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Abstract. Traceroute sampling is an important technique in exploring the internet router graph and
the autonomous system graph. Although it is one of the primary techniques used in calculating statis-
tics about the internet, it can introduce bias that corrupts these estimates. This paper reports on a
theoretical and experimental investigation of a new technique to reduce the bias of traceroute sam-
pling when estimating the degree distribution. We develop a new estimator for the degree of a node in
a traceroute-sampled graph; validate the estimator theoretically in Erdős-Rényi graphs and, through
computer experiments, for a wider range of graphs; and apply it to produce a new picture of the degree
distribution of the autonomous system graph.

1 Introduction

The internet is quite a mysterious network. It is a huge and complex tangle of routers, wired together by
millions of edges. To understand this router graph is quite a challenge, one that has driven research for the
last decade.

The router graph has a natural clustering into Autonomous Systems (ASes), which are sets of routers
under the same management. Producing an accurate picture of the AS graph is an important step towards
understanding the internet.

There are three techniques for finding large sets of edges in the AS graph: the WHOIS database, BGP
tables, and traceroute sampling. No approach is clearly superior, and the results of the different approaches
are compared in detail in a recent paper [14].

The present paper focuses on traceroute sampling, an approach applicable to the router graph as well as
the AS graph. Traceroute sampling consists of recording the paths that packets follow when they are sent
from monitor nodes to target nodes, and merging all of these paths to produce an approximation of the AS
graph.

A seminal analysis using both traceroute sampling and BGP tables concluded that the AS graph degree
distribution follows a power-law (meaning that the number of ASes of degree k is proportional to k−α for a
wide range of k values) [7]. This caused a shift in simulation methodology for evaluating network algorithms
and also contributed to the avalanche of recently developed network models which produce power-law degree
distributions.

However, the true nature of the AS-graph degree distribution was called into question by computer
experiments on synthetic graphs [12, 17]. These experiments show that if the sets of monitor and target
nodes are too small then traceroute sampling will produce a power-law degree distribution, even when the
underlying graph has a tightly concentrated degree distribution. Theoretical follow-up work proved rigorously
that in many non-power-law graphs, including random regular graphs, an idealized model of traceroute
sampling yields power-law degree distributions [4, 1].

Subsequent computer experiments have led some to believe that the bias inherent to traceroute sampling
can be ignored, at least for making a qualitative distinction between scale-free and homogeneous graphs,
when using a large enough set of monitor nodes [9]. This is also supported by an analysis using the statistical
physics technique of mean field approximation [5].



1.1 Our contribution

This paper proposes a new way forward in the struggle to characterize the degree distribution of the AS
graph. Our contribution has three parts:

1. We derive a statistical technique for reducing the bias in traceroute sampling;
2. We verify the technique experimentally and theoretically, in the framework previously studied in [12, 4];
3. We use the traceroute bias-reduction technique to generate a more accurate picture of the AS degree

distribution over time, which suggests that aspects of commercially available technology are reflected in
the network topology.

Our approach for reducing the bias in traceroute sampling is based on a technique from biostatistics, the
multiple-recapture census, which has been developed for estimating the size of an animal population [18] (this
technique also has applications to proofreading [19]). However, we do not have the benefit of independent
random variables which are central to the animal counting and proofreading statistics, and so we must adapt
the technique to apply to random variables with complicated dependencies.

To provide some evidence that this bias-reduction technique actually reduces bias, we consider a widely
used model of traceroute sampling, which assumes that data travels from monitor to target along the shortest
path in the network. It is generally believed that the path that data actually takes is not the shortest path,
but that the shortest path is an acceptable approximation of the actual path (see [13] for a discussion of this
approximation). In this model, it is possible to check theoretically and experimentally that the bias reduction
provides a better estimate of the degree distribution. We show that the new estimation is asymptotically
unbiased for the Erdős-Rényi random graph Gn,p when np ≫ log n, and that it gives improved estimates for
finite instances from a variety of different graphs.

Finally, we use the bias-reduction technique on real data, traceroute samples from the internet. The
new estimate of the AS-graph degree distribution is still scale-free over two orders of magnitude, with an
exponent very similar to the uncorrected degree distribution (see Figure 1). A by-product of bias reduction
is the removal of all vertices with degree less than 3, and this increases the average degree. For example, in
March 2004 (the month used for comparison in [14]), the biased estimate of average degree is 6.29, while
after bias reduction the average degree is 12.66 (which is very close to 12.52, the biased average degree when
restricted to vertices of degree at least 3). An interesting feature in the bias-reduced AS degree distribution
(from March 2004) is the lack of nodes with degree between 65 and 90; at the time, a popular router maker
offered a router which provided up to 64 ports per chassis. In March 2002, before this product was available,
there was no dearth of 65 degree nodes.

1.2 Related work

Internet mapping by traceroute sampling was pioneered by Pansiot and Grad in [15], and the scale-free
nature of the degree distribution was observed by Faloutsos, Faloutsos, and Faloutsos in [7]. Since 1998,
the Cooperative Association for Internet Data Analysis (CAIDA) project skitter has archived traceroute
data that is collected daily [10]. The bias introduced by traceroute sampling was identified in computer
experiments by Lakhina, Byers, Crovella, and Xie in [12] and Petermann and De Los Rios [17], and formally
proven to hold in a model of one-monitor, all-target traceroute sample by Clauset and Moore [4] and, in
further generality, by Achlioptas, Clauset, Kempe, and Moore [1]. Computer experiments by to Guillaume,
Latapy, and Magoni [9] and an analysis using the mean field approximation of statistical physics due to
Dall’Asta, Alvarez-Hamelin, Barrat, Vázquez, and Vespignani [5] argue that, despite the bias introduced by
traceroute sampling, some sort of scale-free behavior can be inferred from the union of traceroute-sampled
paths.

The present paper provides a new avenue for investigating these controversial questions, by developing a
method for correcting the bias introduced by traceroute sampling. Another recent paper by Viger, Barrat,
Dall’Asta, Zhang and Kolaczyk applied techniques from statistics to reduce the bias of traceroute sampling
[21]. That paper focused on estimating the number of nodes in the AS graph, and applied techniques from a
different problem in biostatistics, estimating the number of species in a bioregion. The problem of correcting
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Fig. 1. Degree sequence ccdf estimates for the AS graph (from CAIDA skitter). Main panel: March, 2004, with and
without bias reduction. Inset: a portion of ccdf for March, 2004 and March, 2002, both with bias reduction. The
nodes with degree between 65 and 90 in 2002 have disappeared in 2004.

bias in sampled networks has a long history in sociology, although the biases in that domain seem somewhat
different; see the surveys by Frank, by Klovdahl, or by Salganik and Heckathorn for an overview [8, 11, 20].

In addition to traceroute sampling, maps of the AS graph have been generated in two different ways,
using BGP tables and using the WHOIS database. A recent paper by Mahadevan, Krioukov, Fomenkov,
Dimitropoulos, claffy, and Vahdat provides a detailed comparison of the graphs that result from each of
these measurement techniques [14].

1.3 Outline of what follows

The new estimator for the degree of a node in the AS graph is developed from multiple-recapture population
estimation in Section 2. Section 3 argues that this estimator generates an asymptotically unbiased degree
distribution for the Erdős-Rényi graph Gn,p when p ≫ log n, which rigorously demonstrates that the new
estimator can reject a null hypothesis. Section 4 presents additional evidence that the new estimator reduces
the bias of traceroute sampling, in the form of computer experiments on synthetic networks. Section 5 provides
a comparison between the degree sequence predicted by the new estimator and the previous technique, and
details how, after bias reduction, the degree distribution may reflect economic and technological factors
present in the system, i.e., there a significantly larger marginal cost of adding a 65th neighbor than adding
a 64th neighbor when using the Juniper T320 edge router. Section 6 provides a conclusion and focuses on
directions of future research to strengthen this approach.

2 Estimation Technique

The classical capture-recapture approach to estimating an animal population has two phases. First, an
experimenter captures animals for a given time period, marks them (with tags or bands), and releases them,
recording the total number of animals captured. Then, the experimenter captures animals for a second time
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period, and records both the number of animals recaptured and the total number of animals captured during
the second period. If A denotes the number of animals captured in phase one, B denotes the number captured
during phase two, and C denotes the number captured in phase one and captured again in phase two, then
an estimate of total population size is given by

N̂ =

{
AB
C , if C 6= 0;

∞, otherwise.

If the true population size is N , and each animal is captured or not captured during each phase indepen-
dently, with probability p1 during phase one and probability p2 during phase two, then N̂ is the maximum
likelihood estimate of N [18]. For more than two phases, the maximum likelihood estimator does not have a
simple closed form, but it can be computed efficiently using the techniques developed in [18].

When estimating the degree of a particular AS by traceroute sampling, each edge corresponds to an
animal, and each monitor node corresponds to a recapture phase. Unfortunately, in this setting there is no
reason to believe that the events “monitor i observes edge j” are independent. Indeed, when shortest-path
routing is used (as an approximation of BGP routing), these events are highly dependent. However, it is still
possible adapt the capture-recapture estimate to reduce bias in this case.

Let G be a graph, and let s and t be monitor nodes in G. Let Gs be the union of all routes discovered
when sending packets from s to every node in the target set. Define Gt analogously. Let Ns(u) denote the
neighbors of u in Gs and define Nt(u) analogously.

Using this notation, the modification of the capture-recapture estimate proposed for traceroute sampling
is given by

d̂egs,t(u) =

{
|Ns(u)|·|Nt(u)|
|Ns(u)∩Nt(u)| , if |Ns(u) ∩ Nt(u)| > 2;

∞, otherwise.

When more than 2 monitor nodes are available, pair up the monitors, consider the estimates given by
each pair that are not ∞, and for the final estimator, use the median of these values. So, if the monitor
nodes are paired up as (s1, t1), (s2, t2), ..., (sk, tk) then

d̂eg(u) = median
({

d̂egsi,ti
(u) 6= ∞

})
.

This degree estimator can also provide an estimate of the cdf of the degree distribution (i.e., the fraction
of nodes with degree at most k) according to the formula

d̂≤k = P̂r[deg(u) ≤ k] =
#{u : d̂egs,t(u) ≤ k}

#{u : d̂egs,t(u) < ∞}
.

Discussion: It may seem wasteful to consider the median-of-two-monitors estimate instead of combining
all available monitors in a more holistic manner. However, we have conducted computer experiments with
maximum likelihood estimators for multiple-recapture population estimation with more than two phases, and
the adaptations we have considered thus far perform significantly worse than the median-of-two-monitors
approach above. This is probably due to the complicated dependencies of several overlapping shortest-path
trees. However, the exploration we have conducted to date is not exhaustive, and does not rule out the
possibility that a significantly better estimator exists.

3 Theoretical analysis

This section and the next intend to provide some assurance that repeated application of d̂eg(u) is an accurate
way to estimate the degree distribution of the sampled graph.

This section provides a theoretical analysis of the performance of d̂eg(u) in a very specific setting: when
the underlying graph is the Erdős-Rényi graph Gn,p with n sufficiently large, np ≫ log n, and every vertex is
a target node. For the purpose of analysis, this section and the next assume that traceroute finds a shortest
path from monitor to target. This is the same setting that is considered in [4].
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Theorem 1. Let G ∼ Gn,p be a random graph with np = d ≫ log n, and let s, t, and u be uniformly random

vertices of G. Then, for any k, with high probability,

d̂≤k =
#{u : d̂eg(u) ≤ k}

#{u : d̂eg(u) < ∞}
=

#{u : deg(u) ≤ k}

n
±O (1/d) .

Proof sketch: The analysis two breadth-first-search trees in a random graph is difficult when the average
degree is small. But, for d moderately large, as in this theorem, the situation is simpler.

It follows from the branching-process approximation of breadth-first search that with high probability
there are (1±ǫ)di vertices at distance exactly i from s (or t) when i < (log n)/(log d). Thus, almost all vertices
are distance ⌈(log n)/(log d)⌉ apart. For ease of analysis, suppose that ℓ = (log n)/(log d) is an integer.

So, with high probability, if u is at distance ℓ from s or t then it is a leaf node in Gs or Gt. In this case,

|Ns(u) ∩ Nt(u)| ≤ 1 and therefore d̂eg(u) = ∞.
Now, consider the case where vertex u is distance i from s and distance j from t, where i, j < ℓ. Let N(u)

denote the neighbors of u in G, and then let S be the set of vertices within distance i of s in G and let T be
the set of vertices within distance j of t in G. Conditioned on S, T and N(u), the set of indicator random
variables {

1[v ∈ Ns(u)],1[v ∈ Nt(u)] : v ∈ N(u) \ (S ∪ T )

}

is independent, and, for v ∈ N(u) \ (S ∪ T ), Pr[v ∈ Ns(u)] and Pr[v ∈ Nt(u)] are functions of S and T ,
but constants with respect to v, i.e., Pr[v ∈ Ns] = ps and Pr[v ∈ Nt] = pt. So, besides any edges between
u and S ∪ T , the edges incident to u in Gs[S] and Gt[T ] yield the random variables |Ns(u)|, |Nt(u)|, and
|Ns(u) ∩Nt(u)|, which correspond to A, B, and C in the capture-recapture estimate of population size. For
example, if there is only one edge incident to u in Gs[S] and only one in Gt[T ], and these edges are different,
then

Pr

[
d̂eg(u) ≥ k

∣∣∣∣ S, T,N(u)

]
= Pr

[
(A + 1)(B + 1)

C
≥ k

]
,

where C ∼ B(|N(u)| − 2, pspt), A ∼ C + B(|N(u)| − 1 − C, ps), and B ∼ C + B(|N(u)| − 1 − C, pt). If
k is sufficiently large and ps and pt are not too small then this probability is concentrated in the range
k = |N(u)| ±

√
|N(u)|.

To complete the proof, it remains to show that, with probability 1−O(1/d), ps, pt ≥ ǫ and |N(u)∩ (S ∪
T )| ≤ 2, and from this show that, for A,B,C defined analogously to above,

Pr

[
(A + 1)(B + 1)

C
≥ k

]
= Pr[|N(u)| ≥ k] + O(1/d).

2

Discussion: This analysis would go through without modification if the estimate also included samples

where |Ns(u) ∩ Nt(u)| = 2, but the definition of d̂eg(u) from above seems to behave better under finite
scaling.

The proof sketch can be adapted for random graphs with other degree distributions, provided that the
average degree is large. However, the proof relies on the fact that the graph is locally tree-like, which ensures
that N(u)∩ (S ∪ T ) is likely to be small. This assumption does not seem to hold in the AS graph, and even
Gs, the union of all routes discovered from a single monitor node s, has some triangles. The next section
includes evidence from computer experiments that in graphs which are not locally tree-like, such as the

random geometric graph, estimator d̂eg(u) is not asymptotically unbiased, but can still reduce some amount
of bias. Proving this rigorously may be a difficult task.

4 Computer experiments

This section describes the results of a series of computer experiments conducted to investigate how well d̂≤k

approximates the true degree distribution.
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We consider three different distributions for random graphs, the Erdős-Rényi model, the Preferential
Attachment model, and the random geometric graph. Additionally, we consider synthetic data based on
a real-world graph, the Western States Power Grid (WSPG), which Duncan Watts has graciously made
available to researchers [22]. These graphs will all be described in more detail below.

For each graph, we set edge e to be of length 1 + ηe, where ηe is selected uniformly from the interval
[−1/n, 1/n], where n is the number of vertices. This ensures that there are not multiple shortest paths
between pairs of vertices. We approximate the path that data takes from a monitor to a target node by the
shortest path. This follows the experimental design of [12].

For each graph distribution, and for a range of graph sizes, edge densities, monitor set sizes, and target

set sizes, we estimate the degree of every vertex by d̂eg(u) and by the biased estimator given by the union
of the edges discovered by traceroute sampling,

d̂egbiased(u) =

∣∣∣∣∣
⋃

s∈Vm

Ns(u)

∣∣∣∣∣ ,

where Vm is the set of monitor nodes and Ns(u) denotes the neighbors of u in the union of all routes
discovered when sending packets from s to every node in the target set Vt. This provides estimates of the

degree distribution cdf, by the reduced bias estimator d̂≤k from above and by the biased estimator d̂≤kbiased,
defined by

d̂≤kbiased =
#{u : d̂egbiased(u) ≤ k}

#{u : d̂egbiased(u) ≥ 1}
.

d̂≤kbiased has been the primary approach considered in prior work.
We use these estimates to calculate the ℓ2 error of the degree distribution cdf estimate, given by

errbiased =

(∑∞
k=0

(
d̂≤kbiased − Pr[deg(u) ≤ k]

)2
)1/2

(
∑∞

k=0 Pr[deg(u) ≤ k]2)
1/2

,

and

errreduced =

(∑∞
k=0

(
d̂≤k − Pr[deg(u) ≤ k]

)2
)1/2

(
∑∞

k=0 Pr[deg(u) ≤ k]2)
1/2

,

where Pr[deg(u) ≤ k] = #{u : deg(u) ≤ k}/n is the probability with respect to a uniformly random choice
of u from the vertices of G.

We also exhibit plots of the distribution and the two estimates for a typical parameter setting. All error
values reported are the median value of 100 experiments, and the plots show the distribution with the median
error as well as the pointwise 90th percentile values from the 100 experiments.

4.1 Random graph, Gn,m

The Erdős-Rényi distribution of graphs, Gn,m, can be generated by choosing a graph uniformly at random
from all graphs with n vertices and m edges [6]. It was not developed to model real-world graphs, but it is
analytically tractable and can provide insight into the behavior of more realistic graph models. It can also be

used as a null hypothesis. Section 3 proved that d̂eg(u) and d̂≤k are asymptotically unbiased for Gn,p when
np ≫ log n. Conventional wisdom holds that anything true for Gn,p is also true for Gn,m when m ≈

(
n
2

)
p,

and computer experiments support this conclusion, even for moderately size n and m, as shown in Table 1

and Figure 2a. These experiments indicate that d̂eg(u) and d̂≤k are also good estimators when the number
of targets nt is a reasonably small fraction of n, which is the case in traceroute sampling of the AS graph.
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n d nm nt % errbiased % errreduced

1,000 15 2 n/8 3.38 3.15
n/2 3.08 0.96

n 2.81 0.42
8 n/2 2.11 0.81

16 n/2 1.38 0.80

10,000 20 2 n/8 4.02 2.10
n/2 3.75 1.25

n 3.51 0.46

100,000 15 2 n 2.81 0.21

Table 1. ℓ2 error in degree distribution estimation with and without bias reduction for Erdős-Rényi graph, Gn,m

where d = 2m/n, with nm monitors and nt targets (median values of 100 trials).

True Distribution

Biased Estimate

Bias Reduced

100 101

k

10-4

10-3

10-2

10-1

100

]
k

>)
v(

ge
d[r

P

True Distribution

Biased Estimate

Bias Reduced

100 101 102 103

k

10-5

10-4

10-3

10-2

10-1

100

]
k

>)
v(

ge
d[r

P

(a) Gn,m with n = 100, 000, d = 2m/n = 15. (b) PA graph with n = 100, 000, m = 15.
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(c) G(X ; r) with n = 100, 000, d = πr2 = 25. (d) Western states power graph from [22].

Fig. 2. Degree sequence ccdf, biased, and bias reduced estimators for synthetic data, with 2 monitor nodes chosen
uniformly at random, n target nodes, and shortest path sampling used to approximate traceroute. Plots based on
100 trials, where data points correspond to trial with median ℓ2 error, and dotted region shows pointwise bounds on
90% of trials.
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4.2 Preferential Attachment Graph

The preferential attachment (PA) graph was proposed for a model of the internet and the world wide web
by Barabási and Albert in [2], and this has generated a large body of subsequent research, although the
validity of the model as a representation of the router graph or the AS graph has been questioned (see, for

example, [3]). The estimator δ̂≤k does not perform particularly well on the PA graphs that we used in our
experiments, generating ℓ2 error that is sometimes smaller and sometimes larger than the biased estimator
(see Table 2).

The most interesting detail of this series of experiments is the shape of the degree distribution estimated

by δ̂≤k. When plotted on a log-log scale (Figure 2b), the biased estimate of the degree distribution appears
to be straight line, although with a different slope than the underlying distribution (this is consistent with
the theoretical results of [1]). However, the “biased reduced” estimate appears to fall off faster than linear
(when plotted on a log-log scale). This is typical of the experiments we conducted with other parameter
settings for the PA graph. It could be an effect of the instance sizes being too small, but it persists over two
orders of magnitude. Thus, it seems that locally non-tree-like aspects of the PA graph are decreasing the

accuracy of δ̂≤k. As shown in Figure 1 and to be elaborated upon in Section 5, the degree distribution of the

AS graph does not fall off faster than linear when estimated with δ̂≤k. This could mean that the shortest
path routing used in the experiment is not a close enough approximation of the true traceroute sampled
paths. But it could be interpreted as additional evidence that the AS graph is not distributed according to
the PA graph process.

n m nm nt % errbiased % errreduced

1,000 5 2 n/8 2.29 2.35
n/2 1.95 2.66

n 1.71 2.88
8 n/2 1.26 2.00

16 n/2 0.91 1.57

10,000 10 2 n/8 3.47 2.36
n/2 3.23 3.39

n 3.03 4.31

100,000 15 2 n 3.99 4.43

Table 2. ℓ2 error in degree distribution estimation with and without bias reduction for Preferential Attachment
graph with n nodes and m out-edges per node, nm monitors and nt targets (median values of 100 trials).

4.3 Random Geometric Graph, G(X ; r)

For graphs with high clustering coefficient, the proof sketched in Section 3 will not apply. However, the
traceroute paths found by skitter exhibit some level of clustering. To investigate the performance of the
bias-reduction technique on graphs with clustering, we examine random geometric graphs G(X ; r). These
graphs are formed by selecting a set of n points independently and uniformly at random from the unit square,
and linking two points with an edge if and only if they are within ℓ2 distance r (for a detailed treatment,
see [16]). The performance of the bias-reduction technique is summarized for a variety of geometric random
graphs in Table 3.

The plot exhibited in Figure 2c is typical for the performance of bias reduction on random geometric
graphs; although the bias-reduced estimate is closer to the truth, it is still quite far away from it. The tail
of the estimated ccdf, with or without bias reduction, falls off noticeably more slowly than that of the true
degree distribution, and looks more like a power-law than it should.
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In light of this, it seems that future research should investigate the amount of clustering present in the AS
graph. This will permit us to better gauge the accuracy of the bias-reduced estimate of the degree distribution
there. However, understanding clustering in the AS graph is hard for the same reasons that understanding
the degree distribution is hard, which is due to the lack of unbiased data.

n d nm nt errbiased errreduced

1,000 15 2 n/8 3.14 2.77
n/2 2.91 2.49

n 2.73 2.17
8 n/2 2.45 2.50

16 n/2 2.23 2.49

10,000 20 2 n/8 3.87 3.57
n/2 3.68 3.36

n 3.55 3.16

100,000 25 2 n 4.19 3.90

Table 3. ℓ2 error in degree distribution estimation with and without bias reduction for geometric random graph,
G(X , r) where d = πr2n, with nm monitors and nt targets (median values of 100 trials).

4.4 Western States Power Graph

In addition to studying the behavior of bias reduction on the random graphs describe above, we also consider
the estimator’s performance on synthetic data that is based on a network from the real world, the Western
States Power Grid Graph (WSPG Graph) [22]. This graph represents the power transmission links between
4, 941 nodes, representing the generators, transformers, and substations in the Western United States. It is
roughly similar in size to the AS graph, and also similar because both networks represent real objects which
are connected by real wires.

The result of the bias-reduction technique is shown in Figure 2d. The ℓ2 error is higher after bias reduction,
but this is because the bias-reduction technique filters out all vertices of degree less than 3. Since these low
degree vertices are prevalent in the WSPG graph, we also compare the bias-reduced estimate to the degree
distribution of the WSPG graph restricted to vertices of degree 3 and higher. Table 4 shows the unconditioned
ℓ2 error for one experiment, and the ℓ2 error of the estimated cdfs conditioned on vertices having degree at
least 3 for a range of experiments.

Pr[deg(u) ≤ k]:

n d nm nt errbiased errreduced

4,941 2.67 2 n 0.25 0.75

Pr
ˆ

deg(u) ≤ k
˛

˛ deg(u) ≥ 3
˜

:

n d nm nt errbiased errreduced

4,941 2.67 2 n/8 0.24 0.13
n/2 0.12 0.06

n 0.06 0.05
8 n/2 0.09 0.06

16 n/2 0.08 0.09

Table 4. ℓ2 error in degree distribution estimation with and without bias reduction for Western States Power Graph
(n = 4, 941, m = 6, 594) with nm monitors and nt targets (median values of 100 trials).
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(a) CAIDA skitter, March, 2003. (b) PA graph.

Fig. 3. Estimated degree distribution ccdf of CAIDA skitter data from March, 2003 with and without bias reduction
and estimated degree distribution ccdf of PA Graph with similar parameters (n = 10, 000 nodes, m = 10 out-edges
per node, 20 source nodes, n/2 target nodes) with and without bias reduction. Both estimates of skitter data follow
power law, but bias reduced estimate of PA Graph does not.

5 AS Graph

The previous two sections showed theoretically and by computer simulations that the bias-reduction tech-
nique developed in Section 2 can be an effective way to reduce the errors introduced by traceroute sampling.
This section reports on the results of applying the bias-reduction technique to traceroute-sampled data from
the CAIDA skitter project.

A recent paper by Mahadevan, Krioukov, Fomenkov, Dimitropoulos, claffy, and Vahdat provides a detailed
analysis of CAIDA skitter data from March, 2004 [14]. We follow the methodology used there, and, in
particular, we aggregate the routes observed over the course of a month (from daily graphs provided by
CAIDA), and we remove all AS-sets, multi-origin ASes, and private ASes, and discard all indirect links.

The results of applying the bias-reduction technique to the March, 2004 skitter data are plotted in Figure
1. This data set contains 9, 204 nodes and 28, 959 edges, so the average degree before bias reduction is 6.29.
There are 22 ASes in the monitor set, and between 10% and 50% of ASes are represented in the target set.

The bias-reduction technique yields an estimate of d̂eg(u) < ∞ for 2, 078 vertices, and the average degree
after bias reduction is 12.66 (which is very close to 12.52, the biased average degree of vertices with degree
at least 3).

The behavior of the bias reduced estimate for k values around 64 is particularly interesting (see Figure
1). Although it is far from definitive, the lack of ASes with degree between 65 and 90 could be the result
of economic or technological factors. For example, the Juniper T320 edge router has the ability to house
up to 64 interfaces in one chassis. This, or similar product specifications, could lead AS operators to avoid
connecting to slightly more than 64 other ASes.

Finally, the fact that the bias reduced estimate does not fall off at a superlinear rate provides some
additional evidence against the theory that the AS graph is an example of a preferential attachment model
(see comparison in Figure 3). This argument has been made previously based on completely different con-
siderations (see, for example, [3]).

10



6 Conclusion

In this paper we introduced a new approach to addressing the bias inherent to traceroute sampling. Starting
from the multiple-recapture population estimation technique of statistics, we developed a bias reduction
technique applicable to the highly dependent random variables present in path sampling.

In an idealized theoretical framework of shortest path sampling in Erdős-Rényi graphs, we described how
to rigorously prove that the proposed estimator is asymptotically unbiased, and, using computer experiments,
we show that the estimator can give significant improvements when the target nodes constitute a fraction
of vertex set. Computer experiments also highlighted some of the weak points of this estimator, including
the less-than-perfect estimates on locally non-tree-like graphs, like the PA graph and the random geometric
graph.

Applying the bias-reduction technique to the CAIDA skitter data provided new evidence that the AS
graph is not a preferential attachment graph, and also uncovered a way that economic and technological
limitations are reflected in the AS degree distribution.

The theoretical and computer simulations supporting the effectiveness of the bias-reduction technique
all rely on the assumption that shortest path routing is a close-enough approximation of BGP routing. This
assumption should be considered in more detail, and the behavior of the bias-reduction technique under a
more realistic model of traceroute is an important future direction of research.
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