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Question: given a continuous distribution of mass, which we want
to approximate with only N points, how to place them so to
minimize the approximation error?

2 / 39



Voronoi diagrams
Gersho’s conjecture: state of art

Geometric complexity of Voronoi cells

Voronoi diagrams, Euclidean distance:

Given a collection if points {yk} (the black dots), the Voronoi cell
of a point yk is the set

V := {x ∈ Q : |x − yk | ≤ |x − yj | for all j 6= k}.
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We associate to {yk}nk=1 the second moment energy:

E (Y ) :=

∫
Q

dist2(x ,Y )dx =
n∑

k=1

E (Vk),

E (Vk) :=

∫
Vk

|x − yk |2dx , k = 1, · · · , n

where Q = [0, 1]d and Vk denotes the Voronoi cell of yk .

Centroid of a set: given a set Ω, a centroid is a point y ∈ Ω such
that ∫

Ω
(x − y)dx = 0 =⇒ y =

1

|Ω|

∫
Ω
xdx .

Observation: optimal Voronoi tessellations are also centroidal
Voronoi tessellation (CVT).
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Voronoi tessellations:
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Voronoi tessellations are all around us: some examples and
applications
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Centroidal Voronoi tessellation (CVT) in nature:

[b]0.5 [b]0.4
Left: SEM of the corneal endothelium of a dog.

Right: Honeycomb

Giant’s causeway
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Voronoi tessellations are useful in a wide array of applications:

Figure: London’s tube network, with Voronoi cells of its stations.

The Voronoi cells of a stations represents the region closest to that
particular station.
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How would an AI pilot drive the car in a “obstacle course”?

Figure: Driving path (red), and obstacles detected (white).

By driving on edges of Voronoi cells of the obstacles, the car keeps
a maximal distance from these...
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The idea of Voronoi tessellations is quite not new...

Figure: “Boundary of equal distance between Broad Street Pump and
other Pumps”, J. Snow’s report on the cholera outbreak in the Parish of
St. James, Westminster 1854.

Voronoi cell of Broad Street Pump, i.e. the region where people
collected (infected) water from this pump.
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What can we say about Voronoi tessellations? In general, pretty
much nothing...
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Gersho’s conjecture (1979)

There exists a polytope V with |V | = 1 which tiles the space with
congruent copies such that the following holds: let (Yn)n be a
sequence of minimizers, with Yn minimizer with n points, then the
Voronoi cells of points Yn are asymptotically congruent to nα(d)V
as n→ +∞.

Note:

1 the polytope V can depend on the dimension d .

2 Nothing is said about the geometry of V .

3 This conjecture is for n→ +∞. Nothing is said, or expected,
for finite n.
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So Gersho’s conjecture is a crystallization problem.
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Crystallization problems are notoriously easy-looking, but relatively
hard:

1 Seems obviously true in simulations...

2 It is never easy when it comes to proofs...

An example from Ohta-Kawasaki:

Figure: Image courtesy of Chong Wang et al.

Minimizers seems to distribute along a triangular lattice, with all
double bubbles being parallel...
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...But proving it will be anything but trivial.

Even “simpler” crystallization problems are highly nontrivial:

1 Heitmann and Radin (1980): interaction energy

V (r) :=


+∞ if 0 ≤ r < 1,

−1 if r = 1,

0 if r > 1,

2 Theil (2005): Lennard-Jones like interaction energy in 2D

Minimizers of both of these problems crystallize into a triangular
lattice... These energies are highly nonlocal and nonconvex.
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Gersho’s conjecture: State of art
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Known results:

1 Gersho’s conjecture is fully proven in 2D (Fejes Tóth, Gruber,
etc.): the optimal Voronoi tessellation is the triangular lattice
(”honeycomb”).

2 Open for higher dimensions.
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Gruber’s arguments for 2D:

1 optimal with k edges are regular k-gons.

2 The function (k ,A) 7→ g(k ,A) is convex.

g(k ,A) := energy of optimal convex k-gon with area A.

3 The average number of sides in a Voronoi tessellation is 6 (by
Euler’s polytope formula).
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Then, for any arbitrary tessellation Yn (with ]Yn = n), of Q, let
{Vk} be the collection of Voronoi cells, and let αk be the number
of faces of Vk . Thus it follows

E (Yn) =
n∑

k=1

∫
Vk

|x − y |2dx ≥
n∑

k=1

g(αk , |Vk |)

≥ ng(6, 1/n) + error due to boundary effects.

Since the error due to boundary effects is a higher order term
compared to ng(6, 1/n), it follows that the optimal tessellation (as
n→ +∞) consists of congruent copies of a space tiling polyhedron
realizing g(6, 1/n).
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Conjecture

The optimal lattice in 3D is the body centered cubic (BCC) lattice.

8 nearest neighbours

6 next-nearest neighbours

reference point

Numerical results seem to support this (Du et al. 2005).
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Main difficulties in 3D:

1 No regular k-hedra.

2 Very difficult to compute the energy of a generic k-hedron.

Moreover:

1 Gersho’s conjecture is nonlocal and infinite dimensional.

2 No a priori bounds on the geometric complexity of Voronoi
cells.
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Even deeper difficulties in 3D
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Deeper causes: existence of universally optimal lattices.

(Cohn, Viazovska et al.) R8 does have a universally optimal
lattice (E8), and so does R24 (Leech lattice).

(unproven, but likely to be true) R2 should have a universally
optimal lattice (triangular lattice).
This lattice is optimal for several problems:

sphere packing
optimal foam
crystallization of two-body interaction potentials
total first eigenvalues of −∆

R3 is hugely unlikely to have a universally optimal lattice...
BCC (Body Centered Cubic), FCC (Face Centered Cubic),
HCP (Hexagonal Close Packing), and even non lattice
structures (e.g. Weaire-Phelan structure) are potentially
optimal configurations...
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Figure: The Weaire-Phelan structure.

The Weaire-Phelan structure disproved the century old Kelvin
conjecture that the “optimal foam” (i.e. packing with smallest
surface area) was given by the bitruncated cubic honeycomb
structure.
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The Weaire-Phelan structure uses two polyhedra, and shows little
regularity when sectioned along planes...

Figure: If you take sections of the Wearie-Phelan structure...
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Geometric complexity of optimal CVTs
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Main result:

Upper bound on the number of faces (Choksi and L.)

There exists a computable N ≈ 1020 such that Voronoi cells in
optimal CVTs have at most N faces.

The constant N is quite large, but finite.
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Domain Q = [0, 1]3, n generators. Expected averages.

1 Average diameter of each Voronoi cell O(n−1/3).

2 Average volume of each Voronoi cell O(n−1).

3 Average energy of each Voronoi cell O(n−5/3).

Since the second moment is “convex”, an optimal tessellation
should be made of cells whose properties should not differ too
much from the averages...

That is, optimal tessellations should not contain “rods” or
“sheets”...
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Prove that all the above quantities differ from the average by a
uniform multiplicative constant. But, there is far too little
regularity to use anything “powerful”.

Main idea (quite simple one...)

remove a point from some cell: this increases the energy

add such point elsewhere: this decreases the energy

Then we estimate the energy difference...
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Key ingredients.

1 Crucial: reduction when adding another point.

2 Lower bound on the distance to a closest neighbor.

3 Lower/upper bound on the diameter of Voronoi cells.

4 Lower bound on the volume of Voronoi cells.

5 Boundary cells can be ignored.
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Maximum geometric complexity of Voronoi cells (Choksi, L.)

For any y ∈ Yn, its Voronoi cell V is a convex polyhedron with at
most

N =
9πΓ2

4

16Γ1

faces.

31 / 39



Voronoi diagrams
Gersho’s conjecture: state of art

Geometric complexity of Voronoi cells

All faces of any Voronoi cell belong to axial plane of the line
segment between 2 generators, whose Voronoi cells share a
boundary.

Can’t be too far away: if two atoms y ′, y ′′ ∈ Yn satisfy

|y ′ − y ′′| > 2Γ4n
−1/3 ≥ 2maximum diameter

then their Voronoi cells do not share boundaries.

Upper bound on diameter: ... so if y , y ′ share boundary,
then the entire Voronoi cell of y ′ is in the ball

B(y , 3Γ4n
−1/3)...

Lower bound on volume: each Voronoi cell has volume at
least Γ1Γ−2

4 n−1, and diameter at most Γ4n
−1/3...
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... Volume argument B(y , 3Γ4n
−1/3) can contain only

N :=
4
3π(3Γ4n

−1/3)3

Γ1Γ−2
4 n−1

=
9πΓ2

4

16Γ1
≈ 1020

entire Voronoi cells. Thus V can share boundaries with at
most N other Voronoi regions.
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Voronoi tessellations on the sphere
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Voronoi tessellations are not exclusive to the plane:

Figure: What is your closest airport?
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The same question can be posed with the domain being S2 instead
of [0, 1]3: as the number of generators diverge, are “almost all”
(i.e. all except o(n) many) the Voronoi cells going to be
asymptotically congruent to some fixed polytope?

Idea: the sphere S2 is “really like” the plane R2, at least locally...
So “almost all” the Voronoi cells going to be asymptotically
congruent to a (rescaled) regular hexagon...
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Key difference: S2 is geometrically more rigid, mainly due to the
Euler polytope formula

#vertices−#edges + #faces = 2.

The number of defects (i.e. non hexagonal cells) should be
controlled, with something much tighter than o(n).
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Main result:

Only finitely many non hexagonal cells (Choksi, L.)

There exist computable constants M,N such that, whenever the
number of generators n > N, the optimal configuration satisfies
the following geometric properties:

the number k = k(n) of hexagonal cells is at least n −M;

denote by {Vi} the hexagonal cells, i = 1, · · · , k and let
An :=

∑
i |Vi |. Denote by H the regular hexagon of area

An/k. Then

lim
n→+∞

∑
i

inf
x∈S2
|Vi4(H + x)| = 0.

That is, the total mismatch between the Voronoi cells and
regular hexagons is vanishing.

38 / 39



Voronoi diagrams
Gersho’s conjecture: state of art

Geometric complexity of Voronoi cells

Main result:

Only finitely many non hexagonal cells (Choksi, L.)

There exist computable constants M,N such that, whenever the
number of generators n > N, the optimal configuration satisfies
the following geometric properties:

the number k = k(n) of hexagonal cells is at least n −M;

denote by {Vi} the hexagonal cells, i = 1, · · · , k and let
An :=

∑
i |Vi |. Denote by H the regular hexagon of area

An/k. Then

lim
n→+∞

∑
i

inf
x∈S2
|Vi4(H + x)| = 0.

That is, the total mismatch between the Voronoi cells and
regular hexagons is vanishing.

38 / 39



Voronoi diagrams
Gersho’s conjecture: state of art

Geometric complexity of Voronoi cells

Thank you for your attention!
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