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Abstract

A scheme for treating the Second Law of thermodynamics as a constraint and accounting for the
approximate nature of constitutive assumptions in continuum thermomechanics is discussed. An
unconstrained, concave, variational principle is designed for solving the resulting mathematical
problem. Cases when the Second Law becomes an over-constraint on the mechanical model, as
well as when it serves as a necessary constraint, are discussed.

1 Introduction

Ever since the pioneering work of Coleman and Noll [1] utilizing the local statement of the Sec-
ond Law of Thermodynamics in the form of the Clausius-Duhem Inequality (Truesdell and Toupin
[2, Sec. 258, discussion surrounding (258.4)]), the Second Law has been used as a constraint on
admissible constitutive equations in continuum thermomechanics, with some unexpectedly strong
results [3]. As discussed subsequently in this Section, beyond sound theory, there are good prac-
tical reasons to do so, related to a question of constraints. However, notions of temperature and
entropy are physically elusive, and it is perhaps fair to say that the most direct physical grasp
of these concepts comes only from their association with ideas from statistical mechanics, as de-
scribed, e.g., by Berdichevsky [4] (a recipe for the combination of these concepts with continuum
thermomechanics is explored in [5] in the context of dislocation thermomechanics). When/if viewed
from this perspective, it becomes amply clear that the time-scales involved in posing the notion
of entropy cannot be arbitrarily small, and entropy is not a quantity that immediately lends itself
to a definition of an entropy density per unit mass, as is assumed in continuum thermomechanics.
Indeed, in recent work Needleman [6, 7] has questioned the applicability of the Second Law in the
form of the Clausius-Duhem Inequality [2] over small time and length scales. It is known that the
Second Law, in general, is not a guarantor of ‘stability’ of thermomechancial processes and it is
also shown in [7] that a choice of constitutive assumptions in a simple example of wave propagation
in a viscoplastic material which allows for the violation of the Second Law over small periods of
time and over small length scales does not necessarily lead to some irreversible, catastrophic loss
of stability of motion. Needleman’s conclusion in [7] is that the unequivocal satisfaction of the
Clausius-Duhem Inequality almost everywhere in space-time during the course of every process of
a body/system is too strong a requirement for small-scale phenomena.

In this work, an alternate, possibly complementary, point of view is explored through a rela-
tively simple example whose ideas carry over to general processes of materials described by local
constitutive assumptions. ‘Excess’ quantities in typically constitutively specified fields, e.g., stress,

∗Department of Civil & Environmental Engineering, and Center for Nonlinear Analysis, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, email: acharyaamit@cmu.edu.

1



are introduced to acknowledge the inevitable lack of full knowledge in describing the material re-
sponse of any body that is modeled. Then the (mechanical form of the) Clausius-Duhem Inequality
(alternatively referred to as the Second Law in this work) is assumed to hold, simply as a constraint
condition on physical processes, much like the balances of mass, linear and angular momentum,
and energy. It is required that the excess quantities be ‘as small as possible.’ This gives rise to a
constrained nonlinear optimization problem. A procedure is then outlined to turn the problem into
an unconstrained concave variational principle with guaranteed consistency with the PDE describ-
ing the mechanical model and the Second Law, including equal number of fields as the number of
equations. Contact is made with Needleman’s point of view [6, 7] by noting that if the Clausius
Duhem Inequality is satisfied with only the excess stored energy in play with all other mechanical
constitutive assumptions unaltered, then removal of the former from a given solution can very well
lead to the violation of the Second law over some regions of the body and over certain periods of
time for the process. This is discussed further in Sec. 4.

This brief communication contains three more sections: in Sec. 2 we fix ideas in the context of a
nominally elastic, 1-d bar undergoing a quasi-static deformation history. In Sec. 3 the corresponding
elastodynamic problem is defined, a specific recipe for solving the problem through a variational
principle is developed, and a concave variant elaborated on. Sec. 4 contains some concluding
remarks.

In terms of notation, a subscript x, t will represent partial derivatives w.r.t the quantities. A
superscript prime on a function of one variable represents a derivative. ‘Arbitrarily’ specified fields
are understood to have the requisite regularity for the mathematical statements they appear in to
make sense.

2 Fixing the physical idea

We briefly review the continuum thermomechanical formalism for the Second Law as per [2] - for
detailed use in a thermomechanical theory with the Second law used in local form, see App. A of
[5]. Our goal here is not a philosophical discussion of the correctness of one or another formulation
of the Second Law. In particular we assume that an entropy density per unit mass, η, and absolute
temperature are well-defined quantities for all processes we consider.

The fundamental postulate is that at a fixed absolute temperature θ > 0 there is an upper
bound to the ratio of the heat that can be supplied to a body to the absolute temperature; this
upper bound is denoted as the rate of entropy generation at that temperature and thus the rate of
entropy production from energy sources other than heat is non-negative:

d

dt

∫
B(t)

ρη dv −
∫
∂B(t)

q · n
θ

da ≥ 0, (1)

where B(t) is the current configuration of the body at time t, ρ is the mass density, and q is the heat
flux vector such that q · nda gives the heat flowing in the direction −n through a surface element
with area da with unit normal n, and we have assumed no volumetric sources of heat supply in the
body. Note that various statements of the Second law differ in whether the temperature can be
associated pointwise as done above, or whether it corresponds to the body as a whole. Moreover,
Truesdell and Toupin [2] postulate that (1) holds for all sub-parts of a body and all instants of
time.

In the following, we will assume that Balance of mass holds for all processes considered. Now
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the First Law, Balance of energy, assuming Balance of Linear momentum is satisfied, states that

d

dt

∫
B(t)

ρε dv =

∫
B(t)

T : Ldv +

∫
∂B(t)

q · nda, (2)

where ε is the internal energy density per unit mass, T is the Cauchy stress tensor, and L is the
velocity gradient. On introducing the free energy density per unit mass, ψ, through the relation

ψ := ε− ηθ

and substituting in (2) we have

d

dt

∫
B(t)

ρθη dv −
∫
∂B(t)

q · nda =

∫
B(t)

T : Ldv − d

dt

∫
B(t)

ρψ dv. (3)

Under isothermal (over body and time) conditions, (3) gives an expression for the mechanical
dissipation

d

dt

∫
B(t)

ρη dv −
∫
∂B(t)

q · n
θ

da =
1

θ

(∫
B(t)

T : Ldv − d

dt

∫
B(t)

ρψ dv

)
,

and in such situations1 the Second law (1) is equivalent to requiring∫
B(t)

T : Ldv − d

dt

∫
B(t)

ρψ dv ≥ 0. (4)

In continuum thermomechanics this is furthermore imposed pointwise in space and time.

2.1 1-d quasi-static elasticity

To fix ideas, consider quasistatic elasticity in 1-d along with the mechanical version of the Second
Law (4) imposed pointwise (cf. [6, Sec. 3]):

Tx = 0

Tet − ψt ≥ 0

v(0, t) = 0; T (1, t) = f(t),

(5)

where T = T̂ (e) is the stress, e is the strain, and ψ = F (e) is the (free) energy density, T̂ and F are
arbitrarily specified constitutive response functions, and t 7→ f(t) is an applied load history. Then,
force equilibrium (T (x, t) = f(t)) determines the strain trajectory, say (x, t) 7→ em(x, t) given some
initial condition on e, which satisfies

emt (x, t) =
ft(t)

T̂ ′(em(x, t))
.

The Second Law requires (
T̂ (em(x, t))− F ′(em(x, t))

)
emt (x, t) ≥ 0,

1Of course, the isothermal condition is a constraint on a thermomechanical process for which the heat flux has to
be treated as a ‘constraint force’ to impose the constraint. For the general situation, see [5, App. A, Eqn. (49)-(51)].
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and for specified T̂ , F there is no reason why such a requirement would be satisfied by the generated
strain trajectory em. One (and perhaps the only currently known) option out of this quandary is
to use the Coleman-Noll [1] procedure to restrict the constitutive response functions which, in this
case, would amount to requiring

T̂ (e) = F ′(e) for all e.

We would now like to explore a different tack on the above question. Based on the premise
that the modeler is in a position to deploy physically sound constitutive assumptions (see, e.g., the
discussions in [7, 6]) but at the same time admitting that there is no natural way to know what an
exact constitutive equation for a material under study should be, it would be ideal to assume that
the stress and free energy density for a nominally elastic material are given by the specifications

T (x, t) = T̂ (e(x, t)) +X(x, t)

ψ(x, t) = F (e(x, t)) + a(x, t)
(6)

where, as before, T̂ , F are specified approximate constitutive equations, and X, a are excess fields to
compensate for the lack of exact knowledge of the material, to be determined by the overall problem
to be solved under the constraint that satisfying the balance principles (5) is non-negotiable.

Operating with these design constraints for solving (5), we have that the trajectories

(x, t) 7→ (e(x, t), X(x, t), a(x, t))

must satisfy

T̂ (e(x, t)) +X(x, t) = f(t), ψt(x, t) = F ′(e(x, t)) et(x, t) + at(x, t)

and (dropping the (x, t) argument)(
T̂ (e)− F ′(e)

)
et +Xet − at =

(
f − F ′(e)

)
et − at ≥ 0.

One is now faced with the opposite problem of the situation being not sufficient to determine a
unique strain trajectory, in general. Simply consider the situation a = 0 for all times and then
e(x, t) = 0 for all (x, t) is a solution as well as one that solves F ′(e(x, t)) = f(t) for given F and,
for simplicity, consider the linear elastic situation when F ′ = Ce, C the constant Young’s modulus,
and one subsequently determines X(x, t) := f(t)− T̂ (e(x, t)). In more than 1 space dimension, X
would be a tensor and the Second Law, a scalar inequality, would be even less constraining.

With the desire to retain the notion of excess fields in the constitutive structure as in (6), we
augment it by introducing a scalar, real-valued dissipation slack variable, s (with s2 the physical
dissipation), and require that (5) be satisfied in the form

Tx = 0

Tet − ψt − s2 = 0

v(0, t) = 0; T (1, t) = f(t),

augmented with the further conditions that

|X(x, t)|2, |a(x, t)|2, −|s(x, t)|2 for all (x, t) in the space-time domain under consideration

be minimized in any admissible process of the material under consideration; the minus sign on the
dissipation is to account for the nature of the dissipation which one wants to maximize. To get a
rough sense of what this may result in, assuming X = 0, a = 0 one would require

T̂ (e(x, t)) = f(t) (7a)(
T̂ (e(x, t))− F ′(e(x, t))

)
et(x, t) = 0 (7b)
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for specified functions T̂ , F and if a strain trajectory cannot be found satisfying the above, X =
0, a = 0 would not be attained and the constrained minimization problem would be required to
determine the solution. For example, assuming the constraint (7a) determines a strain trajectory
with |X| allowed to take its minimum value, at will have to compensate for (f −F ′(e))et when the
latter is negative, and when positive, s2 will have to compensate for it with at allowed to vanish
- this, assuming that the cost of deviations in |X|, |a| from 0 is large in comparison to that of |s|,
and that a belongs to a function space where if a is small in any interval of time, its time derivative
in the interval cannot be large.

Of course, the requirement of solving a nonlinear constrained optimization problem is not a
recipe for making life easier in continuum mechanics, but a scheme for converting such problems to
an unconstrained concave variational problem can provide some advantages and, at the very least,
a different point of view. It is such a scheme that we develop in Section 3.

In closing this Section, we emphasize that the device of allowing excess fields is not a declaration
of more sophisticated knowledge about material response, but rather an admission of the lack of such
knowledge. Thus, what we propose is not meant as a substitute for the development of more physical
and fundamental models of the response of materials (e.g., [8, 5, 9]). It is well-understood that
even in the absence of the excess fields and adopting standard constitutive equations, problems for
specific material models (e.g. nonconvex elastodynamics discussed in Sec. 4, softening geomaterial
response) often display non-uniqueness of solutions. The proposed scheme below has the potential
of exploring such non-unique solutions with a modicum of stability in problem solving [10] to check
whether any of those can correspond to actual material response, without having to rely on ad-hoc
higher-order regularizations or extra constitutive statements introduced solely for the purpose of
mathematical well-posedness.

3 Dual Elastodynamics with excess fields

We consider the stress and free-energy response of a nominally elastic material with constitutive
response not known with definiteness as given by (6), where X, a are constitutively undetermined
fields required to be determined by the model. It is noted that the response of this model with
excess fields may incur dissipation, under the constraint that the magnitudes of the excess fields are
required to be as small as possible by design. Of course, it is well understood that elastodynamics
of a hyperelastic material, as discussed in Remark 6 of Sec. 4 involves dissipation, in general, at
shocks.

We then write the equations of such a model of elastodynamics comprising kinematic compati-
bility between the velocity and the strain fields, balance of linear momentum (without body force
for simplicity), and the Second Law of thermodynamics as

vx − et = 0

rvt − T̂ (e)x −Xx = 0(
T̂ (e) +X − F ′(e)

)
et − at ≥ 0,

(8)

where v is the velocity, e the strain, and r the constant mass density. We denote T̂ (e) − F ′(e) =:
T ♯(e), and write (8) in first-order form with the requirement that no nonlinearities involving deriva-
tives be present in any of the equations, excluding terms that may be expressed as space or time
derivatives of nonlinear functions of the basic dependent variables, e.g., T̂ (e)x:

vx − et = 0
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rvt − T̂ (e)x −Xx = 0

et − d = 0 (9)(
T ♯(e) +X

)
d− at − s2 = 0

sx − g = 0,

where s is the dissipation slack, a real-valued function of space-time to be determined by the model.
For simplicity, but not out of necessity, we will assume

T ♯(e) = 0; a = 0

in this Section (which would be an exact statement and not an assumption if the material model
considered was hyperelastic). Also, the last equation in (9) at this point assigns a name to the
spatial gradient of the dissipation slack, whose purpose will be to impose a regularization in the
spatial gradients of the dissipation when deemed desirable by the modeler, further discussed in
Sec. 4. We augment the system with the boundary and initial conditions, say,

v(0, t) = vl(t); T (1, t) = f(t); e(x, 0) = e0(x); v(x, 0) = v0(x). (10)

The goal now is to define an optimization problem whose solution satisfies the system (9-10)
with the fields (X, s, g) point-wise being as small as possible so that the solution is as close as
possible to an admissible process of a hyperelastic material.

To do so following [11], define a pre-dual functional, Ŝ[U,D], of primal fields

U := (v, e,X, d, s, g)

and dual fields
D := (λ, µ, β, ρ, γ), D := (D,Dx, Dt)

given by,

Ŝ[U,D] :=

∫ tf

0

∫ L

0
L(U,D, Ū) dxdt

−
∫ tf

0
vl(t)λ(0, t) dt+

∫ L

0
e0(x)λ(x, 0) dx−

∫ L

0
rv0(x)µ(x, 0) dx−

∫ tf

0
f(t)µ(1, t) dt,

where

L(U,D) := −vλx + eλt − rvµt +
(
T̂ (e) +X

)
µx + ρXd− ρs2 − sγx − γg − eβt − βd+H(U, Ū),

H(U, Ū) :=
1

2

(
cXX

2 + css
2 + cgg

2
)
+

1

2
cd
(
d− d̄

)2
+

1

2
ce (e− ē)2 +

1

2
cv (v − v̄)2 ,

Ū := (v̄, ē, 0, d̄, 0, 0).
(11)

In the above, cX , cg, cd, ce, cv are arbitrarily chosen large real-valued positive constants, cs is a
negative O(1) constant, and (x, t) 7→ (d̄(x, t), ē(x, t), v̄(x, t)) are arbitrarily specifiable functions of
space-time. The constants are required to have physical dimensions so that all additive terms in H
have the same physical dimensions, of course. Thus, we maximize the dissipation, subject to the
mechanical constraint equations.

We also impose Dirichlet boundary conditions on the functions

λ(L, t) = λl(t), λ(x, tf ) = λt(x), µ(x, tf ) = µt(x),

µ(0, t) = µl(t), β(x, 0) = βb(x), β(x, tf ) = βt(x),
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where the functions on the right of the equality signs are arbitrarily specified.
The pre-dual functional may be viewed as one generated from treating the system (9) as con-

straints with a view towards minimizing the objective H by the method of Lagrange multipliers,
the dual fields.

For illustrative purposes, we work with a constitutively-determined stress response function of
the form

T̂ (e) := Ele+ E∗e
2
∗ − E∗(e− e∗)

2 (12)

for El, E∗ positive elastic moduli and e∗ > 0 is a threshold strain, such that El+2E∗e∗ = E, where
E is the Young’s modulus of the material. Since

T̂ ′(e) = El − 2E∗(e− e∗),

the model shows softening for strains in the range

El

2E∗
+ e∗ < e.

In the arbitrary choice of the parameter ce in the definition of the potential H, we impose a lower
limit of ce > 2E∗.

Next, we will consider the first-order optimality conditions for the optimization of Ŝ w.r.t (U,D)
in slightly non-standard manner. Instead of looking for a pair (Û , D̂) that satisfies

0 = δŜ[Û , D̂; δU, δD]

=

∫ tf

0

∫ L

0

(
∂UL(Û , D̂, Ū)δU + ∂DL(Û , D̂, Ū)δD

)
dxdt

−
∫ tf

0
vl(t)δλ(0, t) dt+

∫ L

0
e0(x)δλ(x, 0) dx−

∫ L

0
rv0(x)δµ(x, 0) dx−

∫ tf

0
f(t)δµ(1, t) dt

for all (δU, δD) constrained by

δλ(L, t) = 0, δλ(x, tf ) = 0, δµ(x, tf ) = 0,

δµ(0, t) = 0, δβ(x, 0) = 0, δβ(x, tf ) = 0,
(13)

we first look for a dual-to-primal (DtP) mapping

U = UH(D, Ū) (14)

such that
∂UL

(
UH(D, Ū),D, Ū

)
= 0 (15)

is satisfied for all (D, Ū) ⊂ O, the latter being some open subset of the (finite dimensional) space
in which (D, Ū) take values. Then we define a dual functional

S[D] :=

∫ tf

0

∫ L

0
L
(
UH(D, Ū),D, Ū

)
dxdt

−
∫ tf

0
vl(t)λ(0, t) dt+

∫ L

0
e0(x)λ(x, 0) dx−

∫ L

0
rv0(x)µ(x, 0) dx−

∫ tf

0
f(t)µ(1, t) dt,

(16)
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and look for a D̂ such that (D̂(x, t), Ū(x, t)) ∈ O for (x, t) a.e. in (0, L)× (0, tf ) and

0 = δS[D̂, Ū ; δD]

=

∫ tf

0

∫ L

0
∂DL

(
UH(D̂, Ū), D̂, Ū

)
δD dxdt

−
∫ tf

0
vl(t)δλ(0, t) dt+

∫ L

0
e0(x)δλ(x, 0) dx−

∫ L

0
rv0(x)δµ(x, 0) dx−

∫ tf

0
f(t)δµ(1, t) dt

(17)

for all δD constrained by (13). Noting that L is necessarily affine in D with the coefficient of D
arising from integration by parts of the primal system (9), it can be seen that the Euler-Lagrange
equations and side conditions of the dual functional S are exactly the primal system (9) and the
conditions (10) with the substitution U → UH .

We note that the number of equations in the Euler-Lagrange system of S equals the number of
dual fields (here 5) which also equals the number of primal equations (9), regardless of the number
of primal fields involved (here 6). The solution for the 6 primal fields are obtained from the DtP
mapping (14, 15) after solving for the 5 dual fields.

Another important point to note is that as long as a Dtp mapping (14) satisfying (15) can be
constructed by a choice of an auxiliary potential H, the use of any such H guarantees that the
Euler-Lagrange equations of the corresponding dual functional is identical to the primal system
with the replacement U → UH .

We now implement the above strategy for the specific constitutive equation (12) for stress and
the choice of the auxiliary potential H displayed in (11). The Dtp mapping (14) is given by

∂vL = 0 : cv (vH − v̄) = λx + rµt

∂eL = 0 : (ce − 2E∗µx) (eH − ē) = −λt − Elµx + 2E∗µx(ē− e∗) + βt[
∂dL
∂XL

]
= 0 :

[
cd ρ
ρ cX

] [
dH − d̄
XH

]
=

[
β

−µx − ρd̄

]
; K(D) :=

[
cd ρ
ρ cX

]
(18)

∂sL = 0 : (cs − 2ρ)sH = γx

∂gL = 0 : cggH = γ.

To obtain the explicit form of the dual functional in terms of the dual fields alone, it is convenient
to write the terms in U in the Lagrangian

L(U,D, Ū) = v(−λx − rµt) +
1

2
cv(v − v̄)2 + g(−γ) + 1

2
cgg

2 + s(−γx)− ρs2 +
1

2
css

2

+ e(λt + Elµx − βt) + E∗e
2
∗µx − µxE∗(e− e∗)

2 +
1

2
ce(e− ē)2

+X

(
µx +

1

2
ρd

)
+

1

2
cXX

2 + d

(
−β +

1

2
ρX

)
+

1

2
cd
(
d− d̄

)2 (19)

in terms of U − Ū through the substitution U = (U − Ū) + Ū :

L(U,D, Ū) = (v − v̄)(−λx − rµt) +
1

2
cv(v − v̄)2 + v̄(−λx − rµt)

+ g(−γ) + 1

2
cgg

2 + s(−γx)− ρs2 +
1

2
css

2

+ (e− ē)(λt + Elµx − βt) + E∗e
2
∗µx + ē(λt + Elµx − βt)

− µxE∗(e− ē)2 − 2µxE∗(e− ē)(ē− e∗)− µxE∗(ē− e∗)
2
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X(µx +
1

2
ρ(d− d̄+ d̄) +

1

2
cXX

2

+ (d− d̄+ d̄)

(
1

2
ρX − β

)
+

1

2
cd
(
d− d̄

)2
=

(v − v̄)(−λx − rµt) +
1

2
cv(v − v̄)2

+ g(−γ) +
1

2
cgg

2

+ s(−γx) +
1

2
(cs − 2ρ)s2

+ (e− ē)
(
λt + Elµx − 2E∗µx(ē− e∗)− βt

)
+

1

2
(ce − 2E∗µx)(e− ē)2 (20)

+ (d− d̄)(−β) + X(µx + ρd̄ )

+
1

2

(
cd(d− d̄) + ρX

)
(d− d̄ ) +

1

2

(
ρ(d− d̄) + cXX

)
X

+ v̄(−λx − rµt) + ē(λt + Elµx − βt) + E∗µx
(
2ēe∗ − ē2

)
− βd̄.

Making the substitution U → UH from the DtP mapping (18) into the expression for the Lagrangian
L in (20) with the notation

J (D, Ū) :=

[
−β

µx + ρd̄

]
,

we obtain

L(UH(D, Ū),D, Ū) =

(
−1 +

1

2

)(
1

cv
(λx + rµt)

2 +
1

cg
γ2 +

1

(cs − 2ρ)
γ2x

)
+

(
−1 +

1

2

)
1

(ce − 2E∗µx)

(
− λt − Elµx + 2E∗µx(ē− e∗) + βt

)2
− J ·K−1J +

1

2

(
−K−1J

)
·K
(
−K−1J

)
(21)

+ v̄(−λx − rµt) + ē(λt + Elµx − βt) + E∗µx
(
2ēe∗ − ē2

)
− βd̄.

Then the dual functional, S[D], is defined, in terms of the dual Lagrangian (21),

L(UH(D, Ū),D, Ū) = −1

2

[
1

cv
(λx + rµt)

2 +
1

cg
γ2 +

1

(cs − 2ρ)
γ2x

+
1

(ce − 2E∗µx)

(
− λt − Elµx + 2E∗µx(ē− e∗) + βt

)2
+ J ·K|−1

ρ J
]

+ v̄(−λx − rµt) + ē(λt + Elµx − βt) + E∗µx
(
2ēe∗ − ē2

)
− βd̄,

by

S[D] :=

∫ tf

0

∫ L

0
L(UH(D, Ū),D, Ū) dxdt

−
∫ tf

0
vl(t)λ(0, t) dt+

∫ L

0
e0(x)λ(x, 0) dx−

∫ L

0
rv0(x)µ(x, 0) dx−

∫ tf

0
f(t)µ(1, t) dt. (22)

Remark: Recall that extremals of the dual functional correspond to the system (9) and side condi-
tions (10) with the replacement U → UH . Moreover, for Ū a solution of (9-10) it is clear that D = 0
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is a critical point of S[D, Ū ] since the DtP mapping (18) in this case gives UH = Ū . Thus, for
each solution of the primal PDE problem (9-10), there exists at least one dual variational principle
whose extremal yields, through the DtP mapping, the solution of the primal problem in question.
This is a consistency check for our dual formulation.

Having seen the above fundamental consistency between the dual variational problem and the
primal PDE system, we now consider a closely related functional with better properties for analysis
and approximation given by

S̃[D] := inf
U
Ŝ[U,D] =

∫ tf

0

∫ L

0
inf
U

L(U,D, Ū) dxdt

−
∫ tf

0
vl(t)λ(0, t) dt+

∫ L

0
e0(x)λ(x, 0) dx−

∫ L

0
rv0(x)µ(x, 0) dx−

∫ tf

0
f(t)µ(1, t) dt.

We now explicitly work out the Lagrangian of S̃. Denoting[
d− d̄ X

]T
=: P (U, Ū)

and noting that

(d− d̄)(−β) + X(µx + ρd̄ ) = P · J(
cd(d− d̄) + ρX

)
(d− d̄ ) +

(
ρ(d− d̄) + cXX

)
X = P ·KP,

L̃(D, Ū) := inf
U

L(U,D, Ū) =



L(UH(D, Ū),D, Ū) if all the following conditions are met:

(cs − 2ρ) ≥ 0 ; (ce − 2E∗µx) ≥ 0 ; K is positive-semidefinite ;

γx = 0 if (cs − 2ρ) = 0 ;

λt + Elµx − 2E∗µx(ē− e∗)− βt = 0 if (ce − 2E∗µx) = 0 ;

J (D, Ū) is orthogonal to eigenspace of K(D) with 0 eigenvalue.

−∞ otherwise.

(The definition of the mapping UH for all cases is discussed below).
(23)

This is so as follows: in this case of at most quadratic nonlinearity in the primal equations with
a quadratic H, the Hessian ∂UUL(·,D, Ū) does not vary with U . When the strict positiveness
conditions are met, the Hessian is positive-definite and L(·,D, Ū) has a unique minimum given
by the value stated. When the conditions are met with at least one equality, i.e., the Hessian is
positive semi-definite but not positive-definite, the minimizer is not unique, but the minimum is
unique and given as listed, with UH interpreted as the unique orthogonal projection of any such
minimizer on the orthogonal subspace of the null-space of the Hessian.

Indeed, denoting the coefficient of the linear terms in (U − Ū) in L as P, L = (U − Ū) ·
(∂UUL) (U − Ū) + P · (U − Ū)+ terms independent of U , and writing the (symmetric) Hessian in
spectral decomposition, ∂UUL =

∑
i aiei ⊗ ei, (ai, ei) being eigenpairs, the infU L is attained when

the condition
∑

i

(
ai(U − Ū) · ei + P · ei

)
ei = 0 is satisfied and the minimum value of L is given

by
∑

i ai
(
ai(U − Ū) · ei

)2
+ (P · ei)((U − Ū) · ei)+ terms independent of U . It is now clear that if

P were not orthogonal to the ‘null eigenspace’, the eigenspace of the Hessian with null eigenvalue,
for which the quadratic terms vanish (possibly only one) in the last expression, U − Ū could be
chosen to have a suitable component along the null eigenspace and the value of L could be made
unbounded below. Of course, in that case the linear algebraic system, ∂UUL (U − Ū) = −P would
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not have a solution as well, equivalently seen from
∑

i

(
ai(U − Ū) · ei + P · ei

)
ei = 0. Finally, when

P is orthogonal to the null eigenspace of the Hessian, and we do not have strict positive definiteness,
it is also clear from the decomposition of the problem into spectral form that the solution for U− Ū
is unique only up to addition of components from the null-space of the Hessian, with the minimum
value of L unaffected. This non-uniqueness cannot be allowed in the Dtp mapping (18) as it has
to be a function of the dual variables (and a one-to-many relation is not allowed). Consequently,
the definition of UH is augmented as stated above, without any loss of generality.

There are two noteworthy features of the definitions above:

• First, since L(U,D, Ū) is necessarily affine in D and therefore concave in it, L̃(D, Ū) is concave
in D (but not necessarily strictly concave) by a theorem of convex analysis.

• Second, since the functional Ŝ[U,D] is necessarily affine and hence continuous (in an appro-
priate weak sense) in the dual fields D, the functional S̃[D] is upper semicontinuous (again,
by a theorem of convex analysis). Assuming the space of dual fields is a closed convex set (a
natural assumption), then the existence of a maximizer of S̃ depends only on the coercivity
of −S̃.

From a more practical point of view, in looking for a maximizer of S̃[D] one might as well
restrict attention to dual fields for which L̃(D, Ū) = L(UH(D, Ū),D, Ū) almost everywhere in
(0, L) × (0, tf ), the conditions on such dual fields being specified in (23). Since for such fields the
functional S̃[D] and S[D] coincide, and a maximizer of a functional is also a critical point/extremal
(at least formally), solving the maximum problem

argmax
D

S̃[D] (24)

generates a dual solution which, through the DtP mapping (14), produces a solution to our primal
PDE system (9)-(10).

The advantage of the formulation (24) is that by restricting the search-space of dual solutions
as described in the previous paragraph, we essentially work with a concave maximization problem
which has a single maxima, regardless of the convexity/monotonicity properties of the primal
problem. By using the base state, Ū , judiciously, one can home in on different primal solutions in
a reliable manner (cf. [12, 13]).

4 Concluding remarks

A procedure to treat the Second Law as an inequality to be solved on par with the other balance laws
in continuum thermomechanics, instead of as a restriction on constitutive assumptions, has been
discussed. The approach allows for an accommodation of the approximate nature of constitutive
assumptions as well.

We close with the following observations:

1. Since our scheme guarantees by construction that if a dual solution to the critical point
problem exists then a corresponding primal solution must (at the level of formality assumed
in these discussions), it is implied that if no solutions exist to the primal system then neither
can a dual extremal exist for such a problem. Thus, unlike the method of Least Squares
(the primal PDE system is ‘squared’ to produce an objective to be minimized), the dual
scheme cannot produce spurious solutions to the primal problem when looking at first-order
optimality conditions.
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2. The excess quantities in our formalism are determined by the assumed constitutive equations,
the balance (in)equalities, and boundary and initial conditions. As a result, these contribu-
tions to the stress and energy density are nonlocal, in general (a feature much like that of the
pressure field for an incompressible material).

3. The inclusion of prescribed base states (in space-time) within our solution scheme allows for
the seamless accommodation of approximate information on specific motions from experi-
ments to be included in the modeling approach.

4. Our formulation of the dissipation introduces some intriguing flexibility in problem solving
that needs to be further explored. For example, instead of minimizing −1

2 |cs|s
2, cs < 0, one

could seek to maximize 1
(1−p) |cs||s|

1−p, cs < 0, 0 ≤ p < 1 (see Remark 6. below), and this is
only one of many options.

5. In [7, Sec. 7.1] a dynamic viscoplastic model of a bar is considered where the constitutive
equation is intentionally made to violate the Clausius-Duhem Inequality (we leave aside for the
moment the philosophical question of whether an explicitly time-dependent parameter (ȧ in
that work, called A below) can appear in material response and whether that is consistent with
the admissible processes allowed in the Coleman-Gurtin formalism [14] of thermodynamics
with internal variables). Within our setting, this can be modeled using the assumptions

X = 0, T = σ(e, ep) = E (e− ep), E = Young’s modulus

along with the equations

rvt − σ(e, ep)x = 0

ept −A(t)
σ

|σ|
p(σ) = 0; p a (power-law, positive) function of σ; t 7→ A(t) ∈ R given

σ(e, ep)ept − at − s2 = 0,
(25)

with boundary conditions on v and initial conditions on (effectively) (e, v, ep). In the example
of Needleman, A can have both positive and negative signs in different intervals of time.

Choosing (v, e, ep, a, s) as the primal variables in our setting, the procedure of Sec. 3 can
be carried out on this system and solutions obtained, consistent with the Clausius-Duhem
Inequality not being violated. It is clear, of course, that for such a solution, the ‘classical’
elastoplastic dissipation

σ(e, ep)ept is not necessarily ≥ 0 for all (x, t).

In [7] it is said “A suitable continuummechanics expression of the second law of thermodynam-
ics . . . that allows the Clausius–Duhem inequality to be violated locally (while maintaining
overall stability) remains to be developed.”

The methodology proposed in this work may be considered as one possible start on addressing
this question.

6. The problem above is an example of a situation where the mechanical equations constrain the
solution adequately and the Second Law with classical ingredients would be overconstraining.
Another extreme is the situation when the mechanical equations are underconstraining and
the Second Law is thought of as one device to provide adequate constraints (e.g., Dafermos
[15, 16], Slemrod and co-workers [17]). This is also the point of view of Abeyaratne and
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Knowles [18] in the theory of phase transition in nonlinear elasticity, where the Second Law
is used to provide guidance on kinetic laws for the motion of phase boundaries and their
nucleation. A somewhat different point of view of conferring adequate constraints to the
problem is through capillary-viscosity regularizations arising from the works of Slemrod [19,
20] and Truskinovsky [21].

In the present setting, a problem definition to probe this point of view could be to use the
following set of equations (setting X = 0, a = 0):

vx − et = 0

rvt − (T̂ (e))x = 0

et − d = 0 (26)

T̂ (e)d− (F (e))t − s2 = 0

sx − g = 0,

with

H(U, Ū) :=

(
cs

(1− p)
|s|(1−p) +

1

2
cgg

2

)
+

1

2
cd
(
d− d̄

)2
+

1

2
ce (e− ē)m +

1

2
cv (v − v̄)2 ,

cg, cd, ce, cv > 0, cs < 0, 0 ≤ p < 1, with H dimensionally consistent,

m chosen such that T̂ (e) +
1

2
ce (e− ē)m is monotone increasing in e (e.g., see [10]);

the choice of the dependence of H on s is motivated by the form of the resulting

DtP mapping in the absence of the field γ.

An alternative formulation with fewer variables is

vx − et = 0

rvt − (T̂ (e))x = 0(
T̂ (e)v

)
x
−
(
1

2
rv2
)

t

− (F (e))t − s2 = 0 (28)

sx − g = 0,

with cd = 0, d ≡ 0.

First, we consider the case where g = 0, γ = 0 (recall that γ is the dual field corresponding to
the last equation in (26)). Forming a Lagrangian and a dual action for the system (26)-(27)
and proceeding as in Sec. 3, we note that the first variation of the dual action (set to 0) is the
primal PDE problem stated in weak form (in the sense of distributions). This implies that
the Euler-Lagrange equations and side conditions include the jump conditions corresponding
to the balance (in)equalities. Then, it is possible to have solutions where the dissipation is
concentrated on space-time curves of discontinuity, as is the field s. Indeed, by the Remark
noted in Sec. 3, if one chooses a set of (v̄, ē, d̄) fields that represent a shock solution of classical
elastodynamics with a shock(s) and positive dissipation on these space-time shock curves, then
the dual scheme will also admit that triple as a Dtp mapping (18) generated primal solution.
Now, if the triple (v̄, ē, d̄) is close to such a shock solution, it may be expected that the dual
scheme will recover the latter solution. This is because of the local degenerate ellipticity of
the dual scheme [11], as demonstrated in [13] in the context of the inviscid Burgers equation
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with base states that are, piecewise in time, solution to Burgers equation with small viscosity.
Thus the effect of the base states (v̄, ē, d̄) may be viewed as akin to a selection criterion in
the model (cf. [18, 19, 21]).

With g, γ as active fields in the model, the dissipation may even not be allowed to concentrate
on curves, thus bringing a regularizing effect assuming, of course, that there exists smooth
solutions to classical elastodynamics close to shock solutions. If indeed this bears out, it
becomes a matter of modeling taste whether, in the absence of physical knowledge of appro-
priate higher-order theories, whether this minimal postulate of smooth dissipation is a better
modeling option or not - certainly, it does not result in higher order equations. As some
evidence that these speculations may have a basis, in [10] an elastodynamic equilibrium for
a bar with a double-well elastic energy density (and negative stiffness in intervals of non-zero
length) is computed by the dual scheme in a problem where the primal Cauchy problem lacks
continuous dependence w.r.t initial data.

We note here that the equations to be solved by the dual scheme (e.g., (26)) do not involve
any regularizations or extra parameters, even though the auxiliary function H does.

7. It is interesting to note that jumps (strong discontinuities) in the primal fields can be repre-
sented by the dual scheme under appropriate circumstances, even though the dual problem
is a second-order boundary value problem in space-time domains. As shown in the contexts
of the heat and linear transport equations in [12], the dual problem is non-elliptic in these
situations (also see [13]) but arises from a concave dual variational principle. Thus gradient
(weak) discontinuities in dual fields are admitted which, through the DtP mapping, produce
discontinuous primal fields when needed, with curves of dual weak discontinuities lining up
exactly with characteristic curves of the primal problem.

8. The constitutive equation for stress (12) comes from a cubic energy density that is neither
bounded above or below. Thus, there can be no hope of defining energy minimizing solutions
of the bar utilizing such an energy density, in general. However, solutions to the Euler-
Lagrange equations of an energy functional with such a density can definitely exist (cf. [22]).
The proposed dual scheme sets up a variational problem for obtaining weak solutions to these
Euler-Lagrange equations, amenable to approximation, and potential analysis by the Direct
method of the Calculus of Variations, both in the quasistatic and dynamic cases.

9. We note that, augmenting the definition of an admissible thermodynamic process in [14] to
include the excess fields discussed herein, any thermodynamic process that our proposed pro-
cedure produces would be compatible with the Second Law, which is the essential requirement
of Coleman and Noll [1, (4.4)] and Coleman and Gurtin [14, Sec. 5].
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