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Abstract

We address an open question posed by Alfeld, Piper, and Schu-
maker in 1987 and again by Alfeld in 2000 regarding the char-
acterization of unconfinable cells. For cells with 6 interior edges,
we obtain a geometric characterization of confinability in terms of
cross-ratios. This characterization allows us to show that a hexag-
onal cell in which the diagonals intersect at the interior vertex is
unconfinable if and only if the lines containing opposite edges and
the diagonal through the remaining points are either parallel or
are concurrent.
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In 1987, Peter Alfeld, Bruce Piper, and Larry Schumaker addressed
the problem of describing when a collection of points impose indepen-
dent conditions on C1 quadratic splines [1]. While they were able to
show a collection of different results, there are still some open ques-
tions to consider. The focus of this paper will be to answer some of
these questions and to discuss methods that can be used to answer the
open questions that still remain.

Definition 0.1. An S1
2 -spline is a piecewise-defined bivariate quadratic

function that is continuously differentiable.

Example of an S1
2 -spline

The above figure is an example of an S1
2 -spline defined on a particu-

lar partition of R2. The black lines in the figure are the boundary lines
of the different regions that make up the spline. It can be seen from the
figure that the spline is continuously differentiable, particulary along
these boundary lines. One interesting thing to note is that a quadratic
polynomial would not be able to have this behavior, since a quadratic
polynomial that is identically zero on a region of the plane must be
identically zero everywhere. This is one reason why splines are useful
and a motivation for our investigation into the open problems involving
them.

In order to address these open problems, we must know what it
means for a set of points to impose independent conditions on S1

2 -splines.
Furthermore, we must know what set of points we are considering. To
this end, we have the following two definitions.
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Definition 0.2. A set of points V = {v1, . . . , vn} imposes independent
conditions on curves of degree d if and only if for every set of real num-
bers {z1, . . . , zn}, there exists a bivariate polynomial f of degree d such
that f(vi) = zi for i = 1, . . . , n.

Definition 0.3 (Lai-Schumaker). Suppose ∆ is a triangulation consist-
ing of a set of triangles which all share one common interior vertex v0.
Suppose every triangle in ∆ has at least one neighbor with which it
shares a common edge. Then we call ∆ a cell.

This paper will mainly focus on when the boundary vertices of a
hexagonal cell impose independent conditions on S1

2 -splines. We intro-
duce the following notation to refer to hexagonal cells that have this
property.

Definition 0.4. A hexagonal cell ∆6 with boundary vertices {v1, . . . , v6}
is confinable if and only if the set of boundary vertices imposes indepen-
dent conditions on S1

2 -splines. Otherwise, we say that ∆6 is unconfin-
able.

An unconfinable cell and a confinable cell

3



The figure on the right is a regular hexagonal cell, and the figure
on the left is a regular hexagonal cell with one of the boundary ver-
tices slightly shifted. A cross represents a boundary vertex that can
be assigned independently, and a solid dot represents a boundary ver-
tex that depends on the boundary vertices that have already been as-
signed. Although the figures look exactly the same, we can see that in
the figure on the right, we can assign all six of the boundary vertices
independently, but we cannot do the same in the figure on the right.
This means that the figure on the right is an unconfinable hexagonal
cell, and the figure on the left is confinable. One of the purposes of
this paper will be to describe properties of hexagonal cells that result
in this difference.

The motivation for investigating this particular cell is that while
results have proven for other types of polygonal cells, there is not a
lot known about the hexagonal cell. For example, Alfeld, Piper, and
Schumaker [1] showed that n-gons are always confinable when n is odd
or n = 4; however, for hexagonal cells, there are only partial results,
including an example showing that hexagonal cells are not always con-
finable.

bc bc

bc

bc

b

(1, 0)(−1, 0)

(0,−1)

(0, 1) (1, 1)

(−1,−1)

b

b

bc

The figure above was the only known example of an unconfinable
hexagonal cell at the time. Although it is not a regular hexagon, it is
commonly referred to as such since there exists a linear transformation
that maps this hexagon to the regular hexagon.

Since not a lot is known about the hexagonal cell, we investigate the
characteristics of unconfinable hexagonal cells and obtain a complete
characterization of the family of hexagonal cells that we call concor-
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dant. In addition, we also present several previously unknown exam-
ples of unconfinable concordant hexagonal cells that are not linearly
equivalent to the regular hexagon. Finally, we give a previously un-
known example of an unconfinable discordant hexagonal cell. These
ideas can be summarized into the following result.

Theorem 0.5 (The Main Result). Let ∆6 be a concordant hexagonal
cell. Then the following are equivalent:

1. ∆6 is unconfinable.

2. There exists a projective transformation under which the image of
∆6 is the regular hexagonal cell.

The subsequent sections in this paper will explain the main ideas
we use to prove this result. In Section 1, we derive an explicit basis for
S1
2 -splines on a hexagonal cell. This allows us to consider confinability

as a linear algebra problem, which will the focus of section 2. From this,
we characterize confinability in geometric terms (section 3) and use
projective geometry to characterize concordant hexagonal cells (section
4).

1 A basis for the space of C1 quadratic splines
on a cell

The main goal of this section is to compute an explicit basis for the
vector space of bivariate C1 quadratic splines on a certain triangulation
called cell. We start the section with the relevant definitions.

1.1 Definitions and the statement of the basis result
Definition 1.1. Suppose ∆ is a triangulation consisting of a set of tri-
angles which all share one common interior vertex v0. Suppose every
triangle in ∆ has at least one neighbor with which it shares a common
edge. Then we call ∆ a cell.

A polygonal cell ∆n is an interior cell with n boundary edges and
vertices that form an n-gon.
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Notation 1.2. Everywhere in this paper, ∆n will denote a polygonal
cell with n distinct interior edges emanating from the interior vertex
v0.

We label the boundary vertices v1, . . . , vn in a conterclockwise direc-
tion; we label the interior edges of the triangulation by τi, i = 1, . . . , n;
and the triangles containing the vertices v0, vi and vi+1 will be labeled
by σi.

For convenience of notation, we agree that the addition on the in-
dices of the boundary vertices is an operation modulo n; so for example,
the vertex vn+1 is v1, and so on.

v4

σ1

σ2

σ3

σ4

σ5

σ6

v1

v2v3

v5 v6

v0 τ1

τ2τ3

τ4

τ5 τ6

ℓ1(x, y) = 0

Definition 1.3. Given a triangulation ∆ consisting of triangles σ1, . . . , σn,
a quadratic spline on ∆ is a function s with the domain

∪
i σi such that

s ↾ σi is a quadratic polynomial function for all i.

Definition 1.4. The set of all points at which a function is nonzero is
called the support of the function.

Here is the main result of this section.

Proposition 1.5. Let ∆n be a polygonal cell. There is a (counterclock-
wise) enumeration of the boundary vertices vi, i = 1, . . . , n and a family
of C1 quadratic splines si on ∆n, for i = 1, . . . , n− 3, such that

1. every C1 quadratic spline s on ∆n can be uniquely expressed in the
form

s(x, y) = p(x, y) +
n−3∑
i=1

aisi(x, y),
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where p is a quadratic polynomial and ai are constants;

2. the support of si is contained in the set σi ∪ σi+1 ∪ σi+2;

3. for each i = 1, . . . , n − 3, for k = i + 2 or k = i + 3 we have si(vk) =
d(vk; li) · d(vk; li+3), where d(vk; li) is the distance from the vertex vk
to the line containing the edge τi.

Definition 1.6. We call a quadratic C1 spline si in the above proposi-
tion a basic spline.

Remark 1.7. Furthermore the union over all supports of si through
sn−3 is strictly contained by the union of the regions σ1, σ2, . . . , σn−1

which leaves si(x, y) = 0 for all points (x, y) in σn and all si in Sn.

1.2 Properties of Quadratic Polynomial Functions
This section is largely expository. We give a linear algebra argument
showing that an k-variable polynomial of degree n which is equal to
zero on a grid of (n+1)k points must be the zero polynomial. It follows,
in particular, that if a k-variable polynomial vanishes on an open sub-
set of Rk, then the polynomial must vanish everywhere. We use this
fact in a calculation of a certain determinant via a polynomial argu-
ment.

The following fact is well known; we provide a proof to make the
presentation self-contained.

Claim 1.8. Let p(x) be a polynomial of degree n that is equal to zero at
n+ 1 distinct points, a0, . . . , an. Then p(x) is a zero polynomial.

Proof. Let polynomial p(x) = c0+c1x+c2x
2+· · ·+cn−1x

n−1+cnx
n be equal

to zero at a0, . . . , an. Substituting ai into p(x) yields a homogeneous
system of n+ 1 equations in c0, . . . , cn:

c0 + c1a0 + c2a
2
0 + · · ·+ cn−1a

n−1
0 + cna

n
0 = 0

c0 + c1a1 + c2a
2
1 + · · ·+ cn−1a

n−1
1 + cna

n
1 = 0

...
...

... . . . ...
...

...
c0 + c1an + c2a

2
n + · · ·+ cn−1a

n−1
n + cna

n
n = 0
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Taking c0, . . . , cn to be the variables of this system, we write the
matrix,

M =


1 a0 a20 · · · an−1

0 an0

1 a1 a21 · · · an−1
1 an1

...
...

... . . . ...
...

1 an a2n · · · an−1
n ann


and we aim to show that the determinant of M is not equal to zero.
The matrix M is a Vandermonde Matrix, (for example see [5, p. 301]),
which has determinant equal to

∏
0≤i,j≤n

(aj − ai). Since all ai are distinct

by assumption, each aj−ai is not equal to 0, therefore detM is not equal
to zero. This implies that there is only one solution to this system,
where all coefficients ci are equal to zero. Therefore, p(x) is a zero
polynomial.

Lemma 1.9. Let p(x1, x2, . . . , xk) be a polynomial in k variables such
that the highest power of each variable is at most n. Let p(x1, x2, . . . , xk)
be equal to zero at the (n + 1)k points in Rk in the cartesian product
{a1,0, a1,1, . . . , a1,n} × {a2,0, a2,1, . . . , a2,n} × · · · × {ak,0, ak,1, . . . , ak,n}. If the
elements in each set in the product are distinct, then p(x1, x2, . . . , xk) is
a zero polynomial.

Proof. We induct on the number of variables k. If k = 1, then p(x1) is
a polynomial of degree at most n, and is equal to zero at a1,0, . . . , a1,n.
By Claim 1.8, this is a zero polynomial. Assume the statement of the
lemma holds for some k ≥ 1. That is, for any p(x1, x2, . . . , xk) such that
the highest power of each xi is no more than n, and p is equal to zero
at every point in the set {a1,0, . . . , a1,n} × · · · × {ak,0, . . . , ak,n}, then it is
a zero polynomial.

Assume p(x1, x2, . . . , xk, xk+1) is a polynomial with the highest power
of each variable at most n, and p(x1, x2, . . . , xk, xk+1) vanishes on {a1,0, . . . , a1,n}×
· · · × {ak,0, . . . , ak,n} × {ak+1,0, . . . , ak+1,n}. We can write p as follows:

p(x1, x2, . . . , xk, xk+1) = p0(x1, . . . , xk) + p1(x1, . . . , xk)xk+1

+ p2(x1, . . . , xk)x
2
k+1 + · · ·+ pn−1(x1, . . . , xk)x

n−1
k+1 + pn(x1, . . . , xk)x

n
k+1.
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For all points in {a1,0, . . . , a1,n}, {ak,0, . . . , ak,n}, the one variable polyno-
mial p(a1,0, . . . , a1,n . . . , ak,n, xk+1) is equal to zero at each of the n + 1
points ak+1,0, . . . , ak+1,n. Therefore, by Claim 1.8, the coefficients of
p(a1,0, . . . , ak,n, xk+1) are all equal to zero. These coefficients are given
by

p0(a1,0, . . . , ak,n), p1(a1,0, . . . , ak,n), . . . , pn(a1,0, . . . , ak,n).

Each pj(a1,0, . . . , ak,n), for 0 ≤ j ≤ n, is equal to zero at (n + 1)k distinct
points, and the highest power of each is at most n. By the induction
hypothesis, it follows that each pj is a zero polynomial. This implies
that p(x1, x2, . . . , xk, xk+1) is also a zero polynomial.

Now we use the above fact to establish the following.

Claim 1.10. Let ai, bi ∈ R, i ∈ {1, 2, 3}, and matrix M is given by a21 a22 a23

a1b1 a2b2 a3b3

b21 b22 b23

. Then

detM = (a1b2 − a2b1)(a1b3 − a3b1)(a2b3 − a3b2).

Proof. Of course, the equality can be verified directly, but we give a
more elegant argument.

Suppose first that ai ̸= 0 for i = 1, 2, 3. Factoring out a2i from the ith

column, we convert this matrix into the Vandermonde Matrix, where
the (i, j) entry of the 3 × 3 matrix is given by (

bj
aj
)i−1 for all 1 ≤ i, j ≤ 3.

Using the Vandermonde determinant formula, detM is given by

detM = a21a
2
2a

3
3

∣∣∣∣∣∣∣∣∣
1 1 1
b1
a1

b2
a2

b3
a3

( b1
a1
)2 ( b2

a2
)2 ( b3

a3
)2

∣∣∣∣∣∣∣∣∣
= a21a

2
2a

3
3

( b2
a2

− b1
a1

)( b3
a3

− b1
a1

)( b3
a3

− b2
a2

)
= (a1b2 − a2b1)(a1b3 − a3b1)(a2b3 − a3b2).
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Therefore, we have the needed formula in the case when none of the ai
are zero. To establish the equality in the remaining cases, we use the
polynomial argument. Let p(a1, a2, a3) = (a1b2 − a2b1)(a1b3 − a3b1)(a2b3 −
a3b2). Note that p is a polynomial in a1, a2, a3 and that detM is also a
polynomial in these variables. Since the difference between the polyno-
mials is zero on an open subset of R3, the difference is zero everywhere
and so detM = (a1b2 − a2b1)(a1b3 − a3b1)(a2b3 − a3b2) for all ai, bi.

1.3 Basic Spline Functions
In this section, we establish that for any cell ∆n, we can find splines
s1 . . . , sn−3 that satisfy the conditions (2) and (3) of Proposition 1.5. We
later show that these splines, together with the 6 basis quadratic bi-
variate polynomials, form a basis for the space Sn.

We begin with a technical lemma that will allow us to explicitly
compute the coefficients for the splines si.

Lemma 1.11. Let ℓ1(x, y), . . . , ℓ4(x, y) be linear forms such that neither
ℓ1 nor ℓ4 is proportional to ℓ2 and neither ℓ1 nor ℓ4 is proportional to ℓ3.
There exist non-zero real numbers k1 and k4 and real numbers k2 and k3
such that

k1ℓ
2
1 + k2ℓ

2
2 + k3ℓ

2
3 + k4ℓ

2
4 = 0. (1)

Moreover, if ℓi = aix + biy for unit vectors (ai, bi), i = 1, . . . , 4, then the
values of the coefficients are given by the formulas

k1 = sin θ2,4 sin θ3,4 sin θ2,3 (2)
k2 = − sin θ1,4 sin θ3,4 sin θ1,3 (3)
k3 = sin θ1,4 sin θ2,4 sin θ1,2 (4)
k4 = − sin θ1,2 sin θ1,3 sin θ2,3 (5)

where θi,j is the angle between the normal vectors to the lines ℓi(x, y) = 0
and ℓj(x, y) = 0.

Proof. It suffices to establish the “moreover” part. Suppose that ℓi(x, y) =
aix+ biy, where (ai, bi) is a unit vector. Expanding the squares and col-
lecting the terms with respect to x2, xy and y2, we obtain the following
system of equations:

a21k1 + a22k2 + a23k3 + a24k4 = 0,
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a1b1k1 + a2b2k2 + a3b3k3 + a4b4k4 = 0,

b21k1 + b22k2 + b23k3 + b24k4 = 0.

Converting this system of equations to a matrix expression, we have:

 a21 a22 a23 a24
a1b1 a2b2 a3b3 a4b4
b21 b22 b23 b24


︸ ︷︷ ︸

M

·


k1
k2
k3
k4

 = 0⃗

Consider the matrix N , found by appending row 1 of matrix M onto
the matrix M itself:

N =


a21 a22 a23 a24
a21 a22 a23 a24
a1b1 a2b2 a3b3 a4b4
b21 b22 b23 b24


Clearly the determinant of this matrix is 0. Let Mi,j,k denote the sub-
matrix of the matrix M that is created by the columns i, j, and k of the
matrix M. Using the first row expansion, we can find the following
expression for the determinant of N :

0 = detN = a21 detM2,3,4 − a22 detM1,3,4 + a23 detM1,2,4 − a24 detM1,2,3

Therefore, 
k1
k2
k3
k4

 =


detM2,3,4

− detM1,3,4

detM1,2,4

− detM1,2,3


gives a solution to the first equation in the system, a21k1 + a22k2 + a23k3 +
a24k4 = 0.

We can construct a similar argument appending the other two rows
of M onto itself, resulting in two new matrices:

N ′ =


a1b1 a2b2 a3b3 a4b4
a21 a22 a23 a24
a1b1 a2b2 a3b3 a4b4
b21 b22 b23 b24

and N ′′ =


b21 b22 b23 b24
a21 a22 a23 a24
a1b1 a2b2 a3b3 a4b4
b21 b22 b23 b24


11



both with determinant equal to 0. Notice that the bottom three rows
in all matrices N ,N ′, and N ′′ are the same, so taking the determinant
yields that

0 = detN ′ = a1b1 detM2,3,4−a2b2 detM1,3,4+a3b3 detM1,2,4−a4b4 detM1,2,3

and

0 = detN ′′ = b21 detM2,3,4 − b22 detM1,3,4 + b23 detM1,2,4 − b24 detM1,2,3.

And so


k1
k2
k3
k4

 =


detM2,3,4

− detM1,3,4

detM1,2,4

− detM1,2,3

 is a solution to all three equations in the

system.

Notice that each of the matrices Mj+1,j+2,j+3 for j from 1 to 4 (where
the indices are modulo 4) are of the form required by Claim 1.10. Ap-
plying this Claim, we can say that k1 which is equal to the determinant
of M2,3,4, is equal to (a2b3 − a3b2)(a2b4 − a4b2)(a3b4 − a4b3)

det

 a22 a23 a24
a2b2 a3b3 a4b4
b22 b23 b24

 = (a2b3 − a3b2)(a2b4 − a4b2)(a3b4 − a4b3)

Notice that each of these differences are the determinants of 2× 2 ma-
trices:

(a2b3 − a3b2) = det

[
a2 a3
b2 b3

]
and so on.

Therefore k1 can now be written as the product of three determinants:

k1 = det

[
a2 a3
b2 b3

]
· det

[
a2 a4
b2 b4

]
· det

[
a3 a4
b3 b4

]
Recall that the determinant of a 2×2 matrix is the area of the parallel-
ogram determined by the column vectors of the matrix. Another form
for the area of this parallelogram is |v⃗1||v⃗2| sin θ where v⃗1 and v⃗2 are the
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column vectors of the 2× 2 matrix and θ is the angle between them.

v⃗1

v⃗2
θ

Height h of parallelogram: |v⃗1| sin θ
Area of parallelogram: |v⃗2||v⃗1| sin θ

h

Since we took the vectors (ai, bi) to be unit length, we have that

det

[
ai aj
bi bj

]
= sin θi,j

where θi,j is the angle between the vectors (ai, bi) and (aj, bj).
Now we have:

k1 = sin θ2,3 sin θ3,4 sin θ2,4

Similarly,

k2 = − sin θ1,4 sin θ3,4 sin θ1,3

k3 = sin θ1,4 sin θ2,4 sin θ1,2

k4 = − sin θ1,2 sin θ1,3 sin θ2,3.

Now we show how to construct a basic spline function using the
solution to 1, assuming that certain edges are not parallel.

Proposition 1.12. Let ∆n be a cell with the interior vertex v0 = (0, 0).
Suppose that the edge τi is not parallel to τi+2 and τi+1 is not parallel to
τi+3. There exists a quadratic spline si such that

1. the support of si is contained in the set σi ∪ σi+1 ∪ σi+2;

2. for each i = 1, . . . , n − 3, for k = i + 2 or k = i + 3 we have si(vk) =
d(vk; li) · d(vk; li+3), where d(vk; li) is the distance from the vertex vk
to the line containing the edge τi.
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Proof. For j = i, . . . , i + 3, let ℓj = ajx + bjy be linear forms such that
the line ℓj = 0 contains the edge τj and (aj, bj) is a unit vector oriented
so that the angle between the vectors (aj, bj) and (ak, bk) is equal to the
angle between the edges τj and τk. Let ki,1, . . . , ki,4 be the coefficients
given by 2 in Lemma 1.11. Let

si(x, y) :=


ki,1ℓ

2
i (x, y) (x, y) ∈ σi

ki,2ℓ
2
i+1(x, y) + ki,1ℓ

2
i (x, y) (x, y) ∈ σi+1

−ki,4ℓ
2
i+3(x, y) (x, y) ∈ σi+2

0 otherwise

It is immediate from the construction that si is C1 across the edges τi,
τi+1, and τi+3. It remains to check that the difference[

ki,2ℓ
2
i+1(x, y) + ki,1ℓ

2
i (x, y)

]
−
[
−ki,4ℓ

2
i+3(x, y)

]
is a multiple of ℓ23. The latter follows since the coefficients ki,1, . . . , ki,4
and the linear forms ℓi, . . . , ℓi+3 satisfy 1 of Lemma 1.11. This estab-
lishes the first claim in the proposition.

The second claim follows via a direct computation from the form of
the coefficients ki,1 and ki,4 obtained in Lemma 1.11, noting that in any
cell consecutively numbered edges cannot be parallel.

We finish this subsection by showing that it is always possible to
enumerate the boundary vertices of ∆n in such a way that the assump-
tions of Proposition 1.12 hold for i = 1, . . . , n− 3.

Claim 1.13. Let ∆n be a polygonal cell. Then

1. there cannot be a pair of edges (τk, τk+1) such that τk ∥ τk+1;

2. If there is a pair (τi, τi+2) of parallel edges, then there can be at
most one other pair of parallel edges. Moreover, if the other pair
exists, it is either the pair (τi−1, τi+1) or (τi+1, τi+3).

Proof. (1) Follows easily from the definition of a cell.
(2) Suppose there is one pair of interior edges (τi, τi+2) of a polygonal

cell such that τi ∥ τi+2. The line containing these edges partitions the
plane into two parts.
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Suppose there is another distinct pair of edges (τj, τj+2), such that
τj ∥ τj+2. The line containing this pair intersects the line containing
(τi, τi+2) at v. This means that either τj or τj+2 lies in the part of the
plane in between τi and τi+2 (moving counterclockwise). Since there
is only one edge between τi and τi+2, (namely, τi+1) either τj = τi+1 or
τj+2 = τi+1.

If τj = τi+1 then we have j = i + 1 which gives j + 2 = i + 3 so
τj+2 = τi+3 and the pair (τj, τj+2) = (τi, τi+3). Else, if τj+2 = τi+1 then
we have j + 2 = i + 1 which gives j = i − 1 so τj = τi−1 and the pair
(τj, τj+2) = (τi−1, τi+1).

And so, given the pair (τi, τi+2) exists such that τi ∥ τi+2, if there is
another such pair, then it is either the pair (τi−1, τi+1) or (τi+1, τi+3).

Lemma 1.14. There exists an enumeration of the interior edges of ∆n,
n ≥ 5, such that τi is not parallel to τi+2 and τi+1 is not parallel to τi+3

for i from 1 to n− 3.

Proof. We start with an arbitrary enumeration of the edges in the coun-
terclockwise direction. If there are no pairs (τk, τk+2) of parallel edges,
then we are done. If there is exactly one pair of parallel edges (τk, τk+2),
then, re-enumerating the edges if nesessary, we may assume that k =
n− 1. (Recalling our convention to that the addition on indices is mod-
ulo n, this means that τk+2 = τ1 in this case.) It remains to note that no
pair of edges of the form (τi, τi+2), i = 1, . . . , n − 2, will contain the pair
(τn−1, τ1).

If there are two pairs of parallel edges, indexed in the counterclock-
wise order as {τk, τk+1, τk+2, τk+3}, then, re-enumerating the edges if ne-
sessary, we may assume that k = n − 1 (so the two pairs of parallel
edges are (τn−1, τ1) and (τn, τ2)). In this case it is also the case that no
pair of edges of the form (τi, τi+2), i = 1, . . . , n− 2, will contain either of
the two the pairs.

1.4 Proof of Proposition 1.5
Let Sn be the vector space of all S1

2 -splines defined on ∆n, n ≥ 5. Since
any vector can be written as a linear combination of the elements in
the basis of its vector space, every S1

2 -spline defined on a polygonal cell
∆n can be written as the linear combination of the elements of a basis
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of Sn. Therefore it will be sufficient to find an appropriate basis for Sn.
We first use the following theorem to find the dimension of Sn.

Theorem 1.15 (Lai-Schumaker [4]). Suppose ∆n is an interior cell as-
sociated with an interior vertex v where n edges meet with m different
slopes. Then for any 0 ≤ r ≤ d,

dimSr
d(∆n) =

(
r + 2

2

)
+ n

(
d− r + 1

2

)
+ γ,

where

γ :=
d−r∑
j=1

(r + j + 1− jm)+

Specializing the above theorem to our situation, we obtain the fol-
lowing.

Claim 1.16. The dimension of Sn is equal to n+3 in all cases except for
one: the case in which n = 4 and the interior edges of ∆n associated with
the quadrilateral on which all splines in Sn are defined have exactly 2
distinct slopes.

Proof. It follows from Theorem 1.15 that the dimension of the space Sn

is given by the following:

dimS1
2 (∆n) = dim(Sn) =

(
1 + 2

2

)
+ n

(
2− 1 + 1

2

)
+ γ

dim(Sn) = 3 + n+ γ

where

γ =
2−1∑
j=1

(1 + j + 1− jm)+

= (1 + 1 + 1−m)+

γ = (3−m)+

It is clear that there must be at least three distinct slopes for the inte-
rior edges of a polygonal cell ∆n whose number of boundary vertices, n,
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is not equal to 4, and at least two distinct slopes for the interior edges
of ∆4. Therefore

m ≥

{
3 for ∆n, n ̸= 4

2 for ∆4

It follows that γ = 0 for all ∆n such that n ̸= 4. Therefore, the dimen-
sion of Sn such that n ̸= 4 is n+3. In the case that n = 4, γ will be either
1 or 0. The only polygon for which γ = 1 is the quadrilateral with a sin-
gular interior vertex, v. So we can say that in this case dimS4 = 8 and
in all other cases:

dimSn = n+ 3. (6)

Claim 1.17. The set of functions B = {1, x, y, x2, xy, y2, s1, s2, . . . , sn−3} is
a basis for Sn, for n ≥ 5.

Proof. Since the dimension of Sn is equal to n + 3 by Claim 1.16 and
since B contains n + 3 elements, it suffices to show that B is linearly
independent.

Suppose

c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 + d1s1 + d2s2 + · · ·+ dn−3sn−3 = 0

for every (x, y) ∈ ∆n. We show that ci = dj = 0 for i = 1, . . . , 6 and
j = 1, . . . , n− 3.

Recall that by the definition of the basic spline, for every (x, y) ∈ σn

and every i = 1, . . . , n−3, we have si(x, y) = 0. Therefore c1+ c2x+ c3y+
c4x

2 + c5xy+ c6y
2 = 0 for all (x, y) ∈ σn. This implies by Lemma 1.9 that

ci = 0 for i = 1, . . . , 6.
Now we have d1s1 + d2s2 + · · · + dn−3sn−3 = 0 on ∆n. We induct on

j from 1 to n − 3 to show that dj = 0. The spline s1 is non-zero at v2.
Since v2 is not contained in the support of si for all i ̸= 1, all other
basic splines are zero at this point. It follows that d1s1(v2) = 0. Since
s1(v2) ̸= 0 we conclude d1 = 0.

Now suppose that dm = 0 for all m = 1, . . . , k, and show dk+1 = 0. We
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have

d1s1(vk+2) + d2s2(vk+2) + · · ·+ dksk(vk+2)︸ ︷︷ ︸
0 by the Induction Hypothesis

+dk+1sk+1(vk+2)

+ dk+2sk+2(vk+2) + · · ·+ dn−3sn−3(vk+2)︸ ︷︷ ︸
Since vk+2 is not in the

support of sm for m > k + 1, the values of
sk+2 through sn−3 are 0 at vk+2

= dk+1sk+1(vk+2) = 0.

Since sk+1(vk+2) ̸= 0, it follows that dk+1 = 0 as desired. Therefore dj = 0
for j = 1, . . . , n− 3 and B is a basis for Sn.

This completes the proof of Proposition 1.5.

2 Linear Algebraic discussion of unconfin-
ability of hexagonal cells

2.1 Introduction
As a direct result from the last section, we have that if s(x, y) is an
S1
2 -spline on ∆6, then it can be expressed as:

s(x, y) = p(x, y) +
3∑

i=1

aisi(x, y), (7)

where p(x, y) is a quadratic polynomial and si(x, y) is a basic spline.
This section focuses on using this form and results from linear al-

gebra to address the problem of unconfinability on certain hexagonal
cells. We begin by looking at a result from [3], which determines when
a set of points will impose independent conditions on polynomials of de-
gree d. This result allows us to determine what restricitions we must
place on hexagonal cells, and we use these results to define the special
type of hexagonal cell that will be the focus of the next two sections.
From this, we state a prove a series of linear algebra results that will
be useful in the proof of the main result of this section. We conclude
this section with a discussion of properties of quadratic polynomials
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that vanish on a certain number of the boundary vertices of the hexag-
onal cell, which will lead into the geometric descriptions we consider in
the next section.

By looking at (7), we can see that there are two main parts to the
form of a spline: the quadratic polynomial and the sum of the basic
splines. When examining systems of equations of splines, it will be
useful to have matrices that represent these parts. To this end, we
define the following matrices.

Q :=


x2
1 x1y1 y21 x1 y1 1

x2
2 x2y2 y22 x2 y2 1
...

...
...

...
...

...
x2
6 x6y6 y26 x6 y6 1

 , Si :=


si(v1)
si(v2)

...
si(v6)

 , i = 1, . . . , 3

M :=
(
Q | S1 | S2 | S3

)
Our first goal is to establish some results that will allow us to know

how to handle the matrix Q, specifically in terms of calculating its rank.
Most of the results that follow involve points that lie on a conic, and so
the following definition has been provided as a convenient reference.

Definition 2.1. A conic is a collection of points that satisfy the equa-
tion Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

The following fact appears in [3] and describes conditions that de-
terimine when a set of points will impose independent conditions on
polynomials of degree d.

Fact 2.2. [3, Proposition 1] Let d be the degree of a plane curve and let
V = {v1, . . . , vn} ⊂ P be any collection of n ≤ 2d + 2 distinct points. The
points of V fail to impose independent conditions on curves of degree d
if and only if either d + 2 of the points of V are collinear or n = 2d + 2
and V is contained in a conic.

It follows from this fact that if V = {v1, . . . , v6}, then the points of V
fail to impose independent conditions on quadratic polynomials if and
only if either 4 of the points of V are collinear or V is contained in a
conic. For this reason, we only want to consider hexagonal cells whose
boundary vertices meet these conditions, which gives us the following
definition.
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Definition 2.3. A conic cell is a hexagonal cell such that no four of the
boundary vertices are collinear and all six of the boundary vertices lie
on a conic.

2.2 Linear Algebra
Remark 2.4. If no five boundary vertices of a conic cell are collienar,
then the rank of M is greater than or equal to 5.

The following claim and two lemmas are useful linear algebra re-
sults that will help us in proving the characteristics that determine
when a hexagonal cell is unconfinable.

Lemma 2.5. If A is a matrix such that AT c⃗ = 0⃗ and s⃗ ∈ Col(A), where
Col(A) is the column space of A, then c⃗ · s⃗ = 0

Proof. Let A = (aij) and s⃗ ∈ Col(A). Then AT c⃗ = 0⃗ means that for all i,∑
j

aijci = 0. Since s⃗ ∈ Col(A), for all i, si =
∑
j

λjaij, where λj ∈ R. This

means that c⃗ · s⃗ =
∑
i

cisi =
∑
i

ci
∑
j

λjaij =
∑
i

∑
j

ciλjaij =
∑
j

∑
i

ciλjaij =∑
j

λj

∑
i

ciaij = 0.

Claim 2.6. Let Q be an n×n matrix with rank n−1 and let S1, . . . ,Sk ∈
Col(Q). Then the matrix Q augmented by the vectors S1, . . . ,Sk has rank
n− 1.

Proof. Since the rank of Q is n − 1, then the rank of QT is also n − 1
(see, for example, [6]). This means that there is a non-trivial solution
to QT c⃗ = 0⃗. Since each Si is in the column space of Q, by Lemma
2.5, c⃗ · Si = 0 for each Si. Therefore, c⃗ is a non-trivial solution to
(Q | S1 | · · · | Sk)

T = 0⃗. This means that the rank of (Q | S1 | · · · | Sk)
T is

n−1, which means that the rank of (Q | S1 | · · · | Sk) = ((Q | S1 | · · · | Sk)
T )T

is n− 1.

Lemma 2.7. There exists a bivariate quadratic polynomial q(x, y) such
that q(vi) = Sj(vi) if and only if Sj is in the column space of Q.

Proof. There exists a bivariate quadratic polynomial q(x, y) such that
q(vi) = Sj(vi) ⇐⇒ Si can be written as a linear combination of the
columns of Q ⇐⇒ Si is in the column space of Q.
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The following theorem is the main result of this section and is a
characterization of unconfinability for conic cells.

Theorem 2.8. Let ∆6 be a conic cell. Then ∆6 is unconfinable if and
only if the rank of M is 5.

Proof. (⇒) Suppose that ∆6 is unconfinable. By Remark 2.4, rank(M) ≥
5. If rank(M) = 6, then the boundary vertices would impose indepen-
dent conditions on S1

2 -splines, and so by Definition 0.4, ∆6 would be
confinable, which is a contradiction. Therefore the rank of M is 5.
(⇐) Suppose the rank of M is 5. Since the dimension of the column
space is less than 6, the boundary vertices fail to impose independent
conditions on S1

2 -splines. This means that ∆6 is unconfinable by Defi-
nition 0.4.

We conclude this section with a discussion of properties of quadratic
polynomials that vanish on a number of the boundary vertices of a conic
cell.

2.3 Quadratic Polynomials
Claim 2.9. Let the points in V = {v1, . . . , v6} be the boundary vertices of
a conic cell. If a quadratic function vanishes at five of the six points in
V , then it also vanishes at the sixth point of V .

Proof. Let the points in V = {v1, . . . , v6} be contained on the conic de-
scribed by q(x, y) = 0 and let q̃(x, y) be a quadratic function that van-
ishes at five of the six points in V . Without loss of generality, we may
suppose that q̃(vi) = 0 for i = 1, . . . , 5. Evaluating q̃(vi) for i = 1, . . . , 5,
we obtain a system of equations in the coefficients of q̃ described by the
matrix

Q =



x2
1 x1y1 y21 x1 y1 1

x2
2 x2y2 y22 x2 y2 1

x2
3 x3y3 y23 x3 y3 1

x2
4 x4y4 y24 x4 y4 1

x2
5 x5y5 y25 x5 y5 1


.

By Fact 2.2, five points, no four of which are collinear, impose indepen-
dent conditions on polynomials of degree two. Therefore, the rows of
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Q are linearly independent, and so the rank of Q is 5. By the Rank
Theorem (see, for example, [6, p. 211]), the dimension of the null
space is then 1. Because V is contained on the conic q(x, y) = 0, then
q(vi) = 0 for i = 1, . . . , 5. Therefore, the vector composed of the coeffi-
cients of q form a basis of the null space of the matrix Q, and therefore
every polynomial that is zero at v1, . . . , v5 can be written as a scalar
multiple of q. Therefore we have q̃ = kq. Since q(v6) = 0, we have
q̃(v6) = kq(v6) = 0.

Remark 2.10. If a quadratic function vanishes on four of the boundary
vertices of a conic cell and does not vanish at one of the other boundary
vertices, then it does not vanish at the remaining boundary vertex.

Claim 2.11. For any four noncollinear points v1, . . . , v4, there exists a
quadratic polynomial that vanishes at each vi for i = 1, . . . , 4 and is
nonzero at v6.

Proof. Let vi = (xi, yi), i = 1, . . . , 4. The line through any vi, vj, i ̸= j,

is given by ℓij =

∣∣∣∣x− xi xi − xj

y − yi yi − yj

∣∣∣∣ = 0. Then the bivariate quadratic

polynomial

Q1423(x, y) = ℓ14 · ℓ23 =
∣∣∣∣x− x1 x1 − x4

y − y1 y1 − y4

∣∣∣∣ · ∣∣∣∣x− x2 x2 − x3

y − y2 y2 − y3

∣∣∣∣
will necessarily be zero at the four points v1, . . . , v4 used to determine
the linear forms ℓij through vi and vj and nonzero at v6.

Corollary 2.12. Let the points in V = {v1, . . . , v6} be the boundary ver-
tices of a conic cell. Then for every bivariate quadratic polynomial that
vanishes on {v1, . . . , v4} and is nonzero at v6, the ratio between the values
of the quadratic at v5 and v6 is unique.

Proof. Let p and p̃ be distinct bivariate quadratic polynomials such that
p(vi) = p̃(vi) = 0 for i = 1, . . . , 4, p(v6) ̸= 0, and p̃(v6) ̸= 0. By Remark
2.10, we then have that p(v5) ̸= 0 and p̃(v5) ̸= 0. This means that p(v5)

p̃(v5)

is defined, and so we can say that p(v5) = kp̃(v5) for some k ∈ R. Then
define P = p − kp̃, and note that P (vi) = 0 for i = 1, . . . , 5. Since P is a
quadratic polynomial vanishing on {v1, . . . , v5} and the points in V are
the boundary vertices of a conic section, P (v6) = 0 by Claim 2.9. Thus
p(v6)− kp̃(v6) = 0, and so p(v6) = kp̃(v6). Therefore p(v5)

p(v6)
= p̃(v5)

p̃(v6)
.
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Remark 2.13. Let the points V = {v1, . . . , v6} be the boundary vertices
of a conic cell. Then there is a unique (up to a constant multiple) bi-
variate quadratic polynomial that vanishes on {v1, . . . , v4} and whose
value is nonzero at v5 and v6.

3 Geometric characterization of unconfin-
ability

In this section, we offer a geometric criterion for the unconfinability
of hexagonal cells. We begin by offering a geometric interpretation for
the ratio between the nonzero values of a basic spline at the boundary
vertices, and follow with a similar description of bivariate quadratic
polynomials that vanish on all but two boundary vertices. These in-
terpretations, in conjunction with the linear algebra considerations of
Section 2, enable characterization of unconfinability in terms of the
cross-ratio.

3.1 Ratios of Nonzero Spline Values
We show that the ratio of nonzero spline values at two boundary ver-
tices can be expressed in terms of distances along the line through the
edge between these boundary vertices.

Claim 3.1. Let ∆6 be a conic cell, let s(x, y) be a basic spline on ∆6

such that s is identically zero on σ1, σ2, and σ3, and let d(vi, ℓj) represent
the distance from the point vi to the line ℓj = 0. Then the unique ratio
between the values of s at v5 and v6 is given by

s(v5)

s(v6)
=

d(v5, ℓ4) · d(v5, ℓ1)
d(v6, ℓ4) · d(v6, ℓ1)

.

Proof. Let p4, p6 denote the restriction of s to σ4, σ6, respectively; that is,
p4(x, y) = c4ℓ

2
4 and p6(x, y) = −c1ℓ

2
1. Since s is an S1

2 -spline, s(v5) = p4(v5)
and s(v6) = p6(v6). Therefore, s(v5) = c4(ℓ4(v5))

2 and s(v6) = −c1(ℓ1(v6))
2.

Because ℓ4 is a linear form, the value of ℓ4(v5) is the distance from
the point v5 to the line ℓ4 = 0, which means that ℓ4(v5) = d(v5, ℓ4).
Similarly, ℓ1(v6) = d(v6, ℓ1). If v⃗5 represents the vector from the interior
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vertex of the conic cell to the point v5, then d(v5, ℓ4) = ∥v⃗5∥ sin θ45. In
the same way, d(v6, ℓ1) = ∥v⃗6∥ sin θ61. Therefore, we have that s(v5) =
c4(ℓ4(v5))

2 = ∥v⃗5∥2 sin2 θ45 sin θ56 sin θ51 sin θ61 and s(v6) = −c1(ℓ1(v6))
2 =

∥v⃗6∥2 sin2 θ61 sin θ45 sin θ46 sin θ56. This means that the ratio of the values
of s at v5 and v6 is

s(v5)

s(v6)
=

∥v⃗5∥2 sin2 θ45 sin θ56 sin θ51 sin θ61
∥v⃗6∥2 sin2 θ61 sin θ45 sin θ46 sin θ56

=
d(v5, ℓ4) · d(v5, ℓ1)
d(v6, ℓ4) · d(v6, ℓ1)

.

We introduce the following notation in order to be able to discuss the
interpolation of splines by quadratic functions in general. Let ℓij be the
linear form of the line that contains vi and vj. Let vjk := v(j+k) (mod 6)+1

for j = 1, . . . , 6, and k = 1, . . . , 4. Suppose uj
k is the point of intersection

of the line containing the interior edge through vjk and the line through
vj and vj+1. Also let wj

mn be the intersection of the line through vj and
vj+1 and the line through vjm and vjn.

b

b

b

b

b

bb

b b

b

b

v5v6

E

v4

v3v2

v1

D

v0

u5
4

b
b

u5
1

Distances related to ratios of basic spline values.

Corollary 3.2. Let ∆6 be a conic cell, let s(x, y) be a basic spline on ∆6

such that s is identically zero on σ1, σ2, and σ3, and let d(vi, ℓj) represent
the distance from the point vi to the line ℓj = 0. Then the unique ratio
between the values of s at v5 and v6 is given by
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s(v5)

s(v6)
=

|v5u5
4| · |v5u5

1|
|v6u5

4| · |v6u5
1|
.

Proof. Let D denote the point of intersection of ℓ4 and the perpendic-
ular from v5 to ℓ4 and let E denote the point of intersection of ℓ4 and
the perpendicular from v6 to ℓ4. Notice that the triangle with vertices
D, v5, u

5
4 is similar to the triangle with vertices E, v6, u

5
4 since they both

contain a right angle and they share ∠Du5
4v5. Therefore, |v5u5

4|
|v6u5

4|
= d(v5,ℓ4)

d(v6,ℓ4)
.

Using the same argument involving the similarity of triangles, we can
get that |v5u5

1|
|v6u5

1|
= d(v5,ℓ1)

d(v6,ℓ1)
. Therefore, from Claim 3.1 we have that

s(v5)

s(v6)
=

d(v5, ℓ4) · d(v5, ℓ1)
d(v6, ℓ4) · d(v6, ℓ1)

=
|v5u5

4| · |v5u5
1|

|v6u5
4| · |v6u5

1|
.

3.2 Ratios of Bivariate Quadratic Polynomials
In Section 2, we proved that there exists a unique (up to scalar multipli-
cation) bivariate quadratic polynomial that is nonzero at two boundary
vertices and vanishes at the other boundary vertices. We now discuss a
geometric expression for the ratio between the values of such quadratic
polynomials at the boundary vertices.

Claim 3.3. Suppose we have a set of six points V = {v1, . . . , v6} that are
the boundary vertices of a conic cell. Then for all bivariate quadratic
polynomials q(x, y) that vanish on {v1, . . . , v4} but not on v6, the ratio
between the values of q at v5 and v6 is given by

q(v5)

q(v6)
=

d(v5, ℓab) · d(v5, ℓcd)
d(v6, ℓab) · d(v6, ℓcd)

for all permutations a, b, c, d of the indices {1, . . . , 4}, and where d(vi, ℓjk)
the distance from vi to the line ℓjk = 0.

Proof. By Corollary 2.12, for any two bivariate quadratic polynomials
that vanish on {v1, . . . , v4} but not on v6, the ratio between the values of
the quadratic function at v5 and v6 is unique. Therefore the quadratic
polynomial can be constructed using two lines through any two pairs of
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the vertices on which we desire that q vanish, so the bivariate quadratic
polynomial

Qabcd(x, y) =

∣∣∣∣x− xa xa − xb

y − ya ya − yb

∣∣∣∣ · ∣∣∣∣x− xc xc − xd

y − yc yc − yd

∣∣∣∣ (8)

vanishes on {va, vb, vc, vd} but not on v6. Evaluating Qabcd at v5 and v6, we
see that the first determinant in (8) gives the area of the parallelogram
with sides v⃗ab and v⃗ia, where i = 5, 6 and v⃗jk = v⃗j− v⃗k. This area can also
be expressed as ∥v⃗ab∥ · ∥v⃗ia∥ sin θb,a,i, where θb,a,i is the angle between v⃗ab
and v⃗ia. Similarly interpreting the second determinant, we can express
Qabcd(xi, yi) as

Qabcd(xi, yi) = ∥v⃗ab∥ · ∥v⃗ia∥ sin θb,a,i · ∥v⃗cd∥ · ∥v⃗ic∥ sin θd,c,i.

The ratio between Qabcd(v5) and Qabcd(v6) can then be determined by
substitution into this formula. Cancellation of like terms gives

Qabcd(v5)

Qabcd(v6)
=

∥v⃗5a∥ sin θb,a,5 · ∥v⃗5c∥ sin θd,c,5
||v⃗6a∥ sin θb,a,6 · ∥v⃗6c∥ sin θd,c,6

=
d(v5, ℓab) · d(v5, ℓcd)
d(v6, ℓab) · d(v6, ℓcd)

.

By Corollary 2.12, we know that this ratio is the same for any quadratic
polynomial that vanishes on {v1, . . . , v4} but not on v5, v6. Therefore
q(v5)
q(v6)

= Qabcd(v5)
Qabcd(v6)

= d(v5,ℓab)·d(v5,ℓcd)
d(v6,ℓab)·d(v6,ℓcd)

.
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Distances related to ratios of quadratic polynomial values.

Corollary 3.4. Suppose the set V = {v1, . . . , v6} gives the boundary ver-
tices of a conic cell. Then for any bivariate quadratic polynomial q(x, y)
that vanishes on {v1, . . . , v4} but not on v6, the unique ratio between the
values of q at v5 and v6 is given by

q(v5)

q(v6)
=

|v5w5
ab| · |v5w5

cd|
|v6w5

ab| · |v6w5
cd|

(9)

where |CD| is the length of line segment with endpoints C and D and
a, b, c, d are all distinct indices in {1, . . . , 4}.

Proof. By Claim 3.3, we have q(v5)
q(v6)

= d(v5,ℓab)·d(v5,ℓcd)
d(v6,ℓab)·d(v6,ℓcd)

. Let Ck
ij denote the

point of intersection of the perpendicular line segment from ℓij through
vk. The triangle with vertices v5, C

5
ab, w

5
ab is similar to the triangle with

vertices v6, C
6
ab, w

5
ab because the two triangles share ∠v5w5

abva and both
contain a right angle. Therefore there is a constant ratio between cor-
responding sides of the two triangles. Hence d(v5,ℓab)

d(v6,ℓab)
=

|v5C5
ab|

|v6C6
ab|

=
|v5w5

ab|
|v6w5

ab|
.

By the same argument, d(v5,ℓcd)
d(v6,ℓcd)

=
|v5C5

cd|
|v6C6

cd|
=

|v5w5
cd|

|v6w5
cd|

. Therefore we can

substitute into (9) for q(v5)
q(v6)

and obtain q(v5)
q(v6)

=
|v5w5

ab|·|v5w
5
cd|

|v6w5
ab|·|v6w

5
cd|

.

3.3 Geometric Characterization of Unconfinability
Using these ratios of distances, we are able describe when the values
of a basic spline at the boundary vertices of a hexagonal cell can be
interpolated by a bivariate quadratic polynomial, and thus provide a
criterion for unconfinability.

Claim 3.5. Suppose we have a conic cell ∆6 with boundary vertices
{v1, . . . , v6}. Suppose also that we have an S1

2 -spline s(x, y) that van-
ishes on the four boundary vertices other than vj and vj+1 for some
j ∈ {1, . . . , 6}. Then the values of s at the six boundary vertices can
be interpolated by a bivariate quadratic polynomial if and only if

q(vj)

q(vj+1)
=

s(vj)

s(vj+1)
,

where q(x, y) is the bivariate quadratic polynomial, unique up to a scalar
multiple, that also vanishes on the same four vertices and is nonzero at
vj, vj+1.
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Proof. (⇒) Suppose the values of s at the boundary vertices can be in-
terpolated by a bivariate quadratic polynomial. Then there exists some
q(x, y) such that q(vi) = s(vi) for i = 1, . . . , 6. We then have q(vj) = s(vj)

and q(vj+1) = s(vj+1), and therefore q(vj)

q(vj+1)
=

s(vj)

s(vj+1)
. Because s(vi) = 0

for i ̸= j, j + 1, then q(vi) = 0 for i ̸= j, j + 1 and so by Corollary 2.12,
this bivariate quadratic polynomial is unique up to a scalar multiple
and q(vj) and q(vj+1) are both nonzero.
(⇐) Suppose q(vj)

q(vj+1)
=

s(vj)

s(vj+1)
, where q is the unique bivariate quadratic

polynomial that vanishes on all boundary vertices except vj and vj+1.
Then there is some k such that s(vj) = kq(vj) and s(vj+1) = kq(vj+1).
Trivially, kq(vi) = s(vi) = 0 for i ̸= j, j + 1. Hence kq(vi) = s(vi) for
i = 1, . . . , 6, and the values of s at the six boundary vertices are inter-
polated by kq.

We now introduce the cross-ratio, a concept in projective geometry,
which provides a concise method of comparing the ratios of values that
we have discussed thus far.

Definition 3.6. Suppose x1, x2, x3, and x4 are points on a projective line
L, with x1, x2, x3 distinct. The cross-ratio of these four points, denoted
[x1, x2, x3, x4], is given by Px1x2x3(x4), where Px1x2x3 is the unique projec-
tive transformation such that P(x1) = ∞, P(x2) = 0, and P(x3) = 1.

Fact 3.7 (Theorem 21 of [7]). Let x1, x2, x3, x4 be elements of R ∪ ∞,
the first three of which are distinct. With the usual conventions about
operations with 0 and ∞, the cross-ratio [x1, x2, x3, x4] is given by

[x1, x2, x3, x4] =
(x3 − x1)(x4 − x2)

(x3 − x2)(x4 − x1)
.

Claim 3.8. Suppose ∆6 is a conic cell with boundary vertices {v1, . . . , v6},
and let s be a basic spline that is identically zero on σ1, σ2, and σ3. Then
for all bivariate quadratic polynomials that vanish on {va, vb, vc, vd} and
whose values at vj and vj+1 are nonzero, we have q(vj)

q(vj+1)
=

s(vj)

s(vj+1)
if and

only if the two cross-ratios [vj, vj+1, w
j
ab, u

j
1] and [vj, vj+1, u

j
4, w

j
cd] are equal,

where a, b, c, d are all distinct indices in {1, . . . , 4}.
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Proof. By Corollary 3.4 and Corollary 3.2, the ratio of the values of the
quadratic equals the ratio of the values of the basic spline at v5 and v6
if and only if

q(vj)

q(vj+1)
=

|vjwj
ab| · |vjw

j
cd|

|vj+1w
j
ab| · |vj+1w

j
cd|

=
|vjuj

1| · |vju
j
4|

|vj+1u
j
1| · |vj+1u

j
4|

=
s(vj)

s(vj+1)
.

We can then rewrite the ratios as follows:

(wj
ab − vj)(w

j
cd − vj)

(wj
ab − vj+1)(w

j
cd − vj+1)

=
(uj

1 − vj)(u
j
4 − vj)

(uj
1 − vj+1)(u

j
4 − vj+1)

.

Rearranging the terms gives

(wj
ab − vj)(u

j
1 − vj+1)

(wj
ab − vj+1)(u

j
1 − vj)

=
(uj

4 − vj)(w
j
cd − vj+1)

(uj
4 − vj+1)(w

j
cd − vj)

which, by Fact 3.7 is exactly the equality of the cross-ratios

[vj, vj+1, w
j
ab, u

j
1] = [vj, vj+1, u

j
4, w

j
cd].

Theorem 3.9. Let ∆6 be a conic cell with boundary vertices {v1, . . . , v6}.
Then the following are equivalent:

1. The function values at the six boundary vertices of ∆6 of a basic
spline s that is identically zero on σ1, σ2, and σ3 can be interpolated
by a bivariate quadratic polynomial.
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2. There exists a bivariate quadratic polynomial q(x, y) that vanishes
on {v1, . . . , v4} and whose value is nonzero at v5 and v6 such that

s(v5)

s(v6)
=

q(v5)

q(v6)
.

3. For all bivariate quadratic polynomials q(x, y) that vanish on {v1, . . . , v4}
and whose value is nonzero at v5 and v6, we have the equality

s(v5)

s(v6)
=

q(v5)

q(v6)
.

4. The two cross ratios [v5, v6, w
5
14, u

5
1] and [v5, v6, u

5
4, w

j
23] are equal.

Proof. (1⇔2) This follows from Claim 3.5 with j = 5.
(2⇔3) (⇒) Suppose such a q(x, y) exists. Then by Remark 2.13, this
bivariate quadratic polynomial is unique up to a constant multiple, and
so for all bivariate quadratic polynomials that vanish on {v1, . . . , v4}
and whose value is nonzero at v5 and v6, s(v5)

s(v6)
= q(v5)

q(v6)
.

(⇐) Trivially, if all bivariate quadratic polynomials q(x, y) that vanish
on
{v1, . . . , v4} and whose values are nonzero at v5 and v6 are such that
s(v5)
s(v6)

= q(v5)
q(v6)

, then there exists a q(x, y) such that the equality of ratios
holds.
(3⇔4) This follows from Claim 3.8, with j = 5, a = 1, b = 4, c = 2, and
d = 3.

Theorem 3.10. Let ∆6 be a conic cell with boundary vertices {v1, . . . , v6}.
Then the following are equivalent:

1. The conic cell ∆6 is unconfinable.

2. The rank of M is 5.

3. The values of each of the column vectors S1,S2, and S3 can be in-
terpolated by a bivariate quadratic polynomial.

4. The cross-ratios [vj, vj+1, w
j
ab, u

j
1] and [vj, vj+1, u

j
4, w

j
cd] are equal for

j = 2, 3, 4.
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Proof. (1⇔2) This follows from Theorem 2.8.
(2⇔3) This follows from Claim 2.6 and Lemma 2.7.
(3⇔4) This follows from Theorem 3.9, taking j = 2, 3, 4 and the splines
that are identically zero on σ4, σ5, and σ6, on σ5, σ6, and σ1, and on
σ6, σ1,and σ2.

4 Unconfinability of concordant hexagonal
cells

The central aim of this section is to completely characterize the uncon-
finability of the class of hexagonal cells that we call concordant, and
show that the property is preserved under projective transformations.

4.1 Definitions and Projective Geometry
Definition 4.1. A hexagonal cell where the lines connecting vi and vi+3

for i = 1, 2, 3 all intersect at the interior vertex is called concordant.
Otherwise, it is called discordant.

In order to continue our discussion of the characteristics of uncon-
finable cells, we briefly recall the most important definitions regarding
projective geometry. For more information, seek a text on the subject,
such as [7].

Definition 4.2. Let E be an (n+1)-dimensional vector space. A projec-
tive point is a one-dimensional vector subspace of E. An n-dimensional
projective space P n(E) is the set of all the projective points.

Definition 4.3. Let F be a (k+1)-dimensional subspace of E. Then the
k-dimensional projective space P k(F ) is called the projective subspace
of P n(E). Let L be a 2-dimensional vector subspace of R3, then P 1(L) is
a projective line.

Definition 4.4. Let g be a bijective linear map from a vector space
E to a vector space E ′. Then g induces a function P(g) between the
projective spaces P n(E) and P n(E ′). The map P(g) : P n(E) → P n(E ′) is
called a projective transformation.

The following hold for projective transformations:
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i. The image of a projective line is a projective line,

ii. The image of the intersection of two projective lines is the inter-
section of the images of the projective lines.

In order to prove the result, the following facts will be needed.

Claim 4.5. Let P 1(L) be a projective line in R3. Let P(g) : P 2(R3) →
P 2(R3) be a projective transformation, and let L′ be the image of L under
g. Then P(g ↾ L) : P 1(L) → P 1(L′) is a projective transformation of the
projective line.

Proof. The linear bijection g ↾ L maps linear subspaces contained in L
to linear subspaces in L′, and so the projective transformation P(g ↾
L) : P 1(L) → P 1(L′) is well defined.

Fact 4.6 (Theorem 20 in [7]). Let P 1(L) and P 1(L′) be projective lines.
If there exists a projective transformation P(u) : P 1(L) → P 1(L′) taking
projective points a, b, c, d in P 1(L) to projective points a′, b′, c′, d′ in P 1(L′),
then the cross-ratio [a, b, c, d] equals [a′, b′, c′, d′].

Lemma 4.7. Let P(g) : P 2(R3) → P 2(R3) be a projective transformation,
and L a 2-dimensional vector subspace of R3 containing the projective
points a, b, c, d. If the images of a, b, c, d under P(g) are a′, b′, c′, d′ respec-
tively, then the cross-ratios [a, b, c, d] and [a′, b′, c′, d′] are equal.

Proof. Let P 1(L′) be the image of projective line P 1(L) under P(g). By
Claim 4.5 there exists a projective transformation P(g ↾ L) : P 1(L) →
P 1(L′) that is the projective transformation of the restriction of g to
plane L. Since the images of a, b, c, d under P(g) are given by a′, b′, c′, d′,
by Fact4.6 the cross-ratio of points a, b, c, d equals that of a′, b′, c′, d′.

4.2 Key Properties of Projective Transformations
We will now introduce additional definitions in order to describe con-
cordant hexagonal cells in the projective plane. Everywhere below,
we will abuse the notation by identifying an element v of the vector
space E with the corresponding projective point, i.e. the linear sub-
space spanned by v.
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Definition 4.8. Let {e0, . . . , en} be a basis in an (n+1)-dimensional vec-
tor space E, and Pn(E) an n-dimensional projective space. A projective
frame is an ordered set of n + 2 projective points relative to the basis,
given by {e0, . . . , en, e0 + · · ·+ en}.

We let the associated projective frame of a hexagonal cell to be the
projective points {t1, v0, t3, v5}.

Fact 4.9 (Theorem 4 in [7]). Let P n(E) and P n(E ′) be projective spaces,
with projective frames {p0, . . . , pn, pn+1} and {p′0, . . . , p′n, p′n+1} respectively.
There exists a unique projective transformation P(g) : P n(E) → P n(E ′)
such that P(g(pi)) = p′i for all i = 0, 1, . . . , n, n+ 1.

Definition 4.10. Let a hexagonal cell ∆6 have vertices vi for i = 1, . . . , 6
with interior vertex v0. If the lines vivi+3, vi+1vi+2, and vi+4vi+5 are con-
current, then we call the collection of these three lines the ith pencil of
∆6, and denote the set of lines by the symbol Ti. The pencil point ti is
the common point of intersection of the lines in Ti.

The image below is an example of a concordant hexagonal cell with
the pencils drawn and pencil points labeled ti for i = 1, 2, 3.

v5

v6v4

v3

v2

v1
v0

t1
t2

t3

Proposition 4.11. A concordant hexagon is unconfinable if and only if
it has three pencils Ti for i = 1, 2, 3.
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Proof. (⇒) Suppose a concordant hexagonal cell ∆6 is unconfinable.
Then the function values of each basic spline at the six vertices can be
interpolated by the quadratic function which vanishes on vj1, v

j
2, v

j
3, v

j
4

and so we have [vj, vj+1, w
j
14, u

j
1] = [vj, vj+1, u

j
4, w

j
23] by Claim 3.8. Be-

cause ∆ is concordant, the diagonals intersect at the interior vertex,
and therefore the line containing vj1 and vj4 is the same as the interior
edges through both vk1 and vj4, and so these lines all intersect the line
containing vj and vj+1 at the same point. Therefore wj

14 = uj
1. By Defi-

nition 3.6, if wj
14 = uj

1, then the cross-ratio is given by [vj, vj+1, w
j
14, u

j
1] =

Pvjvj+1w14(u
j
1) = Pvjvj+1w14(w14) = 1. Because the two cross ratios on the

line through vj and vj+1 are equal then also [vj, vj+1, u
j
4, w

j
23] = 1, and

Definition 3.6 similarly implies that uj
4w

j
23, so the line through vj2 and

vj3 intersects the line containing vj and vj+1 at the same point as the
line through vj1 and vj4, so the lines through opposite sides and the di-
agonal are concurrent, forming a pencil.
(⇐) Now suppose that the lines containing opposite edges of the hexag-
onal cell ∆ and the diagonal are concurrent. Then uj

1 = wj
14 and wj

23 =
uj
4, for j = 1, 2, 3, so by Definition 3.6, we have [vj, vj+1, u

j
1, w

j
14] = 1 and

[vj, vj+1, w
j
23, u

j
4] = 1, so the two cross-ratios on the line through vj and

vj+1 are equal for j = 1, 2, 3, and ∆ is unconfinable by Claim 3.8.

Example 4.12. Let the regular hexagonal cell ∆reg have vertices (v1, . . . , v6)
given by the projective points [cos kπ

3
: sin kπ

3
: 1] for k = 0, . . . , 5. This

unconfinable, concordant hexagonal cell centered at [0 : 0 : 1] will have
pencil points ti, i = 1, 2, 3 at points at infinity, given by t1 = [1 : 0 :

0], t2 = [1
2
:

√
3
2

: 0], t3 = [−1
2

:
√
3
2

: 0]. The associated projective frame of
∆reg is {[0 : 0 : 2], [−2 : 0 : 0], [1 : −

√
3 : 0], [−1 : −

√
3 : 2]}.

Lemma 4.13. Given any collection of four projective points a, b, c, d,
there exists a unique hexagonal cell ∆6 such that the pencil points t1, t3
of ∆6 are a and c, the interior vertex of ∆6 is b, and v5 of ∆6 is d.

Proof. Let a, b, c, d be labeled t1, v0, t3, v5, and {t1, v0, t3, v5} be the projec-
tive frame. We will construct the unique hexagonal cell. Draw a line
through each pair of points in the frame. The intersection of t1v5 and
t3v0 is the point v6, and the intersection of t1v0 and t3v5 is v4. The pencil
point t2 is the intersection of the line t1t3 with v0v5. The line t2v6 in-
tersects with t1v0 at vertex v1, and t2v4 intersects with t3v0 at vertex v3.
The final vertex, v2 is the intersection of t1v3 and v0v5. Thus all vertices
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are uniquely determined, and the hexagonal cell can be constructed
using these vertices.

4.3 Proof of Theorem 4.14
Theorem 4.14. Let ∆6 be a concordant hexagonal cell. Then the follow-
ing are equivalent:

1. The cell ∆6 is unconfinable.

2. The image of ∆6 under some projective transformation is uncon-
finable.

3. There exists a projective transformation under which the image of
∆6 is the regular hexagonal cell ∆reg.

Proof. (1 ⇐⇒ 2) Given the unconfinable cell ∆6, by Theorem 3.10 the
cross-ratios of ∆6 [vj, vj+1, w

j
ab, u

j
1] and [vj, vj+1, u

j
4, w

j
cd] are equal for j =

2, 3, 4. By Lemma 4.7 , each pair of the cross-ratios are preserved over
some projective transformation, and so the cross-ratios [vj, vj+1, w

j
ab, u

j
1]

and [vj, vj+1, u
j
4, w

j
cd] are equal for j = 2, 3, 4 of ∆′

6. Therefore by Theorem
3.10 , ∆′

6 is unconfinable. The converse can be seen by taking the in-
verse projective transformation of ∆′

6, and noting that the cross-ratios
are preserved.
(1 ⇒ 3) Let P 2(R3) be the projective plane containing ∆6, and P 2(R3′)
the projective plane containing regular hexagonal cell ∆reg. Let the
vertices of ∆6 be vectors in R3 given by vi for i = 1, . . . , 6. Since ∆6 is un-
confinable and concordant, by Proposition 4.11 each pencil of ∆6 must
have an pencil point. The three pencil points can be given as projective
points t1, t2, t3. By the assumption that no 4 points on ∆6 are collinear,
the vectors t1, v0, t3 form a basis in R3. We define a projective frame in
P 2(R3) as {αt1, βv0, γt3, v5}. As the vectors corresponding to t1, v0, t3 form
a basis in R3, there exists scalars α, β, γ such that αt1 + βv0 + γt3 = v5,
thus satisfying the conditions for a projective frame. By Fact 4.9, there
exists a projective transformation that uniquely sends this projective
frame of ∆6 to the projective frame of ∆reg in P 2(R3′). Therefore, Lemma
4.13 implies that the remaining vertices of the image ∆6 are uniquely
determined, and must be the vertices of ∆reg. Thus, the image of ∆6 un-
der some projective transformation is the regular hexagonal cell ∆reg.
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(1 ⇐ 3) We know that ∆6 must be concordant, and want to show that
it is unconfinable. We take the projective transformation of the pen-
cils of ∆reg, and by the properties of projective transformations, each
ti, i = 1, 2, 3 will map to the intersections of the images of the pencils.
Since ∆6 is projectively equivalent to ∆reg, the images of the pencils
must coincide with the edges of ∆6, and so ∆6 has three pencil points.
Therefore, ∆6 is unconfinable.
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