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Angle-preserving or conformal surface parameterization has proven to be

a powerful tool across applications ranging from geometry processing, to

digital manufacturing, to machine learning, yet conformal maps can still suf-

fer from severe area distortion. Cone singularities provide a way to mitigate

this distortion, but finding the best configuration of cones is notoriously

difficult. This paper develops a strategy that is globally optimal in the sense

that it minimizes total area distortion among all possible cone configurations

(number, placement, and size) that have no more than a fixed total cone

angle. A key insight is that, for the purpose of optimization, one should

not work directly with curvature measures (which naturally represent cone

configurations), but can instead apply Fenchel-Rockafellar duality to obtain

a formulation involving only ordinary functions. The result is a convex

optimization problem, which can be solved via a sequence of sparse lin-

ear systems easily built from the usual cotangent Laplacian. The method

supports user-defined notions of importance, constraints on cone angles

(e.g., positive, or within a given range), and sophisticated boundary condi-

tions (e.g., convex, or polygonal). We compare our approach to previous

techniques on a variety of challenging models, often achieving dramatically

lower distortion, and demonstrating that global optimality leads to extreme

robustness in the presence of noise or poor discretization.
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1 INTRODUCTION
Mesh parameterization is a fundamental component of a wide va-

riety of problems in applied geometry: beyond traditional tasks in

computer graphics (such as texture mapping), surface flattenings

have become an important component in a diverse collection of

areas ranging from digital manufacturing to machine learning [Kon-

akovic et al. 2016; Maron et al. 2017]. Ideally, one would like a

parameterization that is isometric, i.e., no distortion of lengths or

areas, but for general curved surfaces no such map exists. Conformal

flattenings are attractive because they completely eliminate angle

distortion, and are easily computed via linear or convex problems.

However, they can also yield significant distortion of areas, which

is problematic for applications since a large region of the surface
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Fig. 1. Left: Conformal flattenings have no angle distortion, but can severely
distort area. Right: When placed optimally, even a small number of cone
singularities (here just nine) can almost completely eliminate area distortion.

is represented by only a tiny region in the parameter domain. The

basic idea behind cone flattening [Kharevych et al. 2006] is that,

intrinsically, many surfaces look more like a polyhedron than the

flat plane—consider for instance maps of the Earth generated by

conformally mapping the globe onto a regular polyhedron (Fig. 2).

Since this initial map induces very little area distortion, and since

the polyhedron can then be cut and unfolded into the plane without

further stretching, the composite map also has low area distortion.

Of course, different polyhedral metrics will lead to different amounts

of distortion—the problem of cone parameterization therefore boils

down to deciding on a configuration of vertices, determined by the

number, placement, and angle of the associated cone singularities.
As stated, however, this problem is ill-posed: one can always reduce

distortion further by considering a finer polyhedron, i.e., allowing
more cones. To make the problem well-posed, one can fix the num-

ber of cones, or alternatively (as we will do), fix the total magnitude

Φ :=
∑
i |ϕi | of all cone angles ϕi .

Fig. 2. A conformal cone parameterization is equivalent to flattening a
smooth surface, like the sphere, over a polyhedron, which can then be cut
and unfolded into the plane without further distortion. By adding more and
more cone points, one can make area distortion arbitrarily small.
(Texture courtesy NASA Earth Observatory.)
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Though a number of a strategies have been developed for picking

cones, none come with a clear guarantee of optimality, and in prac-

tice each can be confounded by certain types of models. Our method

ensures that total area distortion is always globally minimized, pro-

viding substantial robustness and, in practice, significantly lower

distortion on many real examples. Ultimately, we obtain a practical

and efficient algorithm that:

• finds conformal flattenings of minimal total area distortion

among all possible configurations of cones and choices of

boundary conditions,

• can be easily acceleratedwith a simplemulti-resolution scheme,

• provides user control over regions where cones can be placed,

as well as regions where distortion should be penalized,

• provides the ability to find optimal flattenings with a convex

or polygonal boundary, and

• allows cone angles to be limited to a given range (e.g., positive
only, or [−π/2,π/2]).

Since we achieve minimal area distortion, we will use the acronym
MAD throughout to refer to our method. On the whole, flattenings

produced this way are extremely close to isometric, making them

broadly useful for a variety of practical applications.

Beyond simply developing an algorithm, we also start to develop

an understanding of some fundamental questions which can help to

inform algorithmic decisions both in the present paper and in the

development of future work. In particular, we look at the practical

importance of choosing a principled measure of area distortion

(Sec. 4.1.2), we analyze stability of cone flattenings with respect to

perturbations of the cones, i.e., how much will distortion change if

singularities are “merged”; and we consider the approximability of

smooth metrics by polyhedral metrics from an analytical point of

view, i.e., when can a given metric be arbitrarily well-approximated

by cones (App. C). We also carefully analyze the solutions to our

optimization problem—a subtle point is that, in the continuous

setting, minimizers of the relaxed problem live in the space H−1

and hence cannot exactly describe cones, which correspond to delta

measures. In practice we can (very rarely) get tiny clusters of cones;

the stability result mentioned above ensures that these clusters

can be rounded to a nearby cone configuration with a virtually

imperceptible change in area distortion (Fig. 9).

Though our method takes some work to develop, the final algo-

rithm can be easily implemented using standard tools from geometry

processing; a practical description is presented in Sec. 5.3. To de-

rive this algorithm, we start in the smooth setting (Sec. 4) where

we formulate the task as a PDE-constrained optimization problem

involving the Yamabe equation from conformal geometry. Since

this problem is nonconvex, we formulate a convex relaxation over

a larger space of curvature measures. This problem has the right

minimizers, but poses some numerical challenges; we therefore

formulate its Fenchel-Rockafellar dual, which is easily discretized

via ordinary finite elements (Sec. 5). We numerically validate our

findings and explore comparisons with prior work in Sec. 7.

Remark. The appendices, which include detailed computations,
derivations, and proofs, can be found in the supplemental material.
An extended version of this work can be found in the MS thesis of the
first author [Soliman 2018].

2 RELATED WORK
A variety of problems in digital geometry processing seek ideal

locations for certain singular features. For instance, in the design

of tangent vector fields or rotationally symmetric direction fields,

judicious placement of singularities can significantly impact the

global regularity of the field [Vaxman et al. 2016]. In this setting one

can find optimal singularities by simply solving a sparse eigenvalue

problem [Knöppel et al. 2013]. However, any connection to the

problem we consider here is fairly indirect: although such fields are

often used in parameterization algorithms [Bommes et al. 2013b],

singularities that yield highly regular fields do not immediately

guarantee a good flattening (Fig. 17). There is also an extensive

literature on cutting surfaces into pieces that can be flattened with

low area distortion [Sheffer et al. 2006]; an important distinction

between general cuts and those arising from a cone flattening is that

the latter is automatically seamless away from a small set of isolated

points—helping to avoid common filtering artifacts, and facilitating

physical fabrication. To date there is no general cutting method that

guarantees globally minimal area distortion (though local optimality

has recently been studied [Sharp and Crane 2018]); in fact even the

simpler problem of finding the shortest way of cutting a surface into
a disk is NP-hard [Erickson and Har-Peled 2004].

Fig. 3. Even with fewer cones and much smaller total cone angle, our cone
placement strategy (MAD) yields far lower area distortion than previous
methods. This effect is especially apparent on shapes like the brain, which
do not have obvious peaks of curvature.
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Fig. 4. Intuitively, it might seem that the best place to put cones is in regions
of high curvatureK or large scale distortionu . However, the optimal location
may actually be a point that is nearly flat—helping to explain the suboptimal
behavior of greedy algorithms. Here we place either one cone (top) or eight
cones (bottom); notice that even for a larger number of cones, the optimal
configuration continues to include cones in flat regions.

Conformal Cone Singularity Placement. In this paper, we focus

specifically on cone singularities in the context of conformal flatten-

ing; here a variety of strategies have been proposed. Kharevych et al.

[2006] initially investigated cone flattenings by manually drawing

layouts and adjusting cone angles to reduce distortion. Springborn

et al. [2008] propose a method for cone flattening (CETM) where

cones are chosen via a simple greedy algorithm: iteratively flatten

the mesh; at each iteration place a new cone at the point of greatest

area distortion. In subsequent iterations, cone points are treated

as punctures in the domain, leading to cone angles that are auto-

matically determined by the flattening process. As we will discuss

in Sec. 4.1.2, however, this approach is mesh dependent since the

Dirichlet energy of the log conformal factor blows up in the presence

of cones. In a parallel development, Ben-Chen et al. [2008] devise

a flattening algorithm (CPMS) where cone locations are chosen

via the same greedy strategy, but angles are instead determined

via a diffusion process involving Gaussian curvature; this basic

strategy was recently accelerated by Vintescu et al. [2017b] using

hierarchical persistence. Later, Myles and Zorin [2012] developed a

method for seamless global parameterization (GPIF), where cones

are determined by incrementally flattening the surface starting with

the regions of smallest Gaussian curvature. A key insight of our

work is that curvature does not always provide useful information

about how cones should be arranged, since such reasoning does

not account for the cones’ non-local influence on area distortion. In

fact, one can find many examples where the optimal configuration

places cones in regions that are flat—see for instance Fig. 4. Another

example of how curvature-based approaches may lead to subopti-

mal solutions is shown in Fig. 3, where curvature is not distributed

around any obvious peaks. We instead adopt a different point of

view, namely that the problem of finding optimal cones can be bet-

ter understood as an approximation problem—for instance, if the

surface were first flattened without cone singularities, one should

seek the best approximation of the resulting log conformal factor u
by a finite sum of harmonic Green’s functions. The nonlocal nature

of this problem arises from the fact that these functions do not have

compact support.

Cone Metrics, Orbifolds, and Liouville Equations. Cone singulari-
ties can be understood from several different points of view. Thurston

[2002, Chapter 13] studied a geometric picture of manifolds with

an orbifold structure, i.e., each point must locally look Euclidean

or like the quotient of a Euclidean space under a discrete group

action. Very recently this orbifold perspective has become quite

fruitful in algorithms, leading to methods for computing canoni-

cal mappings between surfaces with landmarks [Tsui et al. 2013],

and parameterization algorithms with guarantees on global injectiv-

ity [Aigerman and Lipman 2015, 2016; Aigerman et al. 2017]. A very

different perspective centers around the analytical viewpoint of Li-
ouville equations, in particular the Yamabe equation ∆u = K0−e

2uK
describing the change in Gaussian curvature K under a pointwise

conformal scaling д = e2uд0 of a metric д0. Troyanov provided

some early foundations for studying this equation in the context of

singular cone metrics [Troyanov 1989, 1991], which continues to

be investigated [Del Pino and Román 2015; De Marchis and López-

Soriano 2016; D’Aprile et al. 2016]. This intrinsic, analytic point of

view serves as a starting point for many recent algorithms including

CPMS, CETM, and GPIF, as well as a recent method for conformal

flattening [Sawhney and Crane 2017]; it also plays a fundamental

role in the method we develop here.

Convex Optimization and Semismooth Operator Equations. Care-
fully formulating the cone placement problem using the tools of

analysis allows us to take advantage of highly effective methods

for semismooth operator equations recently developed by the opti-

mal control community. A key insight of these methods is that one

should not directly discretize the original problem, but rather formu-

late optimality conditions in the continuous setting, then discretize

these conditions [Ito and Kunisch 2003b; Günther and Tber 2016].

Directly discretizing the original problem may destroy important

structures and relationships that appear in the context of continuous

function (or measure) spaces, but are lost when moving to discrete,

finite dimensional spaces. In our case, a primal/dual formulation

yields optimality conditions that are nicely solved via semismooth
Newton methods [Chen et al. 2000; Ulbrich 2002, 2011]. In particular,

our approach is similar to the approach of Hinze [2005], where one

does not need to directly optimize the control variables (in our case,

the curvature measure used as a proxy for cone singularities) but

instead introduces a collection of adjoint variables, which in our

case amount to the Laplace inverse of the log conformal scale factors.

These variables are quite unusual, and do not appear in previous

work on conformal flattening. For problems involving highly irreg-

ular solutions (like our cone distribution) it is also important to

properly regularize this problem—here we apply Moreau-Yosida reg-
ularization to counteract numerical instability and improve the rate

of convergence [Hintermüller et al. 2002; Ito and Kunisch 2003a].

Finally, since we solve a relaxed problem we need a way to encour-

age sparsity; recent work by Clason and others provides a rigorous

foundation for applying sparsity-inducing measure norms to PDE

constrained optimization problems, mirroring how ℓ1 norms are

used to encourage sparsity for purely discrete problems [Clason and

Kunisch 2012; Casas et al. 2012; Clason and Schiela 2017]. Our work

builds on this literature and shows how similar formulations can be

applied to problems in geometry processing and computer graphics.
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3 BACKGROUND
We briefly review concepts from conformal geometry and measure

theory that will be needed to develop our formulation (for a more

comprehensive introduction, see [Bauschke and Combettes 2017]).

The reason for discussing these particular concepts in detail is that,

in the smooth setting, our problem must be formulated in terms

of measures—but when it comes to computation, we really only

know how to discretize functions. Sec. 3.2 explains how the space

of measures can be viewed as the dual of a space of functions, and
Sec. 3.4 subsequently explains how an optimization problem in one

space can be turned into a problem involving the dual space—in

particular, allowing us to transition from measures to functions.

Throughout, the domain for our problem is a smooth surface M
with Riemannian metric д, and corresponding area element dA. We

use the notation R := R ∪ {+∞}.

3.1 Conformal Flattening
A Riemannian metric д̃ is conformally equivalent to д if it can be

expressed as a pointwise rescaling д̃ = e2uд for some function

u : M → R called the log conformal factor ; any such transformation

preserves angles between tangent vectors, but not necessarily their

length. A conformal flattening is a conformal rescaling such that the

new metric д̃ has zero Gaussian curvature. The change in curvature

under a conformal rescaling is described by the Yamabe equation:

∆u = K − e2u K̃ ,

where ∆ is the Laplace-Beltrami operator on (M,д), and K , K̃ are

the initial and target Gaussian curvature, resp. Along the boundary

∂M , the change in geodesic curvature κ is described by the Cherrier
boundary conditions:

∂u

∂n
= κ − eu κ̃,

where n is the normal to the domain boundary. (A derivation of

these equations can be found in [Aubin 1998].)

A polyhedral cone metric is a Riemannian metric that locally looks

either flat, or like the tip of a cone—the chief example being the

metric of any Euclidean polyhedron, as depicted in Fig. 2. We will

use p1, . . . ,pm ∈ M to denote the cone points (corresponding to the

vertices of a polyhedron), and θ1, . . . ,θm to refer to the angle deficit

obtained if the cone is cut open and isometrically flattened—e.g.,
θ = 0 at flat points (see [Troyanov 1989, Definition 1] for a more

formal description).

When conformally mapping a smooth surface to a polyhedral

cone metric, the Yamabe equation becomes{
∆u = K −

∑m
i=1 θiδpi inM,

∂u
∂n = κд − e

uκд̃ on ∂M,
(1)

where δp denotes the Dirac delta measure at p. Eqn. 1 serves as

the key starting point in developing a convex global optimization

problem for cone placement.

3.2 Measure Spaces
A key feature of our approach is that the underlying optimization

problem is framed in terms of measures, rather than ordinary func-

tions. Loosely speaking, a measure assigns a “size” to subsets of the

domain in a natural way—for example, if U is a region of the plane

Fig. 5. Near a cone singularity, the solution u to the Yamabe equation looks
like a harmonic Green’s function (far right). Methods that pick cones based
on, e.g., peaks of the scale factor have trouble in the discrete setting, since
mesh resolution completely changes the behavior of this function (top row).

R2, then µ (U ) =
∫
U dx dy is the usual area of U . In general, any

measure µ defines a notion of integration: for example, the expres-

sion

∫
M dµ gives the total area with respect to µ;

∫
M f dµ integrates

values of f overM , weighted by µ. Note that in general µ can also

assign negative values—more formally, we will work with finite

signed Radon measures onM ; we will useM (M ) to denote the set

of all such measures on M , and use

∫
M · dµ to denote the Lebesgue

integral with respect to µ.

Linear Duality. Let C (M ) denote the space of all continuous func-
tions φ : M → R; a functional on C (M ) is a map L(φ) that assigns a
real value to any such function. A simple example is integration of

φ over the whole domain, i.e., L(φ) =
∫
M φ dA. The Riesz represen-

tation theorem says that the space of measures is equivalent to the

space of (continuous) linear functionals L on C (M ). In other words,

for any such functional, there exists a unique measure µ ∈ M (M )
such that

L(φ) =

∫
M
φ dµ, for all φ ∈ C (M )

(and vice versa). For instance, for standard integration with respect

to surface area, we just have dµ = dA. More generally, for any func-

tion f , we have a measure dµ = f dA corresponding to the func-

tional L(φ) =
∫
M φ f dA, i.e., an integral weighted by the function f .

A more interesting example is the (Dirac) delta measure δp associ-

ated with the linear functional L(φ) = φ (p), i.e., the functional that
simply yields the value of the function at the point p—importantly,

this measure cannot be represented as f dA for any function f .
This identification between measures and linear functionals turns

out to be essential for formulating dual optimization problems, as

discussed in Sec. 3.4.

Measure Norm. We can quantify the overall magnitude of a mea-

sure µ via its measure norm

∥µ∥M := sup

φ ∈C (M )

{∫
M
φ dµ : |φ (x ) | ≤ 1 for all x ∈ M

}
.

For instance, if µ is a positive measure, then ∥µ∥M is just the area

of M with respect to µ. If µ is a weighted sum of delta measures

µ =
∑
i θiδpi (as in our cone placement problem), then the measure

norm is just the ℓ1 norm ∥µ∥M =
∑
i |θi |; likewise, when dµ = f dA,

the norm ∥µ∥M amounts to the L1 norm of f , i.e.,
∫
M | f | dA. These

examples hint at the fact that ∥µ∥M provides a way to encourage

sparsity in optimization problems involving more general measures

(see Sec. 4.2 for further discussion).
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3.3 Linear and Convex Analysis
Some elementary ideas from analysis will be needed to formulate

our dual optimization problem. First, any normed vector space X
has a dual vector space X ∗ consisting of continuous linear maps L
from X to R. For any linear map Λ : X → Y between vector spaces

X and Y , its (Banach space) adjoint is a linear map Λ∗ : Y ∗ → X ∗

such that for all vectors x ∈ X and linear functionals L : Y → R,
(Λ∗L) (x ) = L(Λx ). In finite dimensions, for instance, the adjoint is

represented by the matrix transpose. Finally, the convex conjugate of
any function F : X → R is the convex function F ∗ : X ∗ → R given

by

F ∗ (L) := sup

x ∈X
{L(x ) ≻ F (x )} .

A concrete example is that the convex conjugate of any squared

norm is the corresponding (squared) dual norm—for example, the

dual L1 is L∞; the dual of L2 is just L2 (making appropriate identifi-

cations). An example important in our setting is that the measure

norm ∥ · ∥M can be obtained as the convex conjugate of an indicator

function on the unit ball of continuous functions (see App. A.3).

3.4 Convex Duality
A powerful tool in optimization is formulation of a dual problem,

which may be easier to work with than the original primal problem.

A very general purpose approach is Lagrange duality, though for

problems involving measure spaces this approach becomes quite

technical (see [Soliman 2018, Chapter 4.3]). We instead use the

more specialized technique of Fenchel-Rockafellar duality, which
for problems of the kind considered in this paper easily yields an

explicit characterization of minimizers. An excellent reference on

Fenchel-Rockafellar duality is Brezis [2010].

In particular, suppose we want to solve the problem

inf

x ∈X
F (x ) +G (Λx ), (2)

where (subject to mild technical conditions) F : X → R andG : Y →

R are convex functions on normed vector spaces X and Y (resp.),
and Λ : X → Y is a linear map. The Fenchel-Rockafellar duality

theorem states that this problem is equivalent to the dual convex

problem

max

y∗ ∈Y ∗
≻F ∗ (Λ∗y∗) ≻G∗ (≻y∗), (3)

in the sense that both problems have the same optimal value, and

optimal points x andy∗ can be related by an explicit set of optimality

conditions, as described below.

Optimality Conditions. As with Lagrange duality, optimal points

can be nicely characterized in terms of both primal and dual vari-

ables. For a differentiable objective, these conditions would simply

involve derivatives of F and G. If they are not differentiable—as

will be the case in our problem (Sec. 4.2)—we can instead formulate

optimality conditions in terms of the subdifferential. Intuitively, if
the gradient provides the best linear approximation at a point, then

the subdifferential describes all linear approximations “below” the

function. More precisely, for any convex function F from a normed

vector space X to R, the subdifferential ∂F is defined as

∂F (x ) :=
{
L ∈ X ∗ : L(y) ≻ L(x ) ≤ F (y) ≻ F (x ) for all y ∈ X

}
.

A simple example is the function F : R→
R given by x 7→ |x | + x2: for x , 0 the

subdifferential contains just the ordinary

derivative F ′(x ); at x = 0, the subdifferen-

tial is the set of slopes ∂F (0) = [≻1, 1].

Using the subdifferential, we can express

the optimality conditions as




Λ∗y∗ ∈ ∂F (x ),

≻y∗ ∈ ∂G (Λx ).
(4)

For example, when Λ is the identity and both F and G are differ-

entiable, these conditions amount to saying that ∇F (x ) = ≻∇G (x ),
similar to the usual statement about Lagrange multipliers.

From the perspective of computation, a somewhat surprising

outcome is that for problems involving measures, discretizing and

solving these optimality conditions yields numerical behavior far

superior to solving the primal or dual problem directly (Sec. 4.2). In

other words, deriving the optimality conditions in the continuous

setting and then discretizing is not equivalent to discretizing the

optimization problem and then computing optimal solutions—the

former approach appears to preserve essential structure from the

continuous setting (namely, relationships between primal and dual

variables). Similar observations have recently been made in the

context of optimal control [Roland and Karl 2010].

4 SMOOTH FORMULATION
Our basic goal is to find a target cone metric that yields least area

distortion under a conformal map. For any given configuration of

cones, this distortion is determined by the singular Yamabe equa-

tion (Eqn. 1), leading to a PDE-constrained optimization problem

(Sec. 4.1). In order to solve this problem, we then consider a convex

relaxation (Sec. 4.2) which yields essentially optimal solutions to the

original problem, as discussed in Sec. 4.5. Finally, Sec. 4.6 introduces

regularization that helps with numerical stability and efficiency.

4.1 Basic Problem
Our basic problem is to find a collection of cone points pi ∈ M and

corresponding cone angles θi ∈ R that minimize area distortion

under the conformal rescaling д̃ = e2uд that takes us from the

original metric д to the polyhedral cone metric д̃. Since the scale
factor u is determined by the singular Yamabe equation (Eqn. 1), we

can formulate this problem as

minimize

pi ∈M,θi ∈R
E (u)

subject to ∆u = K ≻
∑
i θiδpi inM

u = 0 on ∂M,

(5)

where the energy E quantifies the overall area distortion—we will

discuss particular choices of energy in Sec. 4.1.2. There are two

issues with this problem as stated. First, although it is convex in the

angles θi , it is not convex in the positions pi . Second, it is ill-posed
in the sense that one can always reduce area distortion further by

adding more cones. Both of these issues will be addressed via a

relaxation introduced in Sec. 4.2.
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4.1.1 Local Picture. A simpler, local picture helps with both

intuition and analysis. Here we assume (M,д) is a topological disk,
which is initially flattened to the plane via conformal scale factors

u0. We then seek subsequent scaling by factors u that yield a low-

distortion cone metric

д̃ := e2ue2u0д = e2(u+u0 )д.

In this setting, Problem 5 becomes

minimize

pi ∈M,θi ∈R
E (u + u0)

subject to ∆R2u =
∑
i θiδpi inM

u = 0 on ∂M .

(6)

We use ∆R2 to denote the Laplace-Beltrami operator on (M, e2u0д),
emphasizing that it is just the usual Laplacian on R2.
This local point of view provides a different perspective on the

cone placement problem: the function u0 describes the scale distor-
tion of the initial flattening, and we seek the best approximation

of this function by a weighted sum of harmonic Green’s functions,
i.e., solutions to ∆R2u = δp (as pictured in Fig. 5). Simply picking ex-

trema of Gaussian curvature or peaks in the initial scale factor (as in

greedy strategies) will not in general yield optimal cone placement,

since the long tails of harmonic Green’s functions can substantially

influence the result (Fig. 4, left). Conversely, cones carefully ar-

ranged in flat regions can conspire to reduce distortion in regions of

greater curvature (Fig. 4, right). Of course, for the problem of best

approximation to be meaningful we must first answer the question

of what it means for an approximation to be “best.”

4.1.2 Measures of Area Distortion. How do we measure the area

distortion of a conformal flattening? Springborn et al. [2008] remark

that since a uniform global scaling changes a flattening only super-

ficially, one can measure area distortion via the (scale-invariant)

Dirichlet energy of the log conformal factors:

ED (u) :=
1

2

∫
M
|∇u |2 dA.

When this energy is small, it indicates that scaling is near-constant,

i.e., low area distortion up to uniform scaling. However, this energy

is not meaningful in the context of cone flattening since scale factors

blow up logarithmically near a singularity. As a result, Dirichlet

energy cannot distinguish between distinct configurations of cone

singularities: they all have infinite energy. In the discrete case, this

means that Dirichlet energy is highly mesh-dependent, since scale

factors due to cones will be better resolved—and hence much larger—

in densely sampled regions (see Fig. 5). Any method that aims to

minimize ED will therefore prefer to place cones in coarsely sampled

regions, even if they are not geometrically relevant. Likewise, the

cone angles chosen by CETM go to zero under refinement, since

large cones become increasingly expensive (Fig. 6).

We will instead use the L2-norm of the log conformal factors to

measure area distortion:

E (u) :=

∫
M
u2 dA.

This energy is finite for any solution of the singular Yamabe equa-

tion, and hence converges to a finite value under mesh refinement.

In mechanics, E is known as the true strain [Hencky 1928]; as noted

Fig. 6. Since the Dirichlet energy of a harmonic Green’s function blows up
under mesh refinement, cone angles obtained in CETM by setting u = 0 at
the point of maximum distortion will tend to zero for fine meshes.

by Myles and Zorin [2012], it is also a second-order approximation

of a nonlinear elastic energy [Chao et al. 2010], known in computer

graphics as the as rigid as possible energy [Sorkine and Alexa 2007].

For some applications one might also be interested in minimizing

the worst area distortion. Unfortunately, asking to minimize area

distortion in the L∞ sense is again not meaningful in the presence

of cones, since scaling goes to infinity at every cone. An interesting

question for future work is to consider Lp norms for p much greater

than 2, which might exhibit the desired behavior. A nice alternative

we consider in this paper is re-weighting the L2 energy by a local

feature size (Sec. 8.1); Fig. 7 shows one example.

4.2 Relaxation
We now introduce a relaxation that addresses the two problems

mentioned in Sec. 4.1, namely, nonconvexity and ill-posedness. Re-

call in particular that the cone placement problem (Problem 5) has

no solution: we can make the area distortion arbitrarily small by

simply introducing more and more cones. In the discrete case, for

instance, one could simply put a cone at every vertex. Limiting

the number of cones yields (in the discrete setting) a combinatorial

Fig. 7. Left: cones placed according to standard L2 energy. Right: cones
placed by re-weighting the L2 energy (and regularizer) according to local
feature size. Both cone configurations are globally optimal solutions to
different problems.
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optimization problem which appears difficult to solve optimally:

at which k vertices should we put cones in order to minimize area

distortion? The approach we take instead is to penalize the total

cone angle—which naturally leads to a convex relaxation.

Consider for instance replacing the problem from Problem 5 with

minimize

µ
E (u)

subject to ∆u = K ≻ µ inM
u = 0 on ∂M,

(7)

where µ is now some kind of smooth curvature distribution, rather

than a sum of Dirac deltas. Of course, this problem has a trivial

solution µ = K , corresponding to not flattening the surface at all.

To obtain nontrivial solutions, we need to somehow encourage µ to

be sparse, i.e., to look like a distribution of cones.

L1 regularization. A tempting idea is to use the L1-norm to pro-

mote sparsity. The resulting optimization problem is then

minimize

f ∈L1 (M )
E (u) + λ∥ f ∥L1

subject to ∆u = K ≻ f inM

u = 0 on ∂M,

(8)

where λ > 0 is a tuning parameter. Though this problem is both

convex and seemingly straightforward, it has some serious issues. If

one tries to solve it numerically, the result is not a collection of iso-

lated cones: instead, curvature is distributed over larger regions, and

the solution jumps around unpredictably for different tessellations

of the surface (Fig. 8). Changing, say, the choice of finite elements

will not fix this problem, since in the smooth setting, the existence

of minimizers to Problem 8 does not hold in general. Hence, even

though the discrete, finite dimensional ℓ1 problem has minimizers,

these minimizers do not provide useful solutions. More precisely,

for a solution to exist there must be a minimizing sequence with

a convergent subsequence, i.e., a sequence that is at least weakly
precompact in L1 (M ). However, the boundedness of the functional
does not provide bounds on the derivatives of f and consequently

does not imply the L1 pre-compactness of minimizing sequences.

Measure space regularization. All of these problems can be avoided

by replacing the L1 norm with the measure norm ∥ · ∥M (Sec. 3.2),

and optimizing over measures µ ∈ M (M ) (rather than functions):

minimize

µ ∈M (M )
E (u) + λ∥µ∥M

subject to ∆u = K ≻ µ inM

u = 0 on ∂M .

(9)

For this problem the measure norm concentrates the solution near

isolated points (i.e., cones) rather than curves or other regions. Al-

though minimizers are in general not exact superpositions of delta

masses, they come extremely close—see Sec. 4.5 for further discus-

sion. Most importantly, when we discretize this scheme we obtain

sparse cone configurations with very low area distortion (Fig. 8).

4.3 Pre-Dual
When it comes to discretizing Problem 9, we are faced with a chal-

lenge: we want to solve a problem involving measures, but standard

finite element schemes apply only to functions. Here, a solution is

Fig. 8. Using L1 regularization yields unpredictable results that are not
concentrated on isolated points (top row), whereas using the measure norm
yields well-behaved solutions that properly represent cone singularities
(bottom row). Tuning the parameter λ does not improve the L1 result; more-
over, the measure-based approach achieves smaller area distortion using
dramatically fewer cones (as shown in the plot at bottom).

provided by Fenchel-Rockafellar duality (Sec. 3.4), since the space of

measures is the dual of the space of continuous functions (Sec. 3.2).

Ultimately, this approach will lead us to a system of optimality equa-

tions that we can directly solve for our optimal cone configuration

(Sec. 5). A subtle issue is that taking the dual of Problem 9 does

not yield a problem in terms of functions—however, if we go the

other direction and construct a “pre-dual” problem whose dual is
Problem 9, then we obtain a formulation involving only functions

(as desired).

In particular, to express Problem 9 in standard form, we introduce

a change of variables σ := K ≻ µ. Letting F ∗ (u) be our distortion en-

ergy E (u),G∗ (σ ) = ∥K ≻σ ∥M , and Λ∗ = ∆≻1 (or more formally, the

solution operator—see App. A.1), the Fenchel dual problem (Prob-

lem 3) becomes equivalent to our cone problem, Problem 9. (The

reason for introducing the change of variables is that Λ∗ must be a

linear rather than affine.) One can then show that the corresponding

primal problem (Problem 2) is specified by the linear map Λ = ∆≻1

and the functionals F : L2 (M ) → R and G : C (M ) → R given by

F (u) :=
1

2

∫
M
u2 dA

G (φ) := λ (φ) ≻

∫
M
Kφ dA,

where λ is the indicator function of the λ-ball in C (M ), i.e.

λ (φ) :=



0 if |φ (x ) | ≤ λ for all x ∈ M,

+∞ else.

(See App. A.3.) The resulting primal (or pre-dual) problem then has

a very different form from the problem we started with:

minimize

φ ∈C (M )

1

2

∫
M
|u |2 dA ≻

∫
M
Kφ dA

subject to ∆φ = u inM,
φ = 0 on ∂M,
|φ (x ) | ≤ λ for all x ∈ M .

(10)

We will refer to the function φ as the adjoint state, analogous to a
Lagrange multiplier. Notice in particular that this problem no longer

involves measures, only ordinary functions u and φ; the sparsity-
inducing measure norm is replaced by inequality constraints, analo-

gous to box constraints that arise in ℓ1 optimization.
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4.4 Optimality System
From here, one idea is to discretize and solve the pre-dual problem

directly, but in order to recover the cone configuration we still need

the final measure µ = K ≻ ∆2φ. Numerically, this expression is

hard to evaluate directly: for instance, applying the square of the

discrete Laplace operator (Sec. 5.1.3) significantly amplifies noise,

making it impossible to reliably identify cones. Instead, we first

formulate the optimality conditions in the smooth setting, then

discretize and solve these optimality conditions directly (Sec. 5).

These discrete optimality conditions preserve key relationships

between the optimal measure µ and the adjoint variables φ, allowing
us to more reliably extract cones. In particular, working out the

optimality conditions (App. A.3) and making the change of variables

µ = K ≻ σ yields the final optimality system




∆u = K ≻ µ,
∆φ = u,
µ ∈ ∂ λ (φ),

(11)

where u, µ, and φ denote the optimal scale factors, measure, and

adjoint state, resp., with zero Dirichlet boundary conditions for u
and φ. This system will be discretized in Sec. 5.2.1, providing the

starting point for our final algorithm.

4.5 Guarantees
What can we say about solutions to our relaxed optimization prob-

lem? In what sense are they optimal? Do they solve the original

problem—i.e., do we obtain measures that actually represent cones?

The basic answer is that we are essentially guaranteed to find cones

that minimize L2 area distortion among all cone configurations of

equal (or smaller) total angle. To make this statement more pre-

cise, let µ be the solution to the relaxed problem, and consider any

other measure ν ∈ M (M ) with ∥ν ∥M ≤ ∥µ∥M ; let u and v be the

corresponding scale factors, i.e., ∆u = K ≻ µ and ∆v = K ≻ ν . Then

E (u) + λ∥µ∥M ≤ E (v ) + λ∥ν ∥M ,

and hence

E (u) ≤ E (v ) + λ(∥ν ∥M ≻ ∥µ∥M ) ≤ E (v ).

In other words, the solution µ to the relaxed problem yields minimal

area distortion over all curvature measures with norm no greater

than ∥µ∥M . However, we have not yet established that the optimal

measure looks like a sum of Dirac deltas, i.e., that it represents a
configuration of cones. The following proposition provides a first

step toward understanding the sparsity structure of µ:

Proposition 4.1. supp µ ⊆
{
x ∈ M : |φ (x ) | = λ

}
.

If φ is sufficiently smooth, we can therefore expect that the col-

lection of points where |φ | = λ forms a lower-dimensional set.

However, we are able to show that this set cannot contain isolated

points (Theorem C.4); intuitively, a small curve approximating such

a point (such as a small circle around a cone) will always yield a

lower-energy solution. In practice we nonetheless find that minimiz-

ers are very close to a collection of delta measures; moreover, we can

use the theory of optimal transportation to show that rounding such

curves onto cones (à la Sec. 6.1) will yield an insignificant change

in area distortion. In the discrete setting we rarely need to perform

Fig. 9. Top: for extremely fine meshes of very smooth surfaces (here, a
hemisphere with 256k faces) our algorithm can produce cones arranged in
tiny clusters rather than at isolated vertices. Bottom: A rigorous stability
analysis shows that merging these cones to a nearby vertex (as shown here)
cannot yield more than a miniscule change in area distortion, as indicated
by red coloring. In practice, such merging is almost never needed.

such rounding since for values of λ in a consistent range (Sec. 6.2),

minimizers tend to be supported on isolated vertices—unless the

mesh is extremely fine (Fig. 9).

4.6 Moreau-Yosida Regularization
When solving System 11, the rate of convergence will be slow due to

the extremely low regularity of minimizers. We therefore consider

a sequence of regularized problems which converge to Problem 9 in

an appropriate sense, but are much easier to solve. Eventually we

can drop regularization entirely and simply solve the original (un-

regularized) problem, using the most recent regularized solution as

an initializer; this technique is known as Moreau-Yosida regulariza-
tion. Note that since the original problem is convex this procedure

does not change the minimizer, but rather just serves to improve

performance.

For any regularization parameter γ > 0 consider the problem

minimize

µγ ∈L2 (M )
E (uγ ) + λ R (µγ ) +

γ

2

∥µγ ∥
2

L2 (M )

subject to ∆uγ = Ω ≻ µγ ,
(12)

where R (µγ ) := ∥µγ dA∥M . Since we now consider measures repre-

sented by functions, the minimizing scale factorsuγ are significantly

smoother than u. Furthermore, the minimizers µγ will converge to

µ as γ → 0 (in the weak-
∗
sense). Intuitively, as we decrease γ we

obtain sharper and sharper approximations of the optimal solution.

Optimality conditions for the regularized problem are given by




∆uγ = K ≻ µγ ,

∆φγ = uγ ,

φγ ≻ γ µγ ∈ ∂R
(
µγ

)
,

(13)

again subject to zero Dirichlet boundary conditions.
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5 DISCRETIZATION
To discretize our problem, we apply several recent techniques de-

veloped in the context of optimal control. In particular, we apply

the technique of variational discretization to properly treat the dis-

cretization of measures [Hinze 2005]; we then use a semismooth
Newton method to solve the optimality system [Clason and Schiela

2017]—an added bonus here is that, since our system is a principled

discretization of a smooth formulation, the rate of convergence is

mesh independent [Ulbrich 2011, Chapter 7]. Detailed derivations

of our algorithm can be found in App. B; here we focus primarily

on the steps needed to actually implement our algorithm. A concise

summary of the overall algorithm is given in Fig. 12.

5.1 Preliminaries
5.1.1 Setup. Our algorithm takes as input any manifold triangle

mesh K = (V, E, F) with boundary B ⊂ V (possibly empty). The

geometry of this mesh can be specified by vertex positions in R3,
though in principle our algorithm really only needs positive edge

lengths that determine a piecewise Euclidean metric. The output

is a set of cone vertices c1, . . . , ck ∈ V and associated cone angles
ϕ1, . . . ,ϕk . (For domains with boundary wemay also have boundary

data as input or output; see Sec. 8.3.) This data can then be used to

compute a parameterization using existing algorithms; for examples

in this paper we use a freely-available implementation of boundary
first flattening (BFF) [Sawhney and Crane 2017]. The user must also

provide a parameter λ > 0 which influences the number of cones

(see Sec. 6.2 for further discussion).

5.1.2 Discrete Curvature. The integrated Gaussian curvature

(i.e., the curvature 2-form) associated with a vertex i ∈ I can be

discretized via the usual angle defect

Ωi := 2π −
∑
i jk

θ
jk
i . (14)

These values are encoded in a column vector Ω ∈ R |I | . Similarly, the

integrated geodesic curvature (i.e., the geodesic curvature 1-form)

associated with a boundary vertex i ∈ B is discretized via

ki := π −
∑
i jk

θ
jk
i . (15)

Again, these values are encoded in a column vector k ∈ R |B | .

5.1.3 Discrete Poisson Equation. Wediscretize the Laplace-Beltrami

operator ∆ via the positive semidefinite cotan operator [MacNeal

1949], represented as a matrix L ∈ R |V |× |V | . Let θ jki ∈ R denote the

interior angle at vertex i of triangle ijk . Then L has nonzero entries

Li j =



− 1

2

∑
i jk cotθ

i j
k , i , j,

−
∑
ip Lip , i = j,

where in the first case the sum is taken over triangles ijk containing

edge ij, and in the second term the sum is taken over edges ip
containing vertex i . We also build a diagonal lumped mass matrix
M ∈ R |V |× |V | :

MII =
1

3

∑
i jk

Ai jk . (16)

Fig. 10. Different treatments of boundary data allow us to minimize L2

area distortion with (a) no cones, (b) optimal cones and isometric boundary
conditions, (c) optimal cones and optimal boundary conditions; we can also
find the least-distorting maps with (d) polygonal and (e) convex boundaries.

Here Ai jk is the area of triangle ijk , and we sum over triangles ijk
containing vertex i . The matrix equation Lu = Mf then discretizes

the Poisson equaton ∆u = f with zero Neumann boundary con-

ditions. More generally, we can partition this system into blocks

corresponding to interior vertices (I) and boundary vertices (B) and
write

[
LII LIB
L⊤IB LBB

] [
uI
uB

]
+

[
0

h

]
=

[
MII 0

0 MBB

] [
fI
fB

]
,

which represents a Poisson equation with Neumann boundary con-

ditions
∂u
∂n = h; for each boundary vertex i ∈ B, the value hi rep-

resents half the value of h integrated over the two boundary edges

incident on i . Alternatively, a Poisson equation with Dirichlet bound-
ary conditions u |∂M = b can be expressed as LIIuI = MIIfI − LIBb.

5.2 Derivation of Algorithm
The basic goal of the algorithm is to solve the first-order optimality

system (System 11), which we do in two stages:

• Stage I — Solve the sequence of regularized problems that

approach the exact problem.

• Stage II — Use the solution to the final regularized problem

to initialize a solve for the exact solution.

Stage I produces sharper and sharper approximations of the opti-

mal cone distribution (starting with a highly “smoothed out” ver-

sion); the second stage is then used to recover the exact cones. As

mentioned in Sec. 4.6, this approach substantially accelerates con-

vergence relative to solving the unregularized system directly—in

practice we observe about an order of magnitude speedup.

5.2.1 Discrete Optimality System. To discretize System 11, one

first replaces the Laplace-Beltrami operator by the cotan-Laplacian
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Fig. 11. Mesh hierarchy built on the Old Man Multires model; here we use only three levels. Compared to solving directly on the full-resolution 30k triangle
mesh, we obtain a speedup factor of about 23x (from 14.77s to about 0.62s). Colors indicate the optimal regularized measure; in the final (fine) mesh the
measure is exactly concentrated onto isolated vertices. Far right: The resulting parameterization has only 32 cones, with a total angle of 18.86π .

to obtain the system




LIIu = Ω − µ,

L⊤IIφ = MIIu,

µ ∈ ∂1λ (φ),

(17)

Discretizing the third optimality condition is not as straightforward,

but can ultimately be achieved via a simple projection operator. In

particular, let

Pλ (v) := max (0, v − λ) +min (0, v + λ) , (18)

wheremax andmin are applied componentwise. As shown inApp. B.2,

the relationship µ ∈ ∂1λ (φ) is then equivalent to the condition

µ = Pλ (φ + µ ). (19)

We can use this equivalence to express discrete optimality in terms

of a function F : R3 |I | → R3 |I | given by

F (u,φ, µ ) :=



LIIu − Ω + µ
L⊤IIφ −MIIu
µ − Pλ (φ + µ )


. (20)

We then seek solutions to the system of equations F (u,φ, µ ) =
0. Since this map is both nonlinear and nonsmooth (due to the

projection Pλ ), we solve it using a semismooth Newton method (as

described in Sec. 5.3).

5.2.2 Regularized Problems. As discussed in Sec. 4.6, we solve a

sequence of regularized problems whose solutions ultimately con-

verge to the minimizer. In particular, we discretize System 13 as




LIIu = Ω − µ,

L⊤IIφ = MIIu,

µ = 1

γ Pλ (φ).

(21)

(see App. B.2 for a derivation). We can then substitute the expression

for µ into the first equation to obtain a system involving only the

variables u,φ ∈ R |I | . We therefore seek solutions to the system of

equations Fγ (u,φ) = 0, where Fγ : R2 |I | → R2 |I | is given by

Fγ (u,φ) :=
[
LIIu − Ω + 1

γ Pλ (φ)

L⊤IIφ −MIIu

]
. (22)

5.3 Semismooth Newton Method
We apply a semismooth Newton method to solve the optimality

systems encoded by Eqn. 20 and 22, which generalizes Newton’s

method to functions that are not classically (i.e., Fréchet) differen-
tiable. Like the standard Newton method, the semismooth version

aims to find zeros of a function F (x ) = 0 by iteratively comput-

ing zeros of a linearized version. Each step, the current iterate x is

updated by solving the system

DF (x )y = −F (x ), (23)

and applying the update x ← x +y. The main difference is that the

linear map DF (x ) is the semismooth differential at x , rather than
the Jacobian (which may not be well-defined). The semismooth

differential effectively determines the descent direction, and must

be tailored to the given function F (see Sec. 5.3.2). The process then

continues until some specified termination conditions are satisfied

(Sec. 5.3.3). In principle one can guarantee global convergence of

such methods by adopting a trust region strategy [Ulbrich 2011,

Chapter 5], though in practice we find that the basic semismooth

Newton strategy is always sufficient, perhaps due to our use of a

regularizing sequence.

5.3.1 Active Sets. To build the semismooth differential for our

problem (and to check for convergence), we will need to keep track

of the active sets where either the max or min operators in the

projection Pλ are nonzero. These sets can be specified by binary

values at vertices—in particular, for any given argument x ∈ R |I | let
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A+ (x) and A− (x) be the |I| × |I| diagonal matrices with entries

A+ii (x) := xi > +λ,
A−ii (x) := xi < −λ

(24)

for each vertex i ∈ I . In Stage I, the active sets are then given by

A+ (φ) and A− (φ), and in Stage II they are given by A+ (φ + µ ) and
A− (φ + µ ).

5.3.2 Semismooth Differentials. To apply this approach, we need
a semismooth differential for F and Fγ . At a point x ∈ R |V | a semis-

mooth differential of Pλ is given by thematrixD(x ) := A+ (x)+A− (x)
(see [Hintermüller et al. 2002, Lemma 3.1]). Since the remaining op-

erators in F and Fγ are linear, the overall semismooth differentials

are given by

DFγ (u,φ) :=



LII 1

γ D(φ)

−MII L⊤II


(25)

and

DF (u,φ, µ ) :=



LII 0 I

−MII L⊤II 0

0 −D(φ + µ ) I − D(φ + µ )



, (26)

where 0 and I denote the |I| × |I| zero and identity matrix, resp.

5.3.3 Convergence Criteria. To check convergence, we simply

check if either the norm of the current residual b is below a small

tolerance ε > 0, or if the active sets are no longer changing, i.e., in
Stage I we check whether A+ (φ) and A− (φ) were changed by the

most recent Newton step; in Stage II we instead check A+ (φ + µ )
and A− (φ + µ ). An analysis of this stopping criteria can be found in

Hintermüller et al. [2002].

5.3.4 Boundary Control. Here, we discuss the practical changes
to the algorithm to incorporate Dirichlet boundary conditions b ∈
R |B |—a comprehensive discussion and derivation of the algorithm

with Dirichlet boundary conditions is presented in App. A.1.1 and

App. A.2. To incorporate Dirichlet boundary values into the opti-

mization we replace the operator F (u,φ, µ ) with

F (u,φ, d, µ, b) :=



LIIu − Ω − µ − LIBb
µ − Pλ (φ + µ )

L⊤IIφ −MIIu − LIBd
d − Pλ (d + b),



.

The vectors b, d ∈ R |B | encode the Dirichlet boundary data for the

original and pre-dual problems, resp. Similarly, to optimize over the

Neumann boundary values h ∈ R |B | (which are the same for the

original and pre-dual problems) we consider the optimality system

F (u,φ, µ, h) :=



LIIuI + LIBuB − Ω − µ
L⊤IBuI + LBBuB − k − h
LIIφI + LIBφB −MIIuI

L⊤BIφB + LBBφB −MBBuB − h
µ − Pλ (φ + µ )



.

To derive the semismooth differential one then proceeds exactly as

in the case without boundary, i.e., use the semismooth differential

for Pλ ; use the ordinary differential for all other terms.

Stage I

• u← 0 ∈ R |I | ,φ ← 0 ∈ R |I | ,γ ← 1

• for γ = 10
0, 10−1, 10−2, . . . , 10−N :

– (u,φ) ← ComputeRegularizedMeasure(u,φ, λ,γ )
Stage II

• (u,φ, µ ) ← ComputeOptimalMeasure(u,φ, λ)
Extract final cones from µ (Sec. 6.1)

ComputeRegularizedMeasure

• Until convergence (Sec. 5.3.3):

– Evaluate active sets (Eqn. 24)

– Evaluate residual bI := Fγ (u,φ) (Eqn. 22)
– Evaluate differential UI

:= DFγ (u,φ) (Eqn. 25)
– Solve UI[vT qT ]

T = −bI
– u← u + v
– φ ← φ + q

ComputeOptimalMeasure

• µ ← Pλ (φ) (Eqn. 18)
• Until convergence (Sec. 5.3.3):

– Evaluate active sets (Eqn. 24)

– Evaluate residual bII := F (u,φ, µ ) (Eqn. 20)
– Evaluate differential UII

:= DF (u,φ, µ ) (Eqn. 26)
– Solve UII[vT qT ν T ]

T = −bII
– u← u + v
– φ ← φ + q
– µ ← µ + ν

Fig. 12. Our algorithm boils down to solving a sequence of sparse linear
equations, together with some simple closed-form evaluations. In practice
we use N = 10 for the largest regularization parameter.

6 ALGORITHMIC CONSIDERATIONS

6.1 Extracting Cones
At the end of Stage II we have a value µ at each vertex. To extract

the final cones, we simply identify the vertices ci ∈ Vwhere µci , 0.

Numerically, this is very easy to do since the values are extremely

stratified, i.e., they are either equal to a cone angle ϕci ≫ 0, or they

are numerically zero—we use a tolerance of 10
−12

. Very rarely cones

may appear in tiny clusters, reflecting the fact that in the smooth

setting one can slightly reduce area distortion by replacing a Dirac

measure at a point p with a measure supported on a tiny ring around

p (Sec. 4.5). In practice we simply replace each edge-connected set

of cones ci1 , . . . , cim with a single cone of same total magnitude

ϕi1 + · · · + ϕim at the location of the (Fréchet) mean of these points.

A stability result shows that this rounding procedure cannot change

the area distortion by more than a tiny amount (Theorem C.5).

6.2 Tuning Parameter
The parameter λ ≥ 0 influences the number of cone singularities, or

more precisely, the maximum allowable total cone angleΦ =
∑
i |ϕi |.

Decreasing λ reduces the distortion at the cost of greater total cone

angle, and vice versa. As with many recent methods (e.g., [Myles
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Fig. 13. The parameter λ controls the strength of the penalty on the total
cone angle, and in turn, influences the number of cones. For values above 1
(strong penalty) we tend to see that no cones are placed. For values very
close to zero (weak penalty) the curvature measure stops being sparse, and
we get cones with small angles placed densely across regions or along curves
rather than at isolated points.

and Zorin 2012, 2013; Knöppel et al. 2013]) the relationship between

algorithm parameters and the behavior of singularities is indirect.

However, we find that the effect of λ is surprisingly consistent across
a wide variety of different meshes and tessellations (see Figures 14

and 18), as long as we normalize it by the total surface area—we

make this assumption throughout. In practice, we therefore do not

need to do extensive parameter tuning: for instance, universally

setting λ = 1/2 already provides an automatic way to get reasonable

cone configurations (Fig. 15). A greater total cone angle will result

in lower area distortion—however, for values of λ that are too close

to zero, cones will be placed everywhere. We find that a good range

of values across a wide variety of examples at different resolutions is

1

10
< λ < 1 (see Figures 13 and 14). For values below this range one

typically starts to see cones densely distributed in regions rather

than at isolated points; above this range one tends to get no cones

at all. Some values in the range 0 < λ < 1

10
yield configurations of

cones arranged along curves. (See Fig. 13.) Finally, since solutions

are consistent across different levels of tessellation (see Fig. 18, top),
one could quickly tune this parameter on a coarse mesh before

computing the fine solution.

6.3 Multiresolution
Since the initial phase of Stage I involves problems that are highly

spatially regularized (i.e., when γ is small), it makes little sense to

solve these problems on a fine triangulation, where the scale of

features in the optimal solution will be much larger than the typical

edge length. Moreover, since the solutions to these problems are

used only to initialize the next problem in the sequence, they do

not need to be solved with high spatial accuracy. In practice we

therefore adopt a simple multiresolution strategy: given our input

mesh K we first construct a sequence of progressively finer meshes

K1, . . . ,KM = K, where M is no greater than the number N of

outer iterations used in Stage I, and the number of triangles in

consecutive meshes is related by roughly the same constant factor

s . The solution is then transferred from coarse to fine as the value

of γ increases (in practice, we use each mesh roughly the same

number of times). In particular, for each vertex i on a mesh Kl , we
identify the set of vertices on the next finest mesh Kl+1 that are
closer to i than any other vertex in Kl . The values of ui and φi
are then equally distributed over these vertices. Note that one does

Fig. 14. The parameter λ has a very consistent behavior across different
surfaces, typically producing a similar density of cones.

not need to be particularly careful about the number of meshes

used, nor the method of coarsening. Since our problem is convex,

we will always find the same solution: the multiresolution strategy

affects only the computational cost. In practice we use the Reduce
functionality in MeshMixer [Schmidt and Singh 2010], and use a

constant s = 2. Fig. 11 shows one example, where we obtain a

speedup of roughly 30x. Note however that the method is still quite

efficient even without this multiresolution strategy; most examples

in this paper were computed directly on the fine input mesh.

7 VALIDATION AND COMPARISONS
We implemented our algorithm in C++ using double precision for

all calculations and the sparse QR solver in SuiteSparse to solve

linear systems. Timings were measured on a 2.6GHz Intel Core i5

laptop with 8GB of RAM. In practice we need to solve about 50

to 100 linear systems, independent of the type of geometry or the

resolution of the model. Since the formulation is convex, we obtain

identical results for any initialization. The multiresolution strategy

outlined in Sec. 6.3 reduces the size of these systems substantially,

though we did not find it essential for most of the examples in this

paper: for models of about 100–150k triangles the algorithm takes

at most about 20–25 seconds. We did little optimization of our code;

there are plenty of opportunities for acceleration in terms of both

linear algebra and numerical algorithms.

7.1 Comparisons
We here compare the results of our method (MAD) to existing

cone singularity placement strategies introduced by Ben-Chen et al.

[2008] (CPMS) and Myles and Zorin [2012] (GPIF). The basic cone

placement strategy from Springborn et al. [2008] (CETM) is similar

to CPMS, but we omit a comparison since their strategy for picking

angles is highly mesh dependent as discussed in Sec. 4.1.2. Likewise,

we do not compare to the recent method of Vintescu et al. [2017a]

which provides only cone angles and not the number of cones or

their positions, nor the method of Myles and Zorin [2013] which
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Fig. 15. Using a default parameter λ = 1/2 allows one to flatten a wide variety of different models without any explicit tuning or adjustment.

provides very similar results to GPIF in the absence of quantization

and field alignment ([Myles and Zorin 2013, Fig. 14]). CPMS takes

the target number of cones as input, hence we sometimes show mul-

tiple examples. For GPIF we do not apply the secondary rounding

procedure (which is needed only the special case of integer grid

maps), since it would only yield greater area distortion. We also

extensively tuned parameters in GPIF to achieve the best possible

results.

Since one can always reduce area distortion by addingmore cones,

it is worth thinking about a reasonable way to evaluate the relative

“cost” of different cone configurations. One standard approach is

to measure the number of cones, though on its own this number

can be misleading: for instance, as cone angles approach zero they

have little real effect on a flattening. Moreover, as suggested by our

stability analysis (App. C) many small cones placed nearby can have

a nearly identical effect to a single large cone of equal total angle.

In most examples we therefore report both the number of cones n
and the total cone angle Φ =

∑
i |ϕi |, as well as the resulting L

2
area

distortion A.

In some examples our algorithm places cone singularities in a

similar fashion to existing techniques, but typically using fewer

cones or smaller total cone angle (Fig. 24, top). In other examples,

we obtain much lower area distortion, or alternatively, comparable

distortion with far fewer cones (see for instance Figures 3 and 16,

and 24, bottom left). In Fig. 16, we also see that lines of singulari-

ties (as sometimes placed by GPIF) do not necessarily yield lower

area distortion than simply placing a few carefully-selected cones.

4.02π
0.72

8
18.4π
0.09

56
8.9π
38

0.15
5.0π
8

0.06

Fig. 16. Finding just the right configuration of cones and angles can some-
times dramatically reduce area distortion. Here,MAD almost completely
eliminates area distortion using just 8 cones (far right). Using the same num-
ber of cones in CPMS (far left) yields far greater distortion; alternatively,
one can drive the distortion to similar levels (center left) but using far more
cones. GPIF yields higher distortion than MAD, even after placing a whole
ring of cones around the top of the head.

The same example shows that CPMS sometimes has a tendency to

cluster many cones in the same region, likely due to picking points

near the center of a harmonic Green’s function from a prior cone.

Overall, we observed similar behavior to these examples across

about 50 different meshes of varying geometry, mesh quality, and

resolution; in no case did we ever find a configuration with smaller

area distortion than MAD for equal or smaller total angle Φ.

7.2 Robustness
One of the benefits of globally optimal algorithms is that they tend

to provide reliable behavior across a larger class of inputs. In Fig. 18,

we observe that the cones chosen by method are really determined

by the geometry of the surface, and are not significantly perturbed

by remeshing or common artifacts such as noise, anisotropy, or poor

(e.g., non-Delaunay) triangulation. Since we minimize an integral

energy, our method is also robust to large outliers, which contribute

almost zero area (Fig. 20). In constrast, CPMS will start by placing

a cone at every single outlier, since they have extremely large scale

factors; GPIF also puts cones at each of these outliers, since they

are (by far) the points of greatest curvature. Finally, Fig. 19 demon-

strates thatMAD produces consistent results whether one uses a

uniform- or variable-density mesh; in this example, the greedy place-

ment strategy from CPMS is confounded by the fact that harmonic

Green’s functions will be better resolved—and hence larger—in finer

regions, as discussed in Sec. 4.1.2 (GPIF does not suffer from this

same artifact).

Fig. 17. Optimal singularities for direction fields (top) are not necessarily
good for conformal flattening (bottom).
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Fig. 18. Our method produces consistent results on meshes of very dif-
ferent resolution (top row) and is also robust to meshing artifacts such as
noise (bottom left), anisotropy (bottom center), and severely non-Delaunay
elements (bottom right). The same λ value is used in all examples.

8 EXTENSIONS
Our basic optimization framework is flexible enough to be extended

in a variety of ways—a precise formulation of these extensions is

detailed in App. A.2.

8.1 Nonuniform Importance
We can augment our method to influence both (i) where cones are

placed and (ii) where distortion is measured. As detailed in App. A.2,

one can either provide continous functionswE,wR : V→ R>0 that
act as a penalty on distortion and cone placement (resp.), or binary
functionsUE ,UR : V→ {0, 1} that explicitly excludes regions where
distortion is measured and cones are placed (resp.). The functions
UE ,UR are particularly useful for reducing the problem size in cases

where there is only a small region of interest—an extreme example

is when one wishes to place singularities only along the boundary

(see Sec. 8.3 for further discussion).

A key example where penalty functions are desirable is onmeshes

with features across very different scales, such as the fingers and

toes on a human body. In this case we first compute an intrinsic

local feature size at each vertex i ∈ V (à la [Sharp and Crane 2018,

Fig. 19. Variable density mesh. Left: CPMS places far more singularities in
finely tessellated regions, where Green’s functions are better resolved; note
that many spheres overlap due to close clustering of cones. Center: GPIF
also violates symmetry, and achieves lower distortion thanMAD only by
using about twice as many cones. Right: MAD achieves low area distortion
using a symmetric arrangement of just a few cones, and with small total
cone angle.

Fig. 20. Stress test of robustness. Methods that place cones according to
peaks in scale factors (left) or based on curvature (center)may be confounded
by outliers; here we consider an extreme case where near-invisible spikes
are added to a mesh, leading to cone configurations that are impossible to
parameterize (bottom). Since our method minimizes an integral energy, it
is generally not confounded by outliers or noise, in this case ignoring the
spikes and leading to a high-quality parameterization (right).

Sec. 3.5.1]), i.e., a value ri := 1/( |Ωi |/MII + ε ), where Ωi is the angle

defect (Eqn. 14) andMII is the barycentric dual area. This value will

be small in flat regions and large in highly curved regions. We then

set (wE )i := ri and (wR)i := 1/ri , emphasizing the importance of

small features, and decreasing the cost of placing cones in those

same regions. An example is shown in Fig. 7.

An example where excluding a region is natural is when one

wants to avoid placing cones in regions that are visible from a

particular point of view (Fig. 21); herewe likewise need only penalize

distortion in the visible regions. Given a particular viewpoint, we

set (UE )i to 1 and (UR )i to 0 if and only if vertex i is visible.

Fixed Cone Points with Free Cone Angles. In addition to automati-

cally finding the entire configuration, we can optionally allow the

user to specify a collection of points p̂1, . . . , p̂m that must be in-

cluded; our method then optimizes the angles of these cones, and

also finds the additional cones that best minimize distortion. A

critical place where this functionality is needed is finding cone con-

figurations on closed convex surfaces. Consider for instance the unit

sphere where there is no reason to place any negative cones—in this

scenario, Gauss-Bonnet says that the total cone angle Φ :=
∑
i |ϕi |

will always be 4π . Hence our method will put a cone at every vertex

i , with cone angle equal to the angle defect Ωi . A simple remedy is

to put one “free” cone at an arbitrary vertex p̂ ∈ V (say, the vertex of

greatest curvature), which effectively behaves like a small puncture.

We are now free to consider cone configurations where the sum

of the cone angle magnitudes on the rest of the domain is strictly

less than 4π . In practice this strategy is rarely necessary, since most

real-world surfaces have both positive and negative curvature.

8.2 Bounded Cone Angles
Adding inequality constraints to our optimization (amounting to a

simple projection at each iteration) allows us to find optimal con-

figurations with cone angles within a given range. For instance,

negative cones can lead to a flattening that is locally noninjective,
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Fig. 21. We can selectively restrict cone placement to any user-specified
region. Here for instance, by shooting rays (top left) we can determine the
region visible from a particular point of view (bottom left). If we now restrict
our search to this region—while still penalizing distortion in the front—
singularities that would ordinarily appear on the front (center) instead get
“pushed” to the back (right).

since the total cone angle is greater than 2π . We can avoid such fea-

tures by simply requiring that ϕi > 0, helping to improve injectivity.

In Fig. 22, (right) we actually obtain a globally injective flattening,

though of course in general one cannot expect global injectivity

purely from local injectivity. In one case, we allow a single free cone

(as described in Sec. 8.1). In another case, we simply optimize over

all nonnegative cone configurations with total angle 4π , without
including any kind of sparsity-inducing norm—amazingly enough,

we still get a sparse solution.

Another example where angle bounds are potentially useful is in

finding cone configurations for seamless integer grid maps [Bommes

et al. 2013a], where cones must be quantized to integer multiples of

π/2. Although we cannot produce optimal quantized configurations,

we find that restricting angles ϕi to the range [≻π/2,π/2] often
yields a number of±π/2 cones onmodels that would otherwise have

angles outside this range. Fig. 23 shows one example where all angles

in the optimal configuration do happen to end up being ±π/2. Here
we observe that the best way to quantize a cone configuration is not

always intuitively obvious, indicating there may be significant room

for improving existing heuristics found in the meshing literature.

Incorporating actual quantization into our framework is therefore

an interesting (and challenging) question for future work.

8.3 Optimizing the Boundary
Incorporating boundary data into our optimization problem pro-

vides additional control, as illustrated in Fig. 10 (see App. A.1.1

for details). For conformal flattenings without cone singularities,

Springborn et al. [2008, App. E] show that minimal area distortion

(with respect to ED ) is achieved by constant Dirichlet boundary con-
ditions u |∂M ≡ const. However, these boundary conditions are not

necessarily optimal in the presence of cones, nor when minimizing

the energy E. We therefore augment Problem 9 to jointly optimize

both the cone configuration and the choice of Dirichlet boundary

Fig. 22. Left:When finally mapped to the plane a cone flattening of a surface
(such as this brain) may have local noninjectivity at negative cones, unless
these cones are cut into sufficiently small pieces (see zoom). Right: finding
an optimal solution with only positive cones avoids this source of local
noninjectivity.

optimal
quantization

optimal
(no quantization)

suboptimal
quantization

Fig. 23. Left: in the absence of any bounds on cone angles ϕi , an optimal
configuration for this model is to place eight equal cones corresponding to
an octahedron. Center: if we now limit angles to the range ϕ ∈ [0, π /2], we
get a configuration that has eight cones of π /2, but not at the corners of
a cube as one might expect: instead, we get a flattening to a cuboid with
unequal lengths. Right: the more intuitive configuration with cones at cube
corners yields higher area distortion.
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conditions (App. A.1.1), or to just optimize over one or the other.

Alternatively, we can get polygonal boundaries by promoting the

sparsity of boundary curvature, achieved by penalizing the measure

norm of Neumann boundary data (consider the boundary condi-

tions in Eqn. 1). Finally, forcing boundary curvature to be positive

(à la Sec. 8.2) leads to minimally-distorting flattenings with convex
boundaries.

9 LIMITATIONS AND FUTURE WORK
Some of the limitations of our algorithm

have already been carefully addressed. For

instance, although the continuous problem

does not admit exact Delta measures as so-

lutions, we have provided a careful stabil-

ity analysis (App. C) that leads to a prac-

tical rounding procedure in the very rare

case where cones appear in smaller clusters

(Sec. 6.1). Another issue is that on surfaces

like the unit sphere which have strictly posi-

tive Gaussian curvature, the optimal solution

to our problem is just the Gaussian curva-

ture measure itself, i.e., a cone at every vertex
with angle given by Gauss curvature (see in-

set, top). This measure yields minimial (zero)

area distortion, and by Gauss-Bonnet has minimal measure norm. A

simple and seemingly effective solution here is to just allow a single

“free” cone as described in Sec. 8.1 (see inset, bottom), though this

‘trick’ is rarely required in practice. There is also some uncertainty

in how to pick values of λ, though in practice we find that the same

values consistently produce similar results across a wide variety of

examples (Fig. 14). Perhaps the most interesting question is how

to augment our formulation to allow area distortion to be driven

below a given user-specified threshold; here some significant new

ideas are likely required.

More broadly, despite the importance of the cone flattening prob-

lem, very little is known not only about finding optimal solutions,

but even about basic questions regarding the behavior of cone flat-

tenings. For instance, there are many outstanding questions about

the existence of cone metrics on different topologies or with particu-

lar conditions on curvature [Del Pino and Román 2015; De Marchis

and López-Soriano 2016]. One might also wonder about the geo-

metric significance of optimal cone configurations, which might be

better understood via connections with optimal transport. From a

practical point of view, a major open question is how to find optimal

cone configurations where angles are quantized (e.g., to integer mul-

tiples of π/2) which are a critical component of structured surface

remeshing. One nice feature of cone parameterization is that the

flattening is performed intrinsically, prior to the final 2D layout—an

interesting open question is how to find the best 2D layout, e.g., the
one that yields greatest signal quality (Fig. 25). Finally, the ques-

tion of how to optimally drive area distortion below a user-specfied

bound would enable one to compute high-quality flattenings that

are effectively indistinguishable from isometry. The analytical per-

spectives developed here may provide new ways of looking at these

problems.
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Fig. 24. More comparisons. On models with simple geometry (top row) greedy or region-growing strategies can work quite well, though MAD still performs
slightly better. On more challenging models such as the crab (bottom left) the gap typically widens—note also the high degree of symmetry for MAD.
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A SMOOTH FORMULATION (DETAILS)
In this appendix, we present the precise mathematical framework

which we use to employ Fenchel-Rockafellar duality. In particular,

we discuss the solution operator to the Poisson equation with mea-

sure data and present all of the computations and details necessary

to apply convex duality.

A.1 Poisson Equation with Measure Data
The PDE constraint present in our relaxed formulation Problem 9 is

a simple Poisson equation

∆u = µ,

where µ ∈ M (M ) is a measure. SinceM is a two-dimensional man-

ifold the classical variational framework is inequipt to deal with

measure valued right hand sides. Instead, we rely on the harmonic
Green’s function to obtain solutions:

Theorem A.1 (Aubin [1998, Theorem 4.17]). LetM be a smooth
manifold with boundary ∂M of class C∞. Then, there exists GM :

M ×M → R, which is smooth away from the diagonal, satisfying

φ (p) =

∫
M
GM (p,q)∆φ (q) dA(q) −

∫
∂M

φ (q)∇qGM (p,q) · n dℓ(q)

for every φ ∈ C2 (M ). Furthermore, for every p ∈ M there exists a
constant c > 0 such that |GM (p,q) | < c (1 + | logd (p,q) |).

For µ ∈ M (M ) the function u := GM ∗ µ is a distributional

solution to ∆u = µ with zero Dirichlet boundary conditions. Hence,

we can define a solution operator Sµ := GM ∗ µ. Moreover, the

following classical result shows that S is a bounded linear operator

fromM (M ) intoW
1,p
0

(M ).

Theorem A.2 (Littman et al. [1963, Theorem 5.1]). Let Ω ⊂ R2

be a bounded open set with ∂Ω of class C∞. Let µ be a signed Radon
measure with finite total variation in Ω. Let L be a uniformly elliptic
operator in divergence form. Then the Dirichlet problem

Lu = µ

with u ∈W 1,1
0

(Ω) has a unique solution with the property that u ∈

W
1,p
0

(Ω) with ∥∇u∥Lp (Ω) ≤ c ∥µ∥M for all 1 < p < 2.

By the Sobolev embedding theoremW
1,p
0

(M ) ⊂ L2 (M ), and so we

will actually consider S :M (M ) → L2 (M ). By localizing, we deduce
that the same result holds for the solution operator associated to the

Laplace-Beltrami operator on (M,д). The result is shown using the

method of duality introduced by Stampacchia [Littman et al. 1963;

Stampacchia 1965]. In particular, S is constructed as the Banach

space adjoint of the (bounded linear) operator S∗ :W
−1,p′ (M ) →

C (M ). Again, by using the chain of embeddings and isomorphisms

L2 (M ) � (L2 (M ))∗ ↪→W −1,p
′

(M ) we will actually consider S∗ as a
map from L2 (M ) into C (M ). Since ∆ is self-adjoint the map S∗ is also
the solution operator to the Poisson equation ∆u = σ (again, with

zero Dirichlet boundary conditions), where now σ ∈ L2 (M )—the
fact that S is the adjoint (S∗)

∗
is important for our application of

Fenchel-Rockafellar duality.

A.1.1 Boundary Conditions. There are many practical benefits

to jointly optimizing over both boundary conditions and cone con-

figurations. Rigorously treating the boundary conditions in the

continuous setting is quite technical; nevertheless, the treatment of

boundary conditions numerically is extremely simple—see Sec. 5.3.4

for the necessary practical details.

We extend the solution operator to allow more general Dirichlet

boundary data b ∈ H3/2 (M ) Since b ∈ H3/2 (M ) we can employ

usual functional analytic methods (Lax-Milgram) to deduce the

existence of a weak solution to

∆v = 0 inM,
v = b on ∂M .

The boundary conditions above are understood in the trace sense.

Furthermore, elliptic theory and the Sobolev trace theorem gives us

the bound ∥v ∥H 2 (M ) ≤ c ∥b∥H 3/2 (∂M ) . Thus, we have a continuous

solution operator B : H3/2 (∂M ) → H2 (M ) to the above bound-

ary value problem. We choose to only consider boundary data in

H3/2 (∂M ) since solutions to the above boundary value problem are

in H2 (M ) ↪→ C (M ), which considerably simplifies the boundary

conditions in our pre-dual problem.

Combining the solution operators S and B we can construct solu-

tions to the Poisson equation

∆u = µ inM,
u = b on ∂M

by setting u = Sµ + Bb. We will denote this solution operator S∂ :

M (M )×H3/2 (∂M ) → X . We writeX for the Hilbert space L2 (M ) ⊕

H3/2 (∂M ) (which we identify with its dual X ∗ through the Riesz

representation theorem).

A.2 Generalizations
Before constructing the pre-dual problem and computing the convex

conjugates, we discuss the mathematical framework for treating the

generalizations that appear in Sec. 7.

Optimizing the Boundary. Using the generalized solution oper-

ator above we can properly include optimizations over Dirichlet

boundary data in H3/2 (∂M ). Alternatively, we can optimize over

Neumann boundary data—in light of the Cherrier boundary con-

ditions (Sec. 3.1), penalizing the measure norm on the boundary

data promotes polygonal boundaries in the optimization. In this

case, one can only (formally) specify measure data on the boundary.

A more careful treatment of measure valued Neumann boundary

conditions is still necessary for a proper analysis of the optimization

problem in the continuous setting. From a numerical perspective,

this poses no challenges and we use this to penalize sparsity of the

geodesic curvature on ∂M .

Visibility. Consider a closed subset UR ⊂ M , and letM (UR ) ⊂
M (M ) denote the set of measures with support in UR . This change
enforces geometric constraints on the locations of the optimal cones.

Similarly, consider an open subsetUE ⊂ M . We can optimize over

cone configurations that minimize the area distortion only inUE by

considering the energy Ẽ (u) := E (χUE · u).
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M space of measures

E area distortion energy

R measure space regularizer

λ tuning parameter

UR region where cones can be placed

UE region where distortion is measured

S solution operator to ∆u = µ

X L2 (M ) ⊕ H3/2 (∂M )
GM Green potential

si free cone singularity sites

K discrete triangle mesh

SK FEM semidiscretization of S
PwR projection operator (Eqn. 18)

Fig. A.1. The notation we use throughout this paper is summarized here.

Prescribed Singularities. To freely allow cone singularities at a

finite number of sites {s1, . . . , sk } ⊂ M , while optimizing over addi-

tional cones, we replace the measure-norm by the regularization

R (µ ) := |µ |(UR \ {s1, . . . , sk }).

Thus, there is no cost to placing cone singularities at these sites. |µ |
denotes the total variation measure of µ.
We introduce positive weight functions wE and wR (bounded

away from zero) to add soft geometric constraints on the optimal

cones. Now, we define

E (u) :=
1

2

∫
M
|u |2wE dA and R (µ ) :=

∫
M
wR d |µ |,

which are the weighted area distortion measure and weighted reg-

ularization, respectively. Under these modifications, the optimal

control problem prefers to place cone singularities where wR is

small in a way that reduces the area distortion wherewE is large.

See Sec. 8.1 for a practical geometric example.

A.3 Applying Convex Duality
In Sec. 4.3 we claim that the Fenchel-Rockafellar dual of Problem 10

is Problem 9. We carry out the computations for the convex conju-

gates and show how to realize the optimality conditions as weak

solutions to PDEs. For notational simplicity we set UE = UR = M
and consider only zero Dirichlet boundary conditions, but other-

wise consider the weights from the generalized problem presented

in App. A.2. Adding in these additional generalizations follows in

exactly the same way.

Recall the following relationship between the convex subdiffer-

ential and the convex conjugate.

PropositionA.3 (Fenchel-Young ineqality). Consider a proper
convex function F : X → R.

F ∗ (L) + F (x ) ≥ L(x ) for all x ∈ X , L ∈ X ∗.

Equality holds if and only if L ∈ ∂F (x ).

Convex Conjugates (Area Distortion). Since the area distortion

energy is defined on the Hilbert space L2 (M ) we can simply compute

the convex conjugate of E to obtain the corresponding term in the

pre-dual problem. The Fenchel-Moreau theorem states that E∗∗ = E,
and so this justifies this procedure. It is straightforward to see that

E is Fréchet differentiable with

dE (u) = uwE,

where we identify L2 (M ) � (L2 (M ))∗ in the usual way. Thus, by

Proposition A.3 the convex conjugate of E is given by

E∗ (u) =
1

2

∫
M

1

wE
|u |2 dA.

Convex Conjugates (Measure Space Regularizer). To determine

the appropriate pre-dual for the measure space regularizer we con-

sidered the simple finite-dimensional case where the dual of box-

constraints dualize to L1-norm. Recall that since we need to make

the change of variables σ := K dA − µ (see Sec. 4.3) we need to

construct G such that G∗ (σ ) = R (K dA − σ ).
Thus, define the convex functional G : C (M ) → R by

G (φ) := 1λwR
(φ) −

∫
M
Kφ dA,

where analogous to 1λ we consider the indicator function

1λwR
(φ) :=




0 if |φ (x ) | ≤ λwR (x ) for all x ∈ M,

+∞ else.

Using the Riesz representation theorem for C (M ) consider G∗ :

M (M ) → R and directly compute for µ ∈ M (M ):

G∗ (µ ) = sup

φ ∈C (M )




∫
M
φ d (µ + Ω) : |φ (x ) | ≤ λwR (x )



.

LetM+ denote the support of (µ + Ω)+ andM− denote the support

of (µ + Ω)−. The Jordan decomposition theorem states that these

sets are disjoint. Construct a sequence of continuous functions

{φn }
∞
n=1 ⊂ C (M ) such that pointwise




φn (x ) → λwR (x ) for all x ∈ M+,

φn (x ) → −λwR (x ) for all x ∈ M−,

as n → ∞. By Fatou’s lemma we have that

G∗ (µ ) ≥ lim inf

n→∞

∫
M
φn d (µ + Ω) = λ

∫
M
wR d |µ + Ω |

The reverse inequality is immediate from the inequality constraints

on φ. Summarizing, we have shown that G∗ (µ ) = λ R (K dA + µ ) is
the desired measure space regularization appearing in our relaxed

formulation.

Applying Fenchel-Rockafellar duality. We will use the duality the-

orem in the form presented in Sec. 3.4—using the same notation

we will take F = E∗ and G as above. Furthermore, we will take

Λ∗ = S : M (M ) → L2 (M ) to be the associated solution operator.

Now the primal problem from the duality theorem reads

inf

u ∈L2 (M )
E∗ (u) +G (Λu).

Set φ = Λu, and note that φ is a weak solution to

∆φ = u inM,
φ = 0 on ∂M,
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where the boundary conditions are understood in the trace sense.

Using this formulation of Λ, we can expand out this form of the

primal problem to obtain

minimize

u ∈L2 (M )

1

2

∫
M

1

wE
|u |2 dA −

∫
M

(Kφ)wR dA

subject to ∆φ = u inM,
φ = 0 on ∂M,
|φ (x ) | ≤ λwR (x ) for all x ∈ M .

(A.1)

The necessary technical conditions that there exists some u0 ∈
X such that E∗ (u0) + G (Λu0) < +∞ with G continuous at Λu0
holds trivially for u0 = 0. Applying the Fenchel-Rockafellar duality

theorem yields the equivalent optimization

− min

σ ∈M (M )
E (Λ∗σ ) +G∗ (−σ ).

Again, we expand this out using our computations of the convex

conjugates and the definition of the solution operator S to find

minimize

σ ∈M (M )

1

2

∫
M
|u |2wE dA +λ

∫
M
wR d |K dA − σ |

subject to ∆u = σ inM,
u = 0 on ∂M,

(A.2)

Optimality Conditions. Finally, we derive the optimality condi-

tions that relate the minimizers of the optimization problems Prob-

lem A.1 and Problem A.2. The Fenchel-Rockafellar duality theorem

provides the first order necessary and sufficient optimality condi-

tions {
Λ∗σ ∈ ∂E∗ (u),
−σ ∈ ∂G (Λu).

Setting φ = Λφ, using the definition of the solution operators Λ and

Λ∗, and using the fact that dE∗ (v ) = v we can rewrite the optimality

conditions as




∆u = σ with u |∂M = 0,

∆φ = wEu with φ |∂M = 0,

K dA − σ ∈ ∂1λwR
(φ).

Substituting µ = K dA − σ into the above provides the optimality

system between the primal problem and the relaxed optimizion for-

mulated with the singular Yamabe equation as the PDE constraint:




∆u = K dA − µ with u |∂M = 0,

∆φ = wEu with φ |∂M = 0,

µ ∈ ∂1λwR
(φ).

Discretizing and solving this optimality system directly will be the

basis of our algorithm for computing optimal cones.

Generalized Optimality Conditions. Working through the com-

putations of the Fenchel-Rockafellar duality theorem with all of

the generalizations from App. A.2 yields the following optimality

system




∆u = K dA − µ with u |∂M = b,
∆φ = wEχUEu with φ |∂M = b,

µ
¬
UR\{si } ∈ ∂1λwR

(χURφ).

Here b ∈ H3/2 (∂M ) are new optimization variables representing

the boundary conditions, and χA denotes the characteristic function

of the region A (i.e., χA (x ) is 0 if x < A and 1 if x ∈ A).

B DISCRETIZATION (DETAILS)
Recall that our algorithm takes in a triangle mesh K = (V, E, F).
Properly discretizing the optimality conditions is quite subtle due to

the presence of measures. In this appendix we will discuss both how

to derive the discretized optimality system as well as the detailed

computations needed to reformulate the optimality conditions as a

semismooth operator equation (see Sec. 5.3).

B.1 Discretized Optimality Conditions
To recover the cone configurations, we will need an appropriate

discretization of the space of measures—in particular, we need to

discretize the optimality conditions in a way that captures the cen-

tral features of the optimization over the space of measures. For

simplicity of presentation, we present the derivation only in the

basic formulation of our problem. We utilize the conforming dis-

cretization of M (M ) introduced by Casas, Clason, and Kunisch

[2012]. We recall the basic framework here. Let YK denote the finite

dimensional subspace of L2 (M ) given by linear combinations of the

piecewise linear Whitney hat functions centered at the vertices V.
Motivated by the Riesz representation theorem for C (M )∗, the space
of measures is discretized as ZK := Y ∗K where the duality pairing is

given by the duality pairing betweenM (M ) and C (M ). Explicitly,

ZK :=



∑
i ∈V

θiδi : θi ∈ R


.

We now utilize this approach with the variational discretization
technique of Hinze [2005]. The main idea is to not discretize the
space of measures initially, but instead to only use the above dis-

cretization in the end to recover the cone configurations. We begin

by considering the semidiscrete finite-element approximation of the

solution operator—the term semidiscrete is used to emphasize that

the space of measures is not discretized, whereas the state space

L2 (M ) is. For a givenmeasure µ ∈ M (M ), the discrete log-conformal

factors u = SKµ ∈ YK are characterized by

(∇u,∇φ)L2 (M ;TM ) =

∫
M
φ dµ

for all φ ∈ YK. So the semidiscrete solution operator is a map

SK : M (M ) → YK. Now we consider the semidiscrete optimiza-

tion problem

minimize

µ ∈M (M )
E (SKµ ) + λ∥K dA − µ∥M . (B.1)

Minimizers inM (M ) exist by a standard application of the direct

method of the calculus of variations. Notice, though, that SK maps

an infinite dimensional vector space into a finite-dimensional space.

Thus, minimizers of Problem B.1 are not unique. However, Casas

et al. [2012, Theorem 3.2] show that there is a unique µ ∈ M (M )
satisfying u = SKµ that is a linear combination of Dirac delta mea-

sures concentrated on the vertices in V—this provides a numerical

accessible subspace ofM (M ) to look for minimizers.

Crucially note that this approach is fundamentally different from

naïvely treating measures as integrable functions and utilizing stan-

dard finite-elements to obtain sparse solutions. At the level of both

the semidiscrete optimization and the fully discrete optimality con-

ditions the continuous theory regarding the space of measures is
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used to determine discrete minimizers that faithfully represent min-

imizers in the smooth setting.

By restricting the search space to ZK we can express solutions

to Problem B.1 in terms of the coefficients of µ and u. By apply-

ing Fenchel-Rockafellar duality to the semidiscrete optimization

problem (exactly as in Sec. 4.3 and App. A.3) yields the discrete

optimality conditions




Lu = Ω − µ,

L⊤φ = Mu,

µ ∈ ∂1λ (φ),

(B.2)

where L is the stiffness matrix of the Laplace-Beltrami operator (i.e.,
the cotan-Laplacian),M is the Galerkin mass matrix, and Ω is the

discrete curvature 2-form.

We now describe our discretization of the sequence of regularized

problems presented in Sec. 4.6. In a manner completely analogous to

the discretization above, the starting point is to construct a semidis-

crete regularized problem of Problem 9. Again, minimizers of the

semidiscrete optimization problem can be guaranteed using stan-

dard variational tools. For this sequence of regularized problems to

be useful, we need our discretization of the semidiscrete problems

to converge to Problem B.1 as γ → 0
+
. Thus, once we have any

minimizer, we store the values at the vertices integrated over the

associated dual cell. By utilizing Fenchel-Rockafellar duality (as in

the rest of the paper) we obtain that the fully discrete optimality

system reads




Lu = Ω − µ,

L⊤φ = Mu,

φ − γ µ ∈ ∂R (µ ),

(B.3)

where here R is given by R (x ) = ∥wRx ∥ℓ1 , where the multiplication

is understood pointwise, i.e.,

(wRx )i = (wR)ixi .

B.2 Semismooth Reformulation
As mentioned in Sec. 5.3 our algorithm will be based on applying

a semismooth Newton method to obtain solutions that satisfy the

discrete optimality systems System B.2 and System B.3.

The main challenge is in discretizing the subdifferential relation-

ships. Since these optimality systems are framed over the space R |V |

we can utilize Moreau’s proximal map to reformulate these relation-

ships as equality relationships. Our primary reference regarding the

proximal map is Bauschke and Combettes [2017]. Throughout this

section H is a Hilbert space.

Definition B.1. Let f : H → H be a convex function. Moreau’s
proximal map of f , denoted Proxf : H → H , is given by

Proxf (h) := argmin

˜h∈H

(
1

2





˜h − h




2

H
+ f

(
˜h
))
.

We write Proxγ := Proxf /γ when f is understood from context.

The main connection between the proximal map and subdifferen-

tial relationships is given by the following important relationship.

Proposition B.2 ([Bauschke andCombettes 2017, Proposition

23.2, Example 23.3]). Let f : H → H be a convex function, and let

γ > 0. The map Proxγ : H → H is a well-defined, bounded (nonlinear)
operator. Furthermore,

µ = Proxγ (φ) ⇐⇒ γ (φ − µ ) ∈ ∂ f (µ ).

The Regularized Problems. We begin by reformulating the opti-

mality conditions for the regularized problem. By comparing this

relationship with the subdifferential relationship in System B.3 we

see that this is exactly the form we desire. From Proposition B.2 we

see that

φ − γ µ = γ

(
1

γ
φ − µ

)
∈ ∂R (µ )

is equivalent to

µ = Proxγ

(
φ

γ

)
.

Now, we are only left with computing the proximal map of the

discrete regularization R : R |V | → R |V | .

Proposition B.3.

ProxR/γ (x ) = max

(
0,x −

1

γ
wR

)
+min

(
0,x +

1

γ
wR

)
.

Proof. To find Proxγ (x ) we need to minimize the functional

y 7→
∑
i ∈V

γ

2

|yi − xi |
2 + (wR)i |yi |.

It suffices to minimize the summand for every i ∈ V. That is, we
minimize the one-dimensional functionaly 7→

γ
2
(y−xi )

2+(wR)i |y |,
which gives rise to

y =



0 if |xi | ≤
1

γ (wR)i ,

xi −
1

γ sgn(xi ) (wR)i else.

So we obtain the claimed formula for the proximal map, where the

max and min are understood pointwise. □

Using this, we obtain that

µ = Proxγ

(
φ

γ

)
=

1

γ
max (0,x − wR) +

1

γ
min (0,x + wR) .

So we can reformulate System B.3 as




Lu = Ω − µ,

L⊤φ = Mu,

γ µ = max (0,x − wR) +min (0,x + wR)

(B.4)

To simplify notation, we consider PwR (φ) := max(0,φ − wR) +
min(0,φ + wR).

Now, System B.4 can be concisely encoded in the operator equa-

tion Fγ (u,φ, µ ) = 0 where Fγ is given by

Fγ (u,φ, µ ) =



Lu − Ω + µ
L⊤φ −Mu

γ µ − PwR (φ).


.

In fact, we can simplify this even further by substituting the third

equality into the first. That is, we can consider

Fγ (u,φ) =
[
Lu − Ω + 1

γ Pλ (φ)

L⊤φ −Mu

]
.
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The Relaxed and Unregularized Problem. As above, we want to re-

formulate SystemB.2 as an operator equation of the form F (u,φ, µ ) =
0. Again, we will utilize Proposition B.2 to help reformulate

µ ∈ ∂1wR (φ).

By Proposition B.2, for any γ > 0

φ = Proxγ

(
φ +

1

γ
µ

)
is equivalent to

γ

(
φ +

1

γ
µ − φ

)
= µ ∈ ∂1wR (φ).

Thus, we can write System B.2 as




Lu = Ω − µ,

L⊤φ = Mu,

φ = Proxγ
(
φ + 1

γ µ
)
,

(B.5)

for any γ > 0. As before, we need to compute the proximal map for

1wR . However, this is quite simple since this is just the indicator

function of a convex set:

Prox1wR
(φ) = argmin

x

(
1

2

∥x − φ∥2 + 1wR (x)
)
,

and so we see that we are simply obtain the metric projection onto

the box constraints defined by wR. The projection onto these box

constraints can be easily described using the map PwR :

ProjwR
(φ) = φ − PwR (φ).

Thus, we can write

φ = Proxγ

(
φ +

1

γ
µ

)
= φ +

1

γ
µ − PwR (φ +

1

γ
µ ).

Since the above equivalence holds for any γ > 0, we can take γ = 1.

Now, rearranging terms yields

µ = PwR (φ + µ ),

which allows us to express the optimality system as F (u,φ, µ ) = 0

where

F (u,φ, µ ) :=



Lu − Ω − µ
L⊤φ −Mu

µ − PwR (φ + µ )


.

C REGULARITY AND ROUNDING
In this section we prove a negative result regarding the sparsity

structure of the minimizers—in particular, the minimizing measures

will never represent cone singularities. We go on to rectify the situa-

tion by proving a stability result which justifies rounding arbitrary

measures to nearby cone singularity configurations. On almost all

of the examples in this paper the minimizing measure was already

supported on isolated vertices.

We begin with a technical result, which relates the support of the

minimizing measure to the values of the adjoint state.

Proposition C.1. Let µ be the optimizing measure, and let φ be
the optimal adjoint state. We have that

supp µ+ ⊆ {x ∈ M : φ (x ) = +λwR (x )},

supp µ− ⊆ {x ∈ M : φ (x ) = −λwR (x )}.

Proof. This result follows from the optimality conditions pre-

sented in System 11. In particular, we will use the condition that

µ ∈ ∂1λwR
(φ). From Proposition A.3 and this subdifferential rela-

tionship we have that

⟨µ,φ⟩ = 1λwR
(φ) + 1∗λwR

(µ ) = λ

∫
M
wR d |µ |. (C.1)

In the second equality we use that fact that since 1λwR
is subdif-

ferentiable at φ that 1λwR
(φ) = 0. Note that µ ≪ |µ |, and so the

Radon-Nikodym derivative sgn µ := dµ/d |µ | is in L1 (M,d |µ |). Using
this and Eqn. C.1 we obtain∫

M
(sgn µ ) φ d |µ | = λ

∫
UR

wR d |µ |.

So we conclude that φ sgn µ (x ) = λwR for |µ |-almost-every x ∈ UR ,
it now immediately follows that

supp µ+ ⊆ {x ∈ UR : sgn µ = +1} ⊆ {x ∈ M : φ (x ) = +λwR (x )},

supp µ− ⊆ {x ∈ UR : sgn µ = −1} ⊆ {x ∈ M : φ (x ) = −λwR (x )},

□

We make the assumption that UR = UE = M . For simplicity we

assume that the boundary conditions are fixed to u = 0 and that

wR ≡ 1. We crucially assume thatM is homeomorphic to the unit

disk in R2 so we can perform an initial flattening—let u0 be the

log conformal factors which make (M, e2u0д) flat. Using this initial

flattening, we consider the local picture mentioned in Sec. 4.1.1.

The following lemma guarantees that the maximal distortion

obtained by solving our optimization problem will be less than the

distortion from the initial conformal flattening—this will be used to

prove that the optimizing measure cannot contain Dirac deltas.

Lemma C.2. Let µ be the optimizing measure of Problem 9, and let
∆u = µ with u = 0 on ∂M . Then u ∈ L∞ (M ) with

∥u∥L∞ (M ) ≤ ∥u0∥L∞ (M ) +

(
inf

x ∈M
wE (x )e

2u0 (x )
)−1
.

Proof. As before, consider the adjoint state φ ∈ C (M ) that satis-
fies ∆R2φ = u − u0 with φ = 0 on ∂M . For notational convenience,

set

B := ∥u0∥L∞ (M ) +

(
inf

x ∈M
wE (x )e

2u0 (x )
)−1

Assume, for the sake of contradiction, ∥u∥L∞ (M ) > B. Thus, there
exists ε > 0 such that the set

A := {x ∈ M : |u (x ) | > B + ε }

has positive measure. Without loss of generality, we can assume that

supx ∈M u (x ) > B + ε . By the maximum principle for logarithmic

potentials [Saff and Totik 1997, Corollary 3.3] there exists some

x0 ∈ supp µ
+
satisfying u (x0) > B + ε . Now let δ > 0 be such that

dist(supp µ+, supp µ−) > δ (which follows from Proposition C.1).

Note that A is open since u is lower-semicontinuous. We deduce

that A ∩ B (x0,δ ) is open. Thus, we can find some 0 < r < δ such
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that B (x0, r ) ⊂ A ∩ B (x0,δ ). Now since x0 ∈ supp µ
+
we have that

φ (x0) = λ > 0. Now let y ∈ C∞ (M ) be a solution to




−∆y = −ε in B (x0, r ),

y = 0 on ∂B (x0, r ).

By the maximum principle for the Laplace operator, we deduce that

y (x0) < 0. Now set Y := −φ −y. Using the adjoint equation for φ as

well as the lower bound of u in B (x0, r ) we see that




−∆Y = −e2u0wE (u − u0) + ε ≤ 0 in B (x0, r ),

Y = φ on ∂B (x0, r ).

Now by the maximum principle for subharmonic functions we

conclude that supx ∈B (x 0,r ) Y (x ) = Y (xmax ) = φ (xmax ) for some

xmax ∈ ∂B (x0, r ). We conclude by noting that

φ (xmax ) = Y (xmax ) ≥ Y (x0) = φ (x0) − y (x0) > φ (x0) = λ.

This is a contradiction with the adjoint state constraint |φ (x ) | ≤ λ
for all x ∈ M . So we conclude that ∥u∥L∞ (M ) ≤ B, as desired. □

Using the above L∞-bound on the optimal log-conformal factors

we will be able to bound the H1
-norm of u. We begin by bounding

theH1
-norm ofu when the measure µ is absolutely continuous with

respect to the area element dA:

Lemma C.3. Let f ∈ C∞c (M ;R), and consider the measure µ given
by dµ = f dx . Then∫

M
u (x ) dµ (x ) =

∫
M
∥∇u (x )∥2 dx ,

where ∆u = µ with u = 0 on ∂M .

Proof. Since f is smooth, we know thatu is smooth; furthermore,

u vanishes on ∂M . Integration by parts reveals∫
M
u (x ) dµ (x ) =

∫
M
u (x ) f (x ) dx

=

∫
M
u (x )∆u (x ) dx =

∫
M
∥∇u (x )∥2 dx .

□

By an approximation argument we can apply the previous result

to obtain the desired regularity result:

Theorem C.4. The optimizing measure µ ∈ H1

0
(M )∗.

Proof. Since ∆u = µ we have that∫
M
u (x ) dµ (x ) ≤ ∥u∥L∞ (M ) ∥µ∥M (M ) .

Note that the right hand side is finite by Lemma C.2. Note that by

Lemma C.3 and a simple approximation argument (approximate µ
by smooth functions, and pass to the limit) we obtain

∥∇u∥2L2 (M ;R2 )
≤

∫
M
u (y) dµ (y),

which shows that u ∈ H1

0
(M ). Since ∆ : H1

0
(M ) → H1

0
(M )∗ we

conclude that µ ∈ H1

0
(M )∗. □

This technical result is important since it tells us that the opti-

mizing measure cannot consist of any Dirac deltas. Intuitively, this

is because every Dirac delta (or cone singularity) can be rounded

to a slightly “smoothed” out version in a way that brings down the

area distortion in a very small way.

Rounding. Although in the continuou setting the minimizing

measures never consist of Dirac delta measures, we find that in

practice they often are delta measures. To resolve these conflicting

perspectives, we show that we can round the minimizing measure

to a collection of delta measures in a way that does not significantly

reduce the area distortion. Rigorously, we utilize the framework of

optimal transportation.

Recall that the Wasserstein distance between two probability

measures µ,ν is given by

dW2
(µ,ν ) :=

(
inf

π ∈Π(µ,ν )

∫
M×M

dд (x ,y)
2 dπ (x ,y)

)
1/2

,

where dд is the geodesic distance inM . On the other hand, we have

that

∥µ∥H−2 (M ) :=

(∫
M
|u |2 dx

)
1/2

where ∆u = µ in M with u |∂M ≡ 0. Note that the H−2 norm is

nothing more than the area distortion energy E (u) from our cone

optimization problem.

For any two functions f ,д we use the notation f ≲ д to indicate

that there is some universal constant c for which f ≤ cд. Similarly,

we write f ∼ д to mean that f ≲ д and д ≲ f .
We first prove this result when the domain M is simply a ball

in R2. In what follows, Φ the fundamental solution of the Laplace

operator in R2.

Theorem C.5. Let R > 0 and let P (B (0,R)) denote the space of
probability measures supported in B (0,R) in R2. Then the identity
map

id :

(
P (B (0,R)),dW2

)
→

(
P (B (0,R)), ∥ · ∥H−2 (B (0,R ))

)
is a continuous embedding.

Proof. Without loss of generality, let R = 1/4, and write B :=

B (0,R). Fix µ,ν ∈ P (B (0,R)). Let π ∈ Π(µ,ν ) be any transport plan

between µ and ν . We estimate ∥µ − ν ∥H−2 (B (0,R )) as follows:

∥µ − ν ∥2H−2 =

∫
B
��S (µ − ν ) (x )��2 dx

=

∫
B
��Φ ∗ (µ − ν ) (x )��2 dx

=

∫
B

("
B×B

Φ(x −y) − Φ(x − z) dπ (y,z)

)
2

dx

≤

"
B×B

∫
B
(Φ(x −y) − Φ(x − z))2 dx dπ (y,z)

≤ 2

"
B×B

∫
Ay,z

(Φ(a) − Φ(a +y − z))2 da dπ (y,z),
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where Ay,z :=
{
a ∈ B (0, 2R) : |a | ≤ |a +y − z |

}
. Note that 0 ≤

ln |a +y − z | − ln |a | ≤
|y−z |
|a | and that

��ln |a | − ln |a +y − z |�� ≤ |ln |a | | .
Now let δ = 1

2
|y − z |. Continuing our estimates, we find

∥µ − ν ∥2H−2 ≲

"
B×B

∫
Ay,z

(ln |a | − ln |a +y − z |)2 da dπ (y,z)

≲

"
B×B

( ∫
B (0,δ )

ln
2 |a | da

+

∫
Ay,z \B (0,δ )

|y − z |2

|a |2
da

)
dπ (y,z)

≲

"
B×B
|y − z |2 ln2 |y − z | + |y − z |2 ln |y − z | dπ (y,z)

≲

"
B×B
|y − z | dπ (y,z)

≲

("
B×B
|y − z |2 dπ (y,z)

)
1/2

.

Now let π be the transport plan that minimizes the quadraticWasser-

stein distance, and since the above estimates hold for all transport

plans we deduce

∥µ − ν ∥2H−2 ≲

("
B×B
|y − z |2 dπ (y,z)

)
1/2

= dW2
(µ,ν ).

□

Corollary C.6. Let Y ⊆ R2 be an open set that admits a Green’s
function. Then the identity map

id :

(
P (Y ),dW2

)
→

(
P (Y ), ∥ · ∥H−2

)
is a continuous embedding.

Proof. Follows immediately from Theorem C.5 and [Helms 2009,

Theorem 3.2.12], which states that GY (x ,y) ≤ GB (0,R ) (x ,y). □

By working in local coordinates we also obtain the result for any

compact manifoldM .

Following [Ambrosio et al. 2011; Mainini 2012], we extend the

previous results to the case of signed measures by defining

W2 (µ,ν ) := dW2
(µ+ + ν−,ν+ + µ−).

Note that, unlike the usual Wasserstein distance,W2 is not a dis-

tance. Nevertheless, it provides an appropriate similarity measure

for modeling the merging of cone singularities.

The following result is a straight forward application of the Hahn-

Banach theorem and the Riesz representation theorem for the space

of continuous functions.

Lemma C.7. The vector space of linear combinations of Dirac deltas,
Diracs(M ), supported at points in Y is dense inM (M ) endowed the
weak-∗ topology.

We now can recover a well-known result with very little effort.

Corollary C.8. Let (M,д) be a compact 2-manifold. For every
ε > 0 there exists a configuration of cone singularities such that the
area distortion of the resulting conformal flattening less than ε .

Proof. Fix ε > 0. Let Ω ∈ M (M ) denote the curvature 2-form.

Note that E (u) = 0 when ∆u = Ω − Ω. Find δ > 0 such that

���E (uΩ ) − E (uµ )
��� < ε

for all µ ∈ M (M ) withW2 (Ω, µ ) < δ . Here ∆uµ = Ω − µ and

∆uΩ = Ω − Ω = 0, both with zero Dirichlet boundary conditions.

We can find such a δ > 0 using Theorem C.5. By Lemma C.7 we

can find a sequence of linear combinations of Dirac delta measures

{µn }
∞
n=1 such that µn

⋆
⇀ Ω. By [Mainini 2012, Proposition 3.8] we

deduce that

W2 (µn ,Ω) → 0

sinceM is a compact metric space. Take N large enough such that

W2 (µN ,Ω) < δ , and write

µN =
m∑
i=1

αiδpi , αi ∈ R, pi ∈ M .

It immediately follows that E (uµN ) < ε , as desired. □

Proposition 5 in Myles and Zorin [2013] proves a stronger result,

namely that there exists a seamless cone parameterization that has

area distortion less than ε for every ε > 0.

ACM Trans. Graph., Vol. 37, No. 4, Article 105. Publication date: August 2018.


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Conformal Flattening
	3.2 Measure Spaces

	4 Smooth Formulation
	4.2 Relaxation

	5 Discretization
	5.1 Preliminaries
	5.2 Derivation of Algorithm
	5.3 Semismooth Newton Method

	6 Algorithmic Considerations
	6.1 Extracting Cones
	6.2 Tuning Parameter
	6.3 Multiresolution

	7 Validation and Comparisons
	7.1 Comparisons
	7.2 Robustness

	8 Extensions
	8.1 Nonuniform Importance
	8.2 Bounded Cone Angles

	9 Limitations and Future Work
	References
	A Smooth Formulation (Details)
	A.1 Poisson Equation with Measure Data
	A.2 Generalizations
	A.3 Applying Convex Duality

	B Discretization (Details)
	B.1 Discretized Optimality Conditions
	B.2 Semismooth Reformulation

	C Regularity and Rounding



