise we can immediately find a small container C for which I ⊆C.

Case 1: µ(H ′)≥ α p.

As µ is (p,K)-uniformly-spread the value µ(⟨X⟩∩H ′) increases by at most
µ(⟨X ∪{v}⟩) ≤ K p|X |/N after adding a vertex v to F . Once a subset X satisfies
(21.5) no more hyperedges which contain X are added to H ′, thus at the end of
the process we have

µ(⟨X⟩∩H ′)≤ 2K p|X |

N
, (21.6)

for every X ⊆V of size |X | ≤ ℓ−1. Second, given F ⊆ F̂ ⊆ I, we can reconstruct
F from F̂ together with the order in which the vertices were added, thus we can
also reconstruct H ′ and R.

Let H ′′ denote the (≤ ℓ−1)-graph consisting of sets X such that X = H ′ \F
for some H ′ ∈H ′. Set µ ′ to be the probability measure over 2V\F given by

µ
′(X) ∝

{
µ((X ∪2F)∩H ′), if X ∈H ′′,

0, otherwise.

From (21.6) and µ(H ′) ≥ α p we conclude that µ ′ is (2Kα−1, p)-uniformly-
spread. Also observe that I is an independent set in H ′′, (if X ′′⊆ I then X ′′∪F ⊆ I
and so I contains an edge of H ′ ⊆H ) thus by the induction hypothesis there ex-
ists F ′ ⊆V of size |F ′| ≤ (ℓ−1)N p and C =C(F ′) such that |C| ≤ (1−δ )N and
I ⊆C. Note that we can reconstruct C from F := F ∪F ′.

Case 2: µ(H ′)< α p.
First we show that

µ(D)≤ 2ℓµ(H ′)

p
. (21.7)

Indeed, for each e∈D there exists X ∈L such that e∈ ⟨X⟩. Thus, ∑X∈L µ(⟨X⟩)≥
µ(D). On the other hand, we have by (21.5) that

∑
X∈L

µ(⟨X⟩∩H ′)> ∑
X∈L

K p|X |

N
≥ p ∑

X∈L
µ(⟨X⟩).

Here in the last inequality we use that µ is (p,K)-uniformly spread. Furthermore,
each edge e in H ′ may contribute to at most 2ℓ terms µ(⟨X⟩∩H ′). Hence,

µ(H ′)≥ 2−ℓ ∑
X∈L

µ(⟨X⟩∩H ′)> 2−ℓpµ(D),
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as claimed in (21.7).
Next, we show that

µ(H ′)≥ (N p) max
v∈I\F

µ(⟨v⟩∩R). (21.8)

Let Ri denote the hypergraph R at the moment when the i-th vertex vi was added
to F (thus R = R|F |). We observe that, since R is non-increasing and by our
choice of v in each step,

µ(H ′)≥
|F |

∑
i=1

µ(⟨vi⟩∩Ri)≥
|F |

∑
i=1

max
v∈I\F

µ(⟨v⟩∩R|F |),

yielding (21.8).
By (21.7), we have µ(D)< 1/4 and hence µ(R)≥ µ(H )−µ(H ′)−µ(D)>

1/2. By (21.8), for every v ∈ I \F we have

µ(⟨v⟩∩R)≤ α/N. (21.9)

Let now B ⊆ V \F denote the set of all v ∈ V \F such that µ(⟨v⟩∩R) ≤ α/N.
By (21.9) we have I \F ⊆ B. Furthermore,

µ(R)≤ ∑
v∈B

µ(⟨v⟩∩R)+ ∑
w∈V\(F∪B)

µ(⟨w⟩∩R)< α +(N−|B|) ·K/N.

Hence, |B| < N− (µ(R)−α)N/K < (1− δ )N for δ = 1/(4K). This concludes
the construction of desired F and C = B∪F .

For the sake of completeness, we derive Theorem 21.8 from Lemma 21.9.

Proof of Theorem 21.8. Let δ > 0 be as given by Lemma 21.9 for ℓ and K/ε (as
K). We prove the theorem for h = ℓ log(Kε−1)/ log(1+δ ).

We find a fingerprint F and a container C as follows. Set F = /0 and C = V ,
and as long as µ(H [C \F ]) ≥ ε do the following: Let F ′ and C′ be as given
by Lemma 21.9 applied with µ ′ being a probability measure over 2C\F given by
µ ′(X) ∝ µ(X) if X ∈H [C \F ], and µ ′(X) = 0 otherwise. Set F := F ∪F ′ and
C :=C′, and proceed to the next iteration.

If µ(H [C \F ])≥ ε , then for nonempty X ⊆C \F ,

µ
′(⟨X⟩)≤ µ(⟨X⟩)

µ(H [C \F ])
≤ K p|X |−1/N

ε
≤ K p|X |−1

ε|C \F |
,

and hence µ ′ is (p,K/ε)-uniformly-spread each time we apply Lemma 21.9. Fur-
thermore, if µ(H [C]) ≥ ε , then |C \F | ≥ εN/K. In each iteration the set C \F
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shrinks by a factor of 1−δ , thus we are done after at most log(Kε−1)/ log(1+δ )
iterations. The set F grows by at most ℓN p in each iteration, which gives an upper
bound of hN p on its final size for the above choice of h = h(K,ε). Due to the last
property in Lemma 21.9, the final set C can be unambiguously constructed from
F .

H-free graphs
In this section we prove the following generalisation of Theorem 21.1 to ℓ-graphs.

Theorem 21.10. For every ℓ ∈ N and K,ε > 0 there exists h > 0 such that the
following holds: Let H be an ℓ-graph with e(H) ≥ 2. Then for every H-free ℓ-
graph I there exist ℓ-graphs F,C such that C =C(F) and F ⊆ I ⊆C such that

(i) |F | ≤ hnℓ−1/m2(H).

(ii) For every ℓ-graph C, the number of copies of H in C is at most εnv(H), and
e(C)≤ (π(H)+ ε)

(n
ℓ

)
.

To prove this, we will apply Theorem 21.8 to the following hypergraph, whose
independent sets correspond to H-free ℓ-graphs on vertex set [N].

Definition 21.11. Let H be an ℓ-graph. Let r = e(H). The r-graph GH has vertex
set V =

([n]
ℓ

)
, where B = {v1, ...,vr} ∈

(V
r

)
is an edge whenever B, considered as

an ℓ-graph with vertices in [n] and with r edges, is isomorphic to H. Note that
|GH |= αHnv(H) where αH = Ω(1).

Lemma 21.12. Let H be an ℓ-graph with r = e(H)≥ 2. Let n be sufficiently large.
Then, if p = n−1/m2(H) and K = v(H)!/ℓ!αH ,

|⟨X⟩∩GH |
|GH |

≤ K p|X |−1

N
,

where N = |V | as usual.

Proof. Consider X ⊆ [n](ℓ) (so X is both a set of vertices of GH and an ℓ-graph on
vertex set [n]). This is the number of ways of extending X to an ℓ-graph isomorphic
to H. If X as an ℓ-graph is not isomorphic to any subgraph of H, then clearly
|⟨X⟩ ∩GH | = 0. Otherwise, let v(X) be the number of vertices in X considered
as an ℓ-graph, so there exists W ⊆ V , |W | = v(X) with X ⊆W (ℓ). Edges of GH
containing X correspond to copies of H in V containing X , each such copy given
by a choice of v(H)− v(X) vertices in V \W and a permutation of the vertices of
H. Hence for n sufficiently large,

|⟨X⟩∩GH | ≤ v(H)!
(

n− v(X)

v(H)− v(X)

)
≤ v(H)!nv(H)−v(X)



21.5. Exercises 469

Now

N|⟨X⟩∩GH |
p|X |−1|GH |

≤ v(H)!nv(H)−v(X)nℓ

ℓ!αHnv(H)−(|X |−1)/m2(H)
=

v(H)!n−v(X)+ℓ+(|X |−1)/m2(H)

ℓ!αH
≤ K.

A well-known supersaturation theorem bounds the number of edges in con-
tainers.

Proposition 21.13 (Erdős and Simonovits [337]). Let H be an ℓ-graph and let
ε > 0. There exists n0 and η > 0 such that if C is an ℓ-graph on n ≥ n0 vertices
containing at most ηnv(H) copies of H then e(C)≤ (π(H)+ ε)

(n
ℓ

)
.

Proof of Theorem 21.10. Let η = η(ε,H) be given by Proposition 21.13, and let
β = min{ε,η}. Recall that r = e(H). Apply Theorem 21.8 to GH with β playing
the role of ε . Lemma 21.12 implies that the uniform distribution over GH is
(p,K)-uniformly spread. (i) is immediate with h of (a) replaced by h/ℓ!. (ii)
follows from (b) and Proposition 21.13.

21.5 Exercises
21.5.1 An edge e of G is H-open if it is contained in at most one copy of H and H-

closed otherwise. The H-core ĜH of G is obtained by repeatedly deleting
H-open edges. Show that G→ (H)e

2 implies that ĜH ′ → (H ′)e
2 for every

H ′ ⊆ H. (Thus one only needs to prove the 0-statement of Theorem 21.2
for strictly 2-balanced H. A graph H is strictly 2-balanced if H ′ = H is the
unique maximiser in (21.1)).

21.5.2 A subgraph G′ of the H-core is H-closed if it contains at least one copy of
H and every copy of H in ĜH is contained in G′ or is edge disjoint from
G′. Show that the edges of ĜH can be partitioned into inclusion minimal
H-closed subgraphs.

21.5.3 Show that there exists a sufficiently small c > 0 and a constant L = L(H,c)
such that if H is 2-balanced and p≤ cn−1/m2(H) then w.h.p. every inclusion
minimal H-closed subgraph of Gn,p has size at most L. (Try c = o(1) first
here).

21.5.4 Show that if e(G)/v(G)≤ m2(H) and m2(H)> 1 then G ̸→ (H)e
2.

21.5.5 Show that if H is 2-balanced and p = cn−1/m2(H) then w.h.p. every sub-
graph G of Gn,p with v(G)≤ L = O(1) satisfies e(G)/v(G)≤ m2(H).
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21.5.6 Prove the 0-statement of Theorem 21.2 for m2(H)> 1.

21.6 Notes

The largest triangle-free subgraph of a random graph
Babai, Simonovits and Spencer [58] proved that if p≥ 1/2 then w.h.p. the largest
triangle-free subgraph of Gn,p is bipartite. They used Szemerédi’s regularity
lemma in the proof. Using the sparse version of this lemma, Brightwell, Pana-
giotou and Steger [195] improved the lower bound on p to n−c for some (unspec-
ified) positive constant c. DeMarco and Kahn [283] improved the lower bound
to p≥Cn−1/2(logn)1/2, which is best possible up to the value of the constant C.
And in [284] they extended their result to Kr-free graphs.

Anti-Ramsey Property
Let H be a fixed graph. A copy of H in an edge colored graph G is said to be
rainbow colored if all of its edges have a different color. The study of rainbow
copies of H was initiated by Erdős, Simonovits and Sós [336]. An edge-coloring
of a graph G is said to be b-bounded if no color is used more than b times. A
graph is G said to have property A (b,H) if there is a rainbow copy of H in
every b-bounded coloring. Bohman, Frieze, Pikhurko and Smyth [141] studied
the threshold for Gn,p to have property A (b,H). For graphs H containing at
least one cycle they prove that there exists b0 such that if b ≥ b0 then there exist
c1,c2 > 0 such that

lim
n→∞

P(Gn,p ∈A (b,H)) =

{
0 p≤ c1n−1/m2(H)

1 p≥ c2n−1/m2(H)
. (21.10)

A reviewer of this paper pointed out a simple proof of the 1-statement. Given a b-
bounded coloring of G, let the edges colored i be denoted ei,1,ei,2, . . . ,ei,bi where
bi ≤ b for all i. Now consider the auxiliary coloring in which edge ei, j is colored
with j. At most b colors are used and so in the auxiliary coloring there will be a
monochromatic copy of H. The definition of the auxiliary coloring implies that
this copy of H is rainbow in the original coloring. So the 1-statement follows
directly from the results of Rödl and Ruciński [772], i.e. Theorem 21.2.

Nenadov, Person, Škorić and Steger [709] gave further threshold results on
both Ramsey and Anti-Ramsey theory of random graphs. In particular they proved
that in many cases b0 = 2 in (21.10).
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Thresholds

In this chapter we describe remarkable results that will fairly easily give us good
estimates for the thresholds for various structures.

A hypergraph H (thought of as a set of edges) is r-bounded if e ∈H implies
that |e| ≤ r. For a set S ⊆ X we let ⟨S⟩ = {T : S⊆ T ⊆ X} denote the subsets of
X that contain S. We say that a measure µ on the edges of H is κ-spread if

µ({A ∈H : S⊆ A})≤ 1
κ |S|

, ∀S⊆ X .

In particular, we say that H is κ-spread if the uniform distribution is κ-spread
i.e.

|H ∩⟨S⟩| ≤ |H |
κ |S|

, ∀S⊆ X . (22.1)

Let Xm denote a random m-subset of X and Xp denote a subset of X where each
x ∈ X is included independently in Xp with probability p. The following theorem
is from Frankston, Kahn, Narayanan and Park [376]:

Theorem 22.1. Let H be an r-bounded, κ-spread hypergraph and let X =V (H ).
There is an absolute constant K > 0 such that if

p≥ (K logr)
κ

or equivalently m≥ (K logr)|X |
κ

(22.2)

then w.h.p. Xp contains an edge of H or equivalently Xm contains an edge of H .
Here w.h.p. assumes that r→ ∞.

This is an extremely powerful theorem as we will shortly see. But there is
an even stronger theorem. Park and Pham [730] proved the so-called Kahn-Kalai
conjecture [537] which implies Theorem 22.1. This requires some preparation,
but first let us state some consequences of Theorem 22.1. In the first two examples,
X =

([n]
r

)
and H =Hn,m;k (not to be confused with H ).
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Shamir’s Problem: This is the name given to the problem of finding the
threshold for the existence of a perfect matching in the random hypergraph Hn,m;k.
A perfect matching of an n-vertex, k-uniform hypergraph H, where k|n, is a set
of n/k disjoint edges that cover all vertices of H. In this and the problem of
loose hamilton cycles, we assume that k is a constant. If m = cn logn then the
expected number of isolated vertices in Hn,m;k is ≈ n1−ck. If ck < 1 then there
will be isolated vertices, w.h.p., see Exercise 12.4.1. Suppose now that H is the
hypergraph with vertex set X =

([n]
k

)
and an edge of size n/k corresponding to

each perfect matching of the complete k-uniform hypergraph Hn,k on vertex set
[n]., viz. each partition of [n] into n/k sets of size k. Thus H is n/k-bounded. Now
H has exactly n!

(n/k)!k!n/k edges. We see more generally, that if we choose a set
S = {e1,e2, . . . ,es} ⊆ X , i.e. s subsets of [n] of size k then E(H )∩⟨S⟩= /0 unless
e1,e2, . . . ,es are disjoint. If they are disjoint then, using Stirling’s approximation,
we find that for some constant ck ≥ 1,

|E(H )∩⟨S⟩|
|E(H )|

=
(n− ks)!

n!
· (n/k)!k!s

(n/k− s)!

≤ cke(k−1)s (n− ks)n−ks (n
k

)n/k
(k!)s

nn
(n

k − s
)n/k−s

= cke(k−1)s (n− ks)n−ks−n/k+snn/k(k!)s

nnks

≤ cke(k−1)sn−(k−1)s(k−1)!s.

Thus, H is κ = nk−1

ck(k−1)!ek−1 spread. Applying Theorem 22.1 with this value of
κ and r = n/k, we see that there exists K > 0 such if m = Kn logn then Hn,m;k
has a perfect matching w.h.p. This was first proved in a breakthrough paper by
Johansson, Kahn and Vu [529].

Loose Hamilton Cycles: We consider the case of 1-overlapping Hamilton
cycles of Section 12.2. In this case X =

([n]
k

)
and the edges of H correspond to the

loose Hamilton cycles of the complete k-uniform hypergraph Hn,k on vertex set
[n]. We see from Exercise 12.4.1 that we need at least Ω(n logn) random edges to
have a loose Hamilton cycle w.h.p. Now there are n/(k−1) edges in a loose cycle
and so we take r = n/(k− 1). The number of loose Hamilton cycles in Hn,k is
given by k−1

2n ·
n!

(k−2)!n/(k−1) , Exercise 12.4.15, and for a set S = {e1,e2, . . . ,es} ⊆ X
we have

|E(H )∩⟨S⟩|
|E(H )|

≤ (n− (k−1)s−1)!
(k−2)!n/(k−1)−s

· 2n(k−2)!n/(k−1)

(k−1)n!
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≤ 2(k−2)!s

n(k−1)s
·
(k−1)s

∏
i=1

(
1− i

n

)−1

=
2(k−2)!s

n(k−1)s
· exp

{
(k−1)s

∑
i=1

i
n
+

1
2

(k−1)s

∑
i=1

(
i
n

)2

+ · · ·

}
≤
(

O(1)
nk−1

)s

. (22.3)

Arguing as for the Shamir problem, we see that there exists K > 0 such if m =
Kn logn then Hn,m;k has a loose hamilton cycle w.h.p. This being the result of
[390], [305] and [307].

Powers of Hamilton cycles: The kth power of a Hamilton cycle in a graph
G = (V,E) is a permutation x1,x2, . . . ,xn of the vertices V such that

{
xi,xi+ j

}
is

an edge of G for all i∈ [n], j ∈ [k]. Kühn and Osthus [613] studied the existence of
kth powers in Gn,p. They showed that for k≥ 3 one could use Riordan’s Theorem
[760] to show that if npk → ∞ then Gn,p contains the kth power of a Hamilton
cycle w.h.p. This is tight as the first moment method shows that if npk→ 0 then
w.h.p. there are no kth powers. The problem is more difficult for k = 2 and then
after a series of papers, Nenadov and Škorić [712], Fischer, Škorić, Steger and
Trujić [361], Montgomery [692] we have an upper bound of p≫ log2 n

n1/2 . Theorem
22.1 reduces the bound to O(n3/2 logn) in Gn,m, as we will now show.

We take X =
([n]

2

)
and the edges of H correspond to the squares of Hamilton

cycles of Kn. In which case we have for |S|= s, r = n and

|E(H )∩⟨S⟩|
|E(H )|

≤ (n−2−⌊s/2⌋)!
(n−1)!/2

≤
(

e
n−1

)⌊s/2⌋+1

. (22.4)

We can therefore take κ = e−1n1/2, and then (22.2) yields the claimed upper bound
of O(n3/2 logn) on the threshold for the existence of the square of a Hamilton
cycle in Gn,m.

Bounded degree spanning trees: Let Tn be a sequence of spanning trees of
Kn all of maximum degree ∆ = O(1). We take X =

([n]
2

)
and the edges of H

correspond to the copies of T in Kn. We prove that (22.1) holds with κ = n/∆.
If S ⊆ X is not isomorphic to a subset of E(T ) then E(H )∩⟨S⟩ = /0 and (22.1)
holds. Suppose then that S⊆ X is isomorphic to a subset of E(T ). Then, where π

is a random premutation of [n] and

π(T ) = ([n],{{π(v),π(w)} : {v,w} ∈ E(T )} ,

we have
|E(H )∩⟨S⟩|
|E(H )|

= P(S⊆ π(T ))≤ κ
−|S|. (22.5)
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We leave the verifcation of (22.5) as an exercise – Exercise 12.4.3. Consequently,
we can apply Theorem 22.1 with r = n−1 that O(n logn) random edges are suffi-
cient to contain a copy of Tn, w.h.p. Montgomery [690] gave the first proof of this
result.

22.1 The Kahn-Kalai conjecture
Given a finite set X , write 2X for the power set of X . For p ∈ [0,1], let µp be the
product measure on 2X given by µp(A) = p|A|(1− p)|X\A|. Let ⟨H ⟩=

⋃
S∈H ⟨S⟩.

The threshold, pc(H ), is then the unique p for which

µp(⟨H ⟩) = Pr(Xp contains an edge of H ) =
1
2
.

We say H is p-small if there is G ⊆ 2X such that

H ⊆ ⟨G ⟩ :=
⋃

S∈G
{T : T ⊇ S} (22.6)

and
∑

S∈G
p|S| ≤ 1/2. (22.7)

Given that we are interested in the threshold for the existence of an edge of
H , we can assume that if e, f ∈H then e ̸⊂ f . Note that we can always achieve
this by replacing H by its minimal edges.

We say that G is a cover of H if (22.6) holds. The expectation-threshold of
H , q(H ), is defined to be the maximum p such that H is p-small. Observe that
q(H ) is a trivial lower bound on pc(H ), since

µp(H )≤ µp(⟨G ⟩)≤ ∑
S∈G

p|S|. (22.8)

Note that, with Xp the random variable whose distribution is µp, the right-hand
side of (22.8) is E[|{S ∈ G : S⊆ Xp}|].

The following theorem resolves the expectation-threshold conjecture of Kahn
and Kalai [537].

Theorem 22.2. There is a universal constant K such that for every finite set X
and hypergraph H ⊆ 2X ,

pc(H )≤ Kq(H ) logr(H ).

The proof we give will be in terms of the following theorem: in the following
or(1) is a bound that tends to zero as r→ ∞.
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Theorem 22.3. There is a universal constant L such that for any r-bounded hy-
pergraph H on X that is not p-small,

a uniformly random ((Lp logr)|X |)-element subset of X contains
an edge of H with probability 1−or(1). (22.9)

We leave it as an exercise to show that Theorem 22.3 implies Theorem 22.2.
What we will show is:

Theorem 22.3 implies Theorem 22.1. The following argument was communicated
to us by Tolson Bell [88]: it shows that if there exists a κ-spread measure µ on
H then H is not κ−1-small. Let G be such that H ⊆ ⟨G ⟩. As µ is κ-spread we
have that

∑
A∈H
A⊇R

µ(A)≤ 1
κ |R|

for all R ∈ G .

However, as every set in H contains some set in G ,

∑
R∈G

1
κ |R|
≥ ∑

R∈G
∑

A∈H
A⊇R

µ(A)≥ 1.

and so G is not κ−1-small.

Notations and Conventions. All logarithms are base 2 unless specified oth-
erwise.

22.2 Proof of the Kahn-Kalai conjecture
We closely follow the argument of [730].

22.3 Constructing a cover
We use N for |X | and let L be sufficiently large and let H be r-bounded. In the
following S,S′ etc. are edges of H and W ∈

(X
w

)
is random w-subset of X where

w = LpN.
Following [536], given S and W , we call a set of the form S′ \W with S′

contained in S∪W an (S,W )-fragment. Given S and W , define T = T (S,W ) to be
a minimum size (S,W )-fragment. We use t = t(S,W ) for |T (S,W )|.

Given W , the good set, G = G (W ), is defined by

G (W ) := {S ∈H : t(S,W )≥ .9r}
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=
{

S ∈H : |S′ \W | ≥ .9r for all S′ ∈H ,S′ ⊆ S∪W
}
.

These are the edges S ∈H such that W \ S only contains a “small” piece of any
edge of H . W contains a significant portion of the remaining edges in S∪W .

Given G , we define U (W ) as

U (W ) := {T (S,W ) : S ∈ G (W )}.

U (W ) is a cover of G (W ), since T (S,W )⊆ S. We define

H ′ = H ′(W ) = {T (S,W ) : S ∈H \G (W )}; (22.10)

the hypergraph H ′, which is .9r-bounded, will be the host hypergraph in an iter-
ation step (see (22.13)). Note that H \G (W )⊆ ⟨H ′⟩ so in particular, a cover of
H ′ also covers H \G (W ).

With these definitions, we can outline the strategy of the proof. Assume that
H is not p-small. Starting with W =W1 we produce O(logr) random disjoint sets
W1,W2, . . . , of size O(p|X |) and a sequence of hypergraphs Hi where Hi =H ′

i−1,
i = 1,2, . . . . At the same time we construct Gi and Ui =U (Wi) and continue until
either (i) U = U1∪U2∪ ·· · covers H or (ii) W1∪W2∪ ·· · contains an edge of
H . We show that the former is unlikely by showing that w.h.p. U satisfies (22.7).

Note that if S ∈H and Si = S \
⋃i

j=1Wj ∈Hi then either Si is put into Gi+1
and gets covered or it shrinks by a factor 0.9.

22.4 Iteration
Recall that N = |X |, r→∞, and L is a large constant. Let γ = ⌊log.9(1/r)⌋+1. In
the following definitions, i = 1,2, . . . ,γ . Let ri = .9ir and note that

0 < rγ < 1. (22.11)

Let X0 = X and Wi be uniform from
(Xi−1

wi

)
, where Xi = Xi−1 \Wi and wi = Li pn

with

Li =

{
L if i < γ−

√
log.9(1/r)

L
√

logr if γ−
√

log.9(1/r)≤ i≤ γ.

At the end, W :=
⋃γ

i=1Wi is a uniformly random (CLp logr)N-subset of X where
C ≤C′ for some absolute constant C′ > 0. Note that there is an absolute constant
c > 0 for which

ri > exp(c
√

logr), for all i < γ−
√

log.9(1/r). (22.12)
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We define a sequence {Hi} with H0 = H and

Hi = H ′
i−1 (22.13)

(see (22.10) for the definition of H ′).
Note that each Hi is ri-bounded, and associated to each set Wi in step i, we

have a good set Gi = Gi(Wi) and a cover Ui = Ui(Wi) of Gi.
We terminate the iteration process as soon as we have either

∃S ∈H such that S⊆
i⋃

j=1

Wj (22.14)

or
Gi = Hi−1 (22.15)

for some i = i∗. Note that i∗ ≤ γ because of the upper bound on rγ in (22.11) (so
in particular, the iteration terminates with probability 1).

Proposition 22.4. If H is not p-small then w.h.p., the process terminates in at
most γ steps due to (22.14)

Proof. Hi is ri-bounded and rγ < 1 and so the process cannot continue for more
than γ steps. If the process stops because of (22.15) then U ∗ =

⋃
i≤i∗U (Wi)

covers H , by construction. We show in (22.17) below that E
(

∑S∈U ∗ p|S|
)
=

o(1). Thus, since H is not p-small,

Pr(22.15)≤ Pr

(
∑

S∈U ∗
p|S| ≥ 1

2

)
= o(1),

from the Markov inequality. So if H is not p-small then the probability that the
process stops due to (22.15) is o(1).

Now consider S ∈H . Let S0 = S and Si+1 = T (Si,Wi) and note that |Si+1| ≤
0.9|Si|. Thus at some point either Si gets put into U ∗, implying that S is covered
by U ∗ or it becomes the emptyset, implying that (22.14) holds for this S. We have
argued that w.h.p. the former cannot occur for every S ∈H and so the latter must
be true for some S ∈H .

Let E (W ) be the event that U (W ) covers H . At this point we make the
following claim about U (W ) where W = Xp. Its proof is deferred to the end of
the section.
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Claim 9. For W uniformly chosen from
(X

w

)
, where w = LpN,

E

(
∑

U∈U (W )

p|U |
)

< L−.8r (22.16)

(where the expectation is over the choice of W).

Thus,

E

(
∑

S∈U ∗
p|S|
)

(22.16)
< ∑

i≤γ

L−.8ri
i = ∑

i<γ−
√

log.9(1/r)

L−.8ri
i +

γ

∑
i=γ−
√

log.9(1/r)

L−.8ri
i

(22.11),(22.12)
≤ 2L−.8exp(c

√
logr)+O((L

√
logr)−c′)

= (logr)−c′′

(22.17)

for some constant c′′ > 0.

Proof of Claim 9 Observe that Claim 9 is equivalent to

∑
W∈(X

w)
∑

U∈U (W )

p|U | <
(

N
w

)
L−.8r. (22.18)

Proof of (22.18). Given W and m≥ .9r, let

Gm(W ) := {S ∈H : t(S,W ) = m}

and
Um(W ) := {T (S,W ) : S ∈ Gm(W )}.

Note that for any U ∈Um(W ) we have |U |=m, so ∑W∈(X
w)

∑U∈Um(W ) p|U | is equal
to pm multiplied by∣∣∣∣{(W,T (S,W )) : W ∈

(
X
w

)
,S ∈H , and t(S,W ) = m

}∣∣∣∣ . (22.19)

We bound the number of choices of W and T = T (S,W )’s in the collection in
(22.19) using the following specification steps.

Step 1. Pick Z :=W ∪T . Since |Z|= w+m (note W and T are always disjoint),
the number of possibilities for Z is at most (recalling w = LpN)(

N
w+m

)
=

(
N
w

)
·

m−1

∏
j=0

N−w− j
w+ j+1

≤
(

N
w

)
(Lp)−m.
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Step 2. Pick an arbitrary Ŝ ∈H , Ŝ ⊆ Z, whose choice depends only on Z. Note
that Z (= W ∪T ) must contain an edge of H by the definition of frag-
ment. The choice of Ŝ is free given Z.

Here a crucial observation is that, since T (S,W ) is a minimum fragment,

T ⊆ Ŝ. (22.20)

Indeed, since Ŝ is contained in T ∪W = S∪W , the failure of (22.20) im-
plies that Ŝ\W is an (S,W )-fragment that is smaller than T , contradicting
the minimality of T . Thus We see that T ⊆ Ŝ, and so the number of pos-
sibilities for T is at most 2r.

Note that (W,T ) is determined upon fixing a choice of Z and T . In sum, we have

∑
W∈(X

w)
∑

U∈Um(W )

p|U | ≤ pm
(

N
w

)
(Lp)−m2r =

(
N
w

)
L−m2r,

and the left hand side of (22.18) is at most

∑
m≥.9r

(
N
w

)
L−m2r ≤

(
N
w

)
L−.8r

for L sufficiently large.

22.5 Square of a Hamilton cycle and a little more
Kahn, Narayanan and Park [536] modified the proof of Theorem 22.1 and proved

Theorem 22.5. If m ≥Cn3/2 for sufficiently large C then w.h.p. Gn,m contains a
copy of H2, the square of a Hamilton cycle.

Spiro [814] introduced a refinement on the notion of spread. Let κ and r1 >
· · · > rℓ be positive integers and let rℓ+1 = 1. We say that a hypergraph H is
(κ;r1, . . . ,rℓ)-spread if H is non-empty and r1-bounded and if for all A ⊆ X =
V (H ) with ri ≥ |A| ≥ ri+1 for some 1≤ i≤ ℓ we have for all j ≥ ri+1 that,

Mt(A) = |{S ∈H : |S∩A| ≥ t}| ≤ κ
− j|H |. (22.21)

Theorem 22.6. Suppose that H is (κ;r1, . . . ,rℓ)-spread and r1-uniform. Then,
given ε > 0, there exists an absolute constant Cε > 0 such that if C≥Cε and W is
a set of size Cℓ|X |/κ chosen uniformly randomly from X then

Pr(W contains an edge of H )≥ 1− ε

(This is a little weaker than what is proved in [814], but it suffices for the proof of
Theorem 22.5.)
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Proof. The proof described here is in large part due to the ideas of Jinyoung Park
and Huy Pham.

Let N = |X | and m = CN
κ

. Let p = 2m
N . Let Wi, i = 1,2, . . . , ℓ be independently

distributed as Xm and let W≤i =
⋃

j≤iWj and W = W≤ℓ. Also let ηi(S) = S \W≤i
for S ∈H . We let H1 = H and define Hi ⊆H , i ≥ 2 below. If S ∈Hi then
Ti(S) minimises |ηi(S′)| over S′ ∈Hi, S′ ⊆ S∪Wi.

We say that (S,Wi), S ∈Hi is i-bad, i = 1, . . . , ℓ, if |Ti(S)| ≥ ri+1. Otherwise
(S,Wi) is i-good. Let Hi+1 = {S ∈Hi : (S,Wi) is i-good}. Note that if (S,Wℓ) is
ℓ-good then S⊆W≤ℓ.

We now estimate the number νi−bad of i-bad sets (S,Wi). We first specify Z =
Wi∪T, T = Ti(S) in at most

( N
N p+t

)
, t ≥ ri+1 ways. Then specify some arbitrary

S∗ ∈Hi, ηi(S∗) ⊆ Z. Note that for any S ∈Hi such that ηi(S)∪Wi ⊆ Z we have
T ⊆ ηi(S)∩ηi(S∗) and so |ηi(S)∩ηi(S∗)| ≥ t. When |ηi(S)∩ηi(S∗)| = t ′ ≤ ri
we use (22.21) (with A = ηi(S∗)) and for t ′ > ri we use 2ri|Hi|/κ t ′ to bound the
number of choices for S such that ηi(S) contains T . Here 2ri bounds the number
of choices for ηi(S)∩ηi(S∗) Finally, given S and S∗ with |ηi(S)∩ηi(S∗)| = t ′,
there are most 2t ′ choices for T ⊆ ηi(S)∩ηi(S∗). Then, given Z and T , we also
know Z \T .

So,

νi−bad ≤
ri

∑
t=ri+1

(
N

N p+ t

)( ri

∑
t ′=t

2t ′|Hi|
κ t ′ + ∑

t ′>ri

2ri+t ′|Hi|
κ t ′ |

)

≤
(

N
N p

)
|Hi|

ri

∑
t=ri+1

(
κ

C

)t
(

ri

∑
t ′=t

2t ′

κ t ′ + ∑
t ′>ri

2ri+t ′

κ t ′

)

≤ 2
(

N
N p

)
2ri+1 |Hi|

Cri+1
.

So, by the Markov inequality, we have, with αi = 2−ri+1 ,

Pr(|Hi+1| ≥ (1−αi)|Hi|)≥ 1− 2ri+1+1

αiCri+1
,

and

Pr

(
|Hℓ| ≥ |H |

ℓ

∏
i=1

(1−αi)≥ |H |/2

)
≥

ℓ

∏
i=1

(
1− 2ri+1+1

αiCri+1

)

≥ 1−
ℓ

∑
i=1

2ri+1+1

αiCri+1

≥ 1− ε,

if C ≥Cε = 10ε−1.
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We obtain Theorem 22.5 from the fact that H the hypergraph of squares of
Hamilton cycles is (Cn1/2;2n,Cn1/2,1)-spread, for sufficiently large C, see Exer-
cise 22.7.4.

22.6 Embedding a factor
In this section we discuss factors in random subgraphs of graphs with high min-
imum degree. Let F be a fixed graph. Let G be a graph on vertex set [n] where
|V (F)| | n. Let δ (G) denote the minimum degree in G. Let δF > 0 be the minimum
value such that if δ (G) ≥ δFn then G contains an F-factor i.e. n/|V (F)| disjoint
copies of F . We prove the following theorem which is a weakening of an example
of one of the results from Kelly, Müyesser and Pokrovskiy [562]. For a graph G
we let d1(G) = |E(G)|/(|V (G)|−1) and let m1(G) = maxG′⊆G:|V (G′)|>1 d1(G′).

Gp is the random subgraph of G when each edge of G is independently in-
cluded with probability p.

Theorem 22.7. Let F be a fixed graph. Let α > 0 be arbitrary and let G be a
graph with vertex set [n] and δ (G)≥ (δF +α)n where |V (F)| | n. Then w.h.p. Gp

contains an F-factor for p≥Cn−1/m1 log(1+2/m1) n, m1 = m1(F).

The proof of this requires a variation on spread and a lemma linking it to the
original definition. We first define vertex spread.

Definition 22.8. Let X and Y be finite sets, and let µ be a probability distribution
over injections ϕ : X →Y . For κ ≥ 1 we say that µ is κ-vertex-spread if for avery
two sequences x1,x2, . . . ,xs ∈ X and y1,y2, . . . ,ys ∈ Y ,

µ({ϕ : ϕ(xi) = yi, i = 1,2, . . . ,s})≤ 1
κs .

A graph embedding ϕ : G ↪→ H of a graph G into graph H is an injective map
ϕ : V (G)→ V (H) that maps edges to edges. So there is an embedding of G into
H if and only if H contains a subgraph isomorphic to G. The following lemma
links the two notions of spread.

Lemma 22.9. Fix C,∆ ≥ 1 and let C1 = (C2∆)1/m1(G). Assume that n is suffi-
ciently large n. Let G1,G2 be graphs on vertex set [n]. If there is an (n/C)-vertex-
spread distribution on embeddings G1 ↪→ G2 and ∆(G1) ≤ ∆, then there is an(

n1/m1(G1)/C1

)
-spread distribution on copies of G1 in G2.

Proof of Lemma 22.9: First we need an upper bound on the number of par-
tial embeddings of G1 into G2. We prove that if K ⊆ G2 has v vertices and c
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components, then there are at most

nc(e∆(G1))
v−c (22.22)

embeddings ϕ : G1[X ] ↪→ G2[V (K)] where X ∈
(V (G1)

v

)
and K ⊆ G2[ϕ(X)].

Proof of (22.22): Let K1, . . . ,Kc be the components of K, and for each i ∈ [c],
let V (Ki) = {vi, j, j = 1,2, . . . , |V (Ki)|}, where for every j > 1, there exists j′ < j
such that vi, j and vi, j′ are contained in a common edge of Ki. Each embedding
ϕ : G1[X ] ↪→ G2[V (K)] with K ⊆ G2[ϕ(X)] is then determined by

(i) the preimages ϕ−1(v1,1), . . . ,ϕ
−1(vc,1) of the “roots” and

(ii) for each i ∈ [c], a sequence in ∆(G1)
|V (Ki)|−1, where the jth term in the

sequence determines ϕ−1(vi, j+1) based on ϕ−1(vi, j′), where j′ ≤ j and vi, j′

and vi, j+1 are contained in a common edge of Ki.

Note that there are at most nc choices for the preimages of the roots and at most
∆(G1)

v−c choices for the sequences. Combining these choices yields the desired
bound.
End of proof of (22.22).

We continue with the proof of Lemma 22.9. Let G1,G2 be n-vertex graphs,
where ∆(G1)≤ ∆, and suppose there is an (n/C)-vertex-spread distribution µ on
embeddings G1 ↪→ G2. For every F ⊆ G2 isomorphic to G1, let

µ
′(F) = µ ({ϕ : ϕ(E(G1)) = E(F)}) ,

and note that µ ′ is a probability distribution on subgraphs of G2 which are iso-
morphic to G1. We prove that µ ′ is

(
n1/m1(G1)/C1

)
-spread. To that end, let

S ⊆ E(G2), and let T ⊆ G2 have edge set S and subject to that, the fewest num-
ber of vertices. We may assume T is isomorphic to a subgraph of G1, or else
µ ′({F ⊆ G2 : E(F) ⊇ S}) = 0. We may also assume S ̸= /0. Let v and c be the
number of vertices and components of T , respectively. Note that v≥ 2c since we
can assume that T has no isolated vertices. By Lemma 22.9, the number of em-
beddings ϕ : G1[X ] ↪→ G2[V (T )] where X ∈

(V (G1)
v

)
and T ⊆ G2[ϕ(X)] is at most

nc∆v−c, so since µ is (C/n)-vertex-spread,

µ
′({F ⊆ G2 : E(F)⊇ S})≤ nc

∆
v−c
(

C
n

)v

≤ nv−c(∆C2)v−c

=

(
Cm1(G1)

1
n

)v−c

=

(
Cm1(G1)

1
n

)|S|(v−c)/|S|

.
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Let T1, . . . ,Tc be the components of T . Since each Ti is isomorphic to a subgraph
of G1, for every i ∈ [c] we have |E(Ti)|/(|V (Ti)|−1)≤ m1(G1). In particular,

|S|=
c

∑
i=1
|E(Ti)| ≤ m1(G1)

c

∑
i=1

(|V (Ti)|−1) = m1(G1)(v− c),

so (v− c)/|S| ≥ 1/m1(G1). Therefore

µ
′({F ⊆ G2 : E(F)⊇ S})≤

(
Cm1(G1)

1
n

)|S|(v−c)/|S|

≤
(

C1

n1/m1(G1)

)|S|
,

as desired.
End of proof of Lemma 22.9.
Proof of Theorem 22.7 We randomly partition V (G) into random clusters U1, . . . ,Um
where |V (F)| | |Ui| and |Ui| ∼C logn for i = 1,2, . . . ,m. The degree of v ∈Ui in
G[Ui] dominates Bin((δF +α)n,(|Ui|−1)/(n−1)) and so if C is sufficiently large,
then w.h.p. δ (Ui) ≥ (δF +α/2)|Ui| for i = 1,2, . . . ,m. So, w.h.p. each Ui con-
tains an F-factor. A simple calculation shows that for every set of distinct vertices
x1, . . . ,xs ∈V (H) and every function f : [s]→ [m],

Pr
(
xi ∈U f (i) for each i ∈ [s]

)
≤
(

C logn
n

)s

. (22.23)

Theorem 22.7 from Lemma 22.9 (with C replaced by C logn) and Theorem 22.1.

In the paper [562], the size of the Ui’s are O(1) and this makes the analysis
much more difficult. The paper also deals with hypergraphs and Hamilton cycles.

22.7 Exercises
22.7.1 Let U1,U2, . . . ,Uk denote k disjoint sets of size n. Let H Pn,m,k denote the

set of k-partite, k-uniform hypergraphs with vertex set V =U1∪U2∪·· ·∪
Uk and m edges. Here each edge contains exactly one vertex from each
Ui,1≤ i≤ k. The random hypergraph HPn,m,k is sampled uniformly from
H Pn,m,k. Prove the k-partite analogue of Shamir’s problem viz. there
exists a constant K > 0 such that if m≥ Kn logn then

lim
n→∞

P(HPn,m,k has a 1-factor) = 1.

22.7.2 Find the threshold, up to a logn factor for the existence of the following
structures in Gn,p: replace 4 by n in an appropriate way.
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C4-cycle, overlap 2 K4-cycle, overlap 2

22.7.3 Verify (22.5).

22.7.4 Verify that H , the hypergraph of squares of a Hamilton cycle is (Cn1/2;2n,Cn1/2,1)-
spread for sufficiently large C.
(Hints: For I ⊆

(X
2

)
let κ(I) denote the number of components in the graph

induced by I and the vertices incident with I.

(a) |I|= t ≤ n/3 implies that |H ∩⟨I⟩| ≤ (16)t (n−⌈ t+c
2

⌉
−1
)
!.

(b) If F ⊆H2 and |F |= h then the number of subgraphs of F with t edges
and c components is at most (8e)t(2h

c

)
.)

22.7.5 Show that if H is (κ; r1, . . . ,rℓ,1)-spread, then it is κ-spread.

22.7.6 Show that if H is κ-spread and r1-bounded, then it is (κ/4; r1, . . . ,rℓ,1)-
spread for any sequence ri, satisfying ri > ri+1 ≥ ri/2.

22.7.7 Produce a version of Theorem 22.7 for hypergraphs.

22.8 Notes

Perfect matchings in regular hypergraphs
The perfect matching problem turns out to be a much easier problem than that
discussed in Section 22. Cooper, Frieze, Molloy and Reed [269] used small sub-
graph conditioning to prove that Hn,r;k has a perfect matching w.h.p. iff k > kr

where kr =
logr

(r−1) log(( r
r−1))

+1.

Embedding into Dirac Graphs
The notion of vertex spread was introduced in Pham, Sah, Sawhney and Simkin
[736]. Further results related to Section 22.6 can be found in Kang, Kelly, Kühn,
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Osthus and Pfenninger [542], Anastos, Chakraborti, Kang, Methuku and Pfen-
ninger [43].
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Chapter 23

Contiguity

Formally, let Gn be a family of graphs on vertex set [n] and let Fn be the σ -field
of subsets of Gn. Denote Pn and Qn as two different sequences of probability
measures ruling the selection of a graph from the family Gn. Then we say that Pn
and Qn are contiguous if for any sequence of events An ∈Fn,

lim
n→∞

Pn(An ∈Fn) = 0⇔ lim
n→∞

Qn(An ∈Fn) = 0. (23.1)

It means that we only demand that if a certain property holds w.h.p. for one of the
probability measures (class of random graphs) it also holds w.h.p. for the other.
Note that contiguity is a weaker property than asymptotic equivalence for which
the following condition has to be satisfied:

lim
n→∞

(Pn(An ∈Fn)−Qn(An ∈Fn)) = 0. (23.2)

The following two propositions, formulated and proved by Janson in [499], char-
acterize properties of the contiguity relation.

Proposition 23.1. Suppose that Wn = dQn/dPn, regarded as a random variable
on (Gn,Fn,Pn), converges to a random variable W as n→ ∞. Then Pn and Qn
are contiguous if and only if W > 0 a.s. and EW = 1.

Proposition 23.2. Suppose that Pn and Qn are contiguous on Gn. Then

(i) If An is any sequence of events such that liminfPn(An)> 0 then the condi-
tioned measures Pn(·|An) and Qn(·|An) are contiguous.

(ii) If fn : Gn→G
′
n are measurable functions, then the induced measures Pn ◦ f−1

n
and Qn ◦ f−1

n on G
′
n are contiguous.
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(iii) If P
′
n and Q′n are contiguous probability measures on G

′
n, then the product

measures Pn×P
′
n and Qn×Q′n on Gn×G

′
n.

23.1 Small subgraph conditioning for proving con-
tiguity

Janson [499] (see also [686]) proved the following result, explaining and extend-
ing a general framework of the method of small subgraph conditioning, developed
by Robinson and Wormald (see [767]).

Theorem 23.3. Let λi > 0 and δi≥−1, i = 1,2, . . . , be real numbers and suppose
that for each n there are random variables Xi,n, i = 1,2, . . . , and Yn defined on the
same probability space (Gn,Pn) such that the Xi,n are non-negative integer valued,
Yn is non-negative and EYn > 0.

Suppose also that

(A1) for each k ≥ 1, Xi,n
D→ Zi jointly for i = 1,2, . . . ,k, where Zi ∼ Po(λi) are

independent Poisson random variables, (i.e., EXi,n→ λi as n→ ∞);

(A2)

E(Yn|X1,n = j1 . . . ,Xk,n = jk)
EYn

→
k

∏
i=1

((1+δi))
ji e−λiδi, as n→ ∞,

for every finite sequence j1, j2, . . . , jk of non-negative integers;

(A3) ∑i λiδ
2
i < ∞;

(A4) EY 2
n

(EYn)2 → exp
(
∑i λiδ

2
i
)

as n→ ∞.

Then

Yn

EYn

D→W =
∞

∏
i=1

(1+δi)
Zie−λiδi as n→ ∞, (23.3)

and the infinite product defining W converges a.s., with

EW = 1 and EW 2 = exp

(
∞

∑
i=1

λiδ
2
i

)
. (23.4)

Furthermore, the event W > 0 equals, up to a set of probability zero, the event
that Zi > 0 for some i with δi =−1. In particular, W > 0 a.s., if and only if every
δi >−1.
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Proof. We start with proving (23.4). Observe first that, since Zi ∼ Po(λi),

E(1+δi)
Zi = eλi(1+δi)−λi = eλiδi

and
E
(
(1+δi)

Zi
)2

= eλi(1+δi)
2−λi = eλi(2δi+δ 2

i ).

Now, to prove that (23.4) holds, let

W (k) =
k

∏
i=1

(1+δi)
Zie−λiδi. (23.5)

Notice, that W (k) is a product of independent random variables with the expecta-
tion equal to 1, and with second moment

E
(

W (k)
)2

=
k

∏
i=1

eλiδ
2
i = exp

(
k

∑
i=1

λiδ
2
i

)
→ exp

(
∞

∑
i=1

λiδ
2
i

)
as k→ ∞. (23.6)

Hence the sequence
(

W (k)
)∞

k=1
is an L2-bounded martingale and so W = limk→∞W (k)

exists a.s. and in L2, and so (23.4) holds.
To prove the statement (23.3), i.e., that Yn/EYn →W , let us introduce some

simplifying assumptions, following Janson’s reasoning (see [499]).
First, assume that EYn = 1 and, second, that Xi,n→ Zi a.s. as n→ ∞ for each i.
Next for fixed large integer k define the functions

fn( j1, . . . , jk) = E(Yn|X1,n = j1 . . . ,Xk,n = jk)

f∞( j1, . . . , jk) = lim
n→∞

fn( j1, . . . , jk) =
k

∏
i=1

((1+δi))
ji e−λiδi,

(see assumption (A2)), and the random variable

Y (k)
n = E(Yn|X1,n . . . ,Xk,n) = fn(X1, . . . ,Xk).

Then
E
(

Y (k)
n

)2
= ∑

j1,..., jk

P(X1,n = j1 . . . ,Xk,n = jk) fn( j1, . . . , jk)2

and thus , by Fatou’s lemma and assumptions (A1) and (A2),

liminfE
(

Y (k)
n

)2
≥ ∑

j1,..., jk

lim
n→∞

P(X1,n = j1 . . . ,Xk,n = jk) fn( j1, . . . , jk)2

= ∑
j1,..., jk

P(Z1 = j1 . . . ,Zk = jk) f∞( j1, . . . , jk)2
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= E f∞(Z1, . . . ,Zk)
2 = E

(
W (k)

)2
= exp

(
k

∑
i=1

λiδ
2
i

)
.

On the other hand, since Y (k)
n is a conditional expectation of Yn,

limsup
n→∞

E(Yn−Y (k)
n )2 = limsup

n→∞

(EY 2
n −E(Y (k)

n )2−2E(Y (k)
n (Yn−Y (k)

n )))

= limsup
n→∞

(EY 2
n −E(Y (k)

n )2)

≤ exp

(
∞

∑
i=1

λiδ
2
i

)
− exp

(
k

∑
i=1

λiδ
2
i

)
. (23.7)

Furthermore, by the simplifying assumption that Xi,n→ Zi a.s. as n→ ∞ for each
i, Xi,n = Zi, i≤ k, for large n, and thus

lim
n→∞

Y (k)
n = lim

n→∞
fn(Z1, . . . ,Zk) = f∞(Z1, . . . ,Zk) =W (k) a.s. (23.8)

Finally, applying Chebyshev’s inequality (see Lemma 26.3) and (23.7) we get

limsup
n→∞

P(|Yn−W |> 3ε)≤ limsup
n→∞

P(|Yn−Y (k)
n |> ε)+

+ limsup
n→∞

P(|Y (k)
n −W (k)|> ε)+ limsup

n→∞

P(|W (k)−W |> ε)

≤ ε
−2 limsup

n→∞

E |Yn−Y (k)
n |2 +0 = ε

−2E |W −W (k)|2.

However notice, that

ε
−2E |W −W (k)|2 = EW 2−E(W (k))2 = exp

(
∞

∑
i=1

λiδ
2
i

)
− exp

(
k

∑
i=1

λiδ
2
i

)
,

and hence

limsup
n→∞

P(|Yn−W |> 3ε)≤ 2ε
−2

[
exp

(
∞

∑
i=1

λiδ
2
i

)
− exp

(
k

∑
i=1

λiδ
2
i

)]
. (23.9)

Now let k→ ∞ and keep ε fixed. Then the right hand side of the bound (23.9)
tends to 0, so the left hand side,which does not depend on k, has to vanish for each
ε > 0, which proves that Yn tends to W in probability, which implies that (23.3)
holds.

To prove the remaining part of the theorem, i.e., to show that W > 0 a.s., except
when Zi > 0 for some i with δi =−1, let us break the product defining W in (23.3)
into two parts:

W1 = ∏
I1={i:δi<−1/2}

(1+δi)
Zie−λiδi and W2 = ∏

I2={i:δi≥−1/2}
(1+δi)

Zie−λiδi.



23.1. Small subgraph conditioning for proving contiguity 491

For W1 observe that condition (A3) implies that

E∑
I1

Zi = ∑
I1

λi ≤ 4∑
I1

λiδ
2
i < ∞ and ∑

I1

|λiδi|< ∞.

Hence, there are a.s. only finitely many non-zero Zi, i ∈ I1 and

W1 = e−∑I1
λ1δi

∏
I1

(1+δi)
Zi,

where ∏I1(1+δi)
Zi is really a finite product which is positive unless some factor

vanishes, i.e., unless Zi > 0 for some i with δi =−1.
For W2 we define δ i =−δi(1+δi), i ∈ I2 and note that ∑I2 λiδ

2
i < ∞. So, the

argument above shows that

W 2 = ∏
I2={i:δi≥−1/2}

(1+δ i)
Zie−λiδ i)

converges a.s. with W 2 < ∞. However since (1+δi)(1+δ i) = 1,

W2W 2 = ∏
I2

e−λi(δi+δ i) = exp

(
−∑

I2

λiδ
2
i /(1+δi)

)
> 0,

so W2 > 0 a.s. Therefore W > 0 a.s. except when some factor vanishes, which
proves the second statement of the Theorem and completes the proof of the The-
orem.

Consider the probability space (Gn,Pn), where Pn is the uniform probability
measure over Gn. Let Yn be a non-negative random variable defined on Gn, with
EYn > 0. Let Q be a probability measure on Gn where for any G ∈ Gn, let

Qn(G) =
Yn(G)

E(Yn)|Gn|
. (23.10)

Theorem 23.4. (see Molloy et. al. [686])
Under the assumptions of Theorem 23.3, probability measures Pn and Qn, de-
fined above, conditioned on the event

⋂
δi=−1(Xi = 0), are contiguous, provided

∑δi=−1 λi < ∞.

Proof. To see that measures Pn amd Qn are contiguous recall that since Pn is a
uniform probability measure over the set Gn of all graphs on vertex set [n], so each
element G ∈ Gn has weight 1/|Gn|, while in the probability space (Gn,Qn) each
element G occurs with probability Yn(G)/(E(Yn)|Gn|).



492 Chapter 23. Contiguity

Suppose that an event An from (Gn,Pn) occurs with probability P(An)= p(n)=
o(1) Then, from the assumptions (A3) and (A4) (see Theorem 23.3), we get

VarYn = exp

((
∞

∑
i=1

λiδ
2
i

)
−1

)
(EYn)

2 = O((EYn)
2).

Therefore, by Chebyshev’s bound, for each positive integer k the number of G ∈
Gn for which Yn(G)> kEYn is at most VarYn

k2 |Gn|. Thus, taking

K =

{
k :

VarYn

(k+1)2 < p(n)
}
=

{
k : k ≥

(
VarYn

p(n)

)1/2
}

we get

Q(An) = ∑
G∈An

Yn(G)
EYn ≤

(
VarYn
p(n)

)1/2

Yn(G)

EYn|Gn|
+ ∑

G∈An
Yn(G)
EYn >

(
VarYn
p(n)

)1/2

Yn(G)

EYn|Gn|

≤ ∑
G∈An

Yn(G)
EYn ≤

(
VarYn
p(n)

)1/2

1
|Gn|

(
VarYn

p(n)

)1/2

+ ∑
k∈K

∑
G:Yn(G)

EYn ∈(k,k+1]

k
|Gn|

≤ p(n)
(

VarYn

p(n)

)1/2

+ ∑
k∈K

k
(

VarYn

(k−1)2 −
VarYn

k2

)
= O

(√
p(n)

)
+ ∑

k∈K
O(k−2) = o(1).

To show that also Pn(An)= o(1) when Qn(An)= o(1) and thus to show that the
other direction of (23.1) also holds, assume that event An has probability q(n) =
o(1) in (Gn,Qn).
Denote by

G ∗n = {G ∈ Gn : q(n)1/3 < Yn(G)/EYn < q(n)−1/3}.

Now,

Q(Yn(G)< q(n)1/3EYn) = ∑
G:Yn(G)<q(n)1/3EYn

Yn(G)

EYn|Gn|

≤ 1
|Gn| ∑

G:Yn(G)<q(n)1/3EYn

q(n)1/3
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≤ q(n)1/3 = o(1).

Furthermore, by Chebyshev’s inequality,

Q(Yn(G)> q(n)−1/3EYn)≤
VarYn

((q(n)−1/3−1)EYn)2
= o(1).

So, Qn(G ∗n ) = 1−o(1) and

Qn(An|G ∗n )≤
q(n)

1−o(1)
.

Furthermore, due to the choice of G ∗n , we have

Qn(An|G ∗n )≥ ∑
G∈An:Yn(G)≥q(n)1/3EYn

Yn(G)

EYn|Gn|
≥ q(n)1/3Pn(An|G ∗n ).

Therefore,
Pn(An|G ∗n )≤ q(n)2/3(1+o(1)) = o(1),

which completes the proof.

23.2 Contiguity of random regular graphs and multi-
graphs

The notion of contiguity and Theorem 23.4 are particularly useful in studies of
asymptotic properties of random r-regular graphs, i.e. graphs uniformly dis-
tributed over the family of all labeled graphs on n vertices, where each vertex has
degree r. Since there is no simple exact formula for the number of such graphs
(just an asymptotic approximation - see [91]) a useful way to bypass this main ob-
stacle to study their properties is to generate a random r-regular multigraph with
probability distribution close (contiguous) to the uniform distribution. One of the
most effective ways to do so is to use the random configuration method presented
in Section 9.1.

Denote by Gn,r a graph chosen at random from the family Gn of all r-regular
graphs on vertex set [n], and let GYn

n,r stand for a graph sampled from (Gn,Qn),
where Qn and Yn are defined as in (23.10).
The following contiguity relationship was a key element of Robinson and Wormald’s
[767] proof that a random 3-regular graph Gn,3 is Hamiltonian w.h.p. For conve-
nience, in what follows, we shall replace all statements that probability measures
are contiguous by a statement that the respective random graphs are contiguous.
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Theorem 23.5. Let Hn be the number of Hamilton cycles in a random graph Gn,3.
Then random graphs Gn,3 and GHn

n,3 are contiguous.

Instead of proving the above theorem we shall prove a simpler result, replacing
(for r = 3) a random r regular graph Gn,r by a random r-regular multigraph γ(F)=
Mn,r on vertex set [n], sampled uniformly from the family Mn,r of all r-regular
multigraphs generated by configurations (pairings) F of rn = 2m points into m
pairs (see Section 9.1 for details).

Theorem 23.6. Let Hn be the number of Hamilton cycles in a random multigraph
Mn,3. Then random graphs Mn,3 and MHn

n,3 are contiguous.

The proof of Theorem 23.6 reduces to checking if the conditions of Theorems
23.3 and 23.4 are satisfied. However in the proof we shall replace condition (A2)
of Theorem 23.3 by a computationally more convenient condition (A2’).

Lemma 23.7. (Janson [499], Lemma 1) Suppose that condition (A1) of Theorem
23.3 holds, that Yn ≥ 0 and that

(A2′) :
E
(
Yn(X1) j1 · · ·Yn(Xk) jk

)
EYn

→
k

∏
i=1

µ
ji

i as n→ ∞,

for some µi ≥ 0 and every finite sequence j1, . . . , jk of non-negative integers. Then
condition (A2) holds with δi = µi/λi−1.

Proof. To show that condition (A2’) implies condition (A2) of Theorem 23.3
observe that if the measure Qn is defined as in formula (23.10), then, putting
µi = λi(1+δi), the condition (A2’) can be written as

EQn

(
(X1) j1 · · ·(Xk) jk

)
→

k

∏
i=1

µ
ji

i , as n→ ∞, (23.11)

hence the method of moments (see Lemma 26.7) yields under Qn, Xi
D→ Po(µi),

jointly for all i with independent limits. This and condition (A1) gives, for any
j1, j2, . . . , jk,

E(Yn|X1 = j1 . . . ,Xk = jk)
EY

=
E(YnI(X1 = j1 . . . ,Xk = jk)
EYnPn(X1 = j1 . . . ,Xk = jk)

=
Qn(X1 = j1 . . . ,Xk = jk)
Pn(X1 = j1 . . . ,Xk = jk)

→ ∏
k
i=1 µ

ji
i e−µi/ ji!

∏
k
i=1 λ

ji
i e−λi/ ji!

=
k

∏
i=1

(
µi

λi

) ji
eλi−µi
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=
k

∏
i=1

((1+δi))
ji e−λiδi

which is the condition (A2) of Theorem 23.3.
We shall also need two other Lemmas. The results in the first Lemma were

derived for r = 3 in [767], stated in general without being used in [768], and then
derived and applied by Frieze et al. [396].

Lemma 23.8. For fixed r ≥ 3, let Hn be the number of Hamilton cycles in a ran-
dom r-regular multigraph Mn,r. Then with rn restricted to even integers,

EHn ∼
√

π

2n

(
(r−2)r−2(r−1)2

rr−2

)n/2

,while
EH2

n
(EHn)2 →

r
r−2

.

Finally, we shall apply the following asymptotic result due to Bollobás [146].

Lemma 23.9. For r fixed, let Xi,n, i ≥ 1 be the number of cycles of length i in

a random regular multigraph Mn,r. Then for each k ≥ 1, Xi,n
D→ Zi jointly for

i = 1,2, . . . ,k, where Zi ∼ Po(λi) are asymptotically independent Poisson random
variable with expectations λi = (r−1)i/(2i).

Proof. (of Theorem 23.6 , see Wormald [859])
As we have already mentioned the proof reduces to verification that in this case
the conditions (A1)-(A4) stated in Theorem 23.3 are satisfied.
For convenience, let Hn now denote the number of Hamilton cycles in a random
3-regular multigraph Mn,3, while Xi = Xi,n, i≥ 1 is the number of cycles of length
i in Mn,3.

First notice that, by Lemma 23.8, EH2
n/(EHn)

2→ 3, while Lemma 23.9 im-
plies that the condition (A1) of Theorem 23.3 holds with λi = 2i−1/i.

Instead of checking the second condition (A2) of 23.3 we use Lemma 23.7
and replace it by condition (A2’) with µi = (1+δi)λi. As a first step to show that
(A2’) holds we shall prove that

E(HnXi,n)

EHn
→ (1+δi)λi (23.12)

as n→ ∞, where

δi =
(−1)i−1

2i .

We use the notation and construction of the configuration model introduced in
Section 9.1 with each di = 3 and let D be a set of pairs of points corresponding
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to a Hamilton cycle in a partition F of a set of 3n = 2m points into m pairs (a
configuration or pairing). By symmetry all copies of D are equivalent and so in
Mn,3 = γ(F)

E(HnXi,n)

EHn
= E(Xi,n|D⊆ F).

Let C be a set of pairs corresponding to a cycle of length i and consider paths in
the graph γ(D∩C). Note that there must be at least one such path in γ(D∩C). All
pairs in C cannot be in D if n > i. Give these paths and a consistent orientation
along C (which multiplies the count by 2) and a distinguished pair as first (which
multiplies the count by the number of paths and induces a linear ordering of paths
around C). Thus

E(HnXi,n)

EHn
= ∑

S

1
2|S|

E(Xi,n(S)|D⊆ F),

where S denotes the sequence of path lengths, |S| is the number of paths in S and
Xi,n(S) is the number of cycles of length i in F consistent with S.
Fix S such that |S|= k. There are asymptotically (2n)k ways to choose the starting
points of the paths on D together with their directions along D. Once starting
points are chosen then pairs of points in C, which correspond to a cycle of length
i yielding S, are determined. The probability that these pairs all occur in Mn,3
conditional upon D⊆ F is asymptotically n−k. Hence

E(Xi,n(S)|D⊆ F)→ 2|S|

and so
E(HnXi,n)

EHn
→ ∑

k≥1

2k

2k
|{S : |S|= k}|.

The ordinary generating function for the number of sequences S with x mark-
ing the total number of vertices involved and y marking the number of paths is
g(x,y)/(1−g(x,y)), where g(x,y) = yx2/(1−x) is the generating function of one
path. Thus, with square brackets denoting extraction of coefficients,

E(HnXi,n)

EHn
→ ∑

k≥1

2k

2k
[xiyk]

yx2

1− x− yx2

= [xi] ∑
k≥1

1
2k

[yk−1]
2x2

1− x− yx2

= [xi]
1
2

∫ 1

0

2x2

1− x− yx2 dy

=−[xi]
1
2

log(1− x−2x2)+
1
2

log(1− x),
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and (23.12) follows. To prove that the condition (A2’) (see Lemma 23.7) holds
one has to extend (23.12) to higher moments. In fact one can show that the above
argument works in such case as well.
Finally the condition (A3) of Theorem 23.3 is satisfied since

∑
i≥1

λiδ
2
i = log3,

which, combined with Lemma 23.8, shows that the condition (A4) also holds.
To apply Theorem 23.4 notice that δi = −1 only for i = 1 therefore in fact our
conclusions are restricted to a random 3-regular multigraph M̂n,3 without loops,
i.e., that M̂n,3 and M̂Hn

n,3 are contiguous. The theorem follows using the definition
of contiguity by restricting to X2 > 0, since in Mn,3 probability of this event tends
to zero (see Lemma 9.6).

23.3 Contiguity of superposition models
To prove that random r-regular graph is Hamiltonian for every r ≥ 3 and so to
strengthen their result for r = 3 Robinson and Wormald [768] found that their
method of analysis of variance, based on conditioning on short cycles, and de-
scribed in detail in the first part of this chapter, becomes technically too com-
plicated. Instead they introduced a new method based on an idea of unions of
regular graphs on the same vertex set. They create simple random graphs induced
by multigraphs on n vertices using, for example, the superposition of r 1-regular
graphs (perfect matchings, for n even) or ⌊r/2⌋ Hamiltonian cycles, or combina-
tion of random regular graphs of degree lower than r with random perfect match-
ings and/or random Hamiltonian cycles. Next they show that such random graphs
are contiguous with Gn,r, i.e., share asymptotic properties with them, including
Hamiltonicty.

We shall introduce superposition of random regular graphs and multigraphs
by defining a two related union operations + and ⊕. Let G1 and G2 be two
independent random graphs or multigraphs on the same set [n] of vertices. Then a
random (multi) graph G1+G2 denotes its union (sum). Since, in general, G1+G2
may not be a simple graph therefore we define a ”simple sum” G1⊕G2 to be
G1 +G2 conditioned on being simple. Notice that both operations + and ⊕ are
commutative and associative therefore we define

kG=G+G+ · · ·+G,

and
kG=G⊕G⊕·· ·⊕G,
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with k terms on the right.
Finally, denote contiguity of two random multigraphs (graphs) M(1)

n and M(2)
n by

M(1)
n ≈M(2)

n .

Lemma 23.10. (Janson [499]) Suppose that Mn,M̂n,Rn, R̂n are random multi-
graphs (graphs) on n vertices with some probability distributions such that Mn ≈
M̂n and Rn ≈ R̂n. Then

Mn +Rn ≈ M̂n + R̂n.

Proof. It is a simple consequence of statements (ii) and (iii) of Proposition 23.2.
Indeed, by the statement (iii) pairs (Mn,Rn) and (M̂n, R̂n) are contiguous, and the
result follows by the statement (ii).

The following extension of the above lemma is given by Wormald in [859].

Lemma 23.11. Suppose that Mn,M̂n,Rn, R̂n are random multigraphs (graphs)
on n vertices with bounded degrees and with some label-independent probability
distributions such that Mn ≈ M̂n and Rn ≈ R̂n. Then

Mn⊕Rn ≈ M̂n⊕ R̂n.

Proof. (sketch)
Let An be any sequence of events which is w.h.p. true in Mn⊕Rn. Due to defini-
tions of operations + and ⊕, sequence An holds w.h.p. in Mn +Rn as well. Let
Bn be the event that G ∈Mn +Rn has a multiple edge. Then the union of events
An∪Bn is w.h.p. true in Mn +Rn and hence also, by Lemma 23.10, in M̂n + R̂n.
To show that it also holds w.h.p. in M̂n⊕ R̂n one has to show that the probability
of the complement of Bn in M̂n+ R̂n is bounded below by a positive constant. For
this it suffices to relabel separately each pair of graphs G1,G2 ∈ M̂n and use the
Method of Moments (see Chapter 26). One can verify that the expected number
λ of edges in common between two such relabelings is exactly half of the product
of the average degrees of vertices in G1 and G2 and that k-th factorial moments
tend to λ k. Hence, by Theorem 26.11 the probability of the complement of Bn
is asymptotically e−λ , which is bounded below in view of the assumption that
vertex degrees are bounded.
The reverse argument, from M̂n⊕ R̂n to Mn⊕Rn is identical.

Theorem 23.12. The following pairs of random graphs are contiguous:

(i) Gn,r−1⊕Gn,1 and Gn,r for r ≥ 3 and n even,

(ii) Gn,r−2⊕Gn,2 and Gn,r for r ≥ 3,

(iii) 3Gn,1 and Gn,3 , n even.
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Denote by Hn a random Hamilton cycle on vertex set [n] and notice that Hn
although is 2-regular, is clearly differs from a random graph G(n,2).

Theorem 23.13. The following pairs of random graphs are contiguous:

(i) Gn,r−2⊕Hn and Gn,r for r ≥ 3,

(ii) Gn,4 and 2Hn

Theorem 23.14. Let r≥ 3 and suppose that r = 2 j+∑
r−1
i=1 iki, with all terms non-

negative. Then

Gn,r ≈ jHn⊕ k1Gn,1⊕ k2Gn,2⊕·· ·⊕ kr−1Gn,r−1,

where n is restricted to even integers if ki ̸= 0 for any odd i.

Proof. (see [859])
Notice that using (ii) and (repeatedly) (iii) of Theorem 23.12, as well as Lemma
23.11,

Gn,r ≈ rGn,1. (23.13)

Moreover, applying (ii) of Theorem 23.12 and Theorem 23.13 we get

Gn,r ≈ jHn⊕ kGn,2⊕Gn,r−2 j−2k, (23.14)

for any k ≤ r/2− 2 j. If ki = 0 for all odd i, take k = r/2− 2 j and combine the
copies of Gn,2 into the desired random graph Gn,i using the same result in reverse,
with j = 0, for each of them. If not we can assume n is even, so by (23.14) with
k = k2 and by (23.13), we get

Gn,r ≈ jHn⊕ k2Gn,2⊕ (r−2 j−2k2)Gn,1, (23.15)

unless r− 2 j− 2k2 = 2. Next, recombine the copies of Gn,1 into all the other
terms required, using (23.13) in reverse for each term Gn,i, i≥ 3. The required k1
copies of Gn,1 will be surplus. The only case left is r−2 j−2k2 = 2 and k1 = 2,
whence either j > 0 or k2 > 0.
From above we have

Gn,r ≈ jHn⊕ (k2 +1)Gn,2,

and any two of these can be recombined to give Gn,4 This can be split as desired
since by (i) of Theorem 23.12 (repeated twice)

Gn,4 ≈Gn,3⊕Gn,1 ≈Gn,2⊕2Gn,1

while, by (i) of Theorem 23.13

Gn,3 ≈Hn⊕Gn,2
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23.4 Exercises
23.4.1 Prove Lemma 23.8

23.4.2 Prove Lemma 23.9

23.4.3 Show that (23.12) extends to higher moments.

23.4.4 Apply Theorem 23.12 to show that Gn,9 ≈ 5Gn,1⊕2Gn,2 for n even. Ex-
plain why Gn,1⊕Gn,1 ̸≈Gn,2.

23.5 Notes
Interest in the notion of contiguity of random graphs was stimulated by the re-
sults of Robinson and Wormald [767], [768] that random r-regular graphs, r ≥
3,r = O(1) are Hamiltonian. As a result, we find that other non-uniform models
of random regular graphs are contiguous to Gn,r e.g. the union rGn,1 of r random
perfect matchings when n is even. (There is an implicit conditioning on rGn,1 be-
ing simple here). The most general result in this line is given by Wormald [859],
improving on earlier results of Janson [499] and Molloy, Robalewska, Robinson
and Wormald[686] and Kim and Wormald [567]. More precisely, those results
are gathered in Theorems 23.12 and 23.13. The statement (i) of Theorem 23.12
was proved in [767] and [499], the statement (ii) was verified by Robalewska in
[766], while the proof of (iii) is given in [499] and [686]. A proof of statement (i)
of the Theorem 23.13 is due to Frieze, Jerrum, Molloy, Robinson and Wormald
(see [396]), while the statement (ii) of the same theorem is given in [567]. In ad-
dition, Greenhill, Janson, Kim and Wormald considered in [451] the contiguity of
random regular graphs and the unions of random permutations. They proved that
if Pn denotes a graph formed from uniformly chosen permutation on n vertices
without loops or multiple edges, then Pn⊕Pn ≈ Gn,4 and Gn,r−2⊕Pn ≈ Gn,r
for r ≥ 3.
Janson in [504] discusses asymptotic equivalence and contiguity of sequences of
homogeneous random graphs. In particular he studies the contiguity of general-
ized binomial random graphs on n vertices (see Section 8.1) with perturbed edge
probabilities pi, j. His results are extended by Kleijn and Rizzeli [571] who pro-
pose a more general form of asymptotic congruence called remote contiguity to
show that connectivity properties are preserved in more heavily perturbed homo-
geneous random graphs.
Lefebvre [618] assumes that two models of random graphs are first-order contigu-
ous if they satisfy w.h.p. the same sets of first-order formulas, and uses this notion
to classify random structures from a logical point of view. In particular he studies
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random graphs with a given degree sequence and characterize degree sequences
that define contiguous random graph sequences.
For a comprehensive and detailed account of the contiguity of various models of
random graphs we refer the reader to Wormald’s review paper [859] and to Chap-
ter 9 of Janson, Łuczak and Ruciński monograph [509].
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Chapter 24

Random Walk on Random Graphs

In this chapter we are concerned with certain aspects of a random walk on a ran-
dom graph. Given a connected graph or multi-graph G on vertex set V = [n],
a random walk Wv is a sequence of random variables Wv(t) ∈ [n], t ≥ 0, where
Wv(0) is an arbitrarily chosen vertex v and Wv(t) is a uniformly random neighbor
of Wv(t− 1). (In the case of multi-graphs, we choose neighbors proportional to
the multiplicity of the edge {Wv(t−1),Wv(t)}.) See Section 30 for a discussion
of the results on random walks used here.

A random walk on a graph is a special case of a Markov Chain. This is a
sequence of random variables X(0),X(1), . . . ,X(t), . . . taking values in a set Ω.
The defining property is that

Pr(X(t) = ωt | X(t−1) = ωt−1,X(t−2) = ωt−2, . . . ,X(0) = ω0) =

Pr(X(t) = ωt | Xt−1 = ωt−1),

i.e. the probability that X(t) = ωt depends only on Xt−1 and not on earlier states.
Clearly X(t) = Wu(t) satifies these requirements.

We first focus on the mixing time of the walk. Let Pv(w, t) denote the prob-
ability that Wv(t) = w and let Pv(A, t) = ∑w∈A Pv(w, t). It is well known that
limt→∞ Pv(w, t) = π(w) = degG(w)

2|E(G)| . The mixing time here will be

τ(ε) = min{t : ||π−Pv(·, t)||TV ≤ ε} . (24.1)

Here the total variation distance

||π−Pv(·, t)||TV =
1
2 ∑

w∈V
|Pv(w, t)−π(w)|= max

A⊆V
|Pv(A, t)−π(A)|.

So the mixing time is a statement about the rate at which the random walk con-
verges to the stationary distribution π .
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We also spend some time on the cover time. We let CG(v) denote the expected
time for the random walk Wv to visit all the vertices of G. The cover time CG of
G is then maxvCG(v).

As a final topic, we consider a random version of the so-called Walker-Deletor
game. Here alternately, Walker takes a step of a random walk and Deletor deletes
an edge that Walker has not yet traversed. The question to resolve is as to how
many vertices Walker can visit in this process.

A random walk is of course an example of a Markov chain. A Markov chain
is lazy if its transition matrix P satisfies P(i, i)≥ 1/2 for all i ∈ [n]. For technical
reasons, we will assume that our walks are lazy. This can be achieved by adding a
loop of probability 1/2 at each vertex. In terms of transition matrices, this replaces
P by (P+ I)/2. This at most doubles the mixing and cover times.

24.1 Mixing time
In this section, we discuss the mixing time of a random walk on Gn,p and on a
random regular graph, G(n,r),r = O(1). We begin with Gn,p and estimate the
conductance of the walk W using (30.7). (We omit the suffix u from Wu if the
starting vertex is irrelevant.)

Mixing time for Gn,p

In this section, we prove

Theorem 24.1. If p = c logn
n where c > 1 is a constant then in Gn,p, we have

τ(ε)≤ 2log(20n/ε).

Proof. The conductance Φ = Φ(M ) of M is defined by

Φ = min{ΦS : S⊆Ω, 0 < π(S)≤ 1/2}

where if Q(i, j) = πiP(i, j) and S̄ = Ω\S,

ΦS = π(S)−1Q(S, S̄).

Thus ΦS is the steady state probability of moving from S to S̄ in one step of the
chain, conditional on being in S. Clearly Φ≤ 1/2 if M is lazy. In terms of mixing
time we have

Lemma 24.2. If M is a lazy ergodic chain then

τ(ε)≤
⌈

2| logεπmin|
Φ2

⌉
.
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For the proof of this see Section 30.

Lemma 24.3. Suppose that p = c logn
n where c > 1 is a constant. Then w.h.p. in

Gn,p the conductance Φ(W )≥ 1/3.

Proof of Lemma 24.3
Let Nε = {v : deg(v) /∈ (1± ε) logn}. The Chernoff bounds imply that
E(|Nε |)≤ n1−ε2/2 and so by the Markov inequality we have that

|Nε | ≤ n1−ε2/3 w.h.p. (24.2)

We next argue that w.h.p.,

S⊆ [n], |S| ≤ n/ log2 n implies that e(S)≤ 3|S|. (24.3)

Indeed,

Pr(∃S, |S| ≤ n/ log2 n,e(S)≥ 3|S|)≤
n/ log2 n

∑
s=7

(
n
s

)((s
2

)
3s

)(
c logn

n

)3s

≤
n/ log2 n

∑
s=7

(ne
s

)s
(

ces logn
6n

)3s

=
n/ log2 n

∑
s=7

(( s
n

)2
· c

3e4 log3 n
216

)s

= o(1).

Finally we have

|S| ∈
[

n
log2 n

,
2n
3

]
implies that e(S)≥ c|S| logn

2
. (24.4)

Indeed,

Pr(∃S, |S| ≥ n/ log2 n,e(S)≤ cs logn/2)

≤
2n/3

∑
s=n/ log2 n

(
n
s

)
Pr(Bin(s(n− s), p)≤ s(n− s)p/2)

≤
2n/3

∑
s=n/ log2 n

(ne
s

)s
e−cs(n−s) logn/8

≤
2n/3

∑
s=n/ log2 n

(ne
s
· e−c logn/25

)s
= o(1).
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We can now estimate the conductance. We have that w.h.p.

α0 logn≤ deg(v)≤ α1 logn for all v ∈ [n],

for some constants αi = αi(c), i = 0,1, see Exercises 3.3.7 and 3.3.8.
For a random walk, conductance reduces to the following. See (30.7) for the
proof.

ΦS =
e(S, S̄)
deg(S)

=
deg(S)−2e(S)

deg(S)
≥ deg(S)−3|S|)

deg(S)
= 1−o(1),

if |S| ≤ n/ log2 n.
Note next that if |S| ≥ 2n/3 then w.h.p.

π(S)≥ (2n/3−n1−ε2/3)(1− ε)c logn
c logn

>
1
2
.

And so if n/ log2 n≤ |S| ≤ 2n/3 then

ΦS =
e(S, S̄)
deg(S)

≥ c|S| logn/2
(1+ ε)c logn+α1n1−ε2/3 logn

≥ 1
3
.

End of proof of Lemma 24.3.
Theorem 24.1 follows from Lemma 24.3 and Corollary 30.6 and doubling
through laziness.

Mixing time for G(n,r)

We now consider the random regular graph G(n,r). Friedman [380] proved that
w.h.p., if r ≥ 3,

l1 ≤ 2(r−1)1/2 +η

for any η > 0. Here l1 is the second eigenvalue of the adjacency matrix of G(n,r).
It follows from this and Corollary 30.2 that after making the chain lazy, we

have lmax ≤ (1+2(r−1)1/2 +η)/2. Hence,

Theorem 24.4. If r ≥ 3 then in G(n,r) we have τ(ε)≤ 2log(2n/ε).

24.2 Cover time
We let CG(u) denote the expected time for the random walk Wu to visit all the
vertices of G. The cover time CG of G is then maxuCG(u).
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The cover time of Gn,p

Jonasson [528] initiated the study of the cover time of random graphs and showed
that if np≫ logn then w.h.p. the cover time of Gn,p is aymptotic to n logn, the
time for the coupon collector to get all n coupons. We will prove

Theorem 24.5. Suppose that c > 1 is constant and p = c logn
n . Then w.h.p.,

CGn,p ∼ ψ(c)n logn, where ψ(c) = c log
(

c
c−1

)
.

This ws proved by (Cooper and Frieze [257] where c = 1+o(1) is allowed.

Proof.

First Visit Time Lemma Subsequent to [257], they tackled random regular
graphs and in the process proved the First Visit Time Lemma: Let G denote a
fixed connected graph, and let u be some arbitrary vertex from which a walk Wu is
started. Let Wu(t) be the vertex reached at step t, let P be the matrix of transition
probabilities of the walk, and let Pu(v, t) = Pr(Wu(t) = v).

Let T be such that, for t ≥ T

max
u,x∈V

∣∣∣∣Pu(x, t)−πx

πx

∣∣∣∣≤ 1
ω

(24.5)

where ω = ω(n)→ ∞.
For a large constant K > 0, let

η =
1

KT
.

For t ≥ 0, let At(v) be the event that Wu does not visit v in steps T,T + 1, . . . , t.
The vertex u will have to be implicit in this definition. We will use the following
lemma. For the proof see Section 30.2. Let rt = Pr(Wv(t) = v) and let Rv =∑

T
t=0 rt

denote the expected number of visits by Wv to vertex v in the time interval [0,T ].

Lemma 24.6. [First Visit Time Lemma]
Suppose that T πv = o(1) and that ∑

T
t=0 rt(1+η)t < 1. Then for all t ≥max{T,n logn},

Pr(At(v))∼ exp
{
−tπv

Rv
(1+O(T πv))

}
. (24.6)

This is proved in Section 30.2.
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Upper bound on cover time By putting ε = 1/n in Theorem 24.1, we can take
T = 5logn and ω = n in (24.5). Given this we can show

Lemma 24.7. Rv = 1+o(1) for all v ∈ [n].

Proof. Observe next that w.h.p. a set of s ≤ log logn vertices contains at most s
edges. Indeed,

Pr(∃|S| ≤ log logn : e(S)≥ |S|+1)≤
log logn

∑
s=4

(
n
s

)( (s
2

)
s+1

)
ps+1

≤ ep log logn
log logn

∑
s=4

(enp
2

)s
= o(1).

(24.7)

Let rt = Pv(v, t). Then r0 = 1 and r1 = 0 and r2 ≤ 1/α0 logn. It follows from
(24.7) that r3 = O(1/ log2 n) and also, if Wv(t) is at distance 3 or more from v then
rτ = O((σ − t)/ log3 n) for σ > t. Thus,

Rv−1≤
T

∑
t=1

rt(1+η)t = O

(
T

∑
t=1

rt

)
= O

(
1

logn
+

1
log2 n

+
T

log3 n

)
= o(1).

(24.8)

Note that (24.8) implies that Lemma 24.6 is applicable.
Let TG(u) be the time taken to visit every vertex of G by the random walk Wu.

Let Us be the number of vertices of G =Gn,p which have not been visited by Wu
at step s.

Cu = ETG(u) = ∑
s>0

Pr(TG(u)≥ s) = ∑
s>0

Pr(Us > 0)

≤ ∑
s>0

min{1,EUs} ≤ t + ∑
v∈V

∑
s>t

Pr(As(v)), (24.9)

≤ t +(1+o(1)) ∑
v∈V

∑
s>t

exp
{
−(1−o(1))sdeg(v)

cn logn

}
using (24.6)

= t +(1+o(1))n
n−1

∑
k=0

(
n−1

k

)
pk(1− p)n−1−k

∑
s>t

exp
{
−(1−o(1))sk

cn logn

}
= t +(1+o(1))n1−c

n

∑
k=0

(c logn)k

k! ∑
s>t

exp
{
−(1−o(1))sk

cn logn

}

= t +(1+o(1))n1−c
n

∑
k=0

(c logn)k

k!

exp
{
− (1−o(1))tk

cn logn

}
1− exp

{
− (1−o(1))k

cn logn

}
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≤ τn logn+(1+o(1))cn2−c logn
n

∑
k=0

(c logn)k+1

k!k
· e−τk/c, (24.10)

for t = τn logn.
Putting τ0 = ψ(c) = c log

( c
c−1

)
, we see that

n

∑
k=0

(
(c logn)k

k!k
· e−τ0k/c

)
≤ 2

c logn

n

∑
k=0

(
(c logn)k+1

(k+1)!
· e−τ0k/c

)
≤ 2

c logn
exp
{

c logn · c−1
c

}
=

2nc−1

c logn
. (24.11)

It follows from (24.10), (24.11) that if t0 = τ0n logn then

Cu ≤ (1+o(1))t0 +O(n)≲ ψ(c)n logn. (24.12)

Lower bound on cover time For any vertex u, we can find a set of vertices
S such that at time t1 = t0(1− ε1), ε1 = 1/ log logn, the probability the set S is
covered by the walk Wu tends to zero. Hence TG(u)> t1 w.h.p. which implies that
CG ≥ (1−o(1))t0.

We construct S as follows. Let

k∗ = ⌈(c−1) logn⌉ and V ∗ = {v : deg(v) = k∗}.

Then, w.h.p. see Exercise ??,

|V ∗| ≥ nθ(c)

logn
where θ(c) = (c−1) log

(
c

c−1

)
. (24.13)

If v ∈V ∗ then

Pr(At1(v))∼ exp{−(1+O(1/ logn)+T πv)(1− ε1)θ(c) logn}
≥ n−(1−ε1/2)θ(c). (24.14)

Because the maximum degree in Gn,p is O(logn), we can choose a subset S1 ⊆V ∗

if size Ω(|V ∗|/ log4 n) such that the distance between v,w ∈ S1 is at least 4. Now
if S is the set of vertices not visited in the interval [T, t1] then

E(|S|)≥ Ω(nε1θ(c)/2)

log5 n
−T → ∞.
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We have subtracted the upper bound T for the set of vertices in S that have been
visited up to time T .

We now use the second moment method to prove that S ̸= /0 w.h.p. This implies
that CG ≥ t1. So, let v,w ∈ S. Let Γ be obtained from G by merging v,w into a
single node z. This node has degree 2k∗.

There is a natural measure preserving mapping from the set of walks in G
which start at u and do not visit v or w, to the corresponding set of walks in Γ

which do not visit z. Thus the probability that Wu does not visit v or w in the first
t steps is equal to the probability that a random walk Ŵu in Γ which also starts at
u does not visit z in the first t steps. We apply Lemma 24.6 to Γ.

We have that πz =
2k∗

cn logn and the argument for (24.8) implies that Rz = 1+
o(1). Merging v,w does not decrease conductance and so we can use T = 5logn
as a mixing time. Thus

Pr(At1(Z)) = exp
{
− 2t1k∗

cn logn

(
1+O

(
logn

n

))}
∼ Pr(At1(v)Pr(At1(w)).

It follows that E |S|2∼ (E |S|)2 and the second moment method implies that |S| ̸= /0
w.h.p. This in conjunction with (24.11), completes the proof of Theorem 24.5.

The cover time of G(n,r)

We will prove

Theorem 24.8. Suppose that r ≥ 3 is constant. Then w.h.p.

CG(n,r) ∼
r−1
r−2

n logn.

Proof. By putting ε = 1/n in Theorem 24.4, we can take T = 5logn and ω = n
in (24.5).

Let
σ = ⌊log loglogn⌋ .

For v ∈ V and k ≥ 0, let Nk(v) = {w : dist(v,w) = k} be the set of vertices at
distance k from v. Let Ml(v) = ∪l

j=0N j(v), and let Gl(v) be the subgraph of G =

G(n,r) induced by Ml(v).
We say that v is locally tree-like if Gσ (v) is a tree. A cycle C is small if

|C| ≤ σ .

Lemma 24.9.

(a) There are at most r2σ small cycles.
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(b) There do not exist 2 small cycles within distance σ of each other.

(c) There are at most r3σ non tree-like vertices.

(d) A non tree-like vertex v is within distance 2σ of a tree-like vertex.

Proof. (a) We use the configuration model of Chapter ??. F denotes a random
configuration.

The expected number of small cycles in γ(F) is bounded by

σ

∑
k=3

(
n
k

)
(k−1)!

2
(r(r−1))kϕ(rn−2k)

ϕ(rn)
≤

σ

∑
k=3

(
n
k

)
(k−1)!

2

( r
n

)k
≤ rσ ,

and so (a) follows from the Markov inequality.
The expected number of pairs of small cycles within σ of each other is bounded

by

σ

∑
a=3

σ

∑
b=3

(
n
a

)(
n

b−1

)
(a−1)!

2
(b−1)!

2

( r
n

)a+b
+

σ

∑
a=3

σ

∑
b=3

σ

∑
c=1

(
n
a

)(
n
b

)(
n
c

)
(a−1)!

2
(b−1)!

2
ab
( r

n

)a+b+c+1
= o(1).

This verifies (b).
Part (c) follows from (a) and (b) and the fact that a non tree-like vertex is

within σ of a small cycle. Part (d) follows from (b).

We now estimate Rv for a locally tree-like vertex. (Rv is defined just prior to
Lemma 24.6.)

Lemma 24.10. If v is locally tree-like then

(a) Rv =
r−1
r−2 +o(σ−1).

(b) The conditions of Lemma 24.6 are satisfied.

Proof. Let Tr be the infinite r-regular tree, rooted at v. Let X be a random walk
on Tr starting at v. Let ρi be the probability that X is at v at step i. Now we
can project the walk X onto a walk Y on {0,1,2, . . . ,} where the particle moves
right with probability q = r−1

r and left with probability p = 1
r , except of course at

the origin, where it must move right. Let Ei be the expected number of visits to 0
for Y starting at i. Then

E0 = 1+E1 = 1+E0 p/q.
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This is because E1 is E0 times the expected number of visits to 0 between right
moves from 1. Solving gives

∞

∑
t=0

ρt = E0 =
r−1
r−2

. (24.15)

Note next that for t ≥ 0 we have ρ2t+1 = 0 and we will argue that

ρ2t ≤
(

2t
t

)
(r−1)t

r2t ≤
(

2(r−1)
r2

)t

≤
(

4
9

)t

. (24.16)

Now,
rt = ρt for t ≤ σ , (24.17)

and from (30.1), for σ ≤ t ≤ T ,

rt ≤ πv + lt
max ≤ πv +

(
2
√

2+o(1)
3

)t

. (24.18)

So,

T

∑
t=1

rt(1+ l)t ≤

σ

∑
t=1

(
4(1+ l)2

9

)t

+
T

∑
t=σ+1

(
πv +

(
2
√

2+o(1)
3

)t)
(1+ l)2t < 1, (24.19)

if K is sufficiently large.
Equations (24.17), (24.18) and (24.19) complete the proof of the lemma, mod-

ulo the proof of (24.16).
Proof of (24.16): First observe that the RHS of (24.16) is the probability that

a walk Y1 is at the origin after 2i steps. Here Y1 is the walk on {0,±1,±2, . . . ,}
where the particle moves right with probability q = r−1

r and left with probability
p = 1

r i.e. there is no barrier at the origin. We can couple Y ,Y1 so that Y (t) ≥
|Y1(t)|. When Y1(t) > 0 we can move them in the same direction and when
Y1 < 0 then we can move Y further from the origin whenever Y1 moves further
from the origin. Finally, Pr(Y1(2t) = 0) = Pr(Bin(2t, p) = t).

Upper bound on cover time Let t0 = r−1
r−2n logn. We prove that for any vertex

u ∈V ,
Cu ≤ t0 +o(t0). (24.20)
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As in (24.9) we have

Cu ≤ t +∑
s≥t

EUs = t + ∑
v∈V

∑
s>t

Pr(As(v)). (24.21)

Let V1 be the set of locally tree-like vertices and let V2 = V −V1. For v ∈ V1 we
have

∑
s≥t0

Pr(As(v))≤ ∑
t≥t0

exp
{
− (r−2)t
(r−1)n

(
1+O

(
logn

n

))}
≤ 2exp

{
−(r−2)t0
(r−1)n

}
· 1

1− exp
{
− (r−2)

(r−1)n

}
≤ 3

r−1
r−2

.

Furthermore, we see that in particular,

Pr(A5n(v))≤ 2e−1. (24.22)

Suppose next that v ∈ V2. Lemma 24.9(d) shows we can find w ∈ V1 such that
dist(v,w)≤ 2σ . So from (24.22), with ν = 5n+2σ , we have

Pr(Aν(v))≤ 1− (1−2e−1)r−2σ

since if our walk visits w, it will with probability at least r−2σ visit v within the
next 2σ steps. Thus if ξ = (1−2e−1)r−2σ ,

∑
s≥t0

Pr(As(v))≤ ∑
s≥t0

(1−ξ )⌊s/ν⌋ ≤ ∑
s≥t0

(1−ξ )s/(2ν) =
(1−ξ )t0/(2ν)

1− (1−ξ )1/(2ν)
≤ 3νξ

−1.

Thus, for all u ∈V ,

Cu ≤ t0 +3
r−1
r−2

|V1|+3|V2|νξ
−1 = t0 +O(r5σ n) = t0 +o(t0),

as σ = ⌊log loglogn⌋.

Lower bound on cover time For any vertex u, we can find a set of vertices S
such that at time t1 = t0(1− ε), ε → 0, the probability the set S is covered by the
walk Wu tends to zero. Hence TG(u)> t1 w.h.p. which implies that CG≥ t0−o(t0).

We construct S as follows. Let S ⊆ V1 be some maximal set of locally tree-
like vertices all of which are at least distance 2σ + 1 apart. Thus |S| ≥ (n−
r3σ )r−(2σ+1).
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Let S(t) denote the subset of S which has not been visited by Wu after step t.
Now, provided t ≥ T

E |S(t)| ≥ (1−o(1))∑
v∈S

exp
{
− t

nRv

}
.

Let u be a fixed vertex of S. Setting t = t1 = (1− ε)t0 where ε = 2σ−1, we have

E |S(t1)|= (1+o(1))|S|e−(1−ε)t0/(Rvn) ≥ n1/2σ . (24.23)

To finish we can follow the same second moment argument as for the lower bound
in Gn,p to show that t1 is a lower bound on Cu.

24.3 Walker-Deletor
This is a game played by Walker and Deletor on a graph G with vertex set [n] and
minimum degree αn. In a move, Walker makes one step of a simple random walk
W and Deletor deletes an edge of G that has not been visited by Walker. The
game ends when it is not possible for Walker to move to an unvisited vertex. Let
V ∗ denote the set of vertices visited by Walker before the end of the game. We
prove the following theorem from Espig, Frieze and Pegden [341]:

Theorem 24.11.

(a) If G has minimum co-degree at least αn for some absolute constant α > 0 then
under optimum play (by Deletor), Walker visits at least n− c logn vertices of
G w.h.p., for a constant c depending on α . (Here the co-degree of a pair of
vertices v,w is the size of their common neighborhood.)

(b) If G has minimum degree at least αn for some absolute constant α > 0 then
under optimum play (by Deletor), Walker visits at most n− c logn vertices
w.h.p., for any constant c < α .

Proof.

Lower bound on |V ∗| Let β = α3/36 and consider the first t0 = 4β−1n logn
moves. We will show that Walker will w.h.p. visit the required number of vertices
within this time. Let Gt be the subgraph of G induced by the edges not acquired by
Deletor after t moves. Let Lt be the set of vertices incident with more than αn/3
deleted edges after the completion of t moves by Deletor. Clearly |Lt | ≤C0 logn,
where C0 = 12(αβ )−1.
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Let vt denote the current vertex being visited by Walker. We let Ut denote the
set of vertices that are not in Lt and are currently unvisited. Then

(a) If vt /∈ Lt then the probability that Walker visits Ut within two steps is at least
β |Ut |/n. To see this let Z = |N(vt+1)∩Ut |. Then E(Z) ≥ α|Ut |/3. This
is because vt and any w ∈ Ut have at least αn− 2αn/3 = αn/3 common
neighbors in Gt . Thus, if Z̄ = |Ut | − Z then E(Z̄) ≤ (1−α/3)|Ut |. It fol-
lows from the Markov inequality that Pr(Z̄ ≥ (1−α2/9)|Ut |)≤ 1

1+α/3 and so
Pr(Z ≥ α2|Ut |/9)≥ α

3+α
. Finally observe that Pr(vt+2 ∈Ut | Z)≥ (Z−1)/n,

where we have subtracted 1 to account for Deletor’s next move.

(b) We divide our moves up into periods A1,B1,A2,B2, . . . , where A j is a sequence
of moves taking place entirely outside Lt and B j is a sequence of moves en-
tirely within Lt . During a time period A j, the probability this period ends
is at most 3C0 logn

2αn . So the number of time periods is dominated by the bi-
nomial Bin(4β−1n logn,3C0 logn/(2αn)) and so with probability 1−o(n−3)
the number of periods is less than 10C0(αβ )−1 log2 n.

(c) We argue next that with probability 1−o(n−3)

each B j takes up at most O(log6 n) moves. (24.24)

Suppose that B j begins with a move from v /∈ Lt to w ∈ Lt . Let L∗ = Lt ∪{v}
and let H∗ denote the subgraph induced by the edges contained in L∗ that have
not been acquired by Deletor. Walker’s moves in period B j constitute a ran-
dom walk on (part) of the graph H∗. This is not quite a simple random walk,
since H∗ changes due to the fact that Deletor can delete some of the edges
available to Walker. Nevertheless, Walker will always be in a component of
H∗ containing vt . This is because Walker has arrived at the current vertex via
a walk from vt . Now consider running this walk for C1 log5 n steps, where C1
is some sufficiently large constant. Observe that Deletor can claim at most
C2

0 log2 n edges inside this component of H∗. Hence there will be an interval
of length C2 log3 n,C2 =C1/C2

0 where Deletor does not claim any edge inside
H∗. This means that in this interval we perform a simple random walk on a
connected graph with at most 1+C0 logn vertices. If we start this interval at a
certain vertex x, then we are done if the random walk visits v. It follows from
Theorem 30.9 that the expected time for the walk to visit v can be bounded by
C3

0 log3 n. So, if C2 > 2C3
0 then v will be visited with probability at least 1/2.

Suppose that time has increased from the time t when B j began to t ′ when v
is first re-visited. If v /∈ Lt ′ then B j is complete. If however v ∈ Lt ′ then we
know that v is incident with at most αn/3+C1 log5 n Deletor edges. So the
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probability that Walker leaves Lt ′ in her next step is at least

dG(v)− (αn/3+C1 log5 n)
dG(v)

≥ 1
2
. (24.25)

So the probability that B j ends after C1 log5 n steps is at least 1/4. Suppose
on the other hand that B j does not end and that we return to v for kth time
where k ≤ 20logn. The effect of this is to replace C1 log5 n in (24.25) by
kC1 log5 n. This does not however affect the final inequality. So if C1 is suffi-
ciently large, the probability that B j does not end after 20C1 log6 n steps is at
most (3/4)20logn = o(n−4). Estimate (24.24) follows immediately.

(d) Combining the discussion in (b), (c) we see that w.h.p.
∣∣⋃

j B j
∣∣ = O(log8 n),

which is negligible compared with t0; i.e., Walker spends almost all of her
time outside Lt0 . Let Xi,1≤ i≤ k = n−C0 logn, be the time needed to add the
ith vertex to the list of vertices visited by Walker. (Here we exclude any time
spent in

⋃
j B j.) It follows from (a) that Xi/2 is dominated by a geometric ran-

dom variable with probability of success (n−i−C0 logn)β
n . This is true regardless

of X1,X2, . . . ,Xi−1. So (X1 + · · ·+Xk)/2 is dominated by the sum of indepen-
dent geometric random variables. Furthermore, E(X1 + · · ·+Xk) ≤ 2

β
n logn

and it is not difficult to show that X1 + · · ·+Xk ≤ t0 w.h.p. Indeed, the vari-
ance of a geometric random variable with probability of success p is given by
1/p2−1/p≤ 1/p2. So, by the Chebyshev inequality,

Pr(X1 + · · ·+Xk > t0)≤
β 2

4n2 log2 n

k

∑
i=1

4n2

β 2(n− i−C0 logn)2 = O
(

1
log2 n

)
.

This completes the proof of Theorem 24.11(a).

Upper bound on |V ∗| We assume that Walker chooses a vertex a0 to start
at and then Deletor chooses an edge to acquire.

Deletor’s strategy will be to choose an arbitrary unvisited vertex v1 and protect
it by always on his turn taking the edge (v1,w) where w is the current vertex
being visited by Walker, if (v1,w) ∈ E(G). If Deletor has already acquired
(v1,w) or (v1,w) /∈ E(G) then he will choose an unacquired edge incident
with v1. This continues until Deletor has acquired all of the edges incident
with v1. He then chooses v2 and protects it. This continues until there are no
unvisited vertices to protect.

After Deletor has protected v1,v2, . . . ,vk−1 and while he is protecting vk, Walker
finds herself doing a random walk on a dense graph with n− k vertices. Let
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the moves spent protecting vk be denoted by round k. (More precisely, round
k consists of the moves, after round k−1, until Deletor has acquired all edges
incident with vk.)

Fix k = O(logn) and let Zk be the number of unvisited, unprotected vertices
when Deletor begins protecting vk. Because Deletor has taken the edges inci-
dent with v1,v2, . . . ,vk−1, it will take at most n− k more moves to protect vk.
If w is an unvisited, unprotected vertex at the start of the round, then it remains
unvisited with probability at least

(
1− 1

αn−k

)n−k−1
= e−1/α +O(1/(n− k)).

It follows that E(Zk+1) ∼ Zk/e1/α . To show that it is close to this w.h.p. we
proceed as follows: Suppose that we throw n− k balls randomly into αn− k
boxes, of which Zk are special. Then Zk+1 dominates the number of empty
special boxes. We can use Talagrand’s inequality, Theorem 20.3 to see that if
Zk≫ logn then Zk+1 will be concentrated around its mean.

It follows that w.h.p. Zk ∼ ne−k/α for k ≤ (1− ε)α logn where 0 < ε < 1 is
a positive constant. Thus Deletor will w.h.p. be able to protect (1− ε)α logn
vertices and we can choose any c < α in Theorem 24.11(b).

24.4 Exercises
24.4.1 Verify equation (24.13).

24.4.2 The vacant set Vt of a random walk on a graph G at time t is the set
of vertices so far unvisited. We let Gt denote the subgraph induced by
Vt .Suppose that G =Gn,p where np = c logn where c > 1 is constant. Let
tθ = n(log logn+(1+θ)c). Show that if t ≤ t−ε then w.h.p. the size of the
largest component in Gt is of order |Vt | and that if t ≥ tε then this drops to
O(logn) w.h.p.

24.4.3 The trace of a random walk at time t is the graph/digraph induced by the
the t edges crossed. Show that if t ≥ Kn logn then w.h.p. the trace of a
random walk on Kn is Hamiltonian.

24.5 Notes
Mixing time Fountoulakis and Reed [375] and Benjamini, Kozma and Wormald
[95] proved that the mixing time of a random walk on the giant component Gn,m, p=
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c/n,c > 1 is O(log2 n) w.h.p. Whereas Nachmias and Peres [704] show that in the
case c ∼ 1, the mixing time is in [A−1n,An] with probability at least 1− ε , for
A = A(ε). Ding, Lubetzky and Peres [297] show that mixing time for the emerg-
ing giant at p = (1+ ε)/n where λ = ε3n→ ∞ is of order (n/λ )(logλ )2.

For random regular graphs, we have shown that the mixing time is O(logn).
Lubetzky and Sly [630] proved that the mixing time exhibits a cut-off phenomenon
i.e. the variation distance goes from near one to near zero very rapidly.

Boyd, Ghosh, Prabhakar and Shah [191] considered random walk on a random
geometric graph. They show that w.h.p. the mixing time is Θ(r−2) where r is
maximum distance between adjacent points.

Cover time Cooper and Frieze used the First Visit Time Lemma to establish
asymptotically correct estimates for the cover time of the giant component of
Gn,p, p = c/n,c > 1 [259], CG ∼ cx(2−x)

4(cx−logc)n log2 n where xe−x = ce−c; the pref-

erential attachment graph [258], CG ∼ 2m
m−1n logn; the random geometric graph in

d ≥ 3 dimensions [260], CG ∼ ψ(c)n logn assuming that the distance r between
adjacent vertices is (c logn)/(Ψdn)1/2 where Ψd is the volume of the ball of ra-
dius 1 in Rd (the case of d = 2 is less well understood, although Avin and Ercal
[56] prove that w.h.p. it is Θ(n logn)).; the random digraph Dn,p, p = c logn/n
[261], CD ∼ ψ(c)n logn; random graphs with a fixed degree sequence [263].
Cooper, Frieze and Radzik considered random walks on uniform hypergraphs.
Frieze, Pegden and Tkocz [412] analysed the cover time of the emerging giant in
Gn,p, p=(1+ε)/n,ε3n→∞. They show that w.h.p. the cover time∼ n log2(ε3n).
This improved the results of Barlow, Ding, Nachmias and Peres [80]. Martinez
and Mitsche [654] prove a lower bound of Ω(n log2 n) for the cover time of the
largest component when r is below the threshold for connectivity.

Trace The trace of a random walk at time t is the graph/digraph induced by the t
edges crossed. Frieze, Krivelevich, Michaeli and Peled [400] considered the trace
of random walks on Gn,p and Kn. For Gn, p, p = C logn/n,C = C(ε) the trace at
time (1+ ε)n logn is Hamiltonian w.h.p. and β logn connected for β (ε) > 0. In
the case of Kn they prove hitting time results for Hamiltonicity and connectivity.

Krivelevich and Michaeli [599] discuss the threshold for the appearance of a
fixed small subgraph H in the trace. In the case of Kn the results are analogous to
those for Gn,m, see Chapter 3. They also consider Gn,p.

Vacant set The vacant set Vt of a random walk at time t is the set of vertices
so far unvisited. We let Gt denote the subgraph induced by Vt . Černy, Teix-
eira and Windisch [210] studied the vacant set of a random walk on G(n,r). Let
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t∗ = r(r−1) log(r−1)
(r−2)2 n. They showed that w.h.p. if t ≥ (1+ ε)t∗ then the maximum

component size in Gt is O(logn) and conjectured that there is a phase transition
at t∗. This was confirmed by Cooper and Frieze [262] who gave an asymptotic
formula for the size of the largest component. Černy and Teixeira [210] show that
in a critical window around t∗ the size of the largest component is of order n2/3.
Cooper and Frieze also considered the vacant set for random walks on Gn,p, see
Exercise 24.4.1.
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Chapter 25

Brief notes on uncovered topics

There are several topics that we have not been able to cover and that might be of
interest to the reader. For these topics, we provide some short synopses and some
references that the reader may find useful.

Edge Colored Random Graphs
Suppose that we color the edges of a graph G. A set of edges S is said to be
rainbow colored if each edge of S has a different color. Consider first the existence
of a rainbow spanning tree. We consider the graph process where the edges are
randomly colored using q ≥ n− 1 colors. Let τa be the hitting time for n− 1
colors to appear in the process and let τc be the hitting time for connectivity and
let τ∗ = max{τa,τc}. Frieze and McKay [407] showed that w.h.p. Gτ∗ contains
a rainbow spanning tree. This is clearly best possible. Bal, Bennett, Frieze and
Pralat [61] consider the case where each edge has a choice of k random colors.
This reduces τa, but the result still holds.

The existence of rainbow Hamilton cycles is different. The existence of a
rainbow spanning tree can be checked in polynomial time and this leads to a
simple criterion for non-existence. This is clearly not likely for Hamilton cy-
cles. Cooper and Frieze [253] proved that if m≥ Kn logn and q≥ Kn then w.h.p.
Gn,m contains a rainbow Hamilton cycle. This was improved to m≥ 1+o(1)

2 n logn
and q ≥ (1+ o(1))n by Frieze and Loh [402]. Bal and Frieze [63] show that if
m ≥ Kn logn and q = n and n is even there is a rainbow Hamilton cycle w.h.p.
Ferber [352] removed the requirement that n be even. Bal and Frieze also consid-
ered rainbow perfect matchings in k-uniform hypergraphs. Janson and Wormald
[512] considered random coloring’s of r-regular graphs. They proved that if
r ≥ 4,r = O(1) and the edges of Gn,2r are randomly colored so that each color is
used r times, then w.h.p. there is a rainbow Hamilton cycle. Ferber, Kronenberg,
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Mousset and Shikhelman [355] give results on packing rainbow structures such
as Hamilton cycles. Ferber, Nenadov and Peter prove that if p≫ n−1/d(logn)1/d

and H is a fixed graph of density at most d then w.h.p. Gn,p contains a rainbow
copy of H if it is randomly colored with (1+ε)|E(H)| colors, for any fixed ε > 0.

Cooper and Frieze [250] found the threshold for the following property: If
k = O(1) and Gn,m is arbitrarily edge colored so that no color is used more than k
times, then Gn,m contains a rainbow Hamilton cycle.

Games
Positional games can be considered to be a generalisation of the game of “Noughts
and Crosses” or “Tic-Tac-Toe”. There are two players A (Maker) and B (Breaker)
and in the context for this section, the board will be a graph G. Each player in
turn chooses an edge and at the end of the game, the winner is determined by the
partition of the edges claimed by the players. As a typical example, in the con-
nectivity game, player A is trying to ensure that the edges she collects contain a
spanning tree of G and player B is trying to prevent this. See Chvátal and Erdős
[230] for one of the earliest papers on the subject and books by Beck [83] and
Hefetz, Krivelevich, Stojaković and Szabó [476]. Most of the analyses have con-
sidered G = Kn and to make the problem interesting [230] introduced the notion
of bias. Thus in the connectivity game, player B is allowed to collect b edges
for each edge of A. Now the question becomes what is the largest value of b for
which A has a winning strategy. There is a striking though somewhat mysterious
connection between the optimal values of b for various games and thresholds for
associated properties in random graphs. For example in the connectivity game, the
threshold bias b ≈ n

logn i.e. player A collects about 1
2n logn edges, see Gebauer

and Szabó [427]. Another example is the biased H-game where Maker wins if
she can create a copy of some fixed graph H with at least two adjacent edges. The
optimal threshold bias b for this game is of order Θ

(
n1/m2(H)

)
, Bednarska and

Łuczak [85]. For sufficiently small constant c > 0, if b ≤ cn1/m2(H), then Maker
can create Θ(EXH) copies of H in Kn, where XH is the number of copies of H in
Gn,1/b. Furthermore, if Maker plays randomly, she achieves this goal w.h.p.

Recently Stojaković and Szabó [820] began research on random boards i.e.
where G is a random graph. Ben-Shimon, Ferber, Hefetz and Krivelevich [99]
prove a hitting time result for the b = 1 Hamilton cycle game on the graph pro-
cess. Assuming that player A wants to build a Hamilton cycle and player B starts
first, player A will have a winning strategy in Gm iff m ≥ m∗4. This is best pos-
sible. Biased Hamiltonicity games on Gn,p were considered in Ferber, Glebov,
Krivelevich and Naor [353] where it was shown that for p≫ logn

n , the threshold
bias bHAM satisfies bHAM ≈ np

logn w.h.p. The H-game where A wins if she can
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create a copy of some fixed graph H was first studied by Stojakovic and Szabo
[820] in the case of H is a clique on k vertices. This was strengthened by Müller
and Stojaković [701]. They show that if p ≤ cn−2/(k+1), then w.h.p. B can win
this game. For p ≥ Cn−2/(k+1) one can use the results of [772] to argue that A
wins w.h.p. This result was generalised to arbitrary graphs H (satisfying certain
mild conditions) by Nenadov, Steger and Stojaković [713] where they showed that
the threshold is where one would expect it to be - at the 2-density of H. As we
have seen there are other models of random graphs and Beveridge, Dudek, Frieze,
Müller and Stojaković [106] studied these games on random geometric graphs.

The game chromatic number χg(G) of a graph G can be defined as follows.
Once again there are two players A,B and they take it in turns to properly color
vertices of G with one of q colors. Thus if {u,v} is an edge and u is colored with
color c and v is uncolored at the start of any turn, then v may not be colored with
c by either player. The goal of A is to ensure that the game ends with every vertex
colored and the goal of B is to prevent this by using all q colors in the neighbor-
hood of some uncolored vertex. The game chromatic number is the minimum q
for which A can win. For a survey on results on this parameter see Bartnicki,
Grytczuk, Kierstead and and Zhu [81]. Bohman, Frieze and Sudakov [142] stud-
ied χg for dense random graphs and proved that for such graphs, χg is within a
constant factor of the chromatic number. Keusch and Steger [564] proved that this
factor is asymptotically equal to two. Frieze, Haber and Lavrov [395] extended
the results of [142] to sparse random graphs.

Graph Searching

Cops and Robbers

A collection of cops are placed on the vertices of a graph by player C and then
a robber is placed on a vertex by player R. The players take turns. C can move
all cops to a neighboring vertex and R can move the robber. The cop number of
a graph is them minimum number of cops needed so that C can win. The basic
rule being that if there is a cop occupying the same vertex as the robber, then C
wins. Łuczak and Pralat [643] proved a remarkable “zigzag” theorem giving the
cop number of a random graph. This number being nα where α = α(p) follows
a saw-toothed curve. Pralat and Wormald [748] proved that the cop number of
the random regular graph Gn,r is O(n1/2). It is worth noting that Meyniel has
conjectured O(n1/2) as a bound on the cop number of any connected n-vertex
graph. There are many variations on this game and the reader is referred to the
monograph by Bonato and Pralat [179].
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Graph Cleaning

Initially, every edge and vertex of a graph G is dirty, and a fixed number of brushes
start on a set of vertices. At each time-step, a vertex v and all its incident edges
that are dirty may be cleaned if there are at least as many brushes on v as there
are incident dirty edges. When a vertex is cleaned, every incident dirty edge is
traversed (that is, cleaned) by one and only one brush, and brushes cannot traverse
a clean edge. The brush number b(G) is the minimum number of brushes needed
to clean G. Pralat [749], [750] proved that w.h.p. b(Gn,p) ≈ 1−e−2d

4 n for p = d
n

where d < 1 and w.h.p. b(Gn,p)≤ (1+o(1))
(

d +1− 1−e−2d

2d

)
n
4 for d > 1. For the

random d-regular graph Gn,d , Alon, Pralat and Wormald [30] proved that w.h.p.

b(Gn,d)≥ dn
4

(
1− 23/2

d1/2

)
.

Acquaintance Time

Let G = (V,E) be a finite connected graph. We start the process by placing one
agent on each vertex of G. Every pair of agents sharing an edge are declared to
be acquainted, and remain so throughout the process. In each round of the pro-
cess, we choose some matching M in G. The matching M need not be maximal;
perhaps it is a single edge. For each edge of M, we swap the agents occupying
its endpoints, which may cause more agents to become acquainted. We may view
the process as a graph searching game with one player, where the player’s strategy
consists of a sequence of matchings which allow all agents to become acquainted.
Some strategies may be better than others, which leads to a graph optimisation pa-
rameter. The acquaintance time of G, denoted by A (G), is the minimum number
of rounds required for all agents to become acquainted with one another. The pa-
rameter A (G) was introduced by Benjamini, Shinkar and Tsur [90], who showed
that A (G) = O

(
n2 log logn

logn

)
for an n vertex graph. The loglogn factor was re-

moved by Kinnersley, Mitsche and Pralat [569]. The paper [569] also showed
that w.h.p. A (Gn,p) = O

(
logn

p

)
for (1+ε) logn

n ≤ p ≤ 1− ε . The lower bound
here was relaxed to np− logn→ ∞ in Dudek and Pralat [313]. A lower bound,
Ω

(
logn

p

)
for Gn,p and p≥ n−1/2+ε was proved in [569].

H-free process

In an early attempt to estimate the Ramsey number R(3, t), Erdős, Suen and Win-
kler [339] considered the following process for generating a triangle free graph.
Let e1,e2, . . . ,eN ,N =

(n
2

)
be a random ordering of the complete graph Kn. Let
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P be a graph property e.g. being triangle free. We generate a sequence of ran-
dom graphs Γ0,Γ1, . . . ,ΓN where Γi+1 = Γi + ei+1 if adding ei+1 does not destroy
P , otherwise Γi+1 = Γi. In this way we can generate a random graph that is
guaranteed to have property P .

For P is “bipartite” they show in [339] that ΓN has expected size greater than
(n2− n)/4. When P is “triangle free” they show that w.h.p. that ΓN has size
Ω(n3/2) w.h.p. Bollobás and Riordan [175] studied the general H-free process.
More recently, Bohman [132] showed in the case of the triangle free process,
that w.h.p. ΓN has size Θ(n3/2(logn)1/2). This provides an alternative proof to
that of Kim [565] that R(3, t) = Ω

(
t2

log t

)
. He made use of a careful use of the

differential equations method, see Chapter 28. Bohman and Keevash [143] and
Fiz Pontiveros, Griffiths and Morris [362] have improved this result and shown
that w.h.p. ΓN has size asymptotically equal to 1

2
√

2
n3/2(logn)1/2. They also show

that the independence number of ΓN is bounded by (1+ o(1))(2n logn)1/2. This
shows that R(3, t)>

(1
4 −o(1)

)
t2/ log t.

Bohman, Mubayi and Picolleli [145] considered an r-uniform hypergraph ver-
sion. In particular they studied the T (r)-free process, where T (r) generalises a
triangle in a graph. It consists of S∪{ai} , i = 1,2, . . . ,r where |S| = r− 1 and
a further edge {a1,a2, . . . ,ar}. Here hyperedges are randomly added one by one
until one is forced to create a copy of T r. They show that w.h.p. the final hy-
pergraph produced has independence number O((n logn)1/r). This proves a lower
bound of Ω

(
sr

logs

)
for the Ramsey number R(T (r),K(r)

s ). The analysis is based on
a paper on the random greedy hypergraph independent set process by Bennett and
Bohman [96].

There has also been work on the related triangle removal process. Here we
start with Kn and repeatedly remove a random triangle until the graph is triangle
free. The main question is as to how many edges are there in the final triangle free
graph. A proof of a bound of O(n7/4+o(1)) was outlined by Grable [448]. A simple
proof of O(n7/4+o(1)) was proved in Bohman, Frieze and Lubetzky [139]. Further-
more, Bohman, Frieze and Lubetzky [140] have proved a tight result of n3/2+o(1)

for the number of edges left. This is close to the Θ(n3/2) bound conjectured by
Bollobás and Erdős in 1990.

An earlier paper by Ruciński and Wormald [779] consider the d-process. Edges
were now rejected if they raised the degree of some vertex above d. Answering a
question of Erdős, they proved that the resulting graph was w.h.p. d-regular.
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Logic and Random Graphs
The first order theory of graphs is a language in which one can describe some,
but certainly not all, properties of graphs. It can describe G has a triangle, but not
G is connected. Fagin [346] and Glebskii, Kogan, Liagonkii and Talanov [437]
proved that for any property A that can be described by a first order sentence,
limn→∞P(Gn,1/2 ∈A ) ∈ {0,1}. We say that p = 1/2 obeys a 0-1 law. One does
not need to restrict oneself to Gn,1/2. Shelah and Spencer [802] proved that if α

is irrational then p = n−α also obeys a 0-1 law, while if α is rational, then there
are first order sentences such that limn→∞P(Gn,1/2 ∈ A ) does not exist. See the
book by Spencer [812] for much more on this subject.

Planarity
We have said very little about random planar graphs. This is partially because
there is no simple way of generating a random planar graph. The study begins
with the seminal work of Tutte [836], [837] on counting planar maps. The number
of rooted maps on surfaces was found by Bender and Canfield [93]. The size of
the largest components were studied by Banderier, Flajolet, Schaeffer and Soria
[71].

When it comes to random labeled planar graphs, McDiarmid, Steger and Welsh
[668] showed that if pl(n) denotes the number of labeled planar graphs with n ver-
tices, then (pl(n)/n!)1/n tends to a limit γ as n→ ∞. Osthus, Prömel and Taraz
[720] found an upper bound for γ , Bender, Gao and Wormald [94] found a lower
bound for γ . Finally, Giménez and Noy [434] proved that pl(n)≈ cn−7/2γnn! for
explicit values of c,γ .

Next let pl(n,m) denote the number of labelled planar graphs with n vertices
and m edges. Gerke, Schlatter, Steger and Taraz [430] proved that if 0≤ a≤ 3 then
(pl(n,an)/n!)1/n tends to a limit γa as n→ ∞. Giménez and Noy [434] showed
that if 1 < a < 3 then pl(n,an)≈ can−4γn

a n!. Kang and Łuczak [544] proved the
existence of two critical ranges for the sizes of complex components.

Planted Cliques, Cuts and Hamilton cycles
The question here is the following: Suppose that we plant an unusual object into
a random graph. Can someone else find it? One motivation being that if finding
the planted object is hard for someone who does not know where it is planted,
then this modified graph can be used as a signature. To make this more precise,
consider starting with Gn,1/2, choosing an s-subset S of [n] and then making S into
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a clique. Let the modified graph be denoted by Γ. Here we assume that s≫ logn
so that S should stand out. Can we find S, if we are given Γ, but we are not
told S. Kucera [612] proved that if s≥C(n logn)1/2 for a sufficiently large C then
w.h.p. one can find S by looking at vertex degrees. Alon, Krivelevich and Sudakov
[34] improved this to s = Ω(n1/2). They show that the second eigenvector of the
adjacency matrix of Γ contains enough information so that w.h.p. S can be found.
Frieze and Kannan [398] related this to a problem involving optimisation of a
tensor product. Recently, Feldman, Grigorescu, Reyzin, Vempala and Xiao [349]
showed that a large class of algorithms will fail w.h.p. if s ≤ n1/2−δ for some
positive constant δ .

There has also been a considerable amount of research on planted cuts. Be-
ginning with the paper of Bui, Chaudhuri, Leighton and Sipser [202] there have
been many papers that deal with the problem of finding a cut in a random graph of
unusual size. By this we mean that starting with Gn,p, someone selects a partition
of the vertex set into k≥ 2 sets of large size and then alters the edges between the
subsets of the partition so that it is larger or smaller than can be usually found in
Gn,p. See Coja–Oghlan [231] for a recent paper with many pertinent references.

As a final note on this subject of planted objects. Suppose that we start with a
Hamilton cycle C and then add a copy of Gn,p where p = c

n to create Γ. Broder,
Frieze and Shamir [198] showed that if c is sufficiently large then w.h.p. one can
in polynomial time find a Hamilton cycle H in Γ. While H may not necessarily
be C, this rules out a simple use of Hamilton cycles for a signature scheme.

Random Lifts
For a graph K, an n-lift G of K has vertex set V (K)× [n] where for each vertex
v∈V (K), {v}× [n] is called the fiber above v and will be denoted by Πv. The edge
set of a an n-lift G consists of a perfect matching between fibers Πu and Πw for
each edge {u,w} ∈ E(K). The set of n-lifts will be denoted Λn(K). In a random
n-lift, the matchings between fibers are chosen independently and uniformly at
random.

Lifts of graphs were introduced by Amit and Linial in [39] where they proved
that if K is a connected, simple graph with minimum degree δ ≥ 3, and G is a
random n-lift of K then G is δ (G)-connected w.h.p., where the asymptotics are
for n→ ∞. They continued the study of random lifts in [40] where they proved
expansion properties of lifts. Together with Matoušek, they gave bounds on the
independence number and chromatic number of random lifts in [41]. Linial and
Rozenman [627] give a tight analysis for when a random n-lift has a perfect match-
ing. Greenhill, Janson and Ruciński [450] consider the number of perfect match-
ings in a random lift.
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Łuczak, Witkowski and Witkowski [646] proved that a random lift of H is
Hamiltonian w.h.p. if H has minimum degree at least 5 and contains two disjoint
Hamiltonian cycles whose union is not a bipartite graph. Chebolu and Frieze
[214] considered a directed version of lifts and showed that a random lift of the
complete digraph K⃗h is Hamiltonian w.h.p. provided h is sufficiently large.

Random Simplicial Complexes

Linial and Meshulam [626] pioneered the extension of the analysis of Gn,p to
higher dimensional complexes. We are at the beginning of research in this area
and can look forward to exciting connections with Algebraic Topology. For more
details see the survey of Kahle [539].

Stable Matching

In the stable matching problem we have a complete bipartite graph on vertex sets
A,B where A = {a1,a2, . . . ,an} ,B = {b1,b2, . . . ,bn}. If we think of A as a set
of women and B as a set of men, then we refer to this as the stable marriage
problem. Each a ∈ A has a total ordering pa of B and each b ∈ B has a total
ordering pb of B. The problem is to find a perfect matching (ai,bi), i = 1,2, . . . ,n
such that there does not exist a pair i, j such that b j > bi in the order pai and
ai > b j in the order pb j . The existence of i, j leads to an unstable matching.
Gale and Shapley [422] proved that there is always a stable matching and gave
an algorithm for finding one. We focus on the case where pa, pb are uniformly
random for all a ∈ A,b ∈ B. Wilson [855] showed that the expected number of
proposals in a sequential version of the Gale-Shapley algorithm is asymptotically
equal to n logn. Knuth, Motwani and Pittel [573] studied the likely number of
stable husbands for an element of A∪B. I.e. they show that w.h.p. there are
constants c < C such that for a fixed a ∈ A there are between c logn and C logn
choices b∈B such that a and b are matched together in some stable matching. The
question of how many distinct stable matchings there are likely to be was raised
in Pittel [739] who showed that w.h.p. there are at least n1/2−o(1). More recently,
Lennon and Pittel [620] show that there are at least n logn with probability at
least 0.45. Thus the precise growth rate of the number of stable matchings is not
clear at the moment. Pittel, Shepp and Veklerov [743] considered the number
Zn,m of a ∈ A that have exactly m choices of stable husband. They show that
limn→∞

E(Zn,m)

(logn)m+1 =
1

(m−1)! .
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Universal graphs
A graph G is universal for a class of graphs H if G contains a copy of every
H ∈H . In particular, let H (n,d) denote the set of graphs with vertex set [n]
and maximum degree at most d. One question that has concerned researchers, is
to find the threshold for Gn,p being universal for H (n,d). A counting argument
shows that any H (n,d) universal graph has Ω(n2−2/d) edges. For random graphs
this can be improved to Ω(n2−2/(d+1)(logn)O(1)). This is because to contain the
union of

⌊ n
d+1

⌋
disjoint copies of Kd+1, all but at most d vertices must lie in a copy

of Kd+1. This problem was first considered in Alon, Capalbo, Kohayakawa, Rödl,
Ruciński and Szemerédi [29]. Currently the best upper bound on the value of p
needed to make Gn,m H (n,d) universal is O(n2−1/d(logn)1/d) in Dellamonica,
Kohayakawa, Rödl, and Ruciński [281]. Ferber, Nenadov and Peter [356] prove
that if p≫ ∆8n−1/2 logn then Gn,p is universal for the set of trees with maximum
degree ∆.
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Part V

Tools and Methods





Chapter 26

Moments

26.1 First and Second Moment Method

Lemma 26.1 (The Markov Inequality). Let X be a non-negative random variable.
Then, for all t > 0,

P(X ≥ t)≤ EX
t
.

Proof. Let

IA =

{
1 if event A occurs,
0 otherwise.

Notice that
X = XI{X≥t}+XI{X<t} ≥ XI{X≥t} ≥ tI{X≥t}.

Hence,
EX ≥ tEI{X≥t} = tP(X ≥ t).

As an immediate corollary, we obtain

Lemma 26.2 (First Moment Method). Let X be a non-negative integer valued
random variable. Then

P(X > 0)≤ EX .

Proof. Put t = 1 in the Markov inequality.
The following inequality is a simple consequence of Lemma 26.1.



534 Chapter 26. Moments

Lemma 26.3 (Chebyshev Inequality). If X is a random variable with a finite mean
and variance, then, for t > 0,

P(|X−EX | ≥ t)≤ VarX
t2 .

Proof.

P(|X−EX | ≥ t) = P((X−EX)2 ≥ t2)≤ E(X−EX)2

t2 =
VarX

t2 .

Throughout the book the following consequence of the Chebyshev inequality
plays a particularly important role.

Lemma 26.4 (Second Moment Method). If X is a non-negative integer valued
random variable then

P(X = 0)≤ VarX
(EX)2 =

EX2

(EX)2 −1

Proof. Set t = EX in the Chebyshev inequality. Then

P(X = 0)≤ P(|X−EX | ≥ EX)≤ VarX
(EX)2

Lemma 26.5 ((Strong) Second Moment Method). If X is a non-negative integer
valued random variable then

P(X = 0)≤ VarX
EX2 = 1− (EX)2

EX2 .

Proof. Notice that
X = X · I{X≥1}.

Then, by the Cauchy-Schwarz inequality,

(EX)2 =
(
E(X · I{X≥1})

)2≤E I2
{X≥1}EX2 = P(X ≥ 1)EX2.
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The bound in Lemma 26.5 is stronger than the bound in Lemma 26.4, since
EX2 ≥ (EX)2. However, for many applications, these bounds are equally useful
since the Second Moment Method can be applied if

VarX
(EX)2 → 0, (26.1)

or, equivalently,
EX2

(EX)2 → 1, (26.2)

as n→∞. In fact if (26.1) holds, then much more than P(X > 0)→ 1 is true. Note
that

VarX
(EX)2 = Var

(
X
EX

)
= E

(
X
EX

)2

−
(
E
(

X
EX

))2

= E
(

X
EX
−1
)2

Hence

E
(

X
EX
−1
)2

→ 0 if
VarX
(EX)2 → 0.

It simply means that
X
EX

L2
−→ 1. (26.3)

In particular, it implies (as does the Chebyshev inequality) that

X
EX

P−→ 1, (26.4)

i.e., for every ε > 0,

P((1− ε)EX < X < (1+ ε)EX)→ 1. (26.5)

So, we can only apply the Second Moment Method, if the random variable X has
its distribution asymptotically concentrated at a single value (X can be approxi-
mated by the non-random value EX , as stated at (26.3), (26.4) and (26.5)).

We complete this section with another lower bound on the probability P(Xn ≥
1), when Xn is a sum of (asymptotically) negatively correlated indicators. Notice
that in this case we do not need to compute the second moment of Xn.
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Lemma 26.6. Let Xn = I1 + I2 + · · ·+ In, where {Ii}n
i=1 be a collection of 0− 1

random variables, such that

P(Ii = I j = 1)≤ (1+ εn)P(Ii = 1)P(I j = 1)

for i ̸= j = 1,2, . . . ,n. Here εn→ 0 as n→ ∞. Then

P(Xn ≥ 1)≥ 1
1+ εn +1/EXn

.

Proof. By the (strong) second moment method (see Lemma 26.5)

P(Xn ≥ 1)≥ (EXn)
2

EX2
n

.

Now

EX2
n =

n

∑
i=1

n

∑
j=1

E(IiI j)

≤ EXn +(1+ εn)∑
i̸= j

E IiE I j

= EXn +(1+ εn)

(( n

∑
i=1

E Ii

)2
−

n

∑
i=1

(E Ii)
2

)
≤ EXn +(1+ εn)(EXn)

2.

26.2 Convergence of Moments
Let X be a random variable such that E |X |k < ∞, k ≥ 1, i.e., all k-th moments
EXk exist and are finite. Let the distribution of X be completely determined by its
moments. It means that all random variables with the same moments as X have
the same distribution as X . In particular, this is true when X has the Normal or the
Poisson distribution.

The method of moments provides a tool to prove the convergence in distribu-
tion of a sequence of random variables with finite moments (see Durrett [318] for
details).

Lemma 26.7 (Method of Moments). Let X be a random variable with probability
distribution completely determined by its moments. If X1,X2, . . .Xn, . . . are random
variables with finite moments such that EXk

n → EXk as n→ ∞, for every integer
k ≥ 1, then the sequence of random variables {Xn} converges in distribution to
random variable X, denoted as Xn

D→ X.



26.2. Convergence of Moments 537

The next result, which can be deduced from Theorem 26.7, provides a tool to
prove asymptotic Normality.

Corollary 26.8. Let X1,X2, . . . ,Xn, . . . be a sequence of random variables with
finite moments and let a1,a2, . . . ,an, . . . be a sequence of positive numbers, such
that

E(Xn−EXn)
k =

{
(2m)!
2mm! ak

n +o(ak
n), when k = 2m, m≥ 1,

o(ak
n), when k = 2m−1, m≥ 2,

as n→ ∞. Then

Xn−EXn

an

D→ Z, and X̃n =
Xn−EXn√

VarXn

D→ Z,

where Z is a random variable with the standard Normal distribution N(0,1).

A similar result for convergence to the Poisson distribution can also be de-
duced from Theorem 26.7. Instead, we will show how to derive it directly from
the Inclusion-Exclusion Principle.

The following lemma sometimes simplifies the proof of some probabilistic in-
equalities: A boolean function f of events A1,A2, . . . ,An ⊆Ω is a random variable
where f (A1,A2, . . . ,An) =

⋃
S∈S

(
(
⋂

i∈S Ai)∩
(⋂

i̸∈S Ac
i
))

for some collection Si
of subsest of [r] = {1,2, . . . ,r}.

Lemma 26.9 (Rényi’s Lemma). Suppose that A1,A2, . . . ,Ar are events in some
probability space Ω, f1, f2, . . . , fs are boolean functions of A1,A2, . . . ,Ar, and
α1,α2, . . . ,αs are reals. Then, if

s

∑
i=1

αiP( fi(A1,A2, . . . ,Ar))≥ 0, (26.6)

whenever P(Ai) = 0 or 1, then (26.6) holds in general.

Proof. Write

fi =
⋃

S∈Si

((⋂
i∈S

Ai

)
∩

(⋂
i ̸∈S

Ac
i

))
,

for some collection Si of subsets of [r] = {1,2, . . . ,r}.
Then,

P( fi) = ∑
S∈Si

P

((⋂
i∈S

Ai

)
∩

(⋂
i̸∈S

Ac
i

))
,
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and then the left hand side of (26.6) becomes

∑
S⊆[r]

βSP

((⋂
i∈S

Ai

)
∩

(⋂
i ̸∈S

Ac
i

))
,

for some real βS. If (26.6) holds, then βS ≥ 0 for every S, since we can choose
Ai = Ω if i ∈ S, and Ai = /0 for i ̸∈ S.

For J ⊆ [r] let AJ =
⋂

i∈J Ai, and let S = |
{

j : A j occurs
}
| denote the number

of events that occur. Then let

Bk = ∑
J:|J|=k

P(AJ) = E
(

S
k

)
.

Let E j=
⋃
|S|= j (

⋂
i∈S Ai∩

⋂
i/∈S Ac

i ) be the event that exactly j among the events
A1,A2, . . . ,Ar occur.

The expression in Lemma 26.10 can be motivated as follows. For ω ∈ Ω, we
let θω,i ∈ {0,1} satisfy θω,i = 1 if and only if ω ∈ Ai. Then

Pr(E j) = ∑
ω∈Ω

Pr(ω) ∑
|I|= j

∏
i∈I

θω,i ·∏
i/∈I

(1−θω,i),

= ∑
ω∈Ω

Pr(ω) ∑
|I|= j

∑
J⊇I

(−1)|J\I|θω,J, where θω,J = ∏
i∈J

θω,i,

= ∑
|J|≥ j

∑
I⊆J
|I|= j

(−1)J\I Pr(AJ), where AJ =
⋂
i∈J

Ai

=
r

∑
k= j

(−1)k− j
(

k
j

)
∑
|J|=k

Pr(AJ)

=
r

∑
k= j

(−1)k− j
(

k
j

)
Bk.

More precisely,

Lemma 26.10.

P(E j)



≤
s

∑
k= j

(−1)k− j(k
j

)
Bk s− j even.

≥
s

∑
k= j

(−1)k− j(k
j

)
Bk s− j odd

=
s

∑
k= j

(−1)k− j(k
j

)
Bk s = r.
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Proof. It follows from Lemma 26.9 that we only need to check the truth of the
statement for

P(Ai) = 1 1≤ i≤ ℓ,

P(Ai) = 0 ℓ < i≤ r.

where 0≤ ℓ≤ r is arbitrary.
Now

P(S = j) =

{
1 if j = ℓ,
0 if j ̸= ℓ,

and

Bk =

(
ℓ

k

)
.

So,
s

∑
k= j

(−1)k− j
(

k
j

)
Bk =

s

∑
k= j

(−1)k− j
(

k
j

)(
ℓ

k

)
=

(
ℓ

j

) s

∑
k= j

(−1)k− j
(
ℓ− j
k− j

)
. (26.7)

If ℓ < j then P(E j) = 0 and the sum in (26.7) reduces to zero. If ℓ = j then
P(E j) = 1 and the sum in (26.7) reduces to one. Thus in this case, the sum is exact
for all s. Assume then that r ≥ ℓ > j. Then P(E j) = 0 and

s

∑
k= j

(−1)k− j
(
ℓ− j
k− j

)
=

s− j

∑
t=0

(−1)t
(
ℓ− j

t

)
= (−1)s− j

(
ℓ− j−1

s− j

)
.

This explains the alternating signs of the theorem. Finally, observe that
(ℓ− j−1

r− j

)
= 0, as required.

Now we are ready to state the main tool for proving convergence to the Poisson
distribution.

Theorem 26.11. Let Sn = ∑i≥1 Ii be a sequence of random variables, n ≥ 1 and
let B(n)

k = E
(Sn

k

)
. Suppose that there exists λ ≥ 0, such that for every fixed k ≥ 1,

lim
n→∞

B(n)
k =

λ k

k!
.

Then, for every j ≥ 0,

lim
n→∞

P(Sn = j) = e−λ λ j

j!
,
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i.e., Sn converges in distribution to the Poisson distributed random variable with
expectation λ (Sn

D→ Po(λ )).

Proof. By Lemma 26.10, for l ≥ 0,

j+2l+1

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k ≤ P(Sn = j)≤
j+2l

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k .

So, as n grows to ∞,

j+2l+1

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k ≤ liminf
n→∞

P(Sn = j)

≤ limsup
n→∞

P(Sn = j)≤
j+2l

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k .

But,
j+m

∑
k= j

(−1)k− j
(

k
j

)
λ k

k!
=

λ j

j!

m

∑
t=0

(−1)t λ t

t!
→ λ j

j!
e−λ ,

as m→ ∞.

Notice that the falling factorial

(Sn)k = Sn(Sn−1) · · ·(Sn− k+1)

counts number of ordered k-tuples of events with Ii = 1. Hence the binomial mo-
ments of Sn can be replaced in Theorem 26.11 by the factorial moments, defined
as

E(Sn)k = E[Sn(Sn−1) · · ·(Sn− k+1)],

and one has to check whether, for every k ≥ 1,

lim
n→∞

E(Sn)k = λ
k.

26.3 Stein–Chen Method
Stein in [817] introduced a powerful technique for obtaining estimates of the rate
of convergence to the standard normal distribution. His approach was subse-
quently extended to cover convergence to the Poisson distribution by Chen [216],
while Barbour [73] ingeniously adapted both methods to random graphs.

The Stein–Chen approach has some advantages over the method of moments.
The principal advantage is that a rate of convergence is automatically obtained.
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Also the computations are often easier and fewer moment assumptions are re-
quired. Moreover, it frequently leads to conditions for convergence weaker than
those obtainable by the method of moments.

Consider a sequence of random variables (Xn)
∞

n=1 and let (λn)
∞

n=1 be a se-
quence of positive integers, and let Po(λ ) denote, as before, the Poisson distribu-
tion with expectation λ . We say that Xn is Poisson convergent if the total variation
distance between the distribution L (Xn) of Xn and Po(λn), λn = EXn, distribu-
tion, tends to zero as n tends to infinity. So, we ask for

dTV (L (Xn),Po(λn)) = sup
A⊆Z+

∣∣∣P(Xn ∈ A)−∑
k∈A

λ k
n

k!
e−λn

∣∣∣→ 0, (26.8)

as n→ ∞, where Z+ = {0,1, . . .}.
Notice, that if Xn is Poisson convergent and λn→ λ , then Xn converges in dis-

tribution to the Po(λ ) distributed random variable. Furthermore, if λn→ 0, then
Xn converges to a random variable with distribution degenerated at 0. More im-
portantly, if λn→∞, then the central limit theorem for Poisson distributed random
variables implies, that X̃n = (Xn−λn)/

√
λn converges in distribution to a random

variable with the standard normal random distribution N(0,1).
The basic feature and advantage of the Stein–Chen approach is that it gives

computationally tractable bounds for the distance dTV , when the random variables
in question are sums of indicators with a fairly general dependence structure.

Let {Ia}a∈Γ, be a family of indicator random variables, where Γ is some index
set. To describe the relationship between these random variables we define a
dependency graph L = (V (L),E(L)), where V (L) = Γ. Graph L has the property
that whenever there are no edges between A and B, A,B ⊆ Γ, then {Ia}a∈A and
{Ib}b∈B are mutually independent families of random variables. The following
general bound on the total variation distance was proved by Barbour, Holst and
Janson [74] via the Stein–Chen method.

Theorem 26.12. Let X = ∑a∈Γ Ia where the Ia are indicator random variables
with a dependency graph L. Then, with πa = E Ia and
λ = EX = ∑a∈Γ πa,

dTV (L (X),Po(λ ))≤

min(λ−1,1)

(
∑

a∈V (L)
π

2
a + ∑

ab∈E(L)
{E(IaIb)+πaπb}

)
,

where ∑ab∈E(L) means summing over all ordered pairs (a,b), such that {a,b} ∈
E(L).
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Finally, let us briefly mention, that the original Stein method investigates the
convergence to the normal distribution in the following metric

dS(L (Xn),N(0,1)) = sup
h
||h||−1

∣∣∣∫ h(x)dFn(x)−
∫

h(x)dΦ(x)
∣∣∣, (26.9)

where the supremum is taken over all bounded test functions h with bounded
derivative, ||h||= sup |h(x)|+ sup |h′(x)|.

Here Fn is the distribution function of Xn, while Φ denotes the distribution
function of the standard normal distribution. So, if dS(L (Xn),N(0,1))→ 0 as
n→ ∞, then X̃n converges in distribution to N(0,1) distributed random variable.

Barbour, Karoński and Ruciński [76] obtained an effective upper bound on
dS(L (Xn),N(0,1)) if S belongs to a general class of decomposable random vari-
ables. This bound involves the first three moments of S only.

For a detailed and comprehensive account of the Stein–Chen method the reader
is referred to the book by Barbour, Holst and Janson [74], or to Chapter 6 of the
book by Janson, Łuczak and Ruciński [509], where other interesting approaches to
study asymptotic distributions of random graph characteristics are also discussed.
For some applications of the Stein–Chen method in random graphs, one can look
at a survey by Karoński [548].
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Inequalities

27.1 Binomial Coefficient Approximation
We state some important inequalities. The proofs of all but (g) are left as exer-
cises:

Lemma 27.1. (a)
1+ x≤ ex, ∀x.

(b)
1− x≥ e−x/(1−x), 0≤ x < 1.

(c) (
n
k

)
≤
(ne

k

)k
, ∀n,k.

(d)
k

∑
i=0

(
n
i

)
≤
(ne

k

)k
, ∀n,k.

(e) (
n
k

)
≤ nk

k!

(
1− k

2n

)k−1

, ∀n,k.

(f)
nk

k!

(
1− k(k−1)

2n

)
≤
(

n
k

)
≤ nk

k!
e−k(k−1)/(2n), ∀n,k.

(g) (
n
k

)
≈ nk

k!
, i f k2 = o(n).
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(h) If a≥ b then(
t−b
n−b

)b(n− t−a+b
n−a

)a−b

≤
(n−a

t−b

)(n
t

) ≤ ( t
n

)b
(

n− t
n−b

)a−b

.

Proof.
(d) We write

k

∑
i=0

(
n
i

)(
k
n

)k

≤
k

∑
i=0

ni

i!
· k

k

nk =
k

∑
i=0

ki

i!
·
(

k
n

)k−i

≤ ek.

(g) (n−a
t−b

)(n
t

) =
(n−a)!t!(n− t)!

n!(t−b)!(n− t−a+b)!

=
t(t−1) · · ·(t−b+1)
n(n−1) · · ·(n−b+1)

× (n− t)(n− t−1) · · ·(n− t−a+b+1)
(n−b)(n−b−1) · · ·(n−a+1)

≤
( t

n

)b
×
(

n− t
n−b

)a−b

.

The lower bound follows similarly.
We will need also the following estimate for binomial coefficients. It is a little

more precise than those given in Lemma 27.1.

Lemma 27.2. Let k = o(n3/4). Then(
n
k

)
≈ nk

k!
exp
{
− k2

2n
− k3

6n2

}
.

Proof. (
n
k

)
=

nk

k!

k−1

∏
i=0

(
1− i

n

)
=

nk

k!
exp

{
k−1

∑
i=0

log
(

1− i
n

)}

=
nk

k!
exp

{
−

k−1

∑
i=0

(
i
n
+

i2

2n2

)
+O

(
k4

n3

)}

= (1+o(1))
nk

k!
exp
{
− k2

2n
− k3

6n2

}
.
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27.2 Balls in Boxes
Suppose that we have M boxes and we independently place N distinguishable
balls into them. Let us assume that a ball goes into box i with probability pi
where p1+ · · ·+ pM = 1. Let Wi denote the number of balls that are placed in box
i and for S⊆ [M], let WS = ∑i∈SWi. The following looks obvious and is extremely
useful.

Theorem 27.3. Let S,T be disjoint subsets of [M] and let s, t be non-negative
integers. Then

P(WS ≤ s |WT ≤ t)≤ P(WS ≤ s). (27.1)
P(WS ≥ s |WT ≤ t)≥ P(WS ≥ s). (27.2)
P(WS ≥ s |WT ≥ t)≤ P(WS ≥ s). (27.3)
P(WS ≤ s |WT ≥ t)≥ P(WS ≤ s). (27.4)

Proof. Equation (27.2) follows immediately from (27.1). Also, equation (27.4)
follows immediately from (27.3). The proof of (27.3) is very similar to that of
(27.1) and so we will only prove (27.1).

Let
πi = P(WS ≤ s |WT = i).

Given WT = i, we are looking at throwing N− i balls into M−1 boxes. It is clear
therefore that πi is monotone increasing in i. Now, let qi = P(WT = i). Then,

P(WS ≤ s) =
N

∑
i=0

πiqi.

P(WS ≤ s |WT ≤ t) =
t

∑
i=0

πi
qi

q0 + · · ·+qt
.

So, (27.1) reduces to

(q0 + · · ·+qN)
t

∑
i=0

πiqi ≤ (q0 + · · ·+qt)
N

∑
i=0

πiqi,

or

(qt+1 + · · ·+qN)
t

∑
i=0

πiqi ≤ (q0 + · · ·+qt)
N

∑
i=t+1

πiqi,

or
N

∑
j=t+1

t

∑
i=0

qiq jπi ≤
t

∑
j=0

N

∑
i=t+1

qiq jπi.

The result now follows from the monotonicity of πi.
The following is an immediate corollary:
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Corollary 27.4. Let S1,S2, . . . ,Sk be disjoint subsets of [M] and let s1,s2, . . . ,sk be
non-negative integers. Then

P

(
k⋂

i=1

{WSi ≤ si}
)
≤

k

∏
i=1

P({WSi ≤ si}).

P

(
k⋂

i=1

{WSi ≥ si}
)
≤

k

∏
i=1

P({WSi ≥ si}).

27.3 FKG Inequality

A function f : CN = {0,1}[N]→ R is said to be monotone increasing if whenever
x = (x1,x2, . . . ,xN),y = (y1,y2, . . . ,yN) ∈ CN and x ≤ y ∈ CN (i.e. x j ≤ y j, j =
1,2, . . . ,N) then f (x) ≤ f (y). Similarly, f is said to be monotone decreasing if
− f is monotone increasing.

An important example for us is the case where f is the indicator function of
some subset A of 2[N]. Then

f (x) =

{
1 x ∈A

emptyset x /∈A
.

A typical example for us would be N =
(n

2

)
and then each G∈ 2[N] corresponds

to a graph with vertex set [n]. Then A will be a set of graphs i.e. a graph property.
Suppose that f is the indicator function for A . Then f is monotone increasing, if
whenever G ∈A and e /∈ E(G) we have G+ e ∈A i.e. adding an edge does not
destroy the property. We will say that the set/property is monotone increasing. For
example if H is the set of Hamiltonian graphs then H is monotone increasing.
If P is the set of planar graphs then P is monotone decreasing. In other words a
property is monotone increasing iff its indicator function is monotone increasing.

Suppose next that we turn CN into a probability space by choosing some p1, p2,
. . . , pN ∈ [0,1] and then for x = (x1,x2, . . . ,xN) ∈CN letting

P(x) = ∏
j:x j=1

p j ∏
j:x j=0

(1− p j). (27.5)

If N =
(n

2

)
and p j = p, j = 1,2, . . . ,N then this model corresponds to Gn,p.

The following is a special case of the FKG inequality, Harris [469] and For-
tuin, Kasteleyn and Ginibre [370]:

Theorem 27.5. If f ,g are monotone increasing functions on CN then E( f g) ≥
E( f )E(g).
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Proof. We will prove this by induction on N. If N = 0 then E( f ) = a,E(g) = b
and E( f g) = ab for some constants a,b.

So assume the truth for N−1. Suppose that E( f | xN = 0) = a and E(g | xN =
0) = b then

E(( f −a)(g−b))−E( f −a)E(g−b) = E( f g)−E( f )E(g).

By replacing f by f −a and g by g−b we may therefore assume that E( f | xN =
0) = E(g | xN = 0) = 0. By monotonicity, we see that E( f | xN = 1),E(g | xN =
1)≥ 0.

We observe that by the induction hypothesis that

E( f g | xN = 0)≥ E( f | xN = 0)E(g | xN = 0) = 0
E( f g | xN = 1)≥ E( f | xN = 1)E(g | xN = 1)≥ 0

Now, by the above inequalities,

E( f g) = E( f g | xN = 0)(1− pN)+E( f g | xN = 1)pN

≥ E( f | xN = 1)E(g | xN = 1)pN . (27.6)

Furthermore,

E( f )E(g) =
(E( f | xN = 0)(1− pN)+E( f | xN = 1)pN)×
(E(g | xN = 0)(1− pN)+E(g | xN = 1)pN)

= E( f | xN = 1)E(g | xN = 1)p2
N . (27.7)

The result follows by comparing (27.6) and (27.7) and using the fact that E( f |
xN = 1),E(g | xN = 1)≥ 0 and 0≤ pN ≤ 1.

In terms of monotone increasing sets A ,B and the same probability (27.5)
we can express the FKG inequality as

P(A |B)≥ P(A ). (27.8)

27.4 Sums of Independent Bounded Random Vari-
ables

Suppose that S is a random variable and t > 0 is a real number. We will be con-
cerned here with bounds on the upper and lower tail of the distribution of S, i.e.,
on P(S≥ µ + t) and P(S≤ µ− t), respectively, where µ = ES.
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The basic observation which leads to the construction of such bounds is due
to Bernstein [104]. Let λ ≥ 0, then

P(S≥ µ + t) = P(eλS ≥ eλ (µ+t))≤ e−λ (µ+t)E(eλS), (27.9)

by the Markov inequality (see Lemma 26.1). Similarly for λ ≤ 0,

P(S≤ µ− t)≤ e−λ (µ−t)E(eλS). (27.10)

Combining (27.9) and (27.10) one can obtain a bound for P(|S−µ| ≥ t).
Now let Sn = X1+X2+ · · ·+Xn where Xi, i = 1, . . . ,n are independent random

variables. Assume that 0 ≤ Xi ≤ 1 and EXi = µi for i = 1,2, . . . ,n. Let µ =
µ1 +µ2 + · · ·+µn. Then for λ ≥ 0

P(Sn ≥ µ + t)≤ e−λ (µ+t)
n

∏
i=1

E(eλXi) (27.11)

and for λ ≤ 0

P(Sn ≤ µ− t)≤ e−λ (µ−t)
n

∏
i=1

E(eλXi). (27.12)

Note that E(eλXi) in (27.11) and (27.12), likewise E(eλS) in (27.9) and (27.10)
are the moment generating functions of the Xi’s and S, respectively. So finding
bounds boils down to the estimation of these functions.

Now the convexity of ex and 0≤ Xi ≤ 1 implies that

eλXi ≤ 1−Xi +Xieλ .

Taking expectations we get

E(eλXi)≤ 1−µi +µieλ .

Equation (27.11) becomes, for λ ≥ 0,

P(Sn ≥ µ + t)≤ e−λ (µ+t)
n

∏
i=1

(1−µi +µieλ )

≤ e−λ (µ+t)

(
n−µ +µeλ

n

)n

. (27.13)

The second inequality follows from the fact that the geometric mean is at most
the arithmetic mean i.e. (x1x2 · · ·xn)

1/n ≤ (x1 + x2 + · · ·+ xn)/n for non-negative
x1,x2, . . . ,xn. This in turn follows from Jensen’s inequlaity and the concavity of
logx.
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The right hand side of (27.13) attains its minimum, as a function of λ , at

eλ =
(µ + t)(n−µ)

(n−µ− t)µ
. (27.14)

Hence, by (27.13) and(27.14), assuming that µ + t < n,

P(Sn ≥ µ + t)≤
(

µ

µ + t

)µ+t( n−µ

n−µ− t

)n−µ−t
, (27.15)

while for t > n−µ this probability is zero.
Now let

ϕ(x) = (1+ x) log(1+ x)− x, x≥−1,

and let ϕ(x) = ∞ for x < −1. Now, for 0 ≤ t < n− µ , we can rewrite the bound
(27.15) as

P(Sn ≥ µ + t)≤ exp
{
−µϕ

(
t
µ

)
− (n−µ)ϕ

( −t
n−µ

)}
. (27.16)

Since ϕ(x)≥ 0 for every x, we get

P(Sn ≥ µ + t)≤ e−µϕ(t/µ). (27.17)

Similarly, putting n− Sn for Sn, or by an analogous argument, using (27.12), we
get for 0≤ t ≤ µ ,

P(Sn ≤ µ− t)≤ exp
{
−µϕ

(−t
µ

)
− (n−µ)ϕ

( t
n−µ

)}
. (27.18)

Hence,
P(Sn ≤ µ− t)≤ e−µϕ(−t/µ). (27.19)

We can simplify the expressions (27.17) and (27.19) by observing that

ϕ(x)≥ x2

2(1+ x/3)
. (27.20)

To see this observe that for |x| ≤ 1 we have

ϕ(x)− x2

2(1+ x/3)
=

∞

∑
k=2

(−1)k
(

1
k(k−1)

− 1
2 ·3k−2

)
xk.

Equation (27.20) for |x| ≤ 1 follows from 1
k(k−1) −

1
2·3k−2 ≥ 0 for k ≥ 2. We leave

it as an exercise to check that (27.20) remains true for x > 1.
Taking this into account we arrive at the following theorem, see Hoeffding

[480].
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Theorem 27.6 (Chernoff/Hoeffding inequality). Suppose that
Sn = X1 +X2 + · · ·+Xn where (i) 0 ≤ Xi ≤ 1 and EXi = µi for i = 1,2, . . . ,n, (ii)
X1,X2, . . . ,Xn are independent. Let µ = µ1 +µ2 + · · ·+µn. Then for t ≥ 0,

P(Sn ≥ µ + t)≤ exp
{
− t2

2(µ + t/3)

}
(27.21)

and for t ≤ µ ,

P(Sn ≤ µ− t)≤ exp
{
− t2

2(µ− t/3)

}
. (27.22)

Putting t = εµ , for 0 < ε < 1, one can immediately obtain the following
bounds.

Corollary 27.7. Let 0 < ε < 1, then

P(Sn ≥ (1+ ε)µ)≤
( eε

(1+ ε)1+ε

)µ

≤ exp
{
−µε2

3

}
, (27.23)

while

P(Sn ≤ (1− ε)µ)≤ exp
{
−µε2

2

}
(27.24)

Proof. The formula (27.24) follows directly from (27.22) and (27.23) follows
from (27.16).

One can “tailor” Chernoff bounds with respect to specific needs. For example,
for small ratios t/µ , the exponent in (27.21) is close to t2/2µ , and the following
bound holds.

Corollary 27.8.

P(Sn ≥ µ + t)≤ exp
{
− t2

2µ
+

t3

6µ2

}
(27.25)

≤ exp
{
− t2

3µ

}
for t ≤ µ. (27.26)

Proof. Use (27.21) and note that

(µ + t/3)−1 ≥ (µ− t/3)/µ
2.

For large deviations we have the following result.



27.4. Sums of Independent Bounded Random Variables 551

Corollary 27.9. If c > 1 then

P(Sn ≥ cµ)≤
{

e
ce1/c

}cµ

. (27.27)

Proof. Put t = (c−1)µ into (27.17).

We also have the simple easiest to use version:

Corollary 27.10. Suppose that X1,X2, . . . ,Xn are independent random variable
and that ai≤Xi≤ bi for i= 1,2, . . . ,n. Let Sn =X1+X2+ · · ·+Xn and µi =E(Xi),
i = 1,2, . . . ,n and µ = E(Sn). Then for t > 0 and ci = bi− ai, i = 1,2, . . . ,n, we
have

P(Sn ≥ µ + t)≤ exp
{
− 2t2

c2
1 + c2

2 + · · ·+ c2
n

}
. (27.28)

P(Sn ≤ µ− t)≤ exp
{
− 2t2

c2
1 + c2

2 + · · ·+ c2
n

}
. (27.29)

Proof. We can assume without loss of generality that ai = 0, i = 1,2, . . . ,n. We
just subtract A = ∑

n
i=1 ai from Sn. We proceed as before.

P(Sn ≥ µ + t) = P(eλSn ≥ eλ (µ+t))≤ e−λ (µ+t)E(eλSn) = e−λ t
n

∏
i=1

E(eλ (Xi−µi)).

Note that eλx is a convex function of x, and since 0≤ Xi ≤ ci, we have

eλ (Xi−µi) ≤ e−λ µi

(
1− Xi

ci
+

Xi

ci
eλci

)
and so

E(eλXi)≤ e−λ µi

(
1− µi

ci
+

µi

ci
eλci

)
= e−θi pi

(
1− pi + pieθi

)
, (27.30)

where θi = λci and pi = µi/ci.
Then, taking the logarithm of the RHS of (27.30), we have

f (θi) =−θi pi + log
(

1− pi + pieθi
)
.

f ′(θi) =−pi +
pi

1− pi + pieθi
.
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f ′′(θi) =
pi(1− pi)e−θi

((1− pi)e−θi + pi)2 .

Now αβ

(α+β )2 ≤ 1/4 and so f ′′(θi)≤ 1/4 anf therefore

f (θi)≤ f (0)+ f ′(0)θi +
1
8

θ
2
i =

λ 2c2
i

8
.

It follows then that

P(Sn ≥ µ + t)≤ e−λ t exp

{
n

∑
i=1

λ 2c2
i

8

}
.

We obtain (27.28) by puttng λ = 4
∑

n
i=1 c2

i
and (27.29) is proved in a similar manner.

Our next bound incorporates the variance of the Xi’s.

Theorem 27.11 (Bernstein’s Theorem). Suppose that Sn = X1 + X2 + · · ·+ Xn
where (i) |Xi| ≤ 1 and EXi = 0 and VarXi =σ2

i for i= 1,2, . . . ,n, (ii) X1,X2, . . . ,Xn
are independent. Let σ2 = σ2

1 +σ2
2 + · · ·+σ2

n . Then for t ≥ 0,

P(Sn ≥ t)≤ exp
{
− t2

2(σ2 + t/3)

}
(27.31)

and

P(Sn ≤−t)≤ exp
{
− t2

2(σ2 + t/3)

}
. (27.32)

Proof. The strategy is once again to bound the moment generating function. Let

Fi =
∞

∑
r=2

λ r−2EX r
i

r!σ2
i
≤

∞

∑
r=2

λ r−2σ2
i

r!σ2
i

=
eλ −1−λ

λ 2 .

Here EX r
i ≤ σ2

i , since |Xi| ≤ 1.
We then observe that

E(eλXi) = 1+
∞

∑
r=2

λ rEX r
i

r!

= 1+λ
2
σ

2
i Fi

≤ eλ 2σ2
i Fi

≤ exp
{
(eλ −λ −1)σ2

i

}
.
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So,

P(Sn ≥ t)≤ e−λ t
n

∏
i=1

exp
{
(eλ −λ −1)σ2

i

}
= eσ2(eλ−λ−1)−λ t

= exp
{
−σ

2
ϕ

( t
σ2

)}
.

after assigning

λ = log
(

1+
t

σ2

)
.

To obtain (27.31) we use (27.20). To obtain (27.32) we apply (27.31) to Yi =
−Xi, i = 1,2, . . . ,n.

27.5 Sampling Without Replacement
Let a multi-set A = {a1,a2, . . . ,aN} ⊆ R be given. We consider two random vari-
ables. For the first let X = ai where i is chosen uniformly at random from [N].
Let

µ = EX =
1
N

N

∑
i=1

ai and σ
2 = VarX =

1
N

N

∑
i=1

(ai−µ)2.

Now let Sn = X1+X2+ · · ·+Xn be the sum of n independent copies of X . Next let
Wn = ∑i∈X ai where X is a uniformly random n-subset of [N]. We have ESn =
EWn = nµ but as shown in Hoeffding [480], Wn is more tightly concentrated
around its mean than Sn. This will follow from the following:

Lemma 27.12. Let f : R→ R be continuous and convex. Then

E f (Wn)≤ E f (Sn).

Proof. We write, where (A)n denotes the set of sequences of n distinct members
of A and (N)n = N(N−1) · · ·(N−n+1) = |(A)n|,

E f (Sn) =
1

Nn ∑
y∈An

f (y1 + · · ·+ yn) =

1
(N)n

∑
x∈(A)n

g(x1,x2, . . . ,xn) = Eg(X), (27.33)

where g is a symmetric function of x and

g(x1,x2, . . . ,xn) = ∑
k,i,r

ψ(k, i,r) f (ri1xi1 + · · ·+ rikxik).
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Here i ranges over sequences of k distinct values i1, i2, . . . , ik ∈ [n] and ri1 +
· · ·+ rik = n. The factors ψ(k, i,r) are independent of the function f .

Putting f = 1 we see that ∑k,i,r ψ(k, i,r) = 1. Putting f (x) = x we see that g is
a linear symmetric function and so

∑
k,i,r

ψ(k, i,r)(ri1xi1 + · · ·+ rikxik) = K(x1 + · · ·+ xn),

for some K. Equation (27.33) implies that K = 1.
Applying Jensen’s inequality we see that

g(x)≥ f (x1 + · · ·+ xn).

It follows that
Eg(X)≥ E f (Wn)

and the Lemma follows from (27.33).
As a consequence we have that (i) VarWn ≤VarSn and (ii) EeλWn ≤ EeλSn for

any λ ∈ R.
Thus all the inequalities developed in Section 27.4 can a fortiori be applied to

Wn in place of Sn. Of particular importance in this context, is the hypergeometric
distribution: Here we are given a set of S⊆ [N], |S|= m and we choose a random
set X of size k from [N]. Let Z = |X ∩S|. Then

P(Z = t) =

(m
t

)(N−m
k−t

)(N
k

) , for 0≤ t ≤ k.

27.6 Janson’s Inequality
In Section 27.4 we found bounds for the upper and lower tails of the distribution of
a random variable Sn composed of n independent summands. In the previous sec-
tion we allowed some dependence between the summands. We consider another
case where the random variables in question are not necessarily independent. In
this section we prove an inequality of Janson [495]. This generalised an earlier
inequality of Janson, Łuczak and Ruciński [508], see Corollary 27.14.

Fix a family of n subsets Di, i ∈ [n]. Let R be a random subset of [N] such
that for s ∈ [N] we have 0 < P(s ∈ R) = qs < 1. The elements of R are chosen
independently of each other and the sets Di, i = 1,2, . . . ,n. Let Ai be the event
that Di is a subset of R. Moreover, let Ii be the indicator of the event Ai. Note
that, Ii and I j are independent iff Di∩D j = /0. One can easily see that the Ii’s are
increasing.

We let
Sn = I1 + I2 + · · ·+ In,
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and

µ = ESn =
n

∑
i=1

E(Ii).

We write i∼ j if Di∩D j ̸= /0. Then, let

∆ = ∑
{i, j}:i∼ j

E(IiI j) = µ +∆ (27.34)

where
∆ = ∑

{i, j}:i∼ j
i ̸= j

E(IiI j). (27.35)

As before, let ϕ(x) = (1+ x) log(1+ x)− x. Now, with Sn,∆,ϕ given above one
can establish the following upper bound on the lower tail of the distribution of Sn.

Theorem 27.13 (Janson’s Inequality). For any real t, 0≤ t ≤ µ ,

P(Sn ≤ µ− t)≤ exp
{
−ϕ(−t/µ)µ2

∆

}
≤ exp

{
− t2

2∆

}
. (27.36)

Proof. We begin as we did in Section 27.4. Put ψ(λ ) = E(e−λSn),λ ≥ 0. By the
Markov inequality we have

P(Sn ≤ µ− t)≤ eλ (µ−t)Ee−λSn .

Therefore,
logP(Sn ≤ µ− t)≤ logψ(λ )+λ (µ− t). (27.37)

Now let us estimate logψ(λ ) and minimise the right-hand-side of (27.37) with
respect to λ .

Note that

−ψ
′(λ ) = E(Sne−λSn) =

n

∑
i=1

E(Iie−λSn). (27.38)

Now for every i ∈ [n], split Sn into Yi and Zi, where

Yi = ∑
j: j∼i

I j, Zi = ∑
j: j ̸∼i

I j, Sn = Yi +Zi.

Then by the FKG inequality (applied to the random set R and conditioned on
Ii = 1) we get, setting pi = E(Ii) = ∏s∈Di qs,

E(Iie−λSn) = piE(e−λYie−λZi
∣∣ Ii = 1)≥ piE(e−λYi

∣∣ Ii = 1)E(e−λZi
∣∣ Ii = 1).
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Since Zi and Ii are independent we get

E(Iie−λSn)≥ piE(e−λYi
∣∣ Ii = 1)E(e−λZi)≥ piE(e−λYi

∣∣ Ii = 1)ψ(λ ). (27.39)

From (27.38) and (27.39), applying Jensen’s inequality to get (27.40) and remem-
bering that µ = ESn = ∑

n
i=1 pi, we get

−(logψ(λ ))′ =−ψ ′(λ )

ψ(λ )

≥
n

∑
i=1

piE(e−λYi
∣∣ Ii = 1)

≥ µ

n

∑
i=1

pi

µ
exp
{
−E(λYi

∣∣ Ii = 1)
}

≥ µ exp

{
− 1

µ

n

∑
i=1

piE(λYi
∣∣ Ii = 1)

}
(27.40)

= µ exp

{
−λ

µ

n

∑
i=1

E(YiIi)

}
= µe−λ∆/µ .

So
−(logψ(λ ))′ ≥ µe−λ∆/µ (27.41)

which implies that

− logψ(λ )≥
∫

λ

0
µe−z∆/µdz =

µ2

∆
(1− e−λ∆/µ). (27.42)

Hence by (27.42) and (27.37)

logP(Sn ≤ µ− t)≤−µ2

∆
(1− e−λ∆/µ)+λ (µ− t), (27.43)

which is minimized by choosing λ =− log(1− t/µ)µ/∆. It yields the first bound
in (27.36), while the final bound in (27.36) follows from the fact that ϕ(x)≥ x2/2
for x≤ 0.

The following Corollary is very useful:

Corollary 27.14 (Janson, Łuczak, Ruciński Inequality).

P(Sn = 0)≤ e−µ+∆.

Proof. We put t = µ into (27.36) giving P(Sn = 0)≤ exp
{
−ϕ(−1)µ2

∆

}
. Now note

that ϕ(−1) = 1 and µ2

∆
≥ µ2

µ+∆
≥ µ−∆.
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27.7 Martingales. Azuma-Hoeffding Bounds
Before we present the basic results of this chapter we have to briefly introduce
martingales and concentration inequalities for martingales. Historically, martin-
gales were applied to random graphs for the first time in the context of the chro-
matic number of Gn,p.
Let (Ω,F ,P) be a probability space. If the sample space Ω is finite, then F is
the algebra of all subsets of Ω. For simplicity, let us assume that we deal with this
case.

Recall that if D = {D1,D2, . . . ,Dm} is a partition of Ω, i.e.,
⋃m

i=1 Di = Ω and
Di ∩D j = /0 if i ̸= j, then it generates an algebra of subsets A (D) of Ω. The
algebra generated by the partition D and denoted by A (D) is the family of all
unions of the events (sets) from D , with /0 obtained by taking an empty union.

Let D = {D1,D2, . . . ,Dm} be a partition of Ω and A be any event, A⊂Ω and
let P(A|D) be the random variable defined by

P(A|D)(ω) =
m

∑
i=1

P(A|Di)IDi(ω)

= P(A|Di(ω)) where ω ∈ Di(ω).

Note that if D a trivial partition, i.e., D = D0 = {Ω} then P(A|D0) = P(A),
while, in general,

P(A) = EP(A|D). (27.44)

Suppose that X is a discrete random variable taking values
{x1,x2, . . . ,xl} and write X as

X =
l

∑
j=1

x jIA j , (27.45)

where A j = {ω : X(ω) = x j}. Notice that the random variable X generates a
partition DX = {A1,A2, . . . ,Al}.

Now the conditional expectation of X with respect to a partition D of Ω is
given as

E(X |D) =
l

∑
j=1

x jP(A j|D). (27.46)

Hence, E(X |D)(ω1) is the expected value of X conditional on the event{
ω ∈ Di(ω1)

}
.

Suppose that D and D ′ are two partitions of Ω. We say that D ′ is finer than D
if A (D)⊆A (D ′) and denote this as D ≺D ′.
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If D is a partition of Ω and Y is a discrete random variable defined on Ω, then
Y is D-measurable if DY ≺ D , i.e., if the partition D is finer than the partition
induced by Y . It simply means that Y takes constant values yi on the atoms Di
of D , so Y can be written as Y = ∑

m
i=1 yiIDi , where some yi may be equal. Note

that a random variable Y is D0-measurable if Y has a degenerate distribution, i.e.,
it takes a constant value on all ω ∈ Ω. Also, trivially, the random variable Y is
DY -measurable.

Note that if D ′ is finer than D then

E(E(X |D ′) |D) = E(X |D). (27.47)

Indeed, if ω ∈Ω then

E(E(X |D ′) |D)(ω) =

= ∑
ω ′∈Di(ω)

 ∑
ω ′′∈D′

i(ω ′)

X(ω ′′)
P(ω ′′)

P(D′i(ω ′))

 P(ω ′)
P(Di(ω))

= ∑
ω ′′∈Di(w)

X(ω ′′)P(ω ′′) ∑
ω ′∈D′

i(ω ′′)

P(ω ′)
P(D′i(ω ′))P(Di(ω))

= ∑
ω ′′∈Di(w)

X(ω ′′)P(ω ′′) ∑
ω ′∈D′

i(ω ′′)

P(ω ′)
P(D′i(ω ′′))P(Di(ω))

= ∑
ω ′′∈Di(w)

X(ω ′′)
P(ω ′′)
P(Di(ω))

= E(X |D)(ω).

Note that despite all the algebra, (27.47) just boils down to saying that the properly
weighted average of averages is just the average.

Finally, suppose a partition D of Ω is induced by a sequence of random vari-
ables {Y1,Y2, . . . ,Yn}. We denote such partition as DY1,Y2,...,Yn . Then the atoms of
this partition are defined as

Dy1,y2,...,yn = {ω : Y1(ω) = y1,Y2(ω) = y2, . . . ,Yn(ω) = yn},

where the yi range over all possible values of the Yi’s. DY1,Y2,...,Yn is then the coars-
est partition such that Y1,Y2, . . . ,Yn are all constant over the atoms of the partition.
For convenience, we simply write
E(X |Y1,Y2, . . . ,Yn), instead of E(X |DY1,Y2,...,Yn).

Now we are ready to introduce an important class of dependent random vari-
ables called martingales.
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Let (Ω,F ,P) be a finite probability space and D0≺D1≺D2≺ . . .≺Dn =D∗

be a nested sequence of partitions of Ω (a filtration of Ω), where D0 is a trivial
partition, while D∗ stands for the discrete partition (i.e., A (D0) = { /0,Ω}, while
A (D∗) = 2Ω = F ).

A sequence of random variables X0,X1, . . . ,Xn is called (a) a martingale, (b) a
super-martingale, (c) a sub-martingale, with respect to the partition D0 ≺ D1 ≺
D2 ≺ . . .≺Dn = D∗ if

Xk is Dk-measurable

and

(a) E(Xk+1 |Dk) = Xk k = 0,1, . . . ,n−1.

(b) E(Xk+1 |Dk)≤ Xk k = 0,1, . . . ,n−1.

(c) E(Xk+1 |Dk)≥ Xk k = 0,1, . . . ,n−1.

If the partition D of Ω is generated by a sequence of random variables Y1, . . . ,Yn
then the sequence X1, . . . ,Xn is called a martingale with respect to the sequence
Y1, . . . ,Yn. In particular, when Y1 = X1, . . . ,Yn = Xn, i.e., when Dk = DX1,...,Xk ,
then we simply say that X is a martingale with respect to itself. Observe also
that EXk = EX1 = X0, for every k. Analogous statements hold for super- and
sub-martingales.

Martingales are ubiquitous, we can obtain a martingale from essentially any
random variable. Let Z = Z(Y1,Y2, . . . ,Yn) be a random variable defined on the
random variables Y1,Y2, . . . ,Yn. The sequence of random variables

Xk = E(Z | Y1,Y2, . . . ,Yk), k = 0,1, . . . ,n

is called the Doob Martingale of Z.

Theorem 27.15. We have (i) X0 =EZ, (ii) Xn =Z and (iii) the sequence X0,X1, . . . ,Xn
is a martingale with respect to (the partition defined by) Y1,Y2, . . . ,Yn.

Proof. Only (iii) needs to be explicitly checked.

E(Xk | Y1, . . . ,Yk−1) = E(E(Z | Y1, . . . ,Yk) | Y1, . . . ,Yk−1)

= E(Z | Y1, . . . ,Yk−1)

= Xk−1.

Here the second equality comes from (27.47).

We next show how one can define the so called, vertex and edge exposure
martingales, on the space of random graphs. Consider the binomial random graph
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Gn,p. Let us view Gn,p as a vector of random variables (I1, I2, . . . , I(n
2)
), where Ii

is the indicator of the event that the ith edge is present, with P(Ii = 1) = p and
P(Ii = 0) = 1− p for i = 1,2, . . . ,

(n
2

)
. These random variables are independent of

each other. Hence, in this case, Ω consists of all (0,1)-sequences of length
(n

2

)
.

Now given any graph invariant (a random variable) X : Ω→ R, (for exam-
ple, the chromatic number, the number of vertices of given degree, the size of
the largest clique, etc.), we will define a martingale generated by X and certain
sequences of partitions of Ω.

Let the random variables I1, I2, . . . , I(n
2)

be listed in a lexicographic order. De-
fine D0 ≺D1 ≺D2 ≺ . . .≺Dn = D∗ in the following way: Dk is the partition of
Ω induced by the sequence of random variables I1, . . . , I(k

2)
, and D0 is the trivial

partition. Finally, for k = 1, . . . ,n,

Xk = E(X |Dk) = E(X |DI1,I2,...,I(k
2)
).

Hence, Xk is the conditional expectation of X , given that we “uncovered” the set
of edges induced by the first k vertices of our random graph Gn,p. A martingale
determined through such a sequence of nested partitions is called a vertex exposure
martingale.
An edge exposure martingale is defined in a similar way. The martingale sequence
is defined as follows

Xk = E(X |Dk) = E(X |DI1,I2,...,Ik),

where k = 1,2, . . . ,
(n

2

)
, i.e., we uncover the edges of Gn,p one by one.

We next give upper bounds for both the lower and upper tails of the probability
distributions of certain classes of martingales.

Theorem 27.16 (Azuma-Hoeffding bound). Let {Xk}n
0 be a sequence of random

variables such that |Xk−Xk−1| ≤ ck, k = 1, . . . ,n and X0 is constant.

(a) If {Xk}n
0 is a super-martingale then for all t > 0 we have

P(Xn ≥ X0 + t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
.

(b) If {Xk}n
0 is a sub-martingale then for all t > 0 we have

P(Xn ≤ X0− t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
.
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(c) If {Xk}n
0 is a martingale then for all t > 0 we have

P(|Xn−X0| ≥ t)≤ 2exp
{
− t2

2∑
n
i=1 c2

i

}
.

Proof. We only need to prove (a), since (b), (c) will then follow easily, since {Xk}n
0

is a sub-martingale iff −{Xk}n
0 is a super-martingale and {Xk}n

0 is a martingale iff
it is a super-martingale and a sub-martingale.

Define the martingale difference sequence by Y1 = 0 and

Yk = Xk−Xk−1 , k = 1, . . . ,n.

Then
n

∑
k=1

Yk = Xn−X0,

and
E(Yk+1 | Y0,Y1, . . . ,Yk)≤ 0. (27.48)

Let λ > 0. Then

P(Xn−X0 ≥ t) = P

(
exp

{
λ

n

∑
i=1

Yi

}
≥ eλ t

)

≤ e−λ t E

(
exp

{
λ

n

∑
i=1

Yi

})
,

by the Markov inequality.
Note that eλx is a convex function of x, and since −ci ≤ Yi ≤ ci, we have

eλYi ≤ 1−Yi/ci

2
e−λci +

1+Yi/ci

2
eλci

= cosh(λci)+
Yi

ci
sinh(λci).

It follows from (27.48) that

E(eλYn | Y0,Y1, . . . ,Yn−1)≤ cosh(λcn). (27.49)

We then see that

E

(
exp

{
λ

n

∑
i=1

Yi

})
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= E

(
E(eλYn | Y0,Y1, . . . ,Yn−1)× exp

{
λ

n−1

∑
i=1

Yi

})

≤ cosh(λcn)E

(
exp

{
λ

n−1

∑
i=1

Yi

})
≤

n

∏
i=1

cosh(λci).

The expectation in the middle term is over Y0,Y1, . . . ,Yn−1 and the last inequality
follows by induction on n.

By the above equality and the Taylor expansion, we get

eλ t P(Xn−X0 ≥ t) ≤
n

∏
i=1

cosh(λci) =
n

∏
i=1

∞

∑
m=0

(λci)
2m

(2m)!

≤
n

∏
i=1

∞

∑
m=0

(λci)
2m

2mm!
= exp

{
1
2

λ
2

n

∑
i=1

c2
i

}
.

Putting λ = t/∑
n
i=1 c2

i we arrive at the theorem.
We end by describing a simple situation where we can apply these inequalities.

Lemma 27.17 (McDiarmid’s Inequality). Let Z = Z(W1,W2, . . . ,Wn) be a random
variable that depends on n independent random variables W1,W2, . . . ,Wn. Sup-
pose that

|Z(W1, . . . ,Wi, . . . ,Wn)−Z(W1, . . . ,W ′i , . . . ,Wn)| ≤ ci

for all i = 1,2, . . . ,n and W1,W2, . . . ,Wn,W ′i . Then for all t > 0 we have

P(Z ≥ EZ + t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
,

and

P(Z ≤ EZ− t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
.

Proof. We consider the martingale

Xk = Xk(W1,W2, . . . ,Wk) = E(Z |W1,W2, . . . ,Wk).

Then
X0 = EZ and Xn = Z.

We only have to show that the martingale differences Yk = Xk−Xk−1 are bounded.
But,

|Xk(W1, . . . ,Wk)−Xk−1(W1, . . . ,Wk−1)|
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≤ ∑
W ′k ,Wk+1,...,Wn

|Z(W1, . . . ,Wk, . . . ,Wn)−Z(W1, . . . ,W ′k , . . . ,Wn))|

×P(W ′k)
n

∏
i=k+1

P(Wi)

≤ ∑
W ′k ,Wk+1,...,Wn

ckP(W ′k)
n

∏
i=k+1

P(Wi)

= ck.

27.8 Talagrand’s Inequality
In this section we describe a concentration inequality that is due to Talagrand [828]
that has proved to be very useful. It can often overcome the following problem
with using Theorems 27.16, 27.17: If EXn = O(n1/2) then the bounds they give
are weak. Our treatment is a re-arrangement of the treatment in Alon and Spencer
[36].

Let Ω = ∏
n
i=1 Ωi, where each Ωi is a probability space and Ω has the product

measure. Let A⊆Ω and let x = (x1,x2, . . . ,xn) ∈Ω.
For α = (α1,α2, . . . ,αn) we let

dα(A,x) = inf
y∈A

∑
i:yi ̸=xi

αi.

Then we define
ρ(A,x) = sup

|α|=1
dα(A,x),

where |α| denotes the Euclidean norm, (α2
1 + · · ·+α2

n )
1/2.

We then define, for t ≥ 0,

At = {x ∈Ω : ρ(A,x)≤ t} .

The following theorem is due to Talagrand [828]:

Theorem 27.18.
P(At)(1−P(At))≤ e−t2/4.

Theorem 27.18 follows from

Lemma 27.19. ∫
Ω

exp
{

1
4

ρ
2(A,x)

}
dx≤ 1

P(A)
.
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Proof. Indeed, fix A and consider X = ρ(A,x). Then,

1−P(At) = P(X > t) = P(eX2/4 > et2/4)≤ E(eX2/4)e−t2/4.

The lemma states that E(eX2/4)≤ 1
P(A) .

The following alternative description of ρ is important. Let

U(A,x) = {s ∈ {0,1}n : ∃y ∈ A s.t. si = 0 implies xi = yi}

and let V (A,x) be the convex hull of U(A,x). Then

Lemma 27.20.
ρ(A,x) = min

v∈V (A,x)
|v|.

Here |v| denotes the Euclidean norm of v. We leave the proof of this lemma as
a simple exercise in convex analysis.

We now give the proof of Lemma 27.19.

Proof. We use induction on the dimension n. For n = 1,ρ(A,x) = 1x/∈A so that∫
Ω

exp
{

1
4

ρ
2(A,x)

}
= P(A)+(1−P(A))e1/4 ≤ 1

P(A)

which follows from u+(1−u)e1/4 ≤ u−1 for 0 < u≤ 1.
Assume the result for n. Write Ψ = ∏

n
i=1 Ωi so that Ω = Ψ×Ωn+1. Any z∈Ω

can be written uniquely as z = (x,ω) where x ∈Ψ and ω ∈Ωn+1. Set

B = {x ∈Ψ : (x,ω) ∈ A for some ω ∈Ωn+1}

and for ω ∈Ωn+1 set
Aω = {x ∈Ψ : (x,ω) ∈ A} .

Then

s ∈U(B,x) =⇒ (s,1) ∈U(A,(x,ω)).

t ∈U(Aω ,x) =⇒ (t,0) ∈U(A,(x,ω)).

If s ∈ V (B,x) and t ∈ V (Aω ,x) then (s,1) and (t,0) are both in V (A,(x,ω)) and
hence for any λ ∈ [0,1],

((1−λ )s+λ t,1−λ ) ∈V (A,(x,ω)).
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Then,

ρ
2(A,(x,ω))≤ (1−λ )2 + |(1−λ )s+λ t|2 ≤ (1−λ )2 +(1−λ )|s|2 +λ |t|2,

where the second inequality uses the convexity of | · |2.
Selecting, s, t with minimal norms yields the critical inequality,

ρ
2(A,(x,ω))≤ (1−λ )2 +λρ

2(Aω ,x)+(1−λ )ρ2(B,x).

Now fix ω and bound,∫
x∈Ψ

exp
{

1
4

ρ
2(A,(x,ω))

}
≤

e(1−λ )2/4
∫

x∈Ψ

exp
{

1
4

ρ
2(Aω ,x))

}λ

exp
{

1
4

ρ
2(B,x))

}1−λ

.

By Hölder’s inequality this is at most

e(1−λ )2/4
(∫

x∈Ψ

exp
{

1
4

ρ
2(Aω ,x))

})λ (∫
x∈Ψ

exp
{

1
4

ρ
2(B,x))

})1−λ

,

which by induction is at most

e(1−λ )2/4 1
P(Aω)λ

· 1
P(B)1−λ

=
1

P(B)
e(1−λ )2/4r−λ

where r = P(Aω)/P(B)≤ 1.
Using calculus, we minimise e(1−λ )2/4r−λ by choosing λ = 1 + 2logr for

e−1/2 ≤ r ≤ 1, λ = 0 otherwise. Further calculation shows that e(1−λ )2/4r−λ ≤
2− r for this value of λ . Thus,∫

x∈Ψ

exp
{

1
4

ρ
2(A,(x,ω))

}
≤ 1

P(B)

(
2− P(Aω)

P(B)

)
.

We integrate over ω to give∫
ω∈Ωn+1

∫
x∈Ψ

exp
{

1
4

ρ
2(A,(x,ω))

}
≤

1
P(B)

(
2− P(A)

P(B)

)
=

1
P(A)

x(2− x),

where x = P(A)/P(B)≤ 1. But x(2−x)≤ 1, completing the induction and hence
the theorem.

We call h : Ω→R Lipschitz if |h(x)−h(y)| ≤ 1 whenever x,y differ in at most
one coordinate.
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Definition 27.21. Let f :N→N. h is f -certifiable if whenever h(x)≥ s then there
exists I ⊆ [n] with |I| ≤ f (s) so that if y ∈ Ω agrees with x on coordinates I then
h(y)≥ s.

Theorem 27.22. Suppose that h is Lipschitz and f -certifiable. Then if X = h(x)
for x ∈Ω, then for all b and for all t ≥ 0,

P(X ≤ b− t
√

f (b))P(X ≥ b)≤ e−t2/4.

Proof. Set A =
{

x : h(x)< b− t
√

f (b)
}

. Now suppose that h(y)≥ b. We claim
that y /∈ At . Let I be a set of indices of size at most f (b) that certifies h(y)≥ b as
given above. Define αi = 0 when i /∈ I and αi = |I|−1/2 when i ∈ I. Using Lemma
27.20 we see that if y ∈ At then there exists a z ∈ A that differs from y in at most
t|I|1/2 ≤ t

√
f (b) coordinates of I, though at arbitrary coordinates outside I. Let y′

agree with y on I and agree with z outside I. By the certification h(y′)≥ b. Now
y′,z differ in at most t

√
f (b) coordinates and so, by Lipschitz,

h(z)≥ h(y′)− t
√

f (b)≥ b− t
√

f (b),

but then z /∈ A, a contradiction. So, P(X ≥ b) ≤ 1−P(At) and from Theorem
27.18,

P(X < b− t
√

f (b))P(X ≥ b)≤ e−t2/4.

As the RHS is continuous in t, we may replace “<” by “≤” giving Theorem
27.22.

Next let m denote the median of X so that P(X ≥ m) ≥ 1/2 and P(X ≤ m) ≥
1/2.

Corollary 27.23.

(a) P(X ≤ m− t
√

f (m))≤ 2e−t2/4.

(b) Suppose that b− t
√

f (b)≥ m, then P(X ≥ b)≤ 2e−t2/4.

27.9 Dominance
We say that a random variable X stochastically dominates a random variable Y if

P(X ≥ t)≥ P(Y ≥ t) for all real t.
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There are many cases when we want to use our inequalities to bound the upper
tail of some random variable Y and (i) Y does not satisfy the necessary conditions
to apply the relevant inequality, but (ii) Y is dominated by some random variable
X that does. Clearly, we can use X as a surrogate for Y .

The following case arises quite often. Suppose that Y = Y1 +Y2 + · · ·+Yn
where Y1,Y2, . . . ,Yn are not independent, but instead we have that for all t in the
range [Ai,Bi] of Yi,

P(Yi ≥ t | Y1,Y2, . . . ,Yi−1)≤Φ(t)

where Φ(t) decreases monotonically from 1 to 0 in [Ai,Bi].
Let Xi be a random variable taking values in the same range as Yi and such that

P(Xi ≥ t) = Φ(t). Let X = X1 + · · ·+Xn where X1,X2, . . . ,Xn are independent of
each other and Y1,Y2, . . . ,Yn. Then we have

Lemma 27.24. X stochastically dominates Y .

Proof. Let X (i) = X1 + · · ·+Xi and Y (i) = Y1 + · · ·+Yi for i = 1,2, . . . ,n. We will
show by induction that X (i) dominates Y (i) for i = 1,2, . . . ,n. This is trivially true
for i = 1 and for i > 1 we have

P(Y (i) ≥ t | Y1 . . . ,Yi−1) = P(Yi ≥ t− (Y1 + · · ·+Yi−1) | Y1 . . . ,Yi−1)

≤ P(Xi ≥ t− (Y1 + · · ·+Yi−1) | Y1 . . . ,Yi−1).

Removing the conditioning we have

P(Y (i) ≥ t)≤ P(Y (i−1) ≥ t−Xi)≤ P(X (i−1) ≥ t−Xi) = P(X (i) ≥ t),

where the seond inequality follows by induction.
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Chapter 28

Differential Equations Method

Let D ⊆ R2 be open and bounded and connected. Consider a general random
process

X(0),X(1), . . . ,X(t), . . . ,X(n) ∈ Z.

where X(0) is fixed and
(

0, X(0)
n

)
∈ D.

Let Ht denote the history X(0),X(1), . . . ,X(t) of the process to time t. Let
TD be the stopping time which is the minimum t such that (t/n,X(t)/n) /∈ D. We
further assume

(P1) |X(t)| ≤C0n, ∀t < TD, where C0 is a constant.

(P2) |X(t +1)−X(t)| ≤ β = β (n)≥ 1, ∀t < TD.

(P3) |E(X(t +1)−X(t)|Ht ,E )− f (t/n,X(t)/n)| ≤ λ ,∀t < TD.
Here E is some likely event that holds with probability at least 1− γ .

(P4) f (t,x) is continuous and satisfies a Lipschitz condition
| f (t,x)− f (t ′,x′)| ≤ L∥(t,x)− (t ′,x)′∥∞

for (t,x),(t ′,x′) ∈ D∩{(t,x) : t ≥ 0}

Theorem 28.1. Suppose that

λ = o(1) and α =
nλ 3

β 3 ≫ 1.

σ = inf{τ : (τ,z(τ)) ̸∈ D0 = {(t,z) ∈ D : l∞ distance of (t,z) from
the boundary of D≥ 2λ}}
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Let z(τ), 0≤ τ ≤ σ be the unique solution to the differential equation

z′(τ) = f (τ,z(τ)) (28.1)

z(0) =
X(0)

n
(28.2)

Then,
X(t) = nz(t/n)+O(λn), (28.3)

uniformly in 0≤ t ≤ σn, with probability 1−O(γ +βe−α/λ ).

Proof. The γ in the probability of success will be handled by conditioning on E .
Now let

ω =

⌈
nλ

β

⌉
.

We study the difference X(t +ω)−X(t). Assume that (t/n,X(t)/n) ∈ D0. For
0≤ k ≤ ω we have from (P2) that∣∣∣∣X(t + k)

n
− X(t)

n

∣∣∣∣≤ kβ

n
≤ ωβ

n
,

so ∥∥∥∥(t + k
n

,
X(t + k)

n

)
−
(

t
n
,
X(t)

n

)∥∥∥∥
∞

≤ 2λ ,

and so
(

t+k
n , X(t+k)

n

)
is in D.

Therefore, using (P3),

E(X(t + k+1)−X(t + k)|Ht+k,E ) =

f
(

t + k
n

,
X(t + k)

n

)
+θk =

f
(

t
n
,
X(t)

n

)
+θk +ψk =

f
(

t
n
,
X(t)

n

)
+ρ,

where |ρ| ≤ (2L+1)λ , since |θk| ≤ λ (by (P3)) and |ψk| ≤ Lβk
n (by (P4)).

Now, given Ht , let

Zk =

{
X(t + k)−X(t)− k f

(
t
n ,

X(t)
n

)
− (2L+1)kλ E

/0 ¬E
.
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Then
E(Zk+1−Zk|Z0,Z1, . . . ,Zk)≤ 0,

i.e., Z0,Z1, . . . ,Zω is a super-martingale.
Also

|Zk+1−Zk| ≤ β +

∣∣∣∣ f ( t
n
,
X(t)

n

)∣∣∣∣+(2L+1)λ ≤ K0β ,

where K0 = O(1), since f
(

t
n ,

X(t)
n

)
= O(1) by continuity and boundedness of D.

So, using Theorem 27.16 we see that conditional on Ht ,E ,

P
(

X(t +ω)−X(t)−ω f (t/n,X(t)/n)≥ (2L+1)ωλ +K0β
√

2αω

)
≤ exp

{
−

2K2
0 β 2αω

2ωK2
0 β 2

}
= e−α . (28.4)

Similarly,

P
(

X(t +ω)−X(t)−ω f (t/n,X(t)/n)≤−(2L+1)ωλ −K0β
√

2αω

)
≤ e−α . (28.5)

Thus

P
(
|X(t +ω)−X(t)−ω f (t/n,X(t)/n)| ≥ (2L+1)ωλ +K0β

√
2αω

)
≤ 2e−α .

We have that ωλ and β
√

2αω are both Θ(nλ 2/β ) giving

(2L+1)ωλ +K0β
√

2αω ≤ K1
nλ 2

β
.

Now let ki = iω for i = 0,1, . . . , i0 = ⌊σn/ω⌋. We will show by induction that

P
(
∃ j ≤ i : |X(k j)− z(k j/n)n| ≥ B j

)
≤ 2ie−α , (28.6)

where

B j = B

((
1+

Lω

n

) j+1

−1

)
nλ

L
(28.7)

and where B is another constant.
The induction begins with z(0) = X(0)

n and B0 = 0. Note that

Bi0 ≤
BeσLλ

L
n = O(λn). (28.8)
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Now write

|X(ki+1)− z(ki+1/n)n|= |A1 +A2 +A3 +A4|,
A1 = X(ki)− z(ki/n)n,
A2 = X(ki+1)−X(ki)−ω f (ki/n,X(ki)/n),
A3 = ωz′(ki/n)+ z(ki/n)n− z(ki+1/n)n,
A4 = ω f (ki/n,X(ki)/n)−ωz′(ki/n).

We now bound each of these terms individually.

A1

X(ki)/n)

z(ki/n)

z(ki+1/n)

X(ki+1)/n

slope f (ki.n,X(ki)/n)

slope f (ki.n,X(ki)/n)

slope z′(ki/n)

A2

A3

A4

Figure 28.1: Error terms
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Our induction gives that with probability at most 2ie−α ,

|A1| ≤ Bi.

Equations (28.4) and (28.5) give

|A2| ≤ K1
nλ 2

β
,

with probability 1−2e−α .

A3 = ωz′(ki/n)+ z(ki/n)n− z(ki+1/n)n

Now
z(ki+1/n)− z(ki/n) =

ω

n
z′(ki/n+ ω̂/n)

for some 0≤ ω̂ ≤ ω and so (P4) implies that

|A3|= ω|z′(ki/n+ω/n)− z′(ki/n+ ω̂/n)| ≤ L
ω2

n
≤ 2L

nλ 2

β 2 .

Finally, (P4) gives

|A4| ≤
ωL|A1|

n
≤ ωL

n
Bi.

Thus for some B > 0,

Bi+1 ≤ |A1|+ |A2|+ |A3|+ |A4|

≤
(

1+
ωL
n

)
Bi +Bn

λ 2

β
.

A little bit of algebra verifies (28.6) and (28.7).
Finally consider ki ≤ t < ki+1. From “time” ki to t the change in X and nz is at

most ωβ = O(nλ ).

Remark 28.2. The above proof generalises easily to the case where
X(t) is replaced by X1(t),X2(t), . . . ,Xa(t) where a = O(1).

The earliest mention of differential equations with respect to random graphs
was in the paper by Karp and Sipser [558]. The paper by Ruciński and Wormald
[779] was also influential. See Wormald [860] for an extensive survey on the
differential equations method.
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Chapter 29

Branching Processes

In the Galton-Watson branching process, we start with a single particle comprising
generation 0. In general, the nth generation consists of Zn particles and each
member x of this generation independently gives rise to a random number X of
descendants in generation n+1. In the book we need the following theorem about
the probability that the process continues indefinitely: Let

pk = P(X = k), k = 0,1,2, . . . .

Let

G(z) =
∞

∑
k=0

pkzk

be the probability generating function (p.g..f.) of X . Let µ = EX . Let

η = P

(⋃
n≥0

{Zn = 0}
)

(29.1)

be the probability of ultimate extinction of the process.

Theorem 29.1. η is the smallest non-negative root to the equation G(s) = s. Here
η = 1 if µ < 1.

Proof. If Gn(z) is the p.g.f. of Zn, then Gn(z) = G(Gn−1(z)). This follows from
the fact that Zn is the sum of Zn−1 independent copies of G. Let ηn = P(Zn = 0).
Then

ηn = Gn(0) = G(Gn−1(0)) = G(ηn−1).

It follows from (29.1) that ηn↗ η . Let ψ be any other non-negative solution to
G(s) = s. We have

η1 = G(0)≤ G(ψ) = ψ.
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Now assume inductively that ηn ≤ ψ for some n≥ 1. Then

ηn+1 = G(ηn)≤ G(ψ) = ψ.



Chapter 30

Random Walk

30.1 Mixing time

Spectral gap

We let Ω = {0,1, . . . ,N − 1} denote the state space of a Markov chain M =
(X0,X1, . . .). Let P be the transition matrix of M i.e. P(i, j) = Pr(Xt+1 = j |
Xt = i). We assume that M is ergodic, i.e that each state is reachable from every
other state. In which case there will be a unique steady state distribution satisfying
πP = π and limt→∞ Pt(i, j) = π j for all i, j.

We assume that M is reversible, i.e. πiP(i, j) = π jP( j, i) for all i, j. Note
that a random walk on a graph G is reversible as can be seen by puting πi =
deg(i)/|E(G)| and P(i, j) = 1/deg(i).

Let the eigenvalues of P be 1 = l0 > l1 ≥ l2 ≥ ·· · ≥ lN−1. They are all real
valued. Let lmax = max{|li| : i > 0}. Let D1/2 be the diagonal Ω×Ω matrix with
diagonal entries

√
π(ω), ω ∈Ω and let D−1/2 be its inverse. Then the reversibility

of of the chain implies that the matrix S = D1/2PD−1/2 is symmetric. It has the
same eigenvalues as P and its symmetry means that these are all real.

The fact that lmax < 1 is a classical result of the theory of non-negative matri-
ces. The spectral gap 1− lmax determines the mixing rate of the chain i.e. how
fast Pt(i, j) tends to π j. The larger it is, the more rapidly does the chain mix. For
U ⊆Ω let

∆U(t) = max
i, j∈U

{
|Pt(i, j)−π( j)|

π( j)

}
.

Theorem 30.1.

∆U ≤
lt
max

min
i∈U

π(i)
.
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Proof. We can select an orthonormal basis of column vectors ei, i ∈ Ω for RΩ

consisting of left eigenvectors of S where ei has associated eigenvalue li and e0 =
πT D−1/2. S has the spectral decomposition

S =
N−1

∑
i=0

liei(ei)T =
N−1

∑
i=0

liE(i),

where E(i) = ei(ei)T . Note that E(i)E( j) = 0 for i ̸= j and E(i)2
= E(i). It follows

that for any t = 0,1,2, . . . , St = ∑
N−1
i=0 lt

i E
(i). Hence

Pt = D−1/2StD1/2 =
N−1

∑
i=0

lt
i (D
−1/2ei))((ei)T D1/2)

= 1Nπ
T +

N−1

∑
i=1

lt
i (D
−1/2ei)((ei)T D1/2),

where 1N is the N-vector all of whose components are 1. In component form, we
get with the help of the Cauchy-Schwartz inequality:

|Pt( j,k)−πk|=

∣∣∣∣∣
√

πk

π j

N−1

∑
i=1

lt
i ei jeik

∣∣∣∣∣
≤
√

πk

π j
lt
max

(
N−1

∑
i=0

ei j
2

)1/2(N−1

∑
i=0

eik2

)1/2

=

√
πk

π j
lt
max. (30.1)

The theorem follows by substitution of the above inequality in the definition of
∆U .

In terms of mixing time (see (24.1)) we have

Corollary 30.2.

τ(ε)≤
⌈

logεπmin

log lmax

⌉
.

Proof. For A⊆Ω we have

pt(A)−π(A)≤ lt
max

πmin
π(A)≤ lt

max
πmin

. (30.2)
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Conductance
The conductance Φ = Φ(M ) of M is defined by

Φ = min{ΦS : S⊆Ω, 0 < π(S)≤ 1/2}

where if Q(i, j) = πiP(i, j) and S̄ = Ω\S,

ΦS = π(S)−1Q(S, S̄).

Thus ΦS is the steady state probability of moving from S to S̄ in one step of the
chain, conditional on being in S. We say that M is lazy if P(i, i)≥ 1/2 for i ∈Ω.
Clearly Φ≤ 1/2 if M is lazy. Note that

ΦSπ(S) = Q(S, S̄) = Q(S̄,S) = ΦS̄π(S̄). (30.3)

Indeed,

Q(S, S̄) = Q(Ω, S̄)−Q(S̄, S̄) = π(S̄)−Q(S̄, S̄) = Q(S̄,S).

Let πmin = min{π(ω) : ω ∈Ω > 0} and πmax = max{π(ω) : ω ∈Ω}.
We now show how conductance gives us an estimate of the spectral gap of a

reversible chain. To make the chain lazy, we replace the transition matrix P by
Q = (P+ I)/2. (This introduces a loop of probability 1/2 at each state.)

Lemma 30.3. If M is ergodic then replacing P by Q makes all the eigenvalues
positive.

Proof. Q ≥ 0 is stochastic and has eigenvalues µi = (1+ li)/2, i = 0,1, . . .N −
1. The result follows from li > −1, i = 0,1, . . .N − 1, by the Perron-Frobenius
theorem.

For y ∈ RN let
E (y,y) = ∑

i< j
πiPi, j(yi− y j)

2.

Lemma 30.4. If M is reversible then

1− l1 = min
πT y=0

E (y,y)
∑i πiy2

i
.

Proof. Let D,S,e0 be as above. Then by the Rayleigh principle,

l1 = max
x:πT D−1/2x=0

xT D1/2PD−1/2x
xT x

.
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Thus

1− l1 = min
πT D−1/2x=0

xT D1/2(I−P)D−1/2x
xT x

= min
πT y=0

yT D(I−P)y
yT Dy

. (30.4)

Now

yT D(I−P)y =−∑
i ̸= j

yiy jπiPi, j +∑
i

πi(1−Pi,i)y2
i

=−∑
i ̸= j

yiy jπiPi, j +∑
i ̸= j

πiPi, j
y2

i + y2
j

2
= ∑

i< j
πiPi, j(yi− y j)

2

= E (y,y),

and the lemma follows from (30.4).

Theorem 30.5. If M is a reversible chain then

1− l1 ≥
Φ2

2
.

Proof. Assume now that πT y = 0, y1 ≥ y2 ≥ ·· · ≥ yN and that

π1 +π2 + · · ·+πr−1 ≤
1
2
< π1 +π2 + · · ·+πr.

Let zi = yi− yr for i = 1,2, . . . ,n. Then z1 ≥ z2 ≥ ·· · ≥ zr = 0≥ zr+1 ≥ ·· · ≥ zN ,
and

E (y,y)
∑i πiy2

i
=

E (z,z)
−y2

r +∑i πiz2
i
≥ E (z,z)

∑i πiz2
i
.

=

(
∑i< j πiPi, j(zi− z j)

2)(
∑i< j πiPi, j(|zi|+ |z j|)2)(

∑i πiz2
i
)(

∑i< j πiPi, j(|zi|+ |z j|)2
) =

A
B
, say.

Now,

A ≥

(
∑
i< j

πiPi, j|zi− z j|(|zi|+ |z j|)

)2

by Cauchy-Schwartz

≥

(
∑
i< j

πiPi, j

j−1

∑
k=i
|z2

k+1− z2
k |

)2

. (30.5)
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To prove (30.5), we show that if i < j then

|zi− z j|(|zi|+ |z j|)≥
j−1

∑
k=i
|z2

k+1− z2
k |. (30.6)

If r ̸∈ {i, i+1, . . . , j} i.e., if zi,z j have the same sign then LHS(30.6)=RHS(30.6)=|z2
i −

z2
j |. Otherwise LHS(30.6)=(|zi|+ |z j|)2 and RHS(30.6)=z2

i + z2
j , proving (30.5).

Now,

∑
i< j

πiPi, j(|zi|+ |z j|)2 ≤ 2 ∑
i< j

πiPi, j(z2
i + z2

j)≤ 2∑
i

πiz2
i .

So,

E (y,y)
∑i πiy2

i
≥ A

B
≥

(
∑i< j πiPi, j ∑

j−1
k=i |z

2
k+1− z2

k |
)2

2
(
∑i πiz2

i
)2
.

Now let Sk = {1,2, . . . ,k} and Ck = {(i, j) : i≤ k < j}. Then

∑
i< j

πiPi, j

j−1

∑
k=i
|z2

k+1− z2
k | =

N−1

∑
k=1
|z2

k+1− z2
k | ∑

(i, j)∈Ck

πiPi, j

≥ Φ

(
r−1

∑
k=1

(z2
k− z2

k+1)π(Sk)+
N−1

∑
k=r

(z2
k+1− z2

k)(1−π(Sk))

)

= Φ

(
N−1

∑
k=1

(z2
k− z2

k+1)π(Sk)+(z2
N− z2

r )

)

= Φ

(
N

∑
k=1

πkz2
k

)

since zr = 0.
Thus if πT y = 0 then

E (y,y)
∑i πiy2

i
≥ Φ2

2

and Theorem 30.5 follows.

In terms of mixing time we obtain from Corollary 30.2,

Corollary 30.6. If M is a lazy ergodic chain then

τ(ε)≤
⌈

2| logεπmin|
Φ2

⌉
.
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Proof. Lemma 30.3 implies that l1 = lmax and then

1
log l−1

max
≤ 1

log(1−Φ2/2)−1 ≤
2

Φ2 .

Now consider the conductance of a random walk on a graph G = (V,E). Then,
by definition,

ΦS =

∑
(v,w)∈E(S,S̄)

deg(v)
2|E|

1
dv

∑
v∈S

deg(v)
2|E|

=
e(S : S̄)

∑
v∈S

deg(v)
. (30.7)

In particular when G is an r-regular graph

Φ = r−1 min
|S|≤|V |/2

e(S : S̄)
|S|

. (30.8)

The minimand above is referred to as the expansion of G. This graphs with good
expansion (expander graphs) have large conductance and random walks on them
mix rapidly.

We finish this section by proving a sort of converse to Theorem 30.5.

Theorem 30.7. If M is a reversible chain then

1− l1 ≤ 2Φ

Proof. We use Lemma 30.4. Let S be a set of states which minimises ΦS and
define y by y j =

1
π(S) if j ∈ S and y j = − 1

π(S̄) if j ∈ S̄. It is easy to check that

πT y = 0. Then

E (y,y) =
(

1
π(S)

+
1

π(S̄)

)2

Q(S, S̄) and ∑πiy2
i =

1
π(S)

+
1

π(S̄)
.

Thus

1− lmax ≤ΦSπ(S)
(

1
π(S)

+
1

π(S̄)

)
≤ 2ΦS = 2Φ.
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30.2 First Visit Time Lemma
Let G denote a fixed connected graph, and let u be some arbitrary vertex from
which a walk Wu is started. Let Wu(t) be the vertex reached at step t, let P be
the matrix of transition probabilities of the walk, and let P(t)

u (v) = Pr(Wu(t) = v).
Let π be the steady state distribution of the random walk Wu. Let πv denote the
stationary distribution of the vertex v. For an unbiased ergodic random walk on a
graph G with m = m(G) edges, πv =

deg(v)
2m , where deg(v) denotes the degree of v

in G.
Let d(t) = maxu,x∈V |P(t)

u (x)−πx|, and let T be such that, for t ≥ T

max
u,x∈V

∣∣∣∣Pu(x, t)−πx

πx

∣∣∣∣≤ 1
ω

(30.9)

where ω = ω(n)→ ∞.
It follows from e.g. Aldous and Fill [21] that d(s+ t) ≤ 2d(s)d(t) and so for

t ≥ T and k = ⌊t/T⌋,

max
u,x∈V

∣∣∣∣Pu(x, t)−πx

πx

∣∣∣∣≤ 2k−1

ωk . (30.10)

Fix two vertices u,v. Let ht = Pr(Wu(t) = v) be the probability that the walk Wu
visits v at step t. Let

H(z) =
∞

∑
t=T

htzt (30.11)

generate ht for t ≥ T . Next, considering the walk Wv, starting at v, let rt =
Pr(Wv(t) = v) be the probability that this walk returns to v at step t = 0,1, ....
Let

R(z) =
∞

∑
t=0

rtzt

generate rt . Our definition of return involves r0 = 1.
For t ≥ T let ft = ft(u,v) be the probability that the first visit of the walk Wu

to v in the period [T,T +1, . . .] occurs at step t. Let

F(z) =
∞

∑
t=T

ftzt

generate ft . Then we have
H(z) = F(z)R(z). (30.12)

Finally, for R(z) let

RT (z) =
T−1

∑
j=0

r jz j. (30.13)
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For a large constant K > 0, let

η =
1

KT
.

For t ≥ 0, let At(v) be the event that Wu does not visit v in steps T,T +1, . . . , t.
The vertex u will have to be implicit in this definition.

Lemma 30.8. [First Visit Time Lemma]
Suppose that

(a) For some constant θ > 0, we have

min
|z|≤1+l

|RT (z)| ≥ θ . (30.14)

(b) T πv = o(1).

Let
pv =

πv

RT (1)(1+O(T πv))
,

where Rv = RT (1) is from (30.13).
Then for all t ≥ T ,

Pr(At(v)) =
(1+O(T πv))

(1+ pv)t +O(T 2
πve−lt/2)

= exp
{
−tπv

Rv
(1+O(T πv))

}
+O(T 2

πve−lt/2). (30.15)

(The term O(T 2πve−lt/2) is negligible and can be dropped for t ≥ n logn, as it
is in (24.6).)

Proof. Write

R(z) = RT (z)+ R̂T (z)+
πvzT

1− z
, (30.16)

where RT (z) is given by (30.13) and

R̂T (z) = ∑
t≥T

(rt−πv)zt

generates the error in using the stationary distribution πv for rt when t ≥ T . Simi-
larly,

H(z) = ĤT (z)+
πvzT

1− z
. (30.17)
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Equation (30.10) implies that the radii of convergence of both R̂T and ĤT exceed
1+2l. Moreover, for Z = H,R and |z| ≤ 1+ l, we see from (30.10) that

|ẐT (z)| ≤
πv

2 ∑
t≥T

(
2(1+η)

ω

)⌊t/T⌋
≤ 2(1+η)T πv

ω
= O(ω−2). (30.18)

Using (30.16), (30.17) we rewrite F(z) = H(z)/R(z) from (30.12) as F(z) =
B(z)/A(z) where

A(z) = πvzT +(1− z)(RT (z)+ R̂T (z)), (30.19)
B(z) = πvzT +(1− z)ĤT (z). (30.20)

For real z≥ 1 and Z = H,R, we have

ZT (1)≤ ZT (z)≤ ZT (1)zT .

Let z = 1+βπv, where 0≤ β ≤ 1. Since T πv ≤ ω−1 we have

ZT (z) = ZT (1)(1+ξ1) where |ξ1| ≤ (1+βπv)
T −1≤ 2β

ω
.

T πv ≤ ω−1 and Rv ≥ 1 implies that

A(z) = πv(1−βRv(1+ξ1)) where |ξ1|= O(ω−1).

It follows that A(z) has a real zero at z0, where

z0 = 1+
πv

Rv(1+ξ1)
= 1+ pv. (30.21)

We also see that since |zT
0 | ≤ 1+2ω−1,

A′(z0) = T πvzT−1
0 − (RT (z0)+ R̂T (z0))− pv(R′T (z0)+ R̂′T (z0))

= O(ω−1)−
(
Rv +O(ω−1)+o(ω−1)

)
−o(πv)

=−Rv +O(ω−1)

̸= 0.

and thus z0 is a simple zero (see e.g. [201] p193). The value of B(z) at z0 is

B(z0) = πv
(
1+O(ω−1)+o(ω−1)

)
= πv

(
1+O(ω−1)

)
̸= 0. (30.22)

Thus,
B(z0)

A′(z0)
=−(1+ξ2) pv where |ξ2|= O(ω−1). (30.23)
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Thus (see e.g. [201] p195) the principal part of the Laurent expansion of F(z) at
z0 is

f (z) =
B(z0)/A′(z0)

z− z0
. (30.24)

To approximate the coefficients of the generating function F(z), we now use a
standard technique for the asymptotic expansion of power series (see e.g.[854]
Theorem 5.2.1).

We prove below that F(z) = f (z)+g(z), where g(z) is analytic in Cl = {|z| ≤
1+ l} and that

M = max
z∈Cl
|g(z)|= O(ω−1).

Let at = [zt ]g(z), then (see e.g.[201] p143), at = g(t)(0)/t!. By the Cauchy
Inequality (see e.g. [201] p130) we see that |g(t)(0)| ≤Mt!/(1+η)t and thus

|at | ≤
M

(1+η)t ≤Me−tη/2.

As [zt ]F(z) = [zt ] f (z)+ [zt ]g(z) and [zt ]1/(z− z0) =−1/zt+1
0 we have

[zt ]F(z) =
−B(z0)/A′(z0)

zt+1
0

+η1(t) where |η1(t)| ≤Me−tη/2. (30.25)

Thus, we obtain

[zt ]F(z) =
(1+ξ2)pv

(1+ pv)t+1 +η1(t).

Now

Pr(At(v)) = ∑
τ>t

fτ(u→ v) = ∑
τ>t

(
(1+ξ2)pv

(1+ pv)τ+1 +η1(τ)

)
=

1+ξ2

(1+ pv)t+1 +η2(t),

where

η2(t) = ∑
τ>t

η1(t)≤
Me−lt/2

1− e−l/2 = o(Te−l/2).

This completes the proof of (30.15).
Now M = maxz∈Cl |g(z)| ≤max | f (z)|+max |F(z)|= O(T πv)+max |F(z)|=

O(ω−1)+max |F(z)|, where F(z) = B(z)/A(z). On Cl we have, using (30.18)-
(30.20),

|F(z)| ≤ πvzT +o(πv)

πvzT + l(|RT (z)|−O(ω−2))
= O

(
πvzT

T−1Rv

)
= O(ω−1).

We now prove that z0 is the only zero of A(z) inside the circle Cl and this
implies that F(z)− f (z) is analytic inside Cl . We use Rouché’s Theorem (see e.g.
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[201]), the statement of which is as follows: Let two functions ϕ(z) and γ(z) be
analytic inside and on a simple closed contour C. Suppose that |ϕ(z)| > |γ(z)|
at each point of C, then ϕ(z) and ϕ(z)+ γ(z) have the same number of zeroes,
counting multiplicities, inside C.

Let the functions ϕ(z),γ(z) be given by ϕ(z) = (1−z)RT (z) and γ(z) = πvzT +
(1− z)R̂T (z).

|γ(z)|
|ϕ(z)|

≤ πv(1+ l)T

ηθ
+
|R̂T (z)|

θ
= o(1).

As ϕ(z)+ γ(z) = A(z) we conclude that A(z) has only one zero inside the circle
Cl . This is the simple zero at z0.

In our use of Lemma 24.6 in Chapter 24.2, we never mentioned the condition
(30.16). If rt ≤ ρ t +o(1/T ) then

RT (z)≥ 1−

(
T/2

∑
t=1

(
(ρ(1+η))t +o

(
1
T

)))

≥ ρ(1+η)

1−ρ (1+η)
+o(1)> 0,

for K sufficiently large.
This completes dealing with condition (30.16) in our context. We should note

that Manzo, Quattropani, Scoppola [652] gave a completely different proof of
Lemma 30.8 that removes condition (30.16) but does not explicitly give exponen-
tial tail bounds.

An early theorem We end with the classic theorem of Aleliunas, Karp, Lipton.,
Lovász and Rackoff [24].

Theorem 30.9. If G = (V,E) is a connected graph then

CG ≤ 2|E|(|V |−1).

Proof. We present a proof due to Palacios [721]. We let Tu,v denote the expected
time for Wu to first reach v and M = |E|, N = |V |.

We double the edges of G and let v0,v1, . . . ,v2M be a walk through G that
traverses each edge twice, once in each direction. Now

Cv0 ≤ Tv0,v1 +Tv1,v2 + · · ·+T2M−1,2M. (30.26)

It is well-known, see for example [21], that Tu,u = 2M/deg(u), i.e. the inverse of
the steady state probability of being at u. Therefore,

2M
deg(u)

= ∑
v:{u,v}∈E

1
deg(u)

(1+Tv,u) = 1+
1

deg(u) ∑
v:{u,v}∈E

Tv,u
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so that
2M = deg(u)+ ∑

v:{u,v}∈E
Tv,u.

Summing over u, gives

2MN = 2M+ ∑
u,v:{u,v}∈E

Tv,u.

The theorem now follows from (30.26).



Chapter 31

Entropy

31.1 Basic Notions
Entropy is a useful tool in many areas. The entropy we talk about here was intro-
duced by Shannon in [800]. We need some results on entropy in Chapter 12. We
collect them here for convenience. For more on the subject we refer the reader to
Cover and Thomas [275], or Gray [449] or Martin and England [674].

Let X be a random variable taking values in a finite set RX . Let p(x) = P(X =
x) for x ∈ RX . Then the entropy of X is given by

h(X) =− ∑
x∈RX

p(x) log p(x).

We have a choice for the base of the logarithm here. We use the natural logarithm,
for use in Chapter 12.

Note that if X is chosen uniformly from RX , i.e. P(X = x) = 1/|RX | for all
x ∈ RX then then

h(X) = ∑
x∈RX

log |RX |
|RX |

= log |RX |.

We will see later that the uniform distribution maximises entropy.
If Y is another random variable with a finite range then we define the condi-

tional entropy

h(X | Y ) = ∑
y∈RY

p(y)h(Xy) =−∑
x,y

p(x,y) log
p(x,y)
p(y)

, (31.1)

where Xy is the random variable with P(Xy = x) = P(X = x |Y = y). Here p(y) =
P(Y = y). The summation is over y such that p(y)> 0. We will use notation like
this from now on, without comment.

Chain Rule:
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Lemma 31.1.

h(X1,X2, . . . ,Xm) =
m

∑
i=1

h(Xi | X1,X2, . . . ,Xi−1). (31.2)

Proof. This follows by induction on m, once we have verified it for m = 2. For
then

h(X1,X2, . . . ,Xm) = h(X1,X2, . . . ,Xm−1)+h(Xm | X1,X2, . . . ,Xm−1).

Now,

h(X2 | X1) =− ∑
x1,x2

p(x1,x2) log
p(x1,x2)

p(x1)

=− ∑
x1,x2

p(x1,x2) log p(x1,x2)+ ∑
x1,x2

p(x1,x2) log p(x1)

= h(X1,X2)+∑
x1

p(x1) log p(x1)

= h(X1,X2)−h(X1).

Inequalities:
Entropy is a measure of uncertainty and so we should not be surprised to learn

that h(X | Y ) ≤ h(X) for all random variables X ,Y – here conditioning on Y rep-
resents providing information. Our goal is to prove this and a little more.

Let p,q be probability measures on the finite set X . We define the
Kullback-Liebler distance

D(p||q) = ∑
x∈A

p(x) log
p(x)
q(x)

where A = {x : p(x)> 0}.

Lemma 31.2.
D(p||q)≥ 0

with equality iff p = q.

Proof. Let

−D(p||q) = ∑
x∈A

p(x) log
q(x)
p(x)

≤ log ∑
x∈A

p(x)
q(x)
p(x)

(31.3)
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= log1
= 0.

Inequality (31.3) follows from Jensen’s inequality and the fact that log is a concave
function. Because log is strictly concave, will have equality in (31.3) iff p= q.

It follows from this that
h(X)≤ log |RX |. (31.4)

Indeed, let u denote the uniform distribution over RX i.e. u(x) = 1/|RX |. Then

0≤ D(p||u) = ∑
x

p(x)(log p(x)+ log |RX |) =−h(X)+ log |RX |.

We can now show that conditioning does not increase entropy.

Lemma 31.3. For random variables X ,Y,Z,

h(X | Y,Z)≤ h(X | Y ).

Taking Y to be a constant e.g. Y = 1 with probability one, we see

h(X | Z)≤ h(X).

Proof.

h(X | Y )−h(X | Y,Z)

=−∑
x,y

p(x,y) log
p(x,y)
p(y)

+ ∑
x,y,z

p(x,y,z) log
p(x,y,z)
p(y,z)

=−∑
x,y,z

p(x,y,z) log
p(x,y)
p(y)

+ ∑
x,y,z

p(x,y,z) log
p(x,y,z)
p(y,z)

= ∑
x,y,z

p(x,y,z) log
p(x,y,z)p(y)
p(x,y)p(y,z)

= D(px,y,z||p(x,y)p(y,z)/p(y))
≥ 0.

Note that ∑x,y,z p(x,y)p(y,z)/p(y) = 1.

Working through the above proof we see that h(X) = h(X | Z) iff p(x,z) =
p(x)p(z) for all x,z, i.e. iff X ,Z are independent.
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31.2 Shearer’s Lemma
The original proof is from Chung, Frankl, Graham and Shearer [219]. The fol-
lowing proof is from Radakrishnan [755].

Lemma 31.4. Let X = (X1,X2, . . . ,XN) be a (vector) random variable and A =
{Ai : i ∈ I} be a collection of subsets of [N] such that each j ∈ [N] appears in at
least k members of A . For A⊆ [N], let XA = (X j : j ∈ A). Then,

h(X)≤ 1
k ∑

i∈I
h(XAi).

Proof. We have, from Lemma 31.1 that

h(X) = ∑
j∈[N]

h(X j | X1,X2, . . . ,X j−1) (31.5)

and
h(XAi) = ∑

j∈Ai

h(X j | Xℓ, ℓ ∈ Ai, ℓ < j). (31.6)

We sum (31.6) for all i ∈ I. Then

∑
i∈I

h(XAi) = ∑
i∈I

∑
j∈Ai

h(X j | Xℓ, ℓ ∈ Ai, ℓ < j)

= ∑
j∈[N]

∑
Ai∋ j

h(X j | Xℓ, ℓ ∈ Ai, ℓ < j) (31.7)

≥ ∑
j∈[N]

∑
Ai∋ j

h(X j | X1,X2, . . . ,X j−1) (31.8)

≥ k ∑
j∈[N]

h(X j | X1,X2, . . . ,X j−1) (31.9)

= kh(X). (31.10)

Here we obtain (31.8) from (31.7) by applying Lemma 31.3. We obtain (31.9)
from (31.8) and the fact that each j ∈ [N] appears in at least k Ai’s. We then obtain
(31.10) by using (31.5).
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Erdős–Rényi graphs via ballot theorems, Combinatorics, Probability and
Computing (2022) 31 (2022) 840-869.

[50] U. Ambroggio and M. Roberts, The probability of unusually large compo-
nents for critical percolation on random d-regular graphs, Electronic Jour-
nal of Probability 28 (2023) 1-55.

[51] T. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley,
1973.



Bibliography 597

[52] J. Aronson, A.M. Frieze and B. Pittel, Maximum matchings in sparse ran-
dom graphs: Karp-Sipser revisited, Random Structures and Algorithms 12
(1998) 111-178.

[53] I. Araujo, J. Balogh, R.A. Krueger, S. Piga, and A. Treglown, On ori-
ented cycles in randomly perturbed digraphs. Combinatorics, Probability
and Computing 33 (2024) 157-178.

[54] R. Arratia, A.D. Barbour and S. Tavaré, A tale of three couplings: Poisson-
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graphs, Combinatorics, Probability and Computing 18 (2009) 629-646.

[63] D. Bal and A.M. Frieze, Rainbow Matchings and Hamilton Cycles in Ran-
dom Graphs, see arxiv.org.

[64] J. Balogh, B. Bollobás, M. Krivelevich, T. Müeller and M. Walters, Hamil-
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[227] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math 2
(1972) 111-113.
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Random Structures and Algorithms 58 (2021) 480-516.

[466] J.C. Hansen and J. Jaworski, Random mappings with exchangeable in-
degrees, Random Structures and Algorithms 33 (2008) 105-126.

[467] J.C. Hansen and J. Jaworski, Predecessors and successors in random map-
pings with exchangeable in-degrees, J. Applied Probability 50 (2013) 721-
740.

[468] H.L. Harper, Optimal assignments of number of vertice, SIAM J. Appl.
Math., 12 (1964) 131-135.

[469] T. Harris, A lower bound for the critical probability in a certain percolation,
Proceedings of the Cambridge Philosophical Society 56 (1960) 13-20.

[470] H. Hatami, Random cubic graphs are not homomorphic to the cycle of size
7, Journal of Combinatorial Theory B 93 (2005) 319-325.

[471] H. Hatami and M. Molloy, The scaling window for a random graph with a
given degree sequence, Random Structures and Algorithms 41 (2012) 99-
123.



628 Bibliography

[472] P. Haxell, Y. Kohayakawa and T. Łuczak, Turáns extremal problem in ran-
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[551] M. Karoński and A. Ruciński, On the number of strictly balanced sub-
graphs of a random graph, In: Graph Theory, Proc. Łagów, 1981, Lecture
Notes in Mathematics 1018, Springer, Berlin (1983) 79-83.



634 Bibliography
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[562] T. Kelly, A. Müyesser and A. Pokrovskiy, Optimal spread for spanning
subgraphs of Dirac hypergraphs, see arxiv.org

[563] G. Kemkes, X. Perez-Gimenez and N. Wormald, On the chromatic number
of random d-regular graphs, Advances in Mathematics 223 (2010) 300-328.

[564] R. Keusch and A. Steger, The game chromatic number of dense random
graphs, Electronic Journal of Combinatorics 21 (2014).

[565] J-H. Kim, The Ramsey number R(3, t) has order of magnitude t2/ log t,
Random Structures and Algorithms (1995) 173-207.



Bibliography 635

[566] J-H. Kim and V. Vu, Sandwiching random graphs: universality between
random graph models, Advances in Mathematics 188 (2004) 444-469.

[567] J.H. Kim and N.C. Wormald, Random matchings which induce Hamilton
cycles, and hamiltonian decompositions of random regular graphs, Journal
of Combinatorial Theory B 81 (2001) 20-44.

[568] J.F.C. Kingman, The population structure associated with the Ewens sam-
pling formula, Theoretical Population Biology 11 (1977) 274-283.

[569] W. Kinnersley, D. Mitsche, P. Pralat, A note on the acquaintance time of
random graphs, Electronic Journal of Combinatorics 20(3) (2013) #P52.

[570] M. Kiwi and D. Mitsche, A bound for the diameter of random hyperbolic
graphs, see arxiv.org.

[571] B.J.K. Kleijn and S. Rizzelli, Contiguity and remote contiguity of some
random graphs (2024), see arxiv.org.

[572] J. Kleinberg, The small-world phenomenon: An algorithmic perspective,
Proceedings of the 32nd ACM Symposium on Theory of Computing (2000)
163-170.

[573] D. E. Knuth, R. Motwani and B. Pittel, Stable husbands, Random Structures
and Algorithms 1 (1990) 1-14.
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[613] D. Kühn and D. Osthus, On Pósa’s conjecture for random graphs, SIAM
Journal on Discrete Mathematics 26 (2012) 1440-1457.

[614] V. Kurauskas, On small subgraphs in random intersection digraphs, Dis-
crete Mathematics 313 (2013) 872-885.

[615] V. Kurauskas and M. Bloznelis, Large cliques in sparse random intersection
graphs, see arxiv.org.

[616] A.N. Lageras and M. Lindholm, A note on the component structure in ran-
dom intersection graphs with tunable clustering, The Electronic Journal of
Combinatorics 15 (2008) #N10.

[617] C. Lee and B. Sudakov, Dirac’s theorem for random graphs, Random Struc-
tures and Algorithms 41 (2012) 293-305.

[618] N. Lefebvre , The first-order contiguity of sparse random graphs with pre-
scribed degrees, In: Jain R., Jain S., Stephan F. (eds) Theory and Appli-
cations of Models of Computation. TAMC 2015. LNCS vol 9076, Springer
(2015) 177-188.

[619] M. Lelarge, A new approach to the orientation of random hypergraphs, see
arxiv.org.



Bibliography 639

[620] C. Lennon and B. Pittel, On a likely number of solutions for a stable mar-
riage problem, Combinatorics, Probability and Computing (2009) 371-421.

[621] J. Leskovec, Dynamics of Large Networks, PhD in Computer Science,
Carnegie Mellon University, 2008.

[622] J. Leskovec, D. Chakrabarti, J. Kleinberg and C. Faloutsos, Realistic, math-
ematically tractable graph generation and evolution, using Kronecker mul-
tiplication, in:PKDD ’05: Proceedings of the 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases (2005) 133-
145.

[623] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs over time:densification
laws, shrinking diameters and possible explanations, in Proc. of ACM
SIGKDD Conf. on Knowledge Discovery in Data Mining (2005) 177-187.

[624] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos and Z. Ghahramani,
Kronecker Graphs: An Approach to Modeling Networks, Journal of Ma-
chine Learning Research 11 (2010) 985-1042.

[625] K. Lin and G. Reinert, Joint vertex degrees in the inhomogeneous random
graph model G (n,{pi j}), Adv. in Appl. Prob. 44 (2012) 139-165.

[626] N. Linial and R. Meshulam, Homological connectivity of random 2-
complexes, Combinatorica 26 (2006) 475-487.

[627] N. Linial, and E. Rozenman, Random Lifts of Graphs: Perfect Matchings,
Combinatorica 25 (2005) 407-424.
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Breaker H-game, see arxiv.org.

[714] R. Nenadov, A. Steger and M. Trujić, Resilience of Perfect matchings and
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[720] D. Osthus, H. J. Prömel, and A. Taraz, On random planar graphs, the num-
ber of planar graphs and their triangulations, Journal of Combinatorial The-
ory B 88 (2003) 119-134.

[721] J. Palacios, A bound for the covering time of random walks on graphs,
Statistics and Probability Letters (1992).

[722] Z. Palka, On the number of vertices of given degree in a random graph, J.
Graph Theory 8 (1984) 167-170.

[723] Z. Palka, Extreme degrees in random graphs, Journal of Graph Theory 11
(1987) 121-134.

[724] E. Palmer and J. Spencer, Hitting time for k edge disjoint spanning trees in
a random graph, Period Math. Hungar. 91 (1995) 151-156.

[725] A. Panholzer and H. Prodinger, The level of nodes in increasing trees re-
visited, Random Structures and Algorithms 31 (2007) 203-226.

[726] A. Panholzer and G. Seitz, Ordered increasing k-trees: Introduction and
analysis of a preferential attachment network model, Discrete Mathematics
and Theoretical Computer Science (AofA 2010) (2010) 549-564.

[727] [PKBnV10] F. Papadopoulos, D. Krioukov, M. Boguñá and A. Vahdat,
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[771] V. Rödl and A. Ruciński, Random graphs with monochromatic trian-
gles in every edge coloring. Random Structures and Algorithms 5 (1994),
253–270.
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[809] B. Söderberg, General formalism for inhomogeneous random graphs, Phys.
Rev. E 66 (2002) 066121.

[810] J. Spencer, Private Communication.

[811] J. Spencer, Enumerating graphs and Brownian motion, Communications in
Pure and Applied Mathematics 50 (1997) 291-294.

[812] J. Spencer, The Strange Logic of Random Graphs, Springer, Berlin 2001.

[813] J. Spencer and N. Wormald, Birth control for giants, Combinatorica 27
(2007) 587-628.

[814] S. Spiro, A Smoother Notion of Spread Hypergraphs, Combinatorics,
Probability, and Computing 22 (2021).

[815] D. Stark, The vertex degree distribution of random intersection graphs,
Random Structures Algorithms 24 (2004) 249-258.

[816] J. M. Steele, On Frieze’s ζ (3) limit forlengths of minimal spanning trees,
Discrete Applied Mathematics 18 (1987) 99-103.

[817] C. Stein, A bound for the error in the normal approximation to the distribu-
tion of a sum of dependent random variables, In:Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability , 1970,
Univ. of California Press, Berkeley, Vol. II (1972) 583-602.

[818] V.E. Stepanov, On the distribution of the number of vertices in strata of a
random tree, Theory of Probability and Applications 14 (1969) 65-78.

[819] V.E. Stepanov, Limit distributions of certain characteristics of random map-
pings, Theory Prob. Appl. 14 (1969) 612-636.
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Boguñá, M., 237
Bohman, T., 49, 271, 291, 293, 294,

299, 307, 309, 373, 470, 523,
525

Bollobás, B., vii, viii, 10, 18, 39, 41,
42, 49, 54, 65, 77, 79, 92,
97, 114–116, 119, 132, 133,
136, 171–173, 175, 180, 187,
227, 273, 279, 282, 288, 289,
292, 381, 384, 422, 439, 495,
525

Bollobás,B, 194
Bonato, A., 423, 523
Borgs, C., 423
Bourgain, J., 19
Boyd, S., 518
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Karoński, M., 54, 65, 79, 86, 87, 173,

174, 213, 219, 235, 269, 542
Karp, R., 117, 240, 366, 368, 440,

573
Kasteleyn, P., 546
Keevash, P., 525
Kelly, T., 481, 484
Kemkes, G., 211
Keusch, R., 523
Khanna, S., 423
Khosla, M., 270
Kierstead, H., 523
Kim, J., 49, 198, 270, 306, 500, 525
Kinnersley, W., 524
Kitsak, M., 237
Kleinberg, J., 165, 171, 173, 415
Kliem, S., 173

Knox, F., 115
Knuth, D., 41, 48, 104, 528
Koch, C., 173, 174, 269
Kogan, D., 526
Kohayakawa, Y., 262, 273, 288, 289,

306, 310, 462, 529
kohayakawa, Y., 304
Kolda, T,, 174
Komlós, J., 49, 97, 101, 137, 273,

288
Kordecki, W., 65
Kovalenko, I., 151, 152
Kozma, G., 422, 517
Kravitz, D., 49
Kreuter, B., 304, 462
Krioukov, D., 237
Krishnamachari, B., 236
Krivelevich, K., 308
Krivelevich, M., 48, 49, 101, 107, 115–

117, 141, 145, 146, 210, 211,
227, 251, 270, 273, 279, 292,
293, 298, 299, 301, 306, 308,
309, 518, 522, 527

Krivelevich. M., 102
Krohmer, A., 237
Kronenberg, G., 248, 251, 521
Krueger, R., 309, 459
Kucera, L., 527
Kumar, P., 223
Kurauskas, V., 233, 235
Kwan, M., 306, 309

Lageras, A., 234, 235
Lavrov, M., 523
Lee, C., 101, 107, 445
Leighton, T., 527
Lelarge, M., 270
Lennon, C., 528
Leskovec, J., 165, 173
Lev, A., 74
Liagonkii, M., 526



662 Chapter 32. Indices

Liang, H., 74
Lin, K., 172
Lindholm, M., 234, 235
Linial, N., 527, 528
Linusson, S., 433
Lipton, R., 587
Loh, P., 49, 259, 521
Long, E., 248, 251
Lovász, L., 587
Lu, L., 158, 159, 164, 423
Lubetzky, E., 49, 116, 117, 251, 518,

525
Lucier, B., 423
Luczak, M., 210

Müller, T., 223, 227, 236, 237, 523
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Matoušek, J., 527
Matula, D., 125, 132
McColm, G., 236
McDiarmid, C., 115, 133, 146, 228,

230, 236, 247, 268, 439, 440,
526

McDowell, A., 118, 309
McKay, B., 42, 65, 180, 521
Mehrabian, A., 423
Mei, A., 234

Melsted, P., 118, 368
Meshulam, R., 528
Methuku, A., 485
Micali, S., 103
Michaeli, P., 518
Mihail, M., 423
Miklós, D., 422
Milgram, S., 415
Mitsche, D., 145, 227, 518, 524
Mitzenmacher, M., 269
Mogge, Y., 308
Mohr, S., 308
Molloy, M., 189, 210, 251, 269, 484,

491, 500
Montgomery, R., 117, 306, 307, 445
Moore, C., 127, 145, 211
Morris, R., 308, 459, 525
Mossell, E., 147
Motwani, R., 104, 528
Mousset, F., 522
Mubayi, D., 271, 525
Mycroft, R., 309

Nachmias, A., 42, 518
Nair, C., 433
Naor, A., 145, 522
Narayanan, B., 471, 479
Nash-Williams, C., 117
Naves, H., 116
Nenadov, R., 251, 308, 445, 459, 460,

464, 470, 522, 529
Newman, M., 171
Nicoletseas, R., 234, 235
Noever, A., 251, 445
Norros, I., 173
Noy, M., 526

oliveira Mota, G., 310
Osthus, D., 49, 115, 485, 526
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