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Example: Multi-Armed Bandit Problem

Pittsburgh plans casino with 1000 slot machines.
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I Assume that each machine i pays out independently with

probability pi

I Develop strategy accordingly

Would be nice not to assume that the machines are so well
behaved.
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Example: Adversarial Multi-Armed Bandit

The CS-Theory approach to removing the assumption:
I An adversary controls when the machines pay out

I The adversary knows everything about your algorithm,
except the results of random coin tosses

I How do you know if you are doing well?
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Competitive Analysis and Regret

To see how well you’ve done:
I Compare with the best you could have done if you knew

the future

I competitive ratio := zoffline/zonline

I regret := zoffline − zonline

What is zoffline?
I Be nice if it was best sequence of machines to play
I To have results, make it best single machine to play
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Learning from Expert Advice

I Many other problems also fit into this framework

I For example, learning from expert advice
I But for computational reasons, a more general setting can

be convenient
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General Setting: Online Convex Optimization

I Bounded convex set S ⊆ Rd , constant C > 0
I At time t , simultaneously,

I Adversary chooses convex function ct : S → [−C, C]
I We choose point x t ∈ S

I We pay adversary ct(x t)

Goal: choose a sequence of x t to make
∑

t ct(x t) small

How we tell if we’ve done well: if regret is small

regret := min
x∈S

{ ∑
t

ct(x)

}
−

∑
t

ct(x t)
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An upper bound on regret

Theorem
There is a randomized algorithm which produces a sequence of
x t , so that if S ⊆ Rd and each ct takes values in [−C, C] then

E[regret] = E
[

min
x∈S

{ n∑
t=1

ct(x)

}
−

n∑
t=1

ct(x t)

]
≤ 6Cdn5/6.
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The Randomized Algorithm

Algorithm is a form of gradient descent

d-dimensional online algorithm

S

x1

x2

x3
x4

Main trick: a random variable approximating the gradient and
formed by a single evaluation of the function



Analysis of algorithm

The flavor of the analysis is this:

‖x t − x?‖2/2η = ‖P(x t − η · gt)− x?‖2 = . . .

ct(x t)− ct(x?) ≤
‖x t − x?‖2 − ‖x t+1 − x?‖2

2η
+

ηG2

2
.

regret =
n∑

t=1

ct(x t)− ct(x?) ≤
‖x1 − x?‖2

2η
+ n

ηG2

2
.

Take η = 1/
√

n.

I Full Details:
I A. Flaxman, A. Kalai, H. McMahon, Online convex

optimization in the bandit setting: gradient descent without
a gradient, Symposium of Discrete Algorithms (SODA),
2005.
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I Exists algorithm with have regret ≤ 6Cdn5/6

I Streaming Algorithms?
I ε-approximate solution in ε6 passes over the data



Conclusion

I Online convex optimization in the bandit setting

I Analysis in an adversarial setting
I Exists algorithm with have regret ≤ 6Cdn5/6

I Streaming Algorithms?
I ε-approximate solution in ε6 passes over the data



Conclusion

I Online convex optimization in the bandit setting
I Analysis in an adversarial setting

I Exists algorithm with have regret ≤ 6Cdn5/6

I Streaming Algorithms?
I ε-approximate solution in ε6 passes over the data



Conclusion

I Online convex optimization in the bandit setting
I Analysis in an adversarial setting

I Exists algorithm with have regret ≤ 6Cdn5/6

I Streaming Algorithms?
I ε-approximate solution in ε6 passes over the data



Conclusion

I Online convex optimization in the bandit setting
I Analysis in an adversarial setting

I Exists algorithm with have regret ≤ 6Cdn5/6

I Streaming Algorithms?

I ε-approximate solution in ε6 passes over the data



Conclusion

I Online convex optimization in the bandit setting
I Analysis in an adversarial setting

I Exists algorithm with have regret ≤ 6Cdn5/6

I Streaming Algorithms?
I ε-approximate solution in ε6 passes over the data


	Online Analysis
	Example: Multi-Armed Bandit
	General Setting: Online Convex Optimization

	Results
	Bandit Gradient Descent: Algorithm
	Bandit Gradient Descent: Analysis


