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What is a Martingale?

• We begin with a complete probability space L2(⌦,F ,P), with
P a probability measure on F

• Suppose there is a sequence of nested � algebras:
F1 ⇢ F2 ⇢ . . . with every F

i

⇢ F
• Then we have a sequence of nested Hilbert spaces:

L2(⌦,F1,P) ⇢ L2(⌦,F1,P) ⇢ · · · ⇢ L2(⌦,F ,P)

• Let X 2 L2(⌦,F ,P), and define M
n

by

M
n

= ⇡
n

(X )

where ⇡
n

is the Hilbert space projection onto L2(⌦,F
n

,P)



• The Hilbert space projection ⇡
n

(X ) is the same thing as the
conditional expectation of X given F

n

, written E (X |F
n

)

• We have then E (M
n

= ⇡
n

(X ) = X |F
n

) and by properties of
Hilbert space projection we have E (M

n+1|Fn

) = M
n

, for each
n

• A stochastic process M = (M
n

)
n�0 with the relation that

E (M
m

|F
n

) = M
n

a.s. for any m � n is called a martingale

• Typically we go beyond L2 and the analogy to Hilbert spaces:
conditional expectation makes sense in L1

• So we can extend, in some sense, Hilbert space projection to
the Banach space L1

• We also do not need the existence of some random variable X
in the über � algebra F



• In Probability Theory, martingales are often cited as the
mathematical model of a fair game: if M

n

represents your
fortunes at time n, then your conditional expectation of your
future fortune M

m

(with m � n) is E (M
m

|F
n

)

• In other words, E (M
m

|F
n

) is your best guess of your future
fortune, given all observable events up to and including the
present time n

• In stochastic process theory we usually use continuous time:
R+ replaces N; then we have M is a martingale if for any
u � t:

E (M
u

|F
t

) = M
t

a.s.

• Martingales have the elementary property that t 7! E (M
t

) is
constant



• In Probability Theory, an object of interest is the random time
something happens

• A random time is simply a positive valued function
T : ⌦! R+

• This is too general; the class of random times that are
mathematically useful are the stopping times:

• T is a stopping time if {! : T (!)  t} = {T  t} 2 F
t

for
all t � 0

• Theorem: M is a martingale if and only if E (M
T

) = E (M0)
for all stopping times T



Local Martingales

• A local martingale is a stochastic processes which is locally a
martingale

• A process X is a local martingale if there exists a sequence
of stopping times T

n

with T
n

%1 a.s., T
n

< T a.s. on
{T > 0}, and lim

n!1 T
n

= T a.s. and moreover X
t^T

n

is a
martingale for each n

• P. A. Meyer (1973) showed that there are no local
martingales in discrete time; they are a continuous time
phenomenon

• The original example of a local martingale (G. Johnson &
L.L. Helms, 1963) is the inverse Bessel Process: Let W be a
3D Brownian motion not starting at (0, 0, 0), and let
Y

t

=kW
t

k and X
t

= 1
Y

t



Simulations of the Inverse Bessel Process
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Examples of Continuous Local Martingales

• We now have more examples, thanks to S. Kotani (2006)
and Mijatovic & Urusov (2012): Let X be a solution of a
stochastic di↵erential equation (SDE) of the form

dX
t

= �(X
t

)dB
t

; X0 = 1

where B is standard Brownian motion

• X is a positive Strict Local Martingale (a local martingale
that is not a martingale) if for any " > 0:

Z "

0

x

�(x)2
dx =1 and

Z 1

"

x

�(x)2
dx <1



Simulation of the solution of an SDE of M-U type



A Little History

• The Doob-Meyer Decomposition, P.A. Meyer (1963): X
a submartingale of Class D, then

X
t

= M
t

+ A
t

(uniquely)

with M a martingale and A an increasing, predictably
measurable process

• Local Martingales were invented by K. Itô and S. Watanabe
in 1965 (2 years after Johnson & Helms) to obtain a general
multiplicative decomposition of multiplicative functions of
Markov processes



Local Martingales

• Doob-Meyer was then extended easily to no longer needing
Class D if M were a local martingale and A still a predictably
measurable increasing process

• Stochastic Integration (H. Kunita and S. Watanabe, 1967;
P.A. Meyer, 1967): the integral

R
t

0 H
s

dM
s

need not be
martingale even if M were one, but it is always a local
martingale (in the continuous case); in the general case it’s a
sigma martingale, a slight generalization



Strict Local Martingales in Finance

• Absence of Arbitrage Opportunities: The gold standard for
this is the condition No Free Lunch with Vanishing
Risk⇠ : NFLVR

• The goal is to show that if one has a positive price process
(such as a stock price), then there exists an equivalent
probability measure that turns the price process into a
martingale

• Such a result, first proved in a very special case by J.M.
Harrison & S. Pliska, J.M. Harrison & D. Kreps
(1978-1981), was extended by Kreps to a more general case;
but it was too complicated to be useful.

• F. Delbaen and W. Schachermayer extended it to its
present (and useful!) form in two papers in 1994 & 1998

• Except when S is bounded, in the continuous case they
needed strict local martingales for the theorem to be true



Strict Local Martingales and Stochastic Volatility

• A simple stochastic volatility model (sometimes called a
Heston paradigm):

dX
t

= �
t

X
t

dB
t

; X0 = x > 0 (1)

d�
t

= ↵�
t

dZ
t

; �0 = � > 0

where Z
t

= ⇢W
t

+
p

1� ⇢2B
t

, and (W ,B) is a standard 2D
Brownian motion, ↵ > 0, and ⇢ 2 [�1,+1] is the correlation
parameter

• P.L. Lions & M. Musiela (2007) show that, depending
primarily on the values of ⇢, the solution of the system (1)
gives rise to strict local martingales, and therefore is no longer
“meaningful” for its usual applications to finance

• A similar result was obtained by L. Andersen and V.
Piterbarg (2007)



Models of Financial Bubbles

• Let S = (S
t

)
t�0 be a nonnegative price process of (to be

concrete) a stock

• The fundamental price of S under a risk neutral measure Q
is

S⇤
t

= E
Q

{ the future cash flow of the stock |F
t

}

• Typically, S
t

= S⇤
t

as should be the case if markets are
“rational”

• In a bubble situation, �
t

⌘ S⇤
t

� S
t

; �
t

� 0

• The most interesting case is the finite horizon case: working
on the time interval [0,T ]



• Theorem: In the finite horizon case, there is a bubble if and
only if S is a strict local martingale, and S⇤ is a martingale
(Jarrow-P2-Shimbo, 2007, 2010)

• We do not need to know what S⇤ is, if we can determine that
S is a strict local martingale under the chosen risk neutral
measure Q

• This is not well defined, since there is a choice of risk neutral
measures (incomplete markets), and so the fundamental price
is not well defined if we consider all risk neutral measures
simultaneously

• But if the stock price follows an equation of the form

dS
t

= �(S
t

)dB
t

+ b(t,S
t

,Y
t

)dt; S0 = s0,

then dS
t

= �(S
t

)dB
t

under all the risk neutral measures
(reasonable hypotheses on �, b,Y )



Strict Local Martingales and Filtration Shrinkage

• We assume we have two filtrations F = (F
t

)
t�0 and

G = (G
t

)
t�0 with F ⇢ G

• The optional projection of a stochastic process X = (X
t

)
t�0

onto a filtration F to which it is not adapted, is a process
(oX

t

)
t�0 where oX

t

= E{X
t

|F
t

} a.s., each t � 0 (P.A.
Meyer, 1968; C. Dellacherie, 1972)

• Theorem: Let M be a G martingale. Then oM is an F
martingale

• The above theorem is no longer true in general for G local
martingales



• Theorem: Let X be a local martingale for a filtration G and
let F be a subfiltration of G. Then the optional projection of
X onto F, oX , is an F local martingale if there exists a
sequence of reducing stopping times (T

n

)
n�1 for X in G

which are also stopping times in F.

• Conversely, if X is positive, then a reducing sequence of
stopping times for oX is also a reducing sequence for X in G.
(H. Föllmer, P2, 2010)



The Inverse Bessel Process and Filtration Shrinkage

• Let (B
t

)
t�0 = (B1

t

,B2
t

,B3
t

)
t�0 denote a standard three

dimensional Brownian motion starting at 0, and with natural
completed filtration H

• Let x0 = (1, 0, 0), so that U
t

=k B
t

� x0 k, t � 0 is a Bes(3)
process, with U0 = 1

• Let M
t

= 1/U
t

be the inverse Bessel process which is a strict
local martingale

• We consider the subfiltration F of H defined as

F
t

= �(B1
s

; s  t); t � 0,

• The process
N

t

= E (M
t

|F
t

); t � 0

is the optional projection of M onto the smaller (“shrunken”)
filtration F, a filtration to which M is not adapted



•

N
t

= E (M
t

|F
t

)

= E (2,3){
�
(B1

t

� 1)2 + (B2
t

)2 + (B3
t

)2
�� 1

2 }
= u(B1

t

, t)

where E (2,3) denotes expectation with respect to the second
and third coordinates

• The second line above is justified by the independence of B1

with (B2,B3)

•

u(x , t) =

Z 1

0

�
(x � 1)2 + tr2

�� 1
2 re�r

2/2dr



• A change of variables yields a “closed form” expression for the
function u:

u(x , t) =

r
2⇡

t
exp(

(x � 1)2

2t
)(1� �(

r
(x � 1)2

t
))

where � is the distribution function of a N(0, 1) random
variable

• The F decomposition of N is

N
t

= a local martingale �
Z

t

0

1

s
dL1

s

. (2)

• From equation (2) we see that the optional projection of the
strict local martingale M onto the subfiltration generated by
the first Brownian component yields a supermartingale which
is not a local martingale, since the increasing term in its
remarkable Doob-Meyer decomposition is

R
t

0
1
s

dL1
s



• It is interesting to note that N is in fact a strict local
martingale up to the hitting time T1 of 1 for the Brownian
motion B1, which starts at 0

• The increasing term in (2) has paths which are singular with
respect to Lebesgue measure, while the local martingale term
has a quadratic variation process which is absolutely
continuous. Thus from a Mathematical Finance
perspective, M does not yield arbitrage, but its projection
onto this smaller filtration does in fact yield arbitrage
opportunities

• This observation has been used to describe illusory arbitrage
and to give an explanation of how hedge funds, through
ignorance, sell arbitrage generating strategies (“positive
alpha”) that they think contain arbitrage opportunities (R.
Jarrow & P2, 2013)



Examples of Strict Local Martingales with Jumps

• Recently Fontana-Jeanblanc-Song (2013) and
Kardaras-Dreher-Nikeghbali (2013) have remarked that
there is a paucity of examples of strict local martingales with
jumps, other than that of O. Chybiryakov (2007)

• We present here a way to construct strict local martingales
through filtration shrinkage (P2, 2013)

• Recall the continuous result:

dX
t

= �(X
t

)dB
t

; X0 = 1 (3)

where B is standard Brownian motion

• X is a positive Strict Local Martingale if for any " > 0:
Z "

0

x

�(x)2
dx =1 and

Z 1

"

x

�(x)2
dx <1 (4)



• The idea is to project a solution of (3),(4) onto a smaller
filtration

• Let Z be a G continuous nonnegative strict local martingale

• Let U be an arbitrary continuous G adapted process, and let
⇤ ⇢ [0,1) such that ⇤ has left isolated points, and the left
isolated points contain a sequence tending to 1.

•
⌧
x

= inf{t > 0 : U
t

� x}. (5)

• We define F by

F
t

= �(⌧
x

 s, s  t, x 2 ⇤) (6)



• Theorem: If the reducing stopping times of Z are also
stopping times in F, then the optional projection M of Z onto
F is an F strict local martingale. Moreover it has jumps at
every time T�, where � is a left isolated point of ⇤

• With more hypotheses, we can infer more structure;
specifically, when are the compensators of the jump time
absolutely continuous?



• Theorem: Assume given a Brownian motion B on the space
(⌦,G,P, G) and a set ⇤ ⇢ R+, such that there exists at least
one sequence of left isolated points increasing to 1. We
define F by

F
t

= �(⌧
x

 s, s  t, x 2 ⇤) (7)

Let X be the solution of (3) with conditions (4) holding.
Moreover assume � > 0, � 2 C2, and both of � and ��0 are
Lipschitz continuous. Let M = oX be its projection onto F.
Then M is a strict local martingale, and its jumps have
absolutely continuous compensators.



Connections of the theory of Mathematical Finance

• For stocks, prices in the United States markets are quoted in
pennies.

• This means that even if a price process is modeled as a
continuous process it can be observed only at a grid of prices
(ie, in 1¢units).

• This naturally creates a situation of filtration shrinkage, where
one observes the process only at the times it crosses the grid
of prices separated by penny units.

• This is in the spirit of the work of A. Deniz Sezer (2007)
and Jarrow-P2-Sezer (2007)



The Issue of Transaction Times

• A common interpretation of models in Mathematical Finance
is that a price process evolves continuously, for example
following a di↵usion

• But one can observe only at the random times when a
transaction takes place

• One observes the process at a well ordered sequence of
stopping times, the times when trades occur. It is typically
assumed that nevertheless one “knows” the price process at
all times, especially so if the transaction times occur with high
frequency, a more common event in the modern era with the
presence of high frequency trading and ultra high frequency
trading.



• However this is a small leap, and it is more precise to model
the information one has by the filtration obtained by seeing
the process only at the transaction times, a framework
amenable to the ideas given today

• This allows to give a connection between continuous time
models and “discrete time” models, via a filtration shrinkage
corresponding to the transaction times and the pricing grid
crossing times, in the spirit of Jarrow & P2 (2004, 2012)



The End
Thank You for Your Attention


