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Abstract

Newton’s method is an algorithm for finding the roots of di↵erentiable

functions, that uses iterated local linearization of a function to approxi-

mate its roots. Newton’s method also extends to systems of n di↵eren-

tiable functions in n variables. In this paper, we examine the dynamics of

Newton’s method on system of two bivariate polynomials. We explore the

generalization of Newton’s method to systems of two bivariate polynomi-

als, as well as techniques of computer visualization for the corresponding

dynamics. In particular, we investigate whether the attracting cycles that

arise in the dynamics of Newton’s Method on certain cubic polynomials

of one complex variable also arise in the case of bivariate quadratics.

1 Introduction

Complex dynamics is defined as the study of dynamical systems in the context
of iterated function systems in the complex plane. It is a broad field that can
be examined through many di↵erent perspectives, including Newton’s method.
Newton’s method, applied to a polynomial equation, allows us to approximate
its roots through iteration. Newton’s method is e↵ective for finding roots of
polynomials because the roots happen to be fixed points of Newton’s method,
so when a root is passed through Newton’s method, it will still return the exact
same value. We can see that the points found through iteration of Newton’s
method correspond to distinct components of the Fatou set. From this, we can
determine a function’s basins of attraction- a set of starting points in which
each point in the set iterates to a particular root. Since this can be easily
done for one polynomial, we will consider a system of two nonlinear equations.
We will see that by iterating Newton’s method on the inverse of the Jacobian
matrix for the system, we can calculate the distance for each root and create
an image which displays the basins of attraction for the system. We will see
that the quadratic systems behave quite like the one variable case, while other
systems show interesting results. We will also see that the quadratic systems
behave quite like the one-variable case, in that no attracting cycles will be found;
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however in other systems, attracting cycles may exist due to the fact that there
exists cases where the second derivative maps to noninvertible matrices.

2 Complex Dynamics and Newton’s Method

2.1 Newton’s Method

As we have said, Newton’s method is an iterative algorithm for finding the roots
of a di↵erentiable function. But before we define Newton’s method precisely,
let us make a few normalizing assumptions. In this paper, we will consider
Newton’s method applied specifically to polynomials either real or complex.
The advantage to working with polynomials specifically is that they are well
behaved, in that they are infinitely di↵erentiable and have at most finitely many
roots and critical points. The advantage to working over C is that every non
constant polynomial over C has at least one complex root, by the fundamental
theorem of algebra.

So let us now define Newton’s method. Let f : C ! C be polynomial with
a root ↵, so that f(↵) = 0. Let z0 be a point chosen roughly to approximate
↵. Given that f is di↵erentiable at z0 we may construct an even better better
approximation z1 of ↵ as follows. First we locally linearization of f at z0. This
gives us an a�ne function L

z0 : C ! C whose graph is tangent to f at z0, given
by

L

z0(z) = f

0(z0)(z � z0) + f(z0)

Assuming that f

0(z0) 6= 0, we may solve the linear equation L

z0(z) = 0 and
denote the solution z1:

z1 = z0 �
f(z0)

f

0(z0)

(We note that this assumption is valid for all but finitely many z0 since f has at
most finitely many critical points). Iterating this process, we obtain a sequence
of points (z

n

)
n

that converges, as we will see, to ↵, provided that z0 is chosen
su�ciently close to ↵ to begin with.

Here is a minor, though theoretically preferable, abstraction of the above
outlined procedure:

Given a polynomial f , define the Newton’s function of f , denoted N = N

f

,
given by

N(z) = N

f

(z) = z � f(z)

f

0(z)

Here we generally consider the domain and range of N to be the Riemann sphere
(i.e. C [1) so that N is defined even at singularities of f .

Now, from this perspective, Newton’s method can be seen as the iteration
of Newton’s function on a starting point z0 that is su�ciently close to ↵.
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2.2 Attracting Fixed Points and Basins of Attraction

We make the following useful observation:

Observation The roots of a polynomial f are precisely the fixed points of N
f

.

Proof. Suppose ↵ is a fixed point of N . Then N(↵) = ↵ � f(↵)
f

0(↵) = ↵ only if

f(↵) = 0.
In the other direction, suppose ↵ is a root of f of multiplicity m. Then

f(z) = (z � ↵)mq(z) where q is a polynomial such that q(↵) 6= 0. We compute

N(z) = z � (z � ↵)mq(z)

m(z � ↵)m�1
q(z) + (z � ↵)mq

0(z)

= z � (z � ↵)q(z)

mq(z) + (z � ↵)q0(z)

Now, since q(↵) 6= 0, it follows that N(↵) = ↵.

In addition, roots of f are actually what are known as attracting fixed points
of N .

Definition A fixed point ↵ of N is said to be attracting if |N 0(↵)| < 1. In the
special case that N 0(↵) = 0, ↵ is said to be super-attracting.

To see that roots of f are attracting fixed points of N , we compute that

N

0(z) =
f(z)f 00(z)

[f 0(z)]2

Once again using the factorization f(z) = (z�↵)mq(z), one checks that N 0(↵) =
1 � 1/m, where m is the multiplicity of ↵ as a root of f . Therefore roots of f
are generally attracting fixed points of N , and moreover single roots are super-
attracting fixed points of N .

The technical use of the word “attracting” here is motivated by the local dynam-
ics of N near its attracting fixed points. Imprecisely put, N “pulls” points close
to an attracting fixed point ↵ closer to ↵. Here is the more rigorous version.

Proposition 2.1. Let ↵ be an attracting fixed point of N . Then the sequence
(N,N � N,N

�3
, . . . ) of iterates of N converges uniformly to ↵ on some neigh-

borhood of ↵.

Proof. The proof of this proposition follows from considering the Taylor expan-
sion of N about ↵.

This proposition justifies the previously made claim that Newton’s method
applied to a starting point su�ciently close to a root of f will necessarily con-
verge to that root.
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Moreover, this proposition also implies that any starting point that eventu-
ally iterates into such a neighborhood of a root will converge to that root. This
motivates the following definition

The basin of attraction of an attracting fixed point of N is the set of points
that converge to that fixed point under iteration of N .

We note that the basin of attraction itself is an open set.

Basins of attractions of attracting fixed points of N can be visualized with
computers in the following way. Create a grid of points representing a points in
the complex plane. Iterate Newton’s method on each of these points. Then color
points that converge to di↵erent attracting fixed points of N di↵erent colors.

The following figure illustrates this by visualizing the basins of attraction of
a cubic polynomial whose roots form the vertices of an equilateral triangle in
the complex plane.
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Figure 1: Newton basins for f(z) = (z

2
+ 1)(z �

p
3) in C.

In this image, red represents the basin for the root i, green represents the basin
for the root �i, and blue represents the basin for the root

p
3. We see three

main regions emerge, separated by “bead-shaped” lines. Each main region is a
di↵erent color, meaning each root has a main region of iteration.

2.3 Julia and Fatou Sets

In the above image, we note that almost every point iterates to one of the three
roots. However, we notice points that do not iterate to any root are located
on the boundary of the basins. This is known as the Julia set [3]. The Julia
set is the set on which the dynamics of N are chaotic. One was to see this
is to consider a point on the boundary between two basins of attraction. We
observe that any neighborhood of that point contains points in multiple basins
of attraction. Thus, under iteration of N , this neighborhood gets “torn apart”
because di↵erent parts of the neighborhood get pulled to di↵erent roots.

The Fatou set is the complement of the Julia set; it is the set on which the
dynamics of N are “well-behaved”. More rigorously, it is a set with regular
behavior in which the sequence of iterates is a normal family in some neighbor-
hood of a set of points in C. Thus, the sequence of iterates is equicontinuous
in the Fatou set. The Fatou set also contains basins of attraction of attracting
fixed points. We now arrive at the following question: is the Fatou set entirely
basins of attraction for attracting fixed points? Let us consider the basins of
another cubic polynomial.
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Figure 2: Newton basins for f(z) = (z

2
+ 1)(z � 4.5) in C.

We note that red represents the basin for the root i, green represents the
basin for the root �i, and blue represents the basin for the root 4.5. We now
observe the roughly circular black regions in the image. These black regions,
which have positive area, do not iterate to any of the roots. If we pick the
starting point z0 = 1.4997, one calculates that x1 = N(x0) ⇡ �0.1957 and
N(x1) ⇡ 1.4997 = x0. Thus, what is known as a two-cycle emerges.

Moreover, it is in fact the case the the black regions, in some sense, represent
the basin of attraction for this two cycle, in the sense that points in these regions
converge under iteration of N to the two cycle.

We make this precise as follows. Denote the two-cycle by {x1, x2}, so that
N(x1) = x2 and N(x2) = x1. Also denote N

�2 = N � N . Observe that
N

�2(x
i

) = x

i

for both i = 1, 2. From this perspective, both elements of the
two-cycle are fixed points of N�2. Let us check the derivative of N�2 at both x1

and x2. Using the chain rule, we see that

(N �N)0(x1) = N

0(N(x1))N
0(x1) = N

0(x2)N
0(x1)

Likewise,
(N �N)0(x2) = N

0(x1)N
0(x2)

Plugging in our values, we see:

N

0(x1) = 5.998025658, N

0(x2) = 0.0004937078289
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N

0(x1)N
0(x2) = 0.002961272225 < 1

Therefore, both x1 and x2 are attracting fixed points of N�2, and this is
precisely what we mean when we refer the two-cycle {x1, x2} as an attracting
two-cycle of N .

Therefore, these are attracting fixed pints of N�2. We now note the following
theorem about cycles:

Theorem 1. An attracting cycle of N attracts at least one critical point of N
[4].

This follows from the fact that all basins of attraction contain at least one
critical point of the function. Thus, N 0(x) = 0 implies f(x) = 0 or f

00(x) = 0.
So, if there is an attracting cycle that is not trivial (i.e. not a fixed point or a
one-cycle), then it attracts an inflection point of f , or a root of f 00. However,
if f has degree d, then f

00 has degree d � 2, hence there can be at most d � 2
non-trivial attracting cycles.

3 Newton’s Method in Several Variables

Newton’s method can be generalized for finding zeros of systems of n functions in
n variables. For our purposes, we consider systems of two bivariate polynomials.

The idea of Newton’s method in two variables is the same as in one variable.
Just like the one variable case, we choose a starting point, locally linearize, solve
the system of linear equations, and repeat.

First, we formalize the notion of a system of equations as a single, vector-
valued function

f = (f1
, f

2) : R2 ! R2

Like the one variable case, we find the local linearization of f at a vector v0 =
(x0, y0) 2 R2 is given by L

v0(v) = J

v0(v � v0) + f(v0). Here, J
v0 represents

the Jacobian matrix of f at v0, which is a multivariable generalization of the
derivative:

J(x0,y0) =

✓
f

1
x

f

1
y

f

2
x

f

2
y

◆ �����
(x0,y0)

where f

1
x

is the partial derivative of f1 with respect to x, and likewise for the
other entries of the matrix. Assuming J

v0 is invertible, we can solve the linear
system L

v0(v) = 0 for v. We calculate:

v1 = v0 � J

�1
v0

f(v0)

As in the one variable case, this motivates definition of the Newton function of
f : N = N

f

: R2 ! R2, given by:

N(v) = v � J

�1
v

f(v)
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Thus, Newton’s method in two variables can be seen as iteration of N . Essen-
tially, start at a vector v0, then recursively define v

n+1 = N(v
n

) until within
the desired accuracy of a root.

4 Results

4.1 Circle and Ellipse System of Equations

Our first system will be of a circle and ellipse, where the function f is given by:

(
f

1(x, y) = x

2 + y

2 � 1

f

2(x, y) = x

2

a

2 + y

2

b

2 � 1

where 0 < b < 1  a. The Newton function for f is:

N(x, y) = (x, y)� a

2
b

2

2xy(a2 � b

2)

✓
y

b

2 �y

� x

a

2 x

◆✓
x

2 + y

2 � 1
x

2

a

2 + y

2

b

2 � 1

◆

We then see the following basins of attraction:
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Figure 3: Newton basins for circle and ellipse with a = 2 and b = 1/2.
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We notice that the dynamics of the system are quite simple. There are four
roots; one root per quadrant. This makes sense with what the image is showing,
because each quadrant is a di↵erent color, meaning each quadrant iterates to a
di↵erent root.

4.2 Quadratic System of Equations

We know consider another system of quadratic equations, namely

(
f

1(x, y) = x

2 � y

f

2(x, y) = y

2 � x

Newton’s function is

N(x, y) = (x, y)� 1

4xy � 1

✓
2y 1
1 2x

◆✓
x

2 � y

y

2 � x

◆
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The following is the image produced:

Figure 4: Newton basins for {x2 � y, y

2 � x}

Seeing theses basins of attraction, let’s examine the roots of the system, which

are (0, 0), (1, 1), (� 1
2 +

p
3
2 i,� 1

2 �
p
3
2 i), and(� 1

2 �
p
3
2 i,� 1

2 +
p
3
2 i). We observe

two of these roots have complex coordinates. Thus, we can consider our function
f as a function f : C2 ! C2 (C2 represents the set of two-tuples of complex
numbers).

However, basins of attraction in C2 are hard to visualize, since C2 is four-
dimensional over R. So, to visualize basins of attraction in C2, we take two-
dimensional slices of C2. Three linearly independent vectors, v, w, and u in C2,
define a 2-D slice:

{av + bw + u : a, b 2 R}

The previously shown basins of attraction in two variables were both the
R2 slice, generated by the vectors v = (1, 0), w = (0, 1), and u = (0, 0). We
note that dynamics are generally more interesting on slices that include three or
more roots. Using this technique, we can know visualize the following images:

We see very interesting dynamics appear in all of these images. We see
“feather-like swirls” appearing in close-ups just o↵ of the origin. These basins
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Figure 5: Newton basins for {x2 � y, y

2 � x}.
Slice generated by v = (1, 1), w = (⇣3, ⇣

2
3 ), and

u = (0, 0)

Figure 6: Newton basins for {x2 � y, y

2 � x}.
Slice generated by v = (1, 1), w = (⇣3, ⇣

2
3 ), and

u = (0, 0)

Figure 7: Newton basins for {x2�y, y

2�x}. Slice generated by v = (1, 1), w = (⇣3, ⇣
2
3 ),

and u = (0, 0)

of attraction are quite intricate and are a very interesting result.

11



Figure 8: Newton basins for {x2 � y, y

2 � x}.
Slice generated by v = (1, 1), w = (⇣3, ⇣

2
3 ), and

u = (0, 0)

Figure 9: Newton basins for {x2 � y, y

2 � x}.
Slice generated by v = (1, 1), w = (⇣3, ⇣

2
3 ), and

u = (0, 0)

4.3 Another Quadratic System of Equations

Our results thus far have not exhibited any attracting cycles. Thus, we now con-
sider a system of two polynomials in two variables that ought to have attracting
cycles: (

(x2 + 1)(y � c)

(y2 + 1)(x� c)

for c = 9/2. The roots for this system are (c, c), (i,�i), (i, i), (�i, i), (�i,�i).
We also calculate that the Newton function is as follows:

N(x, y) =

�
x y

�
� 1

det

✓
x

2
+ 1 �2y(x� c)

�2x(y � c) y

2
+ 1

◆✓
(y

2
+ 1)(x� c)

(x

2
+ 1)(y � c)

◆

where det = �3x

2
y

2
+ x

2
+ y

2
+ 1 + 4xy(xc + yc � c

2
) The following basins of

attraction appear:

Figure 10: Basins of attraction for {(x2 +1)(y�
4.5), (y2 + 1)(x � c)}, y=x slice.

Figure 11: Basins of attraction for {(x2 +1)(y�
4.5), (y2 + 1)(x � c)}, y=x slice translated.
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Figure 12: Basins of attraction for {(x2 +1)(y�
4.5), (y2 + 1)(x � c)}, y=-x slice.

Figure 13: Basins of attraction for {(x2 +1)(y�
4.5), (y2 + 1)(x � c)}, imaginary slice.

The result of Figure 10 is extremely interesting. It looks strikingly similar to
Figure 2, meaning that an attracting two-cycle may in fact exist. To see if this
is true, we analyze Figure 11. We see that Figure 10 and Figure 11 are almost
the same picture. However, in Figure 11, the black regions are now colored in
by the other roots that were previously missing from Figure 10. Thus, this is
not truly an attracting two-cycle, because the black regions are not consistently
showing up throughout. The fact that no two-cycle existed is a very interesting
result. Even though we constructed the system so that we would see a two-cycle
emerge, it still did not happen. The last two figures, Figure 12 and Figure 13,
exhibit very intriguing dynamics. Figure 12 shows very nice elaborations, while
Figure 13 shows a star-looking design.

Our conjecture as to why this behavior occurs is that although the two-cycle
does exist, it is “attracting” only in one complex direction, and it is repelling
in the transverse complex direction.

In order to test this, we examined the Jacobian matrix of N �N near each
point on the two-cycle. We found that it had two distinct eigenvalues, one with
complex modulus less than one, and one with complex modulus greater than
one. The corresponding eigenvectors of the first were in the direction given
by the “complex line” y = x, and the eigenvectors of the second were in the
direction of y = �x, which supports our graphical findings.

This would be valuable to explore further in the future. Specifically, it would
be valuable somehow to make precise the notion of an attracting fixed point and
an attracting cycle in the two-variable case. This notion does not so easily carry
over from the single variable case, because the derivative of Newton’s function
is no longer just a number, but rather a linear map represented in coordinates
by the Jacobian matrix. The fact that such a derivative could have multiple
distinct eigenvalues complicates the matter significantly.

5 Conclusion

Newton’s method not only works with one variable functions, but also with
multivariable nonlinear systems of equations to find the system’s basins of at-
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traction. Through our investigations, we saw Newton’s method reveals inter-
esting dynamical behavior in several variables, but we were unable to find any
true attracting cycles. There were several behaviors we observed that we would
love to research further in the future, such as actually finding a true attracting
cycle, if one exists. It would also be interesting to explore the dynamics of more
complicated nonlinear systems to see if any more interesting appear, and to also
see if any characteristics of previously explored systems hold.
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