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Combinatorial Problems

You’ve got some finite collection of objects and you’d like to find
a special one.

For example
In graphs

A spanning tree
A perfect matching
A Hamiltonian cycle

In Boolean formulas
A satisfying
assignment
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Combinatorial Problems

This is a trivial matter to a mathematician in the 1940s
Not trivial anymore by the 1970s

Edmonds, 1963:

“For practical purposes computational details are vital. However, my purpose is only to

show as attractively as I can that there is an efficient algorithm. According to the dictionary,
“efficient” means “adequate in operation or performance.” This is

roughly the meaning I want—in the sense that it is conceivable for maximum to have no efficient algorithm.

Perhaps a better word is “good.” I am claiming, as a mathematical result, the existence of

a good algorithm for finding a maximum matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the size of the graph.

It is by no means obvious whether or not there exists an algorithm whose difficulty increases only algebraically with

the size of the graph.
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Average-case Analysis of Algorithms

Problems in the real-world incorporate elements of chance, so
an algorithm need not be good for all instances, as long as it is
likely to work on the instances that show up.
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Example: Simplex Algorithm

Linear programming asks for a vector x ∈ Rn which satisfies

Ax ≤ b
x ≥ 0.

The simplex algorithm is known to take exponential time on
certain inputs, but it has still been remarkably useful in practice.
Could be because the computationally difficult instances are
unlikely to come up.

Abraham D. Flaxman Average-case, subset sums, spanning trees



Introduction
Detailed Examples

Combinatorial Problems
Average-case Analysis

Example: Simplex Algorithm

Explain with average-case analysis:

Attempt 1: Analyze performance when each Ai j is
independent, normally distributed random variable
Attempt 2: Make Ai j i.i.d., distributed from some symmetric
distribution
Smoothed Analysis: Start with Ai j arbitrary, and perturb it
by adding normally distributed r.v. to each entry (prove that
run-time depends on variance of r.v. σ2)

Smoothed Analysis of some connectivity problems
in (Flaxman and Frieze, RANDOM-APPROX 2004)
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Assumptions

Average-case explanation of observed performance
requires making assumptions about how instances are
random.
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Assumptions

Question these assumptions.
Use distributions that are more accurate assumptions.

Power-law Graphs
(Flaxman, Frieze, Fenner, RANDOM-APPROX 2003)

(Flaxman, Frieze, Vera, SODA 2005)
Geometric Random Graph

(Flaxman, Frieze, Upfal, J. Algorithms 2004),
(Flaxman, Frieze, Vera, STOC 2005),

Geometric Power Law Graphs
(Flaxman, Frieze, Vera, WAW 2005)
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Searching for difficult distributions

If you knew a distribution for which no good algorithms
exist (and especially if this distribution gave problem
instances together with a solution) then you could use it as
a cryptographic primitive.
And besides, knowing where the hard problems are is
interesting in its own right, right?

Abraham D. Flaxman Average-case, subset sums, spanning trees
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Example: Planted 3-SAT

Choose an assignment for n Boolean variables, and
generate a 3-CNF formula satisfied by this assignment by
including each clause consistent with the assignment
independently at random.

Take all consistent clauses with the same probability and
efficient algorithm succeeds whp (for dense enough
instances). (Flaxman, SODA 2003)

But carefully adjust the probabilities so clauses with 2 true
literals don’t appear too frequently then no efficient
algorithm is known.
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End of the philosophy section
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The (Modular) Subset Sum Problem

Input: Modulus M ∈ Z,

Numbers a1, . . . , an ∈ {0, 1, . . . , M − 1},
Target T ∈ {0, 1, . . . , M − 1}.

Goal: Find S ⊆ {1, 2, . . . , n} such that∑
i∈S

ai ≡ T mod M

(if such a set exists.)

Abraham D. Flaxman Average-case, subset sums, spanning trees
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The (Modular) Subset Sum Problem

Subset sum is NP-hard.
But in P when M = poly(n).

A natural distribution for random instances is
Make M some appropriate function of n,
Pick a1, . . . , an independently and uniformly at random
from {0, 1, . . . , M − 1},
Make T the sum of a random subset of the ai ’s.

Abraham D. Flaxman Average-case, subset sums, spanning trees
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Sketch of computational difficulty as a function of M

M ≥ 2n2/2, a poly-time algorithm using Lovász basis
reduction succeeds whp,
M ≥ 21.55n, similar algorithms seem to work,
M = 2n, seems to be “most difficult”,

M = nO(log n), poly-time algorithm succeeds whp,
(Flaxman, Pryzdatek, STACS 2005)

M = poly(n), worst-case dynamic programming in O(n2M)
is poly-time,
M ≤ n2/ log n, alg faster than dynamic programming exists.

Abraham D. Flaxman Average-case, subset sums, spanning trees
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Dense instances

The dynamic program a 5th graders would write takes time
O(n2M).

With more education, you can devise a faster algorithm.
The state of the art is time O

(
n7/4

(log n)3/4

)
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Structure theory of set addition

Faster by considerations like
How can all the set of sums of 2 numbers be small?

Theorem
Let S be a finite subset of Z, with |S| = n and let b ≤ n. If

|S + S| ≤ 2k − 1 + b,

then S is contained in an arithmetic progression of length

|S|+ b.

Abraham D. Flaxman Average-case, subset sums, spanning trees
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Aside: a puzzle

Find S ⊆ Z+ with |S| = n so that∣∣{(s1, s2) : s1, s2 ∈ S and s1 + s2 is prime}
∣∣

Hint:
If s1 and s2 have the same parity then s1 + s2 is probably
not prime.
So ∣∣{(s1, s2) : s1 + s2 is prime}

∣∣ ≤ n2

4
.

Aim high.

Abraham D. Flaxman Average-case, subset sums, spanning trees
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M = nO(log n) — Medium-dense instances

Input: M, a1, . . . , an, and T ,

Goal: Find S ⊆ {0, 1, . . . , n} such that
∑
i∈S

ai ≡ T mod M.

For simplicity,
Let M to be a power of 2, roughly M = 2(log n)2

,
Let T = 0.

My approach is to “zero out” the least significant bits, (log n)/2
at a time.

Abraham D. Flaxman Average-case, subset sums, spanning trees
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Medium-dense algorithm execution, M = 256, T = 0
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“Proof” algorithm succeeds whp

Let Nk denote the number of numbers at step k of the
recursion.

Since we pair up numbers and use each only once,
Nk+1 ≤ Nk/2. If Nk+1 ≥ Nk/4 for each k , then we can
recurse (log n)/2 times before we run out of numbers.
To see that it is unlikely that Nk+1 ≤ Nk/4,

Recursion yields numbers which are uniformly distributed,
E

[
Nk+1

∣∣ Nk
]

= Nk
2 −O

(
Nk

1/2n1/4
)
.

So, concentration inequalities for martingales show

P [Nk+1 ≤ Nk/4] ≤ exp
{
−n3/4

32

}
.

Abraham D. Flaxman Average-case, subset sums, spanning trees
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Generalizations

Target value that is not T = 0,
Include a special an+1 = −T and make sure that it appears
in the solution.

Modulus M that is odd,

Zero out most significant bits first
Now the numbers in the subinstance are not uniformly
random
But they are distributed symmetrically, which is enough

General modulus M = 2k · odd,
First work mod 2k , then work mod odd.
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End of the subset sum section
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Minimum Cost Spanning Tree

Input: Graph G = (V , E),

Cost vector c ∈ RE .

Goal: Find spanning tree T ⊆ E such that

Z =
∑
e∈T

ce is minimized.
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Random Minimum Cost Spanning Tree

If each ce is an independent random variable drawn uniformly
from [0, 1], then as n →∞,

E[Z ] →

ζ(3) =
1
13 +

1
23 +

1
33 + . . . ≈ 1.2025 . . .
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Proof in one slide
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2-stage Stochastic Minimum Cost Spanning Tree

Input: Cost vector cM ∈ RE

A distribution over cost vectors cT ∈ RE

Goal: Find forest F ⊆ E to buy on Monday such that
when F is augmented on Tuesday by F ′ ⊆ E
to form a spanning tree,

Z =
∑
e∈F

cM(e) + E
[

min
F ′

{ ∑
e∈F ′

cT (e) : F ∪ F ′ sp tree
}]

is minimized.
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Random 2-stage Sto. Min. Cost Sp. Tree

So what happens if cM(e) and cT (e) are independent uniformly
random in [0, 1]?
(Flaxman, Frieze, Krivelevich, SODA 2005)
Some observations:

Buying a spanning tree entirely on Monday has cost ζ(3).
If you knew the Tuesday costs on Monday, could get away
with cost ζ(3)/2.
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Random 2-stage Sto. Min. Cost Sp. Tree

The threshold heuristic:
Pick some threshold value α.
On Monday, only buy edges with cost less than α.
On Tuesday, finish the tree.

Best value is α = 1
n , which yields solution with expected cost

E [Z ] → ζ(3)− 1
2
.
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Random 2-stage Sto. Min. Cost Sp. Tree

Threshold heuristic is not optimal: by looking at the
structure of the edges instead of only the cost, you can
improve the objective value a little; whp

Z ? ≤ ζ(3)− 1
2
− 10−256.

There is no way to attain ζ(3)/2, because you must make
some mistakes on Monday; whp

Z ? ≥ ζ(3)/2 + 10−5.
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End of the Spanning Tree section

Abraham D. Flaxman Average-case, subset sums, spanning trees



Introduction
Detailed Examples

Subset Sum
Stochastic Minimum Spanning Tree

Conclusion

Average-case analysis provides a detailed picture of
computational difficulty,
Can help in the search for the hardest easy problems and
the easiest hard problems,
Even for “easy” problems the average-case has some
surprises.
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