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Abstract. In �uid-�uid phase transitions problems featuring small scale heterogeneity, we see
that when the scale heterogeneity is su�ciently small, the periodic potential function W (x, p)
can be replaced with a homogenized potential function WH(p). This allows for a reduction to a
problem already studied by Fonseca and Tartar [6]. In particular, we see an isotropic transition
potential, in contrast with the case where the scales are roughly comensurate [4]. This note is
intended as a prelude to a more complete analysis of the full range of scales.

1. Introduction

In this manuscript, we remark upon a particular case in the study of interaction between �uid-
�uid phase transition and homogenization in the presence of small scale heterogeneities in the
�uid. This is part of an ongoing project to understand the limiting behavior of the variational
problem

Fε,δ(u) :=

�
Ω

[
1

δ
W
(x
ε
, u(x)

)
+ δ|∇u(x)|2

]
dx,

where W : RN × Rd → [0,∞) is a double-well potential that is 1-periodic in its �rst argument.
Here, the periodicity at scale ε �xes the scaling of the heterogeneity while δ corresponds to the
thickness of our transition layers.

We characterize the limiting behavior of minimizers to Fε,δ by identifying the Γ-limit of Fε,δ
as ε, δ → 0 for di�erent regimes corresponding to the relative behavior of ε and δ.

In [4], this problem was studied in the case where ε and δ are commensurate. This was
incorporated by assuming that δ = ε, that is to say

Fε(u) :=

�
Ω

[
1

ε
W
(x
ε
, u(x)

)
+ ε|∇u(x)|2

]
dx.

In this regime, the Γ-limit was an anisotropic perimeter caused by potential mismatch between
the direction of periodicity and the orientation of the interface.

The limiting behavior when the phase transitions occur at a �ner scale than the homogeniza-
tion, δ << ε, will be the subject of a forthcoming publication, currently under preparation.

In this paper we study a scaling in which the homogenization e�ects occur far more rapidly
than that of the phase transition, namely ε << δ. For our key lemma, we will need to require
a certain quantitative control to this scale, namely

ε

δ
3
2

→ 0.

An identical scaling is observed in the paper of Ansini, Braides and Piat [2] who consider energies
of the form �

Ω

[
1

δ
W (u(x)) + δf

(x
ε
,∇u

)]
dx.

In their consideration of scalings of ε �ner than δ in Section 4.3, they require the explicit
relationship δ << ε

√
ε. It is not yet clear if this scaling is a necessary feature of problems

incorporating �ne scale homogenization or merely a technical consideration.
In the presence of this rapid periodicity, we can pass from the periodic potential function

W (x, p) to a homogenized potential functionWH(p) depending only on the value of the function
1
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u and not on position. This will allow us to compare the limiting behavior to the well-studied
case of functionals of the form

Fδ(u) :=

�
Ω

[
1

δ
W (u(x)) + δ|∇u(x)|2

]
dx,

as found in the work of Fonseca and Tartar [6].

1.1. Statement of the main results. In the following, Q ⊂ RN denotes the unit cube centered
at the origin with faces orthogonal to the coordinate axes, Q := (−1/2, 1/2)N . The set Ω ⊂ RN
will always be a bounded, open domain with Lipschitz boundary.

Consider a double well potential W : RN × Rd → [0,∞) satisfying the following properties:

(H0) x 7→W (x, p) is Q-periodic for all p ∈ Rd,
(H1) W is a Carathéodory function, i.e.,

(i) for all p ∈ Rd the function x 7→W (x, p) is measurable,
(ii) for a.e. x ∈ Q the function p 7→W (x, p) is continuous,

(H2) there exist a, b ∈ Rd such that W (x, p) = 0 if and only if p ∈ {a, b}, for a.e. x ∈ Q,
(H3) there exists a continuous function Wc : Rd → [0,∞) such that Wc(p) ≤ W (x, p) for a.e.

x ∈ Q and Wc(p) = 0 if and only if p ∈ {a, b}.
(H4) there exist C > 0 and q ≥ 2 such that 1

C |p|
q −C ≤W (x, p) ≤ C(1 + |p|q) for a.e. x ∈ Q

and all p ∈ Rd.
(H5) W is locally Lipschitz in p, that is, for every K ⊂ Rd compact there is a constant L such

that

|W (x, p)−W (x, q)| ≤ L|p− q|
for almost every x ∈ Q and every p, q ∈ K.

In the case where ε << δ, the homogenization e�ects occur so rapidly that the system is
essentially homogenized before interacting with the phase transition problem. In this case, we
prove that the Γ-limit of Fε,δ coincides with the interfacial energy associated with a homogenized
potential.

De�nition 1.1. We de�ne the functional FH0 : L1(Ω;Rd)→ [0,+∞] as

FH0 (u) :=


KHP({u = a}; Ω) if u ∈ BV (Ω; {a, b}),

+∞ otherwise.

(1.1)

Here the transition energy density KH is de�ned as

KH := 2 inf

{� 1

0

√
WH(g(s))|g′(s)|ds : g ∈ C1

pw([0, 1];Rd; a, b)
}
, (1.2)

where C1
pw([0, 1];Rd; a, b) denotes the space of piecewise C1 curves from [0, 1] to Rd such that

g(0) = a and g(1) = b, and the homogenized potential WH : Rd → [0,+∞) is given by

WH(p) :=

�
Q
W (y, p) dy (1.3)

The main result of this paper is the following Γ-convergence result in the case where the
homogenization parameter ε is su�ciently small with respect to the phase transition parameter
δ.

Theorem 1.2. Let {εn}n∈N {δn}n∈N be two in�nitesimal sequences such that

lim
n→∞

δ
3
2
n

εn
→ +∞.

Set Fn := Fεn,δn. Assume that W satis�es hypotheses (H0)-(H4). Then the following hold:
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(1) If {un}n∈N ⊂ H1(Ω;Rd) is such that

sup
n∈N

Fn(un) < +∞,

then, up to a subsequence (not relabeled), we have un → u in L1(Ω;Rd) for some u ∈
BV (Ω; {a, b}).

(2) As n→∞, we have Fn
Γ−L1

−→ FH0 .

2. Preliminaries

In this section we collect basic notions needed in the paper.

2.1. Sets of �nite perimeter. We recall the de�nition and some well known facts about sets
of �nite perimeter (we refer the reader to [1] for more details).

De�nition 2.1. Let E ⊂ RN with |E| < ∞ and let Ω ⊂ RN be an open set. We say that E
has �nite perimeter in Ω if

P (E; Ω) := sup

{�
E

divϕdx : ϕ ∈ C1
c (Ω;RN ) , ‖ϕ‖L∞ ≤ 1

}
<∞ .

Remark 2.2. E ⊂ RN is a set of �nite perimeter in Ω if and only if χE ∈ BV (Ω), i.e., the
distributional derivative DχE is a �nite vector valued Radon measure in Ω, with�

RN

ϕdDχE =

�
E

divϕdx

for all ϕ ∈ C1
c (Ω;RN ), and |DχE |(Ω) = P (E; Ω).

Remark 2.3. Let Ω ⊂ RN be an open set, let a, b ∈ Rd, and let u ∈ L1(Ω; {a, b}). Then u is a
function of bounded variation in Ω, and we write u ∈ BV (Ω; {a, b}), if the set {u = a} := {x ∈
Ω : u(x) = a} has �nite perimeter in Ω.

De�nition 2.4. Let E ⊂ RN be a set of �nite perimeter in the open set Ω ⊂ RN . We de�ne
∂∗E, the reduced boundary of E, as the set of points x ∈ RN for which the limit

νE(x) := − lim
r→0

DχE(x+ rQ)

|DχE |(x+ rQ)

exists and is such that |νE(x)| = 1. The vector νE(x) is called the measure theoretic exterior
normal to E at x.

2.2. Γ-convergence. We refer to [3] and [5] for a complete study of Γ-convergence in metric
spaces.

De�nition 2.5. Let (X,m) be a metric space. We say that Fn : X → [−∞,+∞] Γ-converges

to F : X → [−∞,+∞], and we write Fn
Γ−m−→ F , if the following hold:

(i) for every x ∈ X and every xn → x we have

F (x) ≤ lim inf
n→∞

Fn(xn) ,

(ii) for every x ∈ X there exists {xn}∞n=1 ⊂ A (so called a recovery sequence) with xn → x
such that

lim sup
n→∞

Fn(xn) ≤ F (x) .
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3. Main Result

We proceed to prove our main result, the Γ convergence result in the case where the homog-
enization occurs at a much smaller scale than the phase transition. To be precise, we consider
the scaling

ε

δ
3
2

→ 0

Remark 3.1. The reason that this scaling is necessary as opposed to the more general case
without a factor of 3

2 is not yet clear. Indeed, if one could show that a sequence uε with bounded
energy satis�ed

lim
ε→0

Fε(uε;Q \ {|xN | > δ}) = 0

then this theorem would follow in the more general scaling ε << δ.

First, in order to rule out possible pathological behavior corresponding to large values of u,

we will introduce a truncated potential W̃ .

De�nition 3.2. Let R > 0 be given such that every minimizing curve g ∈ C1
pw([0, 1];Rd; a, b)

for the minimization problem de�ning KH (see (1.2)) is such that |g(t)| ≤ R for every t ∈ [−1, 1].
Let

M := ess sup
x∈Ω

max
|p|≤R

W (x, p).

and de�ne the truncated potential W̃ : Ω× Rd → [0,∞) as

W̃ (x, p) := min{W (x, p),M}.

Remark 3.3. The truncated potential W̃ is Lipschitz (not only locally). Moreover, note that
0 < M < +∞. Indeed, thanks to the upper bound given by (H4).

The proof of Theorem 1.2 is based on a convergence result result (Lemma 3.5) stating that
in the functional Fn it is possible to substitute the (truncated) energy with the a homogenized
energy. Thus, we introduce the intermediate energy we will be using.

De�nition 3.4. We de�ne the homogenized di�use energy FHε : L1(Ω;Rd)→ [0,+∞] by

FHn (u) =

�
Ω

[
1

δn
W̃H(u(x)) + δn|∇u(x)|2

]
dx

for u ∈ H1(Ω;Rd) and +∞ otherwise. Here W̃H is de�ned as

W̃H(p) =

�
Q
W̃ (y, p) dy

just as in 1.3.

We now prove that as n → ∞, the limiting behavior of FHn totally captures the limiting
behavior the truncated problem.

Lemma 3.5. Let {un}n∈N ⊂ H1(Ω;Rd) be such that

sup
n∈N

�
Ω
δn|∇un|2 dx <∞. (3.1)

Then

lim
n→∞

∣∣∣∣ 1

δn

�
Ω

[
W̃

(
x

εn
, un(x)

)
− W̃H(un(x))

]
dx

∣∣∣∣ = 0,

where, for p ∈ Rd, we set

W̃H(p) :=

�
Q
W̃ (x, p) dx. (3.2)
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Proof. Let

T := sup
n∈N

�
Ω
δn|∇un|2 dx <∞. (3.3)

Write

Ω =

Mn⋃
i=1

Q(pi, εn) ∪Rn,

where pi ∈ εnZN , Rn is the set of cubes Q(z, εn) with z ∈ εnZN such that Q(z, εn) ∩ ∂Ω 6= ∅,
and Mn ∈ N. Note that∣∣∣∣∣ 1

δn

�
⋃Mn

i=1 Q(pi,εn)

(
W̃

(
x

εn
, un

)
− W̃H(un)

)
dx

∣∣∣∣∣
≤ 1

δn

Mn∑
i=1

∣∣∣∣∣
�
Q(pi,εn)

(
W̃

(
x

εn
, un

)
− W̃H(un)

)
dx

∣∣∣∣∣
=
εNn
δn

M∑
i=1

∣∣∣∣�
Q

(
W̃ (y, un(pi + εny))− W̃H(un(pi + εny)

)
dy

∣∣∣∣ . (3.4)

where in the last step we have used the substitution x = pi+εy and noting that W̃
(
y − pi

εn
, ·
)

=

W̃ (y, ·) by periodicity. From here, we can rewrite (3.4) as

εNn
δn

Mn∑
i=1

∣∣∣∣�
Q

�
Q

(
W̃ (y, un(pi + εny))− W̃ (z, un(pi + εny))

)
dz dy

∣∣∣∣
=
εNn
δn

Mn∑
i=1

∣∣∣∣�
Q

�
Q

(
W̃ (y, un(pi + εny))− W̃ (y, un(pi + εnz))

)
dz dy

∣∣∣∣
≤ εNn
δn

Mn∑
i=1

�
Q

�
Q

∣∣∣W̃ (y, un(pi + εny))− W̃ (y, un(pi + εnz))
∣∣∣dz dy

≤ LεNn
δn

Mn∑
i=1

�
Q

�
Q
|un(pi + εny))− un(pi + εnz))| dz dy

≤ LεNn
δn

Mn∑
i=1

(�
Q

�
Q
|un(pi + εny)− ui,n| dz dy +

�
Q

�
Q
|ui,n − un(pi + εnz)|dz dy

)
(3.5)

where in the second to last step L > 0 is the Lipschitz constant of W̃ , and we de�ne

ui,n :=

�
Q
un(pi + εnz)dz.

By symmetry, the last term in (3.5) can be written as

2LεNn
δn

Mn∑
i=1

�
Q

�
Q
|un(pi + εny)− ui,n| dz dy =

2L

δn

Mn∑
i=1

�
Q
|un(pi + εny)− ui,n| dy.

By the Poincaré inequality

2L

δn

Mn∑
i=1

�
Q
|un(pi + εny)− ui,n| dy ≤ 2CLεN+1

n

δn

Mn∑
i=1

�
Q
|∇un(pi + εny)| dy

=
2CLεn
δn

Mn∑
i=1

�
Q(pi,εn)

|∇un(x)| dx
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≤ 2CLεn
δn

�
Ω
|∇un| dx

≤ 2C̃Lεn
δn

|Ω|
1
2

(�
Ω
|∇uε|2 dx

) 1
2

=
2C̃Lεn

δ
3
2
n

(
δn

�
Ω
|∇un|2 dx

) 1
2

≤ 2C̃Lεn

δ
3
2
n

T, (3.6)

where T ∈ [0,∞) is de�ned in (3.3). Using (3.4), (3.5) and (3.6), we conclude that

lim
n→∞

∣∣∣∣∣ 1

δn

�
⋃Mn

i=1 Q(pi,εn)

(
W̃

(
x

εn
, un

)
− W̃H(un)

)
dx

∣∣∣∣∣ = 0. (3.7)

Noticing that W̃ and W̃H are bounded and |Rn| ≤ Cεn we get

lim
n→∞

∣∣∣∣ 1

δn

�
Rn

(
W̃

(
x

εn
, un

)
− W̃H(un)

)
dx

∣∣∣∣ = 0. (3.8)

Thus, from (3.7) and (3.8) we conclude. �

With Lemma 3.5, we may proceed to prove the Γ-convergence result stated in Theorem 1.2.

Proof of Theorem 1.2. Step 1: compactness. Let {un}n∈N ⊂ H1(Ω;Rd) be a sequence with

sup
n∈N

Fn(un) < +∞.

Then we have

sup
n∈N

�
Ω
δn|∇un|2 dx <∞

and thus, since W̃ ≤W , we can apply Lemma 3.5 to conclude

sup
n∈N

FHn (un) < +∞.

Thus, by classical results (see, for instance, [6, Theorem 4.1]) we get that, up to a subsequence
un → u in L1(Ω;Rd) with u ∈ BV (Ω; {a, b}).

Step 2: liminf inequality. Let {un}n∈N ⊂ H1(Ω;Rd) with un → u in L1(Ω;Rd) . In order to
prove

FH0 (u) ≤ lim inf
n→∞

Fn(un).

Since this is vacuously true if the right hand side is positive in�nity, without loss of generality,
we restrict ourselves to the case where

lim
n→∞

Fn(un) = lim inf
n→∞

Fn(un) < +∞. (3.9)

Using Step 1, we get that u ∈ BV (Ω; {a, b}). Moreover, noticing that, by de�nition of M (see
De�nition 3.2), we get

KH = 2 inf

{� 1

0

√
W̃H(g(s))|g′(s)|ds : g ∈ C1

pw([0, 1];Rd; a, b)
}
, (3.10)

where W̃ is de�ned in (3.2). Thus, using standard results (see, for instance, [6, Theorem 3.4]),
we get

FH0 (u) ≤ lim inf
n→∞

FHn (un) ≤ lim inf
n∈N

Fn(un),

where in the last step we used Lemma 3.5 noting that (3.9) yields the validity of (3.1).
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Step 3: limsup inequality. Let u ∈ BV (Ω; {a, b}). We want to �nd a sequence {un}n∈N ⊂
H1(Ω;Rd) with un → u in L1(Ω;Rd) such that

FH0 (u) ≥ lim sup
n→∞

Fn(un).

Since FH0 is the Γ-limit of FHε (again, because the constant KH is the same regardless of
truncation) we can �nd a sequence {un}n∈N ⊂ H1(Ω;Rd) with un → u in L1(Ω;Rd) such that

FH0 (u) ≥ lim sup
n→∞

FHεn(un).

Moreover, by our choice of truncation, |un| ≤ R, so that W (x, un(x)) = W̃ (x, un(x)) for a.e.
x ∈ Ω. Note that

sup
n∈N

�
Ω
δn|∇un|2 dx < +∞

and thus, we can apply Lemma 3.5 to conclude

lim sup
n→∞

Fεn(un) = lim sup
n→∞

FHεn(un)

In particular, we have
FH0 (u) ≥ lim sup

n→∞
Fn(un).

�
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