Differentiation
Notes by Walter Noll, 1991

1 Differentiability, derivatives

Let I be a genuine real interval. Recall that the space of all functions with
domain [ is denoted by Fun I and the subspace of all continuous functions
with domain / by Cont I.

Let f € Fun and t € I be given. Consider the new function

(folt+d)) = f(1)

L

(=t + D\{0} — R. (1.1)

Here, we have omitted the symbols that indicate necessary adjustments of
domain or codomain. Also, we have denoted constants by their values. Had
we not done so, this function would have been written

I
— f®)(—t4n—r

f © (t(—t+])—>R + L|(7t+1)>

ticern

(1.2)

Clearly, it makes sense to ask whether this new function has a limit at 0.

Definition 1: We say that f : [ — R is differentiable at a given t € I if
the limit

folt+u)—f(t)
L
exists. If this is the case, then O,f is called the derivative of f at t.
We denote the set of all functionsf € Fun I that are differentiable at t by
Diff, I.
We say that f is differentiable if it is differentiable at every t € I. If
this is the case, the derivative f®: I — R of f is defined by

of = li(l)rn (1.3)

fo(t) =0 f forallt € I. (1.4)

We denote the set of all functions f € Funl that are differentiable by
Diff I.



We now list some basic facts of differential calculus. The first three are
fairly easy to prove.

Proposition 1.1. If f € Fun/l is differentiable at t € I then f is also
continuous at t. If f € Funl is differentiable then f is also continuous .

The converse if false: A function can be continuous at a point without
being differentiable at that point. For example, the absolute-value function
(t — [t|]) : R — R is continuous but not differentiable at 0. One can even
construct a function f :)0, 1[— R which is continuous but not differentiable
at every t €]0,1[. (The construction is very difficult.)

Proposition 1.2. For every t € I, Diff, I is a subspace of Funl and 0, :
Diff,; I — R is a linear functional.
The mapping (f — f*) : Diff I «— Cont I is linear.

It is evident, from the definition, that all constants are differentiable and
have the same derivative, namely the constant zero. The following converse
is not as trivial and depends strongly on the assumption the [ is a genuine
interval.

Proposition 1.3. Let a f € Diff I be given. If f* =0, then f is a constant.
We say that a function F' € Diff I s an anti-derivative of a given func-
tion f € Funl if F'* = f. If f has such an anti-derivative F', then
{F +c| cis a constant}

is the set of all anti-derivatives of f.
The following theorems will be presented with proofs.

Theorem 1.1. (product rule) Let t € I and f,g € Diff, I be given. Then
fg € Diff; I and

O(fg) = f()Org + 0 f)g(2). (1.5)
Given f,g € Diff I we have fg € Diff; I and

(f9)* = f(g") + (f*)g- (1.6)
Proof. To be supplied. n



Theorem 1.2. (inversion rule) Assume that f : I — J is invertible and
differentiable, and that its derivative f® : I — R s continuous. Let

I'=I\f=({0}) ={terl| f(t) #0}, J = f(L). (L.7)
Then f<|, is differentiable and

— o 1 — I’
(1) =0 (1715). (1.8)
Proof. To be supplied. n

Theorem 1.3. Chain Rule: Let genuine intervals I,J, and K and func-
tions f: I — J and g : J — K be given.

If f is differentiable at a givent € I and if g is differentiable at f(t), then
g o f is differentiable at t and

di(g o f) = (Orw9)(Of)- (1.9)
If f and g are both differentiable, so is go f and

(gof)* = ("o N)f* (1.10)

Proof: Assume that f is differentiable at ¢ € I and g is differentiable at
z = g(t). The latter assumption means that the function » : J — R defined
by

g9(x) —g(2) for all x € J\{z}
o — (1.11)

0.9 for x =2z

is continuous at z. Since the differentiability of f at ¢ implies the continuity
of f at t, it follows from Prop. 6,1 in Limits and Continuity that h o f is
continuous at ¢t and hence, by Prop. 7.5 in Limits and Continuity, that

lign(h o f) N = (ho f)(t) = h(z) = 0.g. (1.12)
Noting the Dom (%@) = I\{t} and that / L__ft(t) converges to O f

at t by assumption, it follows from Prop. 7.7 in in Limits and Continuityand
from (1.12) that



lign ((h ° Nlng fL%ff)) = 0.90.f, z:= [f(t). (1.13)

Now let s € I\{t} be given. We then have, by (1.11),

((ho Dl %@) ()= h(ﬂs))w
(9(f(s) —g(f@) f(s) = F(O) o 0

B e =l R
| g LSO it f(s) = f(t)

o) — 9 (0)
S T IOAO | ) - et

s—t
( 0 it f(s)=f(t)
Hence, since s € I\{t} was arbitrary, we have
f=T®) _gof—(g90°f)1)
h = :
( of)|]\{t} L_t L_t
Hence, by (1.13), we conclude that (1.9) is valid. n

Note that there are two statements in each of these theorems. The first
asserts that a certain function is differentiable, the second gives a formula
that tells how to obtain the derivative.

Definition 2: We say that a function f € Diff I is twice differentiable
if its derivative f*® is differentiable and we define its second derivative
f* 1 — R by f** := (f*)*. By recursion, given n € N, we can define
what it means that f € Diff I is n times differentiable and define its n’th
derivative f™ : I — R. We say that the function f € Fun[ is of class
C" and belongs to C"(I) if it is n times differentiable and f™ is continuous.
We say that the function f € Funl is of class C*™ and belongs to C*(I) if
it is n times differentiable for all n € N.
The sets C™(/) with n € N or n := oo are all subspaces of Cont /.



2 Important Theorems

In this section, we assume that a genuine interval I and functions f, g € Fun I
are given.

Theorem 2.1. Local Extremum Theorem: Lett € I given such that t
is not an endpoint of I and that f is differentiable at t. If there is 6 € P*

such that |t — 0,t 4+ 6[C I and
f(t) = max f5(Jt = 6,¢ +6[) or f(t) =min f5(Jt — 0, + d[)

then 0, f = 0.

Proof: To say that f is differentiable at ¢, with derivative J,f, means that
the function h : I — R defined by

fls) = (1) for all s e I\{t}
b P (2.1)

o f for s:=t

is continuous at ¢.

Now let 6 € P* such that |t — 0,¢t + 0] C I be given. Suppose that
O:f = h(t) > 0. It follows from Prop.6.4 in Limits and Continuity that we
can choose s1 € |t,t+d] and sy € |t — 6, t[ such that h(s;) > 0 and h(sy) > 0.
In view of (2.1), this means that

f(s1) = f(t) >s1—t>0 and f(t)— f(s2) >t — s3>0,

Hence f(s2) > f(t) and f(s2) < f(t), showing that f(¢) cannot be the
maximum or the minimum of f5 (]t — §,t + §]).

If 0,f < 0, we apply the argument above to — f instead of f and arrive
at the same conclusion. |

Theorem 2.2. Rolle’s Theorem: Let a,b € I with a # b be given. Assume
that flay is continuous and that fliqp is differentiable. If f(a) = f(b) then
there is at least one t €]a,b| such that 0, f = 0.



Proof: By the Theorem on Attainment of Extrema, f |[a’b] must attain a
maximum and a minimum. Since f(a) = f(b) at least one of these must be
attained at a point ¢ €]a,b[. By the Local Extremeum Theorem, we have

o f =0. [ ]

Theorem 2.3. General Mean Value Theorem: Let a,b € Ibe given.
Assume that flay and glly are continuous and that fliap and glap are
differentiabole. Then there is t €]a,b| such that

(f(b) = f(a)) Org = (9(b) — g(a)) O f. (2.2)

Proof: If f(b) = f(a), we can apply Rolle’s Theorem and determine ¢t €]a, b]
such that 0;f = 0. Then (2.2) is valid because it reduces to 0 = 0.
Assume now that f(b) # f(a). We consider h : I — R defined by

h:=g—Af with A:=

Then

h(b) = h(a) = g(b) — g(a) = A(f(b) — f(a)) =0
and hence h(a) = h(b). Application of Rolle’s Theorem to h shows that
Oth = 0 for some t € ]a, b[ and hence, by (2.3), that 9,9 — Ad,f = 0 for some
t € Ja, b[, which gives (2.2). n

Theorem 2.4. Difference-Quotient Theorem: Let a,b € I with a # b
be given. Assume that f|ap is continuous and that f|.p; is differentiable.
Then

f(b) — f(a)

;€ Rng (f us)”- (2.4)

Proof: Apply the General Mean Value Theorem to the case when g := ¢ |;.
[

Theorem 2.5. L’Hoépital’s Rule: Let f.g € Funl be such that that 0 ¢
Rng f and 0 ¢ Rng f*. Let a be an endpoint of I such that a ¢ I. If f and

g converge to 0 at a and if % converges at a, then g also converges at a and



lim < = lim 2 (2.5)

Y
a fooa f*
Proof: We assume that a is a left endpoint of I and put I := {a} U I.
We assume that f and g converge to 0 at a. This means that the functions

£, : I — R defined by

g(s) forall sel f(s) forall sel

0 for s:=a 0 for s:=a
(2.6)
are continuous at a and hence continuous. Also, for every ¢t € I the functions
qg |]a,t[: g|]a7t[ and fhaﬂg[ = fha,t[ are differentiable.

Now assume that 2— converges at a and put

f.
. g°
¢ :=lim = 2.7
m (27)
Let € € P* be given. We then may determine § € P* such that a+ 96 € I and
9°(s) _ c| <eforall sela,a+dl (2.8)
fo(s)

Now let t € ]a,a+ | be given. By the General Mean Value Theorem, we can
determine s € Ja,a + t[ C |a,a + [ such that

(1) —g(a) _ g°(s)
(t)

g
ORI

t g
t) = fla) f*(s)

By (2.8) we have

<E.

t
'g( ) .
f(t)
Since t €]a, a + 0] was arbitary and since e € P* was arbitrary, we conclude

that < converges to c at a.

The case when a is a right endpoint of I is easily reduced to the case
considered above. |



Theorem 2.6. Taylor’s Theorem: Let n € N* be given and assume that
f is n times differentiable. Let a,b € I with a # b be given. Then there is
t € Ja,b| such that

(b—a)* b—a)"
16y = 32 O o) ¢ L2 (2.9
kent
Proof: Consider the function h : I — R defined by
o (b—0)* (k)
hei=>" 1. (2.10)
kent
An easy calculation, using the formulas ((b — ¢)¥)* = k(b — )* 1,

(f")* = fO+Y for all k € (n — 1)), the Sum-Rule, and the Product Rule,
shows that h is differentiable and

. (=) (n)

=—"f", 2.11

= Tt 2.11)
Now consider the function g : I — R defined by
(b—o)™ , n!

= A h A= — 2.12

0= bt CA with A= T )~ b)) @12

An easy calculation shows that

9(b) = h(®) = g(a). (2.11)
By (2.12) and (2.13), g is differentiable with
g =Rt — (l()n__b):)! A= a()n__t);! (f® — A) (2.14)

By (2.13) we may apply Rolle’s Theorem to g and conclude that ¢*(¢t) = 0
for some t € ]a, b[. Hence, by (2.14), we have A = f™)(t) for some t € ]a, b].
The desired result (2.9) follows from (2.12), and (2.10). n




