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Abstract

We analyze Markov chains for generating a random k-coloring of a random graph Gn,d/n.
When the average degree d is constant, a random graph has maximum degree Θ(log n/ log log n),
with high probability. We show that, with high probability, an efficient procedure can generate
an almost uniformly random k-coloring when k = Θ(log log n/ log log log n), i.e., with many
fewer colors than the maximum degree. Previous results hold for a more general class of graphs,
but always require more colors than the maximum degree.

1 Introduction

We study Markov Chain Monte Carlo algorithms for generating a random (vertex) k-coloring of an
input graph G = (V, E). We will work with G and k where it is possible to generate some proper
coloring in polynomial time. Our challenge will be to generate a random coloring that is selected
almost uniformly from the set of proper colorings.

1.1 Prior work

In previous work, simple Markov chains, such as the Glauber dynamics, have been proven effective.
The Glauber dynamics produce a Markov chain on proper colorings where at each step we randomly
recolor a random vertex. More precisely, from a k-coloring Xt at time t, the transition Xt → Xt+1

is defined as follows. First, a random vertex vt is chosen. We then set Xt+1(vt) to a color chosen
uniformly at random from those colors not appearing in the neighborhood of vt in Xt. For all
w 6= vt, we set Xt+1(w) = Xt(w). The stationary distribution of the Glauber dynamics is uniformly
distributed over k-colorings. We are interested in the mixing time of such Markov chains, meaning
the number of steps until the chain is within variation distance 1/4 of the stationary distribution,
for any initial k-coloring X0 (see Jerrum [14] for background on finite Markov chains).
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Jerrum [14] proved that whenever k > 2∆ the mixing time of the Glauber dynamics is O(n log n).
Vigoda [20] improved Jerrum’s result, by analyzing a more complicated chain, reducing the lower
bound on k to 11∆/6. This is still the best lower bound on k for general graphs.

Subsequent work, beginning with Dyer and Frieze [7], developed the notion of “burn-in”, and used
it to analyze the Glauber dynamics on restricted classes of graphs. Building upon [7, 17, 11], Hayes
and Vigoda [12] proved the Glauber dynamics has O(n log n) mixing time when k > (1 + ǫ)∆
for any constant ǫ > 0, assuming G has girth > 9 and ∆ = Ω(log n). Dyer, Frieze, Hayes and
Vigoda [8] reduced the lower bound on ∆ to a sufficiently large constant, assuming k > 1.489∆ and
girth g > 5. Further improvements were recently obtained for amenable graphs (without any lower
bound on ∆) by Goldberg, Martin and Paterson [10], and for “locally sparse” graphs (assuming
∆ = Ω(log n)) by Frieze and Vera [9] (which extends work of Hayes and Vigoda [13]).

1.2 Our work

In many classes of graphs, such as random graphs and planar graphs, the chromatic number is
intimately related to the average degree, as opposed to the maximum degree. This paper focuses
on randomly coloring sparse random graphs. These graphs have constant average degree d and
much larger maximum degree ∆. We randomly color such graphs with many fewer than ∆ colors.

Gn,p is the random graph with vertex set [n] = {1, 2, . . . , n} and where each possible edge is
independently included with probability p. We work with G = Gn,p where p = d/n and d is a
constant with d > 1. Such graphs have vertices of degree Θ(log n/ log log n), but have relatively
few such vertices (see, for example, [4, Theorem 3.7, p. 66]). Thus, it would seem that we might
be able to randomly color such a graph with many fewer than ∆ colors. We will prove this in our
main theorem below.

The main difficulty caused by large degree vertices in the analysis of algorithms for randomly
coloring graphs is that in many colorings, these vertices have few color choices, i.e., almost all of
the colors might appear in their neighborhood. Thus, the color choice of the neighbor of a high
degree vertex v can have a large influence on the color choice of v when v’s color is updated. To
avoid this, we cluster the high degree vertices into sets of nearby vertices. We then pad these sets
with a radius r of low degree vertices. The radius r is chosen sufficiently large so that these padded
sets are not overly influenced by the color choices of their neighbors. We analyze a Markov chain
tailored to our clustering of high degree vertices.

We need some notation before formally defining the Markov chain we analyze. For b ≥ 1, let
Lb = {v : deg(v) ≥ b} denote those vertices with degree at least b. For r ≥ 1, let Nb denote those
vertices at distance at most r from some vertex in Lb. Finally, let Hb be the subgraph of G induced
by Vb = Lb ∪ Nb.

In addition to the Glauber dynamics defined earlier, we consider the following Markov chain, which
we refer to as the modified Glauber dynamics. Let λ(v) = 1 if v /∈ Vb and λ(v) = 1/|C| if v ∈ Vb

and C is the component of Hb containing v. Let Λ =
∑

v∈V λ(v). The transitions of the modified
Glauber dynamics are defined as follows. From a coloring Xt, we choose vt ∈ V with probability
λ(vt)/Λ. If vt ∈ Vb, then we randomly re-color the component C which contains vt by choosing
uniformly among the colorings of C that are consistent with the way Xt has colored the vertices
in V \ C. Otherwise we randomly re-color vt by choosing uniformly among the colors that do not
appear in the neighborhood of vt under coloring Xt.

2



We can now state our main theorem.

Theorem 1. For all d ≥ 1, with probability 1 − o(1), the random graph G = Gn,d/n is such that

(a) if
r = ln lnn, b =

(3 + ln d)r

ln r
and k ≥ 12b (1)

then

• Modified Glauber dynamics has mixing time O(n log n).

• A step of the modified Glauber dynamics can be implemented in time polynomial in log n.

(b) if 0 < α < 1 and
r = 2(1 + 1/α), b = (lnn)α and k ≥ 12b (2)

then

• Modified Glauber dynamics has mixing time O(n log n).

• A step of the modified Glauber dynamics can be implemented in time polynomial in log n.

• Glauber dynamics has mixing time polynomial in n.

Note that if d < 1 then whp1 G consists of trees and unicyclic components of size O(log n) and
then it is trivial to randomly color G. Also, we can allow d to grow with n, but once d = Ω(log n)
the result is subsumed by Jerrum’s result.

It is well known that the maximum degree of G = Θ
(

ln n
ln ln n

)

whp (see, for example, [4, Theorem
3.7, p. 66]). Thus the number of colors required for rapid mixing is o(log ∆) in our first case, and
o(∆) in the second.

1.3 Outline of what follows

Section 2 shows that whp the Glauber dynamics yield an ergodic Markov chain for Gn,d/n when
k > d + 2. In Section 3 we state a collection of properties which hold whp that will be useful in
the proof of Theorem 1 (the proof that these properties hold whp is deferred to Section 6). In
Sections 4 and 5.1, we use the properties from Section 3 to prove Theorem 1(a) and Theorem 1(b)
respectively. In Section 6, we prove that the properties stated in Section 3 hold whp. Section 7
concludes with some related open problems.

1.4 Notational reference

For convenient reference, we collect the definitions and parameters above here.

1Throughout this paper, we use the term with high probability, denoted whp, to refer to events which occur with
probability 1 − o(1) as n → ∞.
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Notation

G, the graph, G = (V, E) where V = [n] is the set of vertices and E ⊆ V ×V is the
set of edges

d, the expected degree of G, a constant > 1

∆, the maximum degree of G, which grows at rate Θ(log n/ log log n)

k, the number of colors in the coloring, which is at least 12b in both case (a) and
(b) of Theorem 1

b, the degree above which vertices are “bad”, equal to (3+ln d)r
ln r in case (a) and (lnn)α

in case (b) of Theorem 1

r, the radius around bad vertices for which the Glauber dynamics will be modified,
equal to ln lnn in case (a) and 2(1 + 1/α) in case (b) of Theorem 1

α, a constant less than 1 which controls value of b and hence the number of colors
k in case (b) of Theorem 1

Lb, the set of vertices of degree at least b

Nb, the set of vertices at distance at most r from some vertex in Lb

Vb, the union of Lb and Nb

Hb, the subgraph of G induced by the vertices in Vb

λ(v), the weight of vertex v in Modified Glauber Dynamics; λ(v) = 1 if v 6∈ Vb and
λ(v) = 1/|C| if v ∈ Vb and C is the component of Hb containing v

Λ, the normalization constant for λ(v)’s, Λ =
∑

v∈V λ(v)

Glauber Dynamics Transition:

Input: Xt, a k-coloring of G

Output: Xt+1, formed by selecting a vertex vt ∈ V uniformly at random, setting
Xt+1(vt) to a color chosen uniformly at random among the colors that do not
appear in the neighborhood of vt under coloring Xt, and setting Xt+1(w) =
Xt(w) for all w 6= vt.
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Modified Glauber Dynamics Transition:

Input: Xt, a k-coloring of G

Output: Xt+1, formed as follows. Select a vertex vt ∈ V randomly according to
the distribution Pr[vt = v] = λ(v)/Λ. If vt ∈ Vb, then let C be the component
of Hb containing vt, and generate Xt+1(C) by choosing uniformly at random
among the colorings of C that are consistent with the way Xt has colored
the vertices in V \ C. Otherwise vt 6∈ Vb, and we set Xt+1(vt) by choosing
uniformly at random among the colors that do not appear in the neighborhood
of vt under coloring Xt. In either case, we complete the coloring by setting
Xt+1(w) = Xt(w) for all w not already set.

2 Ergodicity

We first show that Glauber dynamics (and hence modified Glauber dynamics) is ergodic whp for
a random graph Gn,d/n when k ≥ d + 2.

For a graph G = (V, E), the α-core is the unique maximal set S ⊆ V such that the induced subgraph
on S has minimum degree at least α. It follows from work of Pittel, Spencer and Wormald [18]
that whp G has no α-core for α ≥ d. A graph without a α-core is α-degenerate i.e. its vertices can
be ordered as v1, v2, . . . , vn so that vi has fewer than α neighbors in {v1, v2, . . . , vi−1}. To see this,
let vn be a vertex of minimum degree and then apply induction.

Lemma 2. If G = (V, E) has no α-core, then, for all k ≥ α+2, the Glauber dynamics for k-coloring
yields an ergodic Markov chain.

Proof. Let v1, . . . , vn denote an ordering of V such that the degree of vi is less than α in Gi, defined
as the induced subgraph on {v1, v2, . . . , vi}. For 1 ≤ i ≤ n, let Ωi denote the k-colorings of Gi.

We need to show that the set Ωn is connected with respect to transitions of the Glauber dynamics.
We will prove the claim by induction. The claim is trivial for n = 1. Assume the set Ωj , for all
j < i, is connected. Consider a pair of colorings X, Y ∈ Ωi. Let X ′, and Y ′ respectively, denote
the projection of these colorings on Gi−1.

By induction, we know there exists a path of Glauber dynamics transitions (for Gi−1) connecting
X ′ to Y ′. Consider any such path, say it has length ℓ. Let (wj , cj) denote the (vertex, color)
update at step j of this path. We construct a path (of length ≤ 2ℓ) from X to Y along Glauber
transitions for Gi.

For j = 1, 2, . . . , ℓ, we will re-color wj to color cj , if such a transition is valid (i.e., no neighbor
of wj has color cj). If it is not valid, then vi must be the only neighbor of wj that is colored cj .
Since vi has degree less than α in Gi, there exists a new color for vi which does not appear in its
neighborhood. Thus, we first re-color vi to any new (valid) color, and then we re-color wj to cj .
Hence, the length of the path at most doubles.
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3 Structure results

In this section we will define some useful graph properties and claim that G has these properties
whp. It will be useful to define the notation Gr to denote the graph with an edge {u, v} iff G
contains a (u, v) path of length at most r.

3.1 Case (a)

The graph properties of interest are the following:

P1a The maximum component size in Hb is at most Cmax = (lnn)2(2d)r = (lnn)O(1).

P2 G contains no d-core.

P3 If v /∈ Hb and C is a component of Hb then v has at most 2 neighbors in C.

P4 Each component C of Hb has at most |V (C)| edges.

P5 |Hb| = o(n), and so Λ = n(1 − o(1)).

P6 There does not exist S ⊆ Lb such that |S| ≥ s = 2r−1 lnn and S induces a connected
subgraph in Gr.

Theorem 3. Under the hypotheses of Theorem 1(a), with probability 1 − o(1) properties P1a-P6
hold.

3.2 Case (b)

We modify our claims about the structure of G under the hypotheses of Theorem 1(b):

P1b The maximum component size in Hb is at most Cmax = (10d)r lnn.

Theorem 4. Under the hypotheses of Theorem 1(b), with probability 1 − o(1) properties P1b-P5
hold.

We prove Theorem 3 in Section 6.1 and Theorem 4 in Section 6.2.

3.3 Implementing modified Glauber dynamics

Implementing a transition of the modified Glauber dynamics is equivalent to generating a random
list coloring of the updated component C. In the list coloring problem every vertex v ∈ C has a
set L(v) of valid colors, where |L(v)| ⊆ {1, 2, . . . , k}, and v can only receive a color in L(v). In our
case, L(v) are those colors not appearing in N(v) \ C.

For a tree on ℓ vertices, using dynamic programming we can exactly compute the number of list
colorings in time ℓk. Therefore, we can also generate a random list coloring of a tree. By property
P4, our components are trees or unicyclic. For a unicyclic component, we can simply consider
all ≤ k2 colorings for the endpoints of the extra edge, and then recurse on the remaining tree.
By property P1 (a or b), this implies that the modified Glauber dynamics can be efficiently
implemented.
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4 Coupling Analysis: Proof of Theorem 1(a)

In this section, we prove Theorem 1(a), using the structure results from Theorem 3.

We use path coupling [5]. For a pair of colorings X, Y , our metric d(X, Y ) is Hamming distance:

d(X, Y ) =
∑

v∈V

1X(v) 6=Y (v),

We are therefore obliged to extend the state space to include improper colorings as transient states.
For all (Xt, Yt) where d(Xt, Yt) = 1, we define a coupling (Xt, Yt) → (Xt+1, Yt+1) such that

E[d(Xt+1, Yt+1) | Xt, Yt] < (1 − 1/2n)d(Xt, Yt).

This will imply mixing time O(n log n) by a standard application of path coupling [5, Theorem 1].

Each chain chooses the same random vertex w, and both chains re-color w, if w 6∈ Vb, or re-color
the component Cw ∋ w, if w ∈ Vb. The choices will be coupled as described below. We divide
the coupling analysis into two cases, depending on whether Xt and Yt differ at a (unique) vertex
v ∈ Vb, or at a vertex v 6∈ Vb. Recall that Λ = n − o(n), from P5.

When re-coloring a single vertex w at step t, we will frequently couple the chains X and Y maxi-
mally, meaning in a manner which maximizes the probability that Xt+1(w) = Yt+1(w). To define
this formally, let AX denote the set of colors not appearing in the neighborhood of w under col-
oring Xt, and let AY denote the set of colors not appearing in the neighborhood of w under
coloring Yt. The maximal coupling transition is defined as follows [17]. We take two mappings
fX : [0, 1] → AX , fY : [0, 1] → AY such that

• for each c ∈ AX , |f−1(c)| = 1/|AX | and similarly for Y , and

• {x : fX(x) 6= fY (x)} is as small as possible in measure.

Then we take a uniform random real x ∈ [0, 1] and choose color fX(x) for Xt+1(w) and fY (x) for
Yt+1(w).

Case 1: For v such that Xt(v) 6= Yt(v) we have v ∈ Vb.

Let Cv be the connected component containing v. If we re-color component Cv, then both chains
can choose the same coloring and Xt+1 = Yt+1. Consider w ∈ N(v). If w ∈ Vb, then w ∈ Cv and
Xt+1(w) = Yt+1(w). If w /∈ Vb then deg(w) < b, and there are at least k − b colors not appearing
in Xt(N(w)), and similarly for Yt(N(w)). Using the maximal coupling, there is at most one choice
for Xt+1(w) which results in Xt+1(w) 6= Yt+1(w), i.e Xt+1(w) = Yt(v). It follows that

Pr [Xt+1(w) 6= Yt+1(w) | ξt = w] ≤
1

k − b

where ξt is the random vertex chosen at step t.

We can now bound the expected change in distance after a coupled transition,

E[d(Xt+1, Yt+1) − d(Xt, Yt)] = −Pr [ξt ∈ Cv] +
∑

w∈N(v)\Cv

Pr [ξt = w ∧ Xt+1(w) 6= Yt+1(w)]

≤ −
1

Λ
+

b

(k − b)Λ

≤ −
1

2n
for k > 4b and n sufficiently large.

7



Case 2: For v such that Xt(v) 6= Yt(v) we have v /∈ Vb.

For w ∈ N(v) \ Vb, using the maximal coupling, the probability w receives a different color in the
two chains is bounded by ((k − b)Λ)−1, as above.

For w ∈ Vb, we will couple the colorings of Cw in X and Y , as described below, so as to have few
disagreements. Let Φ(w) be the expected number of disagreements between Xt+1 and Yt+1 in Cw,
i.e.

E
[

d(Xt+1(Cw), Yt+1(Cw)) | ξt = w
]

= Φ(w),

and Φ = maxw Φ(w). Then, we bound the expected change in distance by

E[d(Xt+1, Yt+1) − d(Xt, Yt)] ≤ −Pr [ξt = v] +
|N(v) \ Vb|

(k − b)Λ
+

∑

w∈N(v)∩Vb

Pr [ξt ∈ Cw]Φ(w)

≤ −
1

Λ
+

b

(k − b)Λ
+

1

Λ

∑

w∈N(v)∩Vb

Φ(w)

≤ −
1

Λ
+

b

(k − b)Λ
+

bΦ

Λ

≤ −
1

2n
for k ≥ 6b, bΦ ≤

1

4
, and n large.

It remains to show that bΦ ≤ 1
4 . We use the “disagreement percolation” coupling construction

of van den Berg and Maes [1, Theorem 1]. We wish to couple Xt+1(Cw) and Yt+1(Cw) as closely
as possible, but the identity coupling is precluded by the disagreement at v. The technique of [1]
assembles the coupling in a stepwise fashion working away from w. In our case, it may be viewed
as follows. From P3 we know that Cw is a tree with at most one additional edge. Also, from the
definition of Hb, it has degree at most b except for a central “kernel” of higher-degree vertices at
distance r from its boundary. The disagreement at v propagates into Cw along paths from w. A
disagreement at vertex x ∈ Cw at (edge) distance ℓ from w propagates to a neighbor z at distance
ℓ + 1 if Xt+1(z) 6= Yt+1(z). The distributions of Xt+1(z), Yt+1(z) are invariant under a Glauber
dynamics transition. Thus, if z is not in the kernel, we may couple Xt+1(z), Yt+1(z), using the
maximal coupling, to have Pr [Xt+1(z) 6= Yt+1(z)] ≤ 2/(k − b) =: ζ, since

(i) z can have at most two neighbors which disagree, since Cw is a tree plus 1 edge,

(ii) each such neighbor of z will have at most one disagreement,

(iii) there are at least k − b colors available at z.

The disagreement percolation is dominated by an independent process. Thus a disagreement prop-
agates to a vertex at distance ℓ < r from w with probability at most ζℓ+1. Moreover there are at
most bℓ such vertices. It propagates to a vertex in the kernel with probability at most ζr+1 lnn
for large n, using P6. If this happens, we couple arbitrarily with the remaining probability, and
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concede |Cw| disagreements. Since k ≥ 12b, it follows that

Φ(w) ≤
r−1
∑

ℓ=0

bℓζℓ+1 + |Cw|ζ
r+1 lnn

≤ ζ
∞
∑

ℓ=0

(

2b

k − b

)ℓ

+ o(ζ),

≤
2

9b

(

1 + o(1)
)

,

≤
1

4b
for n large,

using |Cw| = (log n)O(1) (from P1a), and r = Ω(log log n) so ζ−r = (log n)Ω(log log log n). 2

5 Proof of Theorem 1: Part (b)

We first analyze the mixing time of the modified Glauber dynamics in Section 5.1. Then, in Section
5.2, we use the comparison method of Diaconis and Saloff-Coste [6] to bound the mixing time of
the Glauber dynamics.

5.1 Coupling Analysis

In this section we bound the mixing time of the modified Glauber dynamics as claimed in Theorem
1(b).

We follow the argument of Section 4. The only place we might run into trouble is showing that
|Cw|ζ

r+1 lnn = o(ζ), noting that the kernel now has size O(log n). The remaining parts of the
argument are unchanged. But for large n we have

|Cw|ζ
r+1 lnn ≤ (lnn)2

(

20d

11(lnn)α

)2(1+1/α)

= o(ζ).

5.2 Comparison: Part(b)

We now bound the mixing time of the Glauber dynamics. Let τG denote the mixing time of the
Glauber dynamics, and τM denote the mixing time of the modified Glauber dynamics. Let PG and
PM denote their corresponding transition matrices. Let Ω denote the k-colorings of the graph of
interest. Let π(Z) = 1/|Ω| denote the probability of coloring Z under the stationary distribution.

Lemma 5. Under the hypotheses of Theorem 1(b),

τG ≤ dO(log n)τM log |Ω|,

for the dynamics on Gn,d/n whp.
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Proof. We will use the comparison technique of Diaconis and Saloff-Coste [6] (see also [19]). For
all I, F ∈ Ω where PM (I, F ) > 0, we will define a path γIF = (Z0 = I, Z1, . . . , Zℓ = F ) such that
PG(Zi, Zi+1) > 0, for all 1 ≤ i < ℓ. For t = (Z, Z ′) ∈ Ω2 where PG(Z, Z ′) > 0, let

cp(t) = {(I, F ) ∈ Ω2 : t ∈ γIF },

denote the set of canonical paths which contain t. We are interested in its congestion:

ρ(t) =
1

π(Z)PG(Z, Z ′)

∑

(I,F )∈cp(t)

|γIF |π(I)PM (I, F )

≤ nk
∑

(I,F )∈cp(t)

|γIF |PM (I, F ) (3)

≤ nk|cp(t)|γmax, (4)

where γmax = max(I,F )∈Ω2 |γIF |. Let
ρ = max

t
ρ(t).

Then, by [19, Proposition 1],
τG ≤ 4(2 + log |Ω|)ρτM .

Consider a Glauber transition t which re-colors a vertex v. We only need to consider the case
v ∈ Hb. Say v is in a component S of Hb. Fix an arbitrary coloring σ of S̄ = V \ S. Let Ω(S)
denote the set of colorings of S consistent with σ.

We’ll begin with an easy bound on ρ(t), which suffices when k = O(1). Clearly,

cp(t) ⊆ Ω(S)2.

Since |S| = O(log n), we trivially have

|cp(t)| ≤ |Ω(S)|2 ≤ k2|S| = kO(log n).

Using the canonical paths implied by the ergodicity proof implies γmax ≤ 2|S|. Hence, from (4), we
have

ρ ≤ exp(O(log n log k)).

And, for a constant number of colors k, we have a polynomial bound on the mixing time of the
Glauber dynamics.

We’d like to get a polynomial bound when np is constant, and k = Ω(1). So we’ll fine-tune the
above argument, and use (3).

By property P2, our input graph has no d-core. Fix an ordering (v1, . . . , vℓ), ℓ = |S| such that
vi has degree less than d in the induced subgraph on Si = {1, . . . , i}. Let Gi denote the induced
subgraph on Si∪ S̄. Note that vertex vi has degree less than δ := d+b in Gi. Hence, in any coloring
of Gi, vertex vi has at least two valid color choices. Let Ωj denote the colorings of Sj in Gj (S̄ has
the fixed coloring σ).

Consider a pair of colorings I, F ∈ Ωi. We’ll inductively define the canonical path γi(I, F ) along
Glauber transitions for Gi. Let I ′, F ′ denote the projections of I, F onto Gi−1. We inductively
have a path γi−1(I

′, F ′) connecting I ′, F ′. Let (vj , cj) denote the j-th transition on γi−1(I
′, F ′). We

will attempt the same transitions, in order, with a possible recoloring of vi before and after each
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transition of γi−1(I
′, F ′), in order to: (i) free up vi’s color for a neighbor of vi (as in the ergodicity

proof), and (ii) keep vi colored with I(vi) unless a neighbor of vi has color I(vi).

More precisely, consider the j-th transition, updating vj to color cj , and let Z denote the current
coloring. Before the update (vj , cj), if vi ∈ N(vj) and cj = Z(vi), then choose an arbitrary new
valid color for vi. This ensures that the recoloring of vj to cj is valid. After the update (vj , cj), if
vj ∈ N(vi) and I(vi) 6∈ Z(N(vi)), we recolor vi to I(vi). This, of course, may be redundant if vi

already has color I(vi). We are trying to “remember” the initial coloring. Finally, after all of the
transitions of the path γi−1(I

′, F ′), we recolor vi to F (vi).

Note, the length of these paths are at most 3|S|. We bound the congestion with a similar inductive
construction. For a Glauber transition ti in Gi, let cpi(ti) denote the set of canonical paths crossing
ti. We inductively assume, for all j < i, all tj ,

|cpj(tj)| ≤ |Ωj |(1 + δ)2j . (5)

Moreover, consider an injective map, or “encoding”,

ηtj : cpj(tj) → Ωj × {0, . . . , δ}j × {0, . . . , δ}j .

Consider a transition ti = Z → Z ′ in Gi. Suppose ti re-colors a vertex vj 6= vi. Then, let ti−1

denote the corresponding transition in Gi−1.

For (I, F ) ∈ cpi(ti), we define ηti(I, F ) by a simple modification of ηti−1
(I ′, F ′). Let

ηti−1
(I ′, F ′) = (C ′, {α1, . . . , αi−1}, {β1, . . . , βi−1}},

where C ′ ∈ Ωi−1, and for all 1 ≤ j < i, αj , βj ∈ {0, . . . , δ}. Now we’ll define a coloring C ∈ Ωi and
αi, βi, which will define ηti . Let w1, . . . , wd′ , d

′ ≤ δ, denote the neighbors of vi.

The coloring C is the same as C ′ for all vj 6= vi. If no neighbor of vi has color F (vi), we set
C(vi) = F (vi) and set αi = 0. Otherwise, we color vi to an arbitrary valid color, and set

αi = min{1 ≤ j ≤ d′ : C ′(wj) = F (vi)},

to “remember” the color F (vi).

Similarly, we set βi = 0 if Z(vi) = I(vi). (Recall, the transition is ti = Z → Z ′.) Otherwise, set

βi = min{1 ≤ j ≤ d′ : Z(wj) = I(vi)},

to “remember” the color I(vi). Note, we defined our canonical paths so that, for all colorings W
on the path, W (vi) = I(vi) or a neighbor of vi has color I(vi) in W .

From the encoding and the transition ti we can uniquely recover (I, F ) ∈ cpi(ti). Hence, our new
mapping is again injective. For a transition ti which recolors vi, define the encoding identically to
the adjacent transition which recolors some vj ∈ N(vi).

We can now bound the congestion via (3). Note, for all Z, Z ′ ∈ Ω, PM (Z, Z ′) = 1/|Ω|. Hence,
applying (5) with (3), we have

ρ ≤ nk3ℓ(1 + δ)2ℓ

This completes the proof of the lemma.
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6 Proof of Structure Results

To show that these properties hold whp, it is convenient to define some additional properties and
prove that they also hold whp.

Q1 For all s ≤ n/(2e3d2), there is no subgraph of G with s vertices which contains more than
2s edges.

Q2 For v ∈ V let B(v, r) denote the set of vertices at distance at most r from vertex v. Then
|B(v, r)| ≤ 6(2d)r lnn for all v ∈ V .

Lemma 6. Under the hypotheses of Theorem 1(a) and (b), with probability 1− o(1) properties Q1
and Q2 hold.

First we will show how Lemma 6 implies Theorem 3 and Theorem 4. Then we perform the calcu-
lations necessary to verify Lemma 6. It is convenient to prove that the properties hold in the order
that follows.

6.1 Proof of Theorem 3

In this section we assume r, b, k are defined as in Theorem 1(a), so r = ln lnn, b = (3+ln d)r
ln r , and

k ≥ 12b.

P5: |Hb| = o(n), and so Λ = n(1 − o(1)).

Note that

E(|Hb|) ≤ n

r
∑

i=0

ni(d/n)iPr(Bin(n, d/n) ≥ b − 1). (6)

We verify P5 by showing that the RHS of (6) is o(n) and using the Markov inequality. (The
RHS of (6) bounds the expected number of vertices within distance r of a vertex in Lb). But,
Pr(Bin(n, d/n) ≥ b − 1) ≤ (de/(b − 1))b−1 = o(lnn−1/2), since the numerator of this quantity is a
constant, and b − 1 = Ω(ln lnn/ ln ln lnn).

P6: There does not exist S ⊆ Lb such that |S| ≥ s = 2r−1 lnn and S induces a connected subgraph
in Gr.

If S exists then we can assume that |S| = s and that there exists a tree T in G such that (i)
T ∩Lb = S, (ii) t = |T | ≤ sr and (iii) the leaves of T are in S. We can also assume that S contains
at most 2s edges, from Property Q1.

Suppose that T has leaves L and |L| = ℓ. We use the identity

ℓ = 2 +
∑

v∈T\L

(degT (v) − 2). (7)

Let Tb = (T \ L) ∩ Lb and D =
∑

v∈Lb
degT (v). Then (7) implies ℓ ≥ D − 2(s − ℓ) and from this

we deduce that D ≤ 2s.

Then let M be the number of edges joining L ∪ Tb to V \ T . We need a bound on M .

M ≥ ℓ(b − 1) + (s − ℓ)b − D − 2s ≥ (b − 5)s

12



(where the term 2s is subtracted to account for edges in S).

So,

Pr(∃S) ≤
sr
∑

t=s

(

n

t

)(

t

s

)

tt−2pt−1

(

s(n − s − t)

(b − 5)s

)

p(b−5)s

≤
sr
∑

t=s

(ne

t

)t
2ttt−2pt−1

(

s(n − s − t)ep

(b − 5)s

)(b−5)s

≤
sr
∑

t=s

n(2ed)t(3db−1)(b−5)s

≤ 2n((2ed)r(3db−1)b−5)s (8)

= 2n
(

e(ln 2e+ln d) ln ln ne−(3+ln d−o(1)) ln ln n
)s

≤ 2ne−sr(1−o(1))

= o(1).

P1a: The maximum component size in Hb is at most (lnn)2br whp.

Let C be a component of Hb. Let K = C ∩ Lb. Then from Q2 we have |C| ≤ 6|K|(2d)r lnn. But
P6 implies that |K| ≤ 2r−1 lnn and so P1a also holds whp. 2

P2: G contains no d-core.

As mentioned in Section 2, this follows from the work of Pittel, Spencer, and Wormald [18].

P3: If v /∈ Hb then whp v has at most 2 neighbors in the same component of Hb.
P4: Each component C of Hb has at most |C| edges.

Let Ni,b denote the set of vertices within distance i of Lb. Thus, Nb =
⋃r

i=1 Ni,b. To prove these
properties, we fix a “typical” degree sequence d = d1, d2, . . . , dn for Gn,p and generate a random
graph with this degree sequence using the configuration model as described in Bollobás [2]. Let
m = (d1 + · · ·+ dn)/2. We construct a random pairing F of the points in W =

⋃n
i=1 Wi, |Wi| = di

and interpret them as edges of a (multi-)graph on [n]. A typical degree sequence is such that the
probability it is simple is bounded away from zero by a function of d only. We first expose all the

pairs {x1, x2} in F such that {x1, x2} ∩
(

⋃

i∈Lb
Wi

)

6= ∅. This will reveal N1,b. Then we expose all

pairs {x1, x2} ∈ F such that {x1, x2} ∩ N1,b 6= ∅. This will reveal N2,b. Continuing in this way we
reveal Ni,b, i = 1, 2, . . . , r and then the components of Hb are determined. In order for a component
C to have |C| + 1 edges, there must be some vertex in some Ni,b which connects to a component
induced by Ni−1,b with at least 2 edges. So if P1a and P5 hold, then the probability that any
component C gets |C| + 1 edges is at most

∑

v∈Nb

(

(

∆

2

)(

Cmax

2m − o(n)

)2
)

≤ n

(

(∆Cmax)
2

(2m − o(n))2

)

= o(1).

We continue generating G by exposing all remaining pairs {x1, x2} for which both points xj lie in
⋃

i∈Nb
Wi. The rest of F will be a random pairing of the points of W which are (i) not incident with

⋃

i∈Lb
Wi and (ii) meet X =

⋃

i∈Nb
Wi in at most one point. We may generate this by randomly

pairing the unpaired points in X and then randomly pairing up the remaining points. We consider
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one component C of Hb and estimate the probability that 3 vertices have a common neighbor
outside Hb. Now, since all the vertices with edges still unassigned are not in Lb, each has at most b
edges left to assign. So, if P1a and P5 hold and m = |W | ≥ dn/3, then the probability that there
exists a vertex v 6∈ Hb with 3 neighbors in a component C of Hb is at most the sum over v and C
of the expected number of triples of vertices in C ∩ Nb which are adjacent to v, which is at most

n
∑

C

(

|C ∩ Nb|

3

)(

b2

2m − o(n)

)3

= O(n−1+o(1)).

Let R1 = (¬P3 ∪ ¬P4) ∩ P1a ∩ P5. Then, we have shown that Pr[R1 | d] = o(1).

We obtain the result unconditionally by this summing over values of d for which 1
2

∑n
v=1 dv ≥ dn/3

and then

Pr[¬P3 ∪ ¬P4] ≤ Pr[¬P1a] + Pr[¬P5] + Pr[m ≤ dn/3] +
∑

d : m≥dn/3

Pr[R1 | d]Pr[d]

= o(1).

2

6.2 Proof of Theorem 4

In this section we assume r, b, k are defined as in Theorem 1(b), so r = 2(1 + 1/a), b = (lnn)α, and
k ≥ 12b.

Proof. P5: |Hb| = o(n), and so Λ = n(1 − o(1)).

Since α ∈ (0, 1), the value of r is smaller now than in Section 6.1 and the value of b is larger. These
changes can only decrease the size of Hb, so P5 holds by the same argument as in Section 6.1.

(Theorem 4 does not require P6.)

P1b: The maximum component size in Hb is at most Cmax = (10d)r lnn.

If P1b fails to hold then there exists sets of vertices S, T0, T1, . . . Tr such that (i) S ⊆ Lb and S
connected in G2r and T0 is a minimal set such that T = S ∪ T0 contains a tree in G with leaves
L ⊆ S (so T0 are vertices witnessing that S is connected in Gr, as in the proof of P6 above)
and (ii) T1 is the neighbor set of T and Ti+1 is the neighbor set of Ti for 0 ≤ i < r and (iii)
|S| + |T0| + · · · + |Tr| ≥ (10d)r lnn.

We will now argue that whp |T | ≤ lnn for any S ⊆ Vb which is connected in Gr. Suppose |S| = s.
Then, since S is connected in G2r, |T0| ≤ 2r(s − 1). Let S1 be the vertices of S which have degree
less than b/2 in T . Then |S1| exceeds the number of leaves in T , so by (7), we have

s1 := |S1| ≥ 2 +
∑

v∈T\leaves

(degT (v) − 2) ≥
∑

v∈S\S1

(b/2 − 2) = (s − s1)(b/2 − 2),

and so s1 = s(1 − o(1)).

The probability that S, T0 exist so that |T | ≥ lnn is bounded above by the expected number of
trees T on sets S and T0 with 0 ≤ |T0| ≤ 2rs and (lnn)/4r ≤ |S| ≤ lnn such that the vertices v ∈ S
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with degT (v) < b/2 have at least b/2 edges to vertices in V \ T . By using the Chernoff bound for
R ≥ 6d we have Pr[Bin(n(1 − o(1)), d/n) ≥ R] ≤ 2−R, we obtain the following as an upper bound
of the expectation

ln n
∑

s=(ln n)/4r

(

n

s

) 2rs
∑

t=0

(

n

t

)

(s + t)s+t−2

(

d

n

)s+t−1
(

2−(1−o(1))b/2
)(1−o(1))s

= o(1).

Now we prove that whp there does not exist a set Y such that (i) Y induces a connected subset of
G and (ii) |Y | ≤ (lnn)2 and (iii) |N(Y )| ≥ 9d|Y | + lnn. This will complete the verification of P1,
since we have already shown that whp |T | ≤ lnn.

Pr(∃Y ) ≤

(ln n)2
∑

t=1

(

n

t

)

tt−2pt−1

(

t(n − t)

9dt + lnn

)

p9dt+ln n

≤ n

(ln n)2
∑

t=1

(de)t(e/9)9dt+ln n

= o(1).

P2: G contains no d-core.

Property P2 does not depend on the parameters that have changed, so it holds by the arguments
in Section 6.1.

P3: If v /∈ Hb then whp v has at most 2 neighbors in the same component of Hb.
P4: Each component C of Hb has at most |C| edges.

Repeating exactly the proof of Properties P3,P4 in Theorem 3 with the new values of r and b, and
the value of Cmax given by property P1b completes the theorem.

6.3 Proof of Lemma 6

Recall that d is a constant, and we wish to show that these properties for r, b, and k are as defined
in Theorem 1(a) and (b), so either r = ln lnn, b = (3+ln d)r

ln r , and k ≥ 12b or r = 2(1 + 1/a),
b = (lnn)α, and k ≥ 12b.

Q1: For all s ≤ n/(2e3d2), there is no subgraph of G with s vertices which contains more than 2s
edges.

Let µd = n/(2e3d2) and define B to the event that there exists a set S with |S| = s ≤ µd such that
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S contains at least 2s edges. Then

Pr(B) ≤

µd
∑

s=1

(

n

s

)(
(

s
2

)

2s

)

p2s

≤

µd
∑

s=1

(ne

s

)s
(

s2e

4s

)2s(
d

n

)2s

=

µd
∑

s=1

(

e3d2s

16n

)s

=

log
2

n
∑

s=1

(

e3d2s

16n

)s

+

µd
∑

s=log2 n

(

e3d2s

16n

)s

≤ (log2 n)

(

e3d2 log2 n

16n

)

+ µd

(

1

32

)log
2

n

= o(1).

Q2: |B(v, r)| ≤ 6(2d)r lnn for all v ∈ V .

Fix v ∈ V and let Bi = B(v, i). We first observe that since |Bi+1| is stochastically dominated by
Bin(n|Bi|, p) we have

Pr(|Bi+1| ≥ 2d|Bi| | |Bi| ≥ 6 lnn) ≤ e−2d ln n ≤ n−2.

Pr(|Bi+1| ≥ 12 lnn | |Bi| ≤ 6d−1 lnn) ≤ e−2d ln n ≤ n−2.

Now whp |B1| = o(lnn) and then whp either |B(v, r)| ≤ 12 lnn or there exists i0 such that
|Bi0 | ∈ [6d−1 lnn, 12 lnn]. In the both cases we see that whp |B(v, r)| ≤ 6(2d)r lnn as required.

7 Open questions

There are two natural questions that we would like to resolve:

1. Can we prove that the modified Glauber mixes rapidly if k = O(d)?

2. What can we say about the mixing time of the Glauber dynamics under the hypotheses of
Theorem 1(a)?
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