
Integration
Notes by Walter Noll, 1986, rev. 1989

1 Function spaces and algebras

Let S be any non-empty set. The set

Fun S := Map(S, R)

of all real-valued functions on S acquires the structure of a linear space
when addition and scalar multiplication are defined value-wise. FunS has
also the structure of a ring whose multiplication is defined by value-wise
multiplications of functions.

FunS has also a natural order ≤, which is defined by

f ≤ g :⇔ f(x) ≤ g(x) for all x ∈ S. (1.1)

If S contains more than one element, this order on FunS is only partial,
i.e. not total. If f, g ∈ Fun S, then sup{f, g} ∈ Fun S and inf{f, g} ∈ Fun S

exist, i.e. the order ≤ in FunS is a lattice-order. We have

(sup{f, g})(x) = max{f(x), g(x)}

(inf{f, g})(x) = min{f(x), g(x)}







for all x ∈ S. (1.2)

For every f ∈ Fun S we put

f+ := sup{f, 0}, f− := − inf{f, 0}. (1.3)

We then have

f = f+ − f−, |f | = f+ + f−, (1.4)

where |f | ∈ Fun S is defined by |f |(x) := |f(x)| for all x ∈ S.
The support Supt f of a function f ∈ Fun S is the subset of S given by

Supt f := {x ∈ S | f(x) 6= 0}. (1.5)

We note that Supt (f +g) ⊂ Supt f ∪ Supt g, Supt fg = Supt f ∩ Supt g,
and Supt |f | = Supt f for all f, g ∈ Fun S.
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A subspace of FunS is called a function space. To decide whether a
non-empty subset of FunS is a function space, one has to ascertain whether
it is stable under addition and scalar multiplication. A subspace of FunS

that is stable under multiplication is called a function algebra. Examples
of function algebras as the set of all continuous functions in FunS and the set
of all functions in FunS that have a bounded range. The set of all constants
is a function algebra that is naturally isomorphic to the real field R. The
isomorphism associates with each constant its value. Ordinarily, we use the
same symbol for a number in R and the corresponding constant in FunS.

Let I be a genuine interval. If f ∈ Fun I, we denote the set of disconti-
nuities of f by

Disf := {t ∈ I | f is not continuous at t} (1.6)

We note that Dis(f + g) ⊂ Disf ∪ Dis g, Dis(fg) ⊂ Disf ∪ Dis g and
Dis|f | ⊂ Disf .We say that f ∈ Fun I is nearly continuous if Disf is
finite.

The set of all functions in FunI with bounded range, the set of all func-
tions in FunI with bounded support, and the set of all nearly continuous
functions in FunI each are function algebras. The intersection of these three
function algebras is again a function algebra, which we denote by BbncI, so
that

Bbnc I = le{f ∈ Fun I | Rng f is bounded, Supt f is bounded, Disf is finite}
(1.7)

It is easily seen that if f, g ∈ Bbnc I then also sup{f, g}, inf{f, g} ∈ Bbnc I.
In particular, f ∈ Bbnc I implies f+, f−, |f | ∈ Bbnc I. We note that the
non-zero constants do not belong to BbncI if I is not bounded.

Given f ∈ Fun R and s ∈ R, we call f ◦ (ι − s) the translation of f by
the amount s. Intuitively, if s > 0, the graph of f ◦ (ι − s) is obtained by
shifting the graph of f to the right by the distance s. Let A be a subset of
R. Recall the the characteristic function chA ∈ Fun R of A is given by

chA(t) :=
1 if t ∈ A

0 if t ∈ R\A

}

(1.8)

Given s ∈ R we have

chA ◦ (ι − s) = ch(A+s), where A + s := {t + s | t ∈ A}. (1.9)

2



We now deal with BbncR. The characteristic function chI of an interval
I belongs to BbncR if and only if I is bounded. If f ∈ Bbnc R, it is obvious
that then also f ◦ (ι − s) ∈ Bbnc R for every s ∈ R. Hence we can define,
for each s ∈ R

Ts : Bbnc R → Bbnc R by Tsf := f ◦ (ι − s). (1.10)

It is easily seen that Ts is linear, i.e. that Ts ∈ Lin Bbnc R for all s ∈ R and
isotone, i.e. that

f ≤ g ⇒ Tsf ≤ Tsg for all s ∈ R. (1.11)

2 Definition of the integral

We wish to associate with every function f ∈ Bbnc R a number Igl f , the
integral of f . Thus, Igl should be a functional on BbncR i.e., a mapping from
Bbnc R to R. Intuitively, if f ≥ 0, the Igl f should be the area measure of
the region between the graph of f and the horizontal axis. If f ∈ Bbnc R is
arbitrary, we should have Igl f = Igl f+ − Igl f−.

We will give an indirect definition of the integral. First, we will say that
an integral is a functional with certain properties, properties which reflect
some of our intuitive notions about area measures. Then we will prove that
there exists exactly one integral, which makes it then legitimate to refer to
the integral.

Defintiion 1: A functional Igl : BbncR → R is called an integral if

(a) Igl is linear

(b) Igl is isotone, i.e. f ≥ g =⇒ Igl f ≥ Igl g.

(c) Igl is translation invariant, i.e.

Igl ◦ Ts = Igl for all s ∈ R

and

(d) Igl ch[0,1[ = 1.

We note that if (a) is valid, then (b) is equivalent to
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(b′) f ≥ 0 =⇒ Igl f ≥ 0 for all f ∈ BbncR.

Theorem 2.1. There is exactly one integral Igl. It has the property that

(d1) Igl chI = sup I − inf I for all bounded non-empty intervals I.

We defer the proof to the last section.

If I := {a} is a singleton, (d1) yields Igl ch{a} = 0. If h ∈ Fun R has finite
support, we have

h =
∑

t∈ Supt h

h(t) ch{t}.

Using the linearity of Igl it follows that Igl h = 0. Applying this result to
the difference h := f − g of two functions and using the linearity again, we
obtain the following result:

Proposition 2.1. If f, g ∈ Bbnc R agree on all but a finite number of points
in R, then Igl f = Igl g.

Definition 2: Let S ∈ Sub R and f ∈ Fun R be given: if I is an interval

included in S, we define f |0I ∈ Fun R by

f |0I(t) :=

{

f(t) if t ∈ I

0 if t ∈ R\I

}

(2.1)

If f |0I ∈ Bbnc R we define the integral of f over I by

∫

I

f := Igl f |0I . (2.2)

Remark 1: Assume that a, b ∈ R, a < b, that f is a function whose domain
includes [a, b], and that f |[a,b] is continuous. By the Theorem on Attain-
ment of Extrema, Rng f |[a,b] = f>([a, b]) is then a bounded set. Hence

f |0[a,b] ∈ Bbnc R and

∫

[a,b]

f is meaningful.

Remark 2: If K is an interval and if f ∈ Bbnc K then, for every interval

I included in K we have f |0I ∈ Bbnc R and hence

∫

I

f is meaningful.
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Proposition 2.2. Let f be a function whose domain includes the interval I

and assume that f |0I ∈ Bbnc R. If P is a finite interval-partition of I, we
then have f |0J ∈ Bbnc R for all J ∈ P and

∫

I

=
∑

J∈P

∫

J

f. (2.3)

Definition 3: Given an interval I and f ∈ Bbnc I, we define:

∫ b

a

f :=























∫

[a,b]

f if a ≤ b

−
∫

[b,a]

f if b < a























for all a, b ∈ I. (2.4)

It is clear that

∫ b

a

f = −
∫ a

b

f for all a, b ∈ I, (2.5)

and it follows from Prop. 2 that

∫ b

a

f +

∫ c

b

f =

∫ c

a

f for all a, b, c ∈ I. (2.6)

3 Some theorems of integral calculus

In the previous section we already listed the basic properties (a), (b), (c),
(b′), and (d1) of the integral and we derived a few easy consequences. Here
we derive some other important consequences. We assume that an Interval
I and a function f ∈ Fun I are given.

Proposition 3.1. If f ∈ Bbnc I then |f | ∈ Bbnc I and

∣

∣

∣

∣

∫

I

f

∣

∣

∣

∣

≤
∫

I

|f |. (3.1)

Proof The fact that f ∈ Bbnc I implies |f | ∈ Bbnc I was already mentioned
in Sect. 1. Clearly we have −|f | ≤ f ≤ |f |. Since Igl is linear we have
∫

I

(−|f |) = −
∫

I

|f |), and hence, since Igl is isotone, we obtain
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−
∫

I

|f | ≤
∫

I

f ≤
∫

I

|f |

which is equivalent to the assertion.

Proposition 3.2. If f ∈ Bbnc I and a, b ∈ I with a < b, then

inf f>([a, b]) ≤ 1

b − a

∫ b

a

f ≤ sup f>([a, b]). (3.2)

Proof We have inf f>([a, b]) ≤ f |[a,b] ≤ sup f>([a, b]). Hence, by the isotonic-
ity and linearity of the itnegral, we get

inf f>([a, b])

∫ b

a

1 ≤
∫ b

a

f ≤ sup f>([a, b])

∫ b

a

1. (3.3)

Since

∫ b

a

1 = Igl ch[a,b] = b − a by property (d1), the assertion follows.

Proposition 3.3. If f ∈ Bbnc I then

∫

I

|f | = 0 ⇔ f has finite support.

Proof If f has finite support, so has |f |, and

∫

|

|f | = 0 follows from the

remarks after the Theorem in Sect. 2.
Assume now that f does not have finite support. Since Disf is finite and

since I has at most two endpoints, we can choose an interior point c ∈ I

such that |f(c)| > 0 and such that f and hence |f | is continuous at c. We
choose α ∈]0, |f(c)| (for example (α := 1

2
|f(c)|) and determine δ ∈ P

× such
that ]c − δ, c + δ[⊂ I and

|f(c)| − |f ||]c−δ,c+δ[ ≤ |f(c)| − α

so that

|f | ≥ α ch ]c−δ,c+δ[ |I .

The isotonicity of the integral and (d1) of Sect. 2 give
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∫

I

|f | ≥
∫

I

α ch]c−δ,c+δ[ = α2δ > 0.

Proposition 3.4. Let c ∈ I be given. If f |[a,b] ∈ Bbnc[a, b] for every a, b ∈ I

with a < b then the function F : I → R defined by

F (t) :=

∫ t

c

f for all t ∈ I (3.4)

is continuous.

Proof Let a, b ∈ I with a < b be given. It follows from (3.4), from (2.5) and
(2.6) of Sect. 2, and from Props. 3 and 4 that

|F (t) − F (s)| =

∣

∣

∣

∣

∫ t

s

f

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

x

|f |
∣

∣

∣

∣

≤ |t − s| sup |f |> ([a, b]) (3.5)

holds for all s, t ∈ [a, b]. If ε ∈ P
× is given, we may choose δ such that

δ sup |f |>([a, b]) ≤ qε and conclude from (3.5) that

|s − t| < δ ⇒ |F (t) − F (s)| < ε

for all s, t ∈ [a, b]. We conclude that F |[a,b] is uniformly continuous for all
a, b ∈ I with a < b and hence that F is continuous.

Theorem 3.1. Fundamental Theorem of Calculus: Assume that f ∈
Bbnc I. Let c ∈ I be given and let F : I ⇔ R be defined by (3.4). If f is
continuous at t ∈ I, then F is differentiable at t and ∂tF = f(t).

Proof Using the definition (3.4) of F as well as (2.5) and (2.6) of Sect. 2,
we find that

1

s
(F (t + s) − F (t)) =

1

s

∫ t+s

t

f (3.6)

for all s ∈ R
× such that t + s ∈ I. Now let ε ∈ P

× be given. Since f is
continuous at t, we can determine δ ∈ P

× such that

f>(]t − δ, t + δ[ ∩I) ⊂ ]f(t) − ε, f(t) + ε[,
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and hence

sup f>(]t − δ, t + δ[ ∩I) ≤ f(t) + ε

and

f(t) − ε ≤ inf f>(]t − δ, t + δ[ ∩I).

Using Prop. 4 we easily conclude that

f(t) − ε ≤ 1

s

∫ t+s

t

f ≤ f(t) + ε for all s ∈ ] − δ, δ[ ∩ (I − t). (3.7)

Since ε ∈ P
× was arbitrary, it follows from (3.6) and (3.7) that

lim
s→0

1

s
(F (t + s) − F (t)) = f(t),

which is the assertion.

Corollary 3.1. If f : I → R is continuous then it has antiderivatives. If G

is an antiderivative of f and s, t ∈ I then

∫ t

s

f = G(t) − G(s). (3.8)

Proof Let s ∈ I be given. Since f is continuous, we have f |[a,b] ∈ Bbnc [a, b]
for all a, b ∈ I with a < b (see Remark 1 of Sect. 2), and hence we may
apply the Fundamental Theorem of Cale ulus with c := s in (3.4) to f and
obtain an antiderivative F that satisifes F (s) = 0. If G is any antiderivative
of f , we have F • = G• = f and hence (F − G)• = 0. Using a theorem
of differential calculus, we conclude that F − G is a constant, i.e. that
F − G = F (s) − G(s) = −G(s). We conclude that F (t) = G(t) = G(s) for
all t ∈ I, which is the assertion.

The Formula (3.8) is particularly useful for finding integrals of those func-
tions for which antiderivatives can be obtained by methods other than inte-
gration. The formula (3.4) is also often useful for defining interesting new
functions from known functions. For example, the function log : P

× → R

can be defined by

log(t) :=

∫ t

1

1

ι
for all t ∈ P

×.
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Other examples are the integral sine function Si : R → R defined by

Si(t) :=

∫ t

0

sin

ι
for all t ∈ R

and the Gauss error function Φ : R → R defined by

Φ(t) =
2√
π

∫ t

0

e−ι2 for all t ∈ R.

4 Uniqueness and existence of the integral

We now give the proof of the existence and uniqueness theorem of Sect.
2. First we introduce some notation and then we prove several preliminary
lemmas.

Let a bounded non-empty interval I be given. The left endpoint of I is
inf I and the right endpoint is sup I. The closure I of I is defined by

I := [inf I, sup I], (4.1)

i.e. I is obtained from I by joining the endpoints of I to I. The length of I

is defined by

le(I) := sup I − inf I. (4.2)

It is clear that I and its closure I have the same lengths: le(I) = le(I). If I

is a non-empty bounded interval and if P is a finite interval-partition of I,
then

le(I) =
∑

J∈P

le(J). (4.3)

For every p ∈ N, we consider the partition

Pp :=

{

[
n

2p
,
n + 1

2p
[ | n ∈ Z

}

=

{

[0,
1

2p
[ +

n

2p
| n ∈ Z

}

(4.4)

of R into half-open intervals of length
1

2p
. If q ≥ p, then Pq is a refinement

of Pp and hence, by (4.3), we have
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1

2p
= le(I) =

∑

J∈Pq ,J⊂I

le(J) for all I ∈ Pp. (4.5)

Let f ∈ Bbnc R be given. Since f is bounded, we have inf f>(I) ∈ R and
sup f>(I) ∈ R for all intervals I. Let p ∈ N be given. Since f has bounded
support, we have f |I = 0 and hence sup f>(I) = inf f>(I) = 0 for all but a
finite number of intervals I in Pp. Hence

Sp(f) :=
1

2p

∑

I∈Pp

sup f>(I), Sp(f) :=
1

2p

∑

I∈Pp

inf f>(I) (4.6)

are well defined, because only a finite number of terms in the sums can be
non-zero.

Lemma 4.1. The sequence
(

Sp(f) | p ∈ N
)

is antitone and bounded below
by every Sq(f), q ∈ N. The sequence

(

Sp(f) | p ∈ N
)

is isotone and bounded

above by every Sq(f), q ∈ N.

Proof: Since sup f>(I) ≥ sup f>(J) whenever J ⊂ I, we see, with the help
of (4.5), that

1

2p
sup f>(I) = sup f>(I)

∑

J∈Pq ,J⊂I

le(J) ≥
∑

J∈Pq ,J⊂I

sup f>(J)le(J)

=
1

2q

∑

J∈Pq ,J⊂I

sup f>(J)

is valid for all I ∈ Pp such that q ≥ p. Summing this inequality over all
I ∈ Pq and observing (4.6), we obtain Sp(t) ≥ Sq(f). Hence

(

Sp(t) | p ∈ N
)

is antitone. A similar argument shows that
(

Sp(f) | p ∈ N
)

is isotone.
Since inf f>(I) ≤ sup f(I) for all non-empty intervals I, we immediately

conclude that S(f) ≤ Sp(f) for all p ∈ N. Using the already proved face
that (Sp(t) | p ∈ N) is antitone and (Sp(f) | p ∈ N) isotone, it follows that

Sp(f) ≤ Sq(t) for all p, q ∈ N, which proves the boundedness assertions.

Lemma 4.2. The sequences (S(f) | p ∈ N) and (S(f) | p ∈ N) both converge
and have the same limit

S(f) := lim
p→∞

Sp(f) = lim
p→∞

Sp(t). (4.7)
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Proof: The convergence of the sequences follows from Lemma 1. To prove
that their limits are the same, we must show that

lim
p→∞

(

Sp(f) − Sp(f)
)

= 0.

Since the sequence
(

Sp(f) − Sp(f) | p ∈ N
)

has positive terms and is antitone
by Lemma 1, it is sufficient if we show that for every ε ∈ P

× one can find a
q ∈ N such that

∑

J∈Pq

(sup f>(J) − inf f>(J))le(J) = Sq(f) − Sq(t) < ε (4.8)

We use the abbreviations

m := #Disf, b := sup Rngf − inf Rngf. (4.9)

We may assume, without loss, that f 6= 0 and hence b > 0.
Now let ε ∈ P

× be given. We determine p ∈ N such that

2mb

2p
≤ ε

2
. (4.10)

For every I ∈ Pp, one of the following three mutually exclusive situations
must obtain:

(i) f |I fails to be continuous,

(ii) f |I is continuous and not zero,

(iii) f |I = 0.

Hence, if we define

D :=
⋃

{I ∈ Pp | Dis f |I 6= ∅} , (4.11)

C :=
⋃

{I ∈ Pp | Dis f‖I = ∅ and f |I 6= 0} , (4.12)

we have

D ∩ C = ∅ and Suptf ⊂ D ∪ C. (4.13)
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Now let q ∈ p + N be given. Since Pq is a refinement of Pp and since
Supt f is bounded, it follows from (4.13) that {J ∈ Pq | J ⊂ D} and {J ∈
Pq | J ⊂ C} are finite and, by (4.5) that

∑

J∈Pq ,J⊂D

le(J) = δ :=
∑

I∈Pp,I⊂D

le(I), (4.14)

∑

J∈Pq ,J⊂C

le(J) = γ :=
∑

I∈Pp,I⊂C

le(I). (4.15)

Since a given t ∈ I can belong to at most two closures of intervals belonging
to Pp, we conclude, using (4.14), (4.11), (4.91) (5)1 and (4.10), that

δ ≤ 2m

2p
≤ ε

2b
. (4.16)

If follows from (4.9)2, (4.14), and (4.16) that

∑

J∈Pq ,J⊂D

(sup f, (J) − inf f>(J))le(J) ≤ ε

2
. (4.17)

We now assume that C 6= ∅ and hence γ > 0 in (4.15). Let I ∈ Pp

with I ⊂ C be given. Since f |I is continuous by (4.12) and since I is closed
and bounded, the Uniform Continuity Theorem ensures that f |I is uniformly
continuous. Hence, we can choose σI ∈ P

× such that

|s − t| < σI =⇒ |f(s) − f(t)| <
ε

2γ
for all s, t ∈ I ,

and hence

sup f>(J) − inf f>(J) = sup{|f(s) − f(t)| | s, t ∈ J} <
ε

2γ
(4.18)

for every interval J included in I such that le(J) < σI . Since

{I ∈ Pp | I ⊂ C} is finite, we can determine q ∈ p + N such that
1

2q
< σI for

all I ∈ Pp such that I ⊂ C. Hence, since le(J) =
1

2q
for all J ∈ Pq, (4.18) is

valid for all J ∈ Pq such that J ⊂ C. Summing (4.18) over all such J and
using (4.15), we obtain
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∑

J∈Pq ,J⊂C

(sup f>(J) − inf f>(J))le(J) ≤ ε

2γ
γ =

ε

2
. (4.19)

If C = ∅ then (4.19) is trivially valid. We now add the inequalities (4.17)
and (4.19). Observing (4.13), we conclude that (4.8) holds.

Lemma 4.3. The functional S : Bbnc R → R defined by (4.7) has the prop-
erty that S(chI) = le(I) for all non-empty bounded intervals I.

Proof Let I be a non-empty bound interval. We observe that for every
J ∈ Sub R, we have

sup chI>(J) =

{

1 if I ∩ J 6= ∅
0 if I ∩ J = ∅

}

,

inf chI>(J) =

{

1 if J ⊂ I

0 if J 6⊂ I

}

.

Now, let p ∈ N be given. Then

Kp :=
⋃

{J ∈ Pp | I ∩ J 6= ∅}
is a bounded interval that includes I and

Lp :=
⋃

{J ∈ Pp | J ⊂ I}
is a bounded interval included in I. Hence, in view of (4.3), the definitions
(4.6) give

Sp(chI) =
∑

J∈Pp

(sup chI>(J))le(J) =
∑

J∈Pp,I∩J 6=∅

le(J) = le(Kp),

Sp(chI) =
∑

J∈Pp

(inf chI>(J))le(J) =
∑

J∈Pp,J⊂I

le(J) = le(Lp).

Since Lp ⊂ I ⊂ Kp we conclude that

Sp(chI) ≤ le(I) ≤ Sp(chI) for all p ∈ N.

Taking the limit p → ∞, we obtain the desired result from Lemma 2.
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Lemma 4.4. There is exactly one functional S ′ : Bbnc R → R that is linear
and isotone and has the property

S ′(chI) = le(I) =
1

2p
when I ∈ Pp, p ∈ N. (4.20)

Moreover we have S ′ = S, where S is defined by (4.7).

Proof: Let S ′ be a functional with the desired properties. Let f ∈ Bbnc R

and p ∈ N be given. It is easily seen that

∑

I∈Pp

(inf f>(I))chI ≤ f ≤
∑

I∈Pq

(sup f>(I))S ′(chI).

Since S ′ is assumed to be isotone and linear, it follows that

∑

I∈Pp

(inf f>(I))S ′(chI) ≤ S ′(f) ≤
∑

I∈Pp

(sup f>(I))S ′(chI).

Since (4.20) is assumed to hold, the definitions (4.6) yield

Sp(f) ≤ S ′(f) ≤ Sp(f).

Taking the limit p → ∞ and using Lemma 2, we obtain S(f) = S ′(f).
Since f ∈ Bbnc R was arbitrary, we see that S is the only possibility for a
functional S ′ with the desired properties.

It is a fairly easy exercise to show that S ′ := S does indeed have the
desired properties.

Proof of the Theorem Let Igl be an integral, i.e., a functional with the
properties (a) - (d) of Definition 1. Let p ∈ N be given. We observe that

ch[0,1[ =
∑

n∈(2p)[

ch[0, 1
2p [+ n

2p

Since ch[0, 1
2p [+ n

2p
= T n

2p
ch[0, 1

2p [ by (1.9) of Sect. 1, it follows from the assumed
linearity and translation invariance of Igl that

Igl(ch[0,1[) = 2p Igl (ch[0, 1
2p [).

The assumption Igl (ch[0,1[) = 1 gives Igl(ch[0, 1

2P [) =
1

2p
. For every I ∈ Pp

we have chI = Tsch[0, 1
2p [ for a suitable s ∈ R. Hence, by the translation

invariance of Igl, we have
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Igl(chI) =
1

2p
= le(I) for all I ∈ Pp,

i.e., (4.20) is satisfied. It follows from Lemma 4 that S is the only possibility
for an integral.

If we define Igl := S, it follows from Lemma 4 that Igl has the properties,
(a), (b), and (d). In order to prove that it also has the property (c), we let
s ∈ R be given and define

Igl′ := Igl ◦ Ts = S ◦ Ts.

Since both Igl and Ts are linear and isotone, so is Igl′. Let I be any non-empty
bounded interval. It follows from (1.9) of Sect. 1 and Lemma 3 that

Igl′(chI) = Igl (TschI) = Igl (chI+s) = le(I + s) = le(I).

Hence Igl′ has the property (4.20). By the uniqueness assertion of Lemma
4, it follows that Igl = Igl′ = Igl◦Ts, which proves the translation invariance
of Igl.

The property (d1) of the integral follows from Lemma 3.

5 Extended Integrals

Let a genuine interval I be given. We denote the set of all bounded in-
tervals included in I by Bint I. We say that a function f ∈ Fun I is
nearly continuous if f |J has only a finite number of discontinuities for every
J ∈ Bint I and we use the notation

Nc I := {f ∈ Fun I | Dis (f |J) if finite for every J ∈ Bint I} (5.1)

for the set of all nearly continuous functions on I. It is clear the Nc I is
a subspace of the linear space Fun I. The of all positive nearly continuous
functions on I will be denoted by

Pnc I := {f ∈ Nc I | f ≧ 0}. (5.2)

For every f ∈ Pnc I and every γ ∈ P we define Cγf ∈ Pnc I by
Cγf := inf{f, γ}, so that
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(Cγf)(t) := min{f(t), γ} for all t ∈ I (5.3)

and we say that Cγf is obtained from f by truncation at γ.
Let f ∈ Pnc I be given. Using the definitions of Sect. 1, it is easily seen

that

Cγf |0J = Cγ(f |0J) ∈ Bbnc R

and hence that

∫

J

Cγf = Igl(Cγf)|0J ∈ P (5.4)

is meaningful for every γ ∈ P and every J ∈ Bint I.
We note that

(γ′ ≥ γ and J ′ ⊂ J) =⇒
∫

J ′

Cγ′f ≥
∫

J

Cγf (5.5)

for all γ, γ′ ∈ P, and J, J ′ ∈ Bint I.

Definition 1: For every f ∈ Pnc I, we define the integral

∫

I

f ∈ P of f

by

∫

I

f = sup{Igl(Cγf |0J) | γ ∈ P, J ∈ Bint I} (5.6)

We say that f ∈ Pnc I is integrable if

∫

I

f < ∞.

It is clear that if f ∈ Bbnc I and f ≥ 0, then Cγf |0J = f when

γ ≥ sup Rng f and Supt f ⊂ J and hence that the integral

∫

I

f in the

sense of (5.6) gives the same result as the integral defined by (1.2) as it
should. Hence the concept of integral of Def.1 is an extension of the concept
of the integral given by (1.2).

If I is a bounded interval to begin with, then (5.6) reduces to

∫

I

f = sup{Igl(Cγf |0) | γ ∈ P}. (5.7)

If f is a bounded function, i.e., if Rng f is bounded, then (5.6) reduces to
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∫

I

f = sup{Igl(f |0J) | J ∈ Bint I}. (5.8)

Proposition 5.1. Pnc I is an additive submonoid of Fun I and the mapping

(f 7→
∫

I

f) : Pnc I → P is an additive-monoid homomorphism, and it is

isotone. In particular, given f, g ∈ PncI such that f ≤ g, if g is summable,
so is f , and if f fails to be summable, so does g.

Proof. It is clear that Pnc I contains the zero-function and that is is stable

under value-wise addition. It is also evident that

∫

I

0 = 0. To show that

the integral preserves additions, let f, g ∈ Pnc I be given. It is clear that
f + g ∈ Pnc I. Let γ, γ′ ∈ P

× and J, J ′ ∈ BintI be given. Using the results
of Sect. 2 and (5.6), we see that

∫

J

Cγf +

∫

J ′

Cγ′g ≤
∫

J∪J ′

Cmax{γ,γ′}(f + g) ≤
∫

I

f + g.

Hence, since γ, γ′ ∈ P and J, J ′ ∈ Bint I were arbitrary, it follows from (5.6)
that

∫

I

f +

∫

I

g ≤
∫

I

(f + g). (5.9)

On the other hand, let γ ∈ P and J ∈ Bint I be given. It is easily seen that
Cγ(f + g) ≤ Cγf +Cγg and hence, by the linearity and isotonicity of Igl and
by(5.6), that

∫

I

(f + g) ≤
∫

I

f +

∫

I

g) (5.10)

It follows from (5.9) and (5.10) that

∫

I

(f + g) =

∫

I

f +

∫

I

g.

The isotonicity of (f 7→
∫

I

f) : Pnc I → P is an immediate consequence

of the isotonicity of Igl .

Definition 2: We say that a given f ∈ Nc I is integrable if both f+ ∈
Pnc I and f− ∈ Pnc I are integrable in the sense of Def. 1. If this is the

case, we put
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∫

I

f :=

∫

I

f+ −
∫

I

f− ∈ R (5.11)

and call it the integral of f . We use the notation

Inc I := {f ∈ Nc I | f is integrable}. (5.12)

The following results are analogous to Props. 4-6 of Sect. 4 of Limits

and Continuity concerning summability. Their proofs are also analogous
to the corresponding results on summability.

Proposition 5.2. A given f ∈ Nc I is integrable if and only if |f | ∈ Nc I

is integrable.

Proposition 5.3. The set Inc I is a subspace of the linear space Nc I and
the mapping

(f 7→
∫

I

f) : Inc → R (5.13)

is linear and isotone.

Proposition 5.4. A given f ∈ Nc I is integrable with

∫

I

f = s if and only

if, for every ε ∈ P
×, there is J ∈ Bint I and η ∈ P such that

∣

∣

∣

∣

∫

K

sup{inf{f, γ},−γ} − s

∣

∣

∣

∣

< ε for all K ∈ Bint J and γ, γ′ ∈ η + P.

(5.14)

We now consider the case when I := R and we define Igl : Inc R → R by

Igl(f) :=

∫

R

f for all f ∈ Inc R. (5.16)

Proposition 5.5. Inc is a translation-stable subspace of Nc, and Inc R → R

is linear, isotone, and translation-invariant. Moreover, Bbnc R is a subspace
of Inc R and Igl = Igl|Bbnc R.
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