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Example: Multi-Armed Bandit Problem
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One (of many) problems this raises:
» Which of the 1000 machines should you play?

A traditional approach:

» Assume that each machine i pays out independently with
probability p;

» Develop strategy accordingly

Would be nice not to assume that the machines are so well
behaved.
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Example: Adversarial Multi-Armed Bandit

The CS-Theory approach to removing the assumption:
» An adversary controls when the machines pay out

» The adversary knows everything about your algorithm,
except the results of random coin tosses

» How do you know if you are doing well?



Competitive Analysis and Regret

To see how well you've done:

» Compare with the best you could have done if you knew
the future



Competitive Analysis and Regret

To see how well you've done:

» Compare with the best you could have done if you knew
the future

» competitive ratio := Zqgfline / Zonline
> regret := Zoffiine — Zonline



Competitive Analysis and Regret

To see how well you've done:

» Compare with the best you could have done if you knew
the future

» competitive ratio := Zqgfline / Zonline
> regret := Zoffiine — Zonline

What is Zofﬂine?



Competitive Analysis and Regret

To see how well you've done:

» Compare with the best you could have done if you knew
the future

» competitive ratio := Zqgfline / Zonline
> regret := Zoffiine — Zonline

What is Zofﬂine?
» Be nice if it was best sequence of machines to play



Competitive Analysis and Regret

To see how well you've done:

» Compare with the best you could have done if you knew
the future

» competitive ratio := Zqgfline / Zonline
> regret := Zoffiine — Zonline

What is Zofﬂine?
» Be nice if it was best sequence of machines to play
» To have results, make it best single machine to play
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Learning from Expert Advice

» Many other problems also fit into this framework
» For example, learning from expert advice

» But for computational reasons, a more general setting can
be convenient
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General Setting: Online Convex Optimization

» Bounded convex set S C R, constant C > 0
» At time t, simultaneously,

» Adversary chooses convex function ¢;: S — [-C, C]
» We choose point x; € S

» We pay adversary c(x;)

Goal: choose a sequence of x; to make ), c(x) small

How we tell if we've done well: if regret is small

regret := min ci(x) p — > ci(xt)
g { 20 =St
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An upper bound on regret

Theorem
There is a randomized algorithm which produces a sequence of
xt, S0 that if S C RY and each c; takes values in [—C, C] then

E[regret] = E[TE'Q { zn: ct(x)} — zn: ct(xt)} < 6Cdn°/®.
t=T1

t=1



The Randomized Algorithm

Algorithm is a form of gradient descent

Main trick: a random variable approximating the gradient and
formed by a single evaluation of the function
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Analysis of algorithm

The flavor of the analysis is this:
IXt = x4ll? /27 = [P(xt =0~ ge) = X4l = ...

< It =X~ s = x| 0GP

Ct(Xt) — C[(X*)

2n 2
n 2 2
X1 = x| nG
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t=1
Take n =1//n.



Analysis of algorithm

The flavor of the analysis is this:
Ixt — Xu|[2/2n = |P(xt — - gt) — x| = ...

< Bl — s — x| 2GR
- 2n 2

Ct(Xt) — C[(X*)

n 2 2
X1 — Xy G
regret = E ci(xt) — ci(xy) < X1 2 | nn2 .
t=1

Take n = 1//n.
» Full Details:

» A. Flaxman, A. Kalai, H. McMahon, Online convex
optimization in the bandit setting: gradient descent without
a gradient, Symposium of Discrete Algorithms (SODA),
2005.
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Conclusion

» Online convex optimization in the bandit setting
» Analysis in an adversarial setting
» Exists algorithm with have regret < 6Cdn®/8
» Streaming Algorithms?
» c-approximate solution in <® passes over the data
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