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Abstract

A continuum mechanical framework is developed for determining a) the class of stress-
free deformed shapes and corresponding director distributions on the undeformed con-
figuration of a nematic glass membrane that has a prescribed spontaneous stretch field
and b) the class of undeformed configurations and corresponding director distributions
on it resulting in a stress-free given deformed shape of a nematic glass sheet with a pre-
scribed spontaneous stretch field. The proposed solution rests on an understanding of
how the Lagrangian dyad of a deformation of a membrane maps into the Eulerian dyad
in three dimensional ambient space. Interesting connections between these practical
questions of design and the mathematical theory of isometric embeddings of manifolds,
deformations between two prescribed Riemannian manifolds, and the slip-line theory
of plasticity are pointed out.

1 Introduction

Design principles for obtaining desired shapes of thin bodies or slender bodies of soft ma-
terials in response to various physical stimuli has received much attention in the recent
engineering, physics, and mathematics literature (e.g., [1, 2, 3]). Nematic glasses (explained
in Sec. 2) are a good specific example of such soft materials with potential for use in actua-
tion. The basic engineering design goal of actuation of nematic glass sheets is to determine
imprinted director distributions in a flat (or curved) sheet of nematic glass material, in order
to achieve particular actuated shapes on exposure to appropriate stimuli. Based on the cre-
ative fabrication techniques of Broer, Sanchez-Somolinos and co-workers [5], Modes, Warner
and Bhattacharya [6, 7] ! have considered this question in some restricted special cases and
in the context of determining the final deformed shapes when the patterned director field
in the undeformed flat state is known. The inverse problem, that of determining the unde-
formed (unactuated) shape and a nematic director distribution on it that results in a known
actuated shape, is significantly more difficult [8, 9, 10] using the techniques that have been
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employed till date. In fact there does not exist a formulation whose solutions, even when
assumed to exist, can be shown to solve the inverse problem in full generality.

In this note we propose a formulation, based essentially on an insight from continuum
mechanics, that provides the governing equation for the whole class of actuated shapes and
imprinting director distributions for a given, possibly spatially varying, opto-thermal stretch
distribution. Moreover, the proposed formulation is in a sense ‘symmetric’ for the forward
and inverse design problems (see Sec. 3 for definitions) so that it answers the design question
for both problems when the prescribed opto-thermal stretch field is given.

In this connection, it is important to differentiate between the goals of the forward and
inverse problems considered here and problems where a full metric field is specified (i.e.,
principal stretches as well as principal directions are specified, instead of just the principal
stretches), along with either the undeformed or deformed configurations. When the full target
metric is specified on the undeformed configuration, the problem of determining sufficiently
smooth deformed configurations simply becomes that of the isometric embedding problem
from 2 into 3 dimensions. Our forward problem has more freedom in that the principal
directions are free to choose; it appears that this has not been noted and exploited in
the literature thus far (cf. [11] where I'-limits of elastic energy functionals for thin 3-d
bodies containing prestrain fields relevant to our discussion are analyzed in the limit of
vanishing thickness). This freedom has even more significance in the inverse problem. For
the metric components specified on the manifold and the deformed configuration given,
to our knowledge the only result available for solving the inverse problem exactly (and
only locally) is in Theorem 8.1 in [12|. That result shows that the problem is strongly
overconstrained, very different from the standard isometric embedding problem in its details,
and solutions are expected to exist in rare circumstances (with a sufficient condition for
existence of solutions provided, not accessible to practical implementation; also note that the
variational reformulation and analysis of the inverse problem with fully specified metric dealt
with in [12] does not guarantee, by Theorem 2.4 and Corollary 3.4 and remarks immediately
thereafter, that a solution to the inverse problem, i.e., an absolute minimum with value
0, exists for a given smooth metric field, either for the ‘3-d functional’ or its ‘2-d’ limit).
However, the inverse problem for the prescribed principal stretch problem dealt with here
is, as explained later, essentially the same as the forward problem. As noted already, this
simplicity of the inverse problem has not been realized in the literature thus far. In addition,
our analysis is not restricted to ‘plates’, allowing for arbitrarily curved smooth reference
membranes (defined in Sec. 3.1).

2 Physical basis of the actuation of nematic glass sheets

We briefly review the constitution of soft solids with some amount of nematic order following
[4, 15], followed by the main physical idea behind their actuation. Nematic liquid crystals
are made up of rod-like molecules; they have no positional ordering (like liquids) but have
orientational ordering in that the rod-like molecules line up in some fixed orientation when
not deformed by external stimuli. Any deviation from a uniformly oriented state costs energy
and results in orientational elasticity.

Nematic liquid crystals elastomers (which we shall refer to by the shorthand LCE) are



rubber-like, cross-linked, polymeric solids. Polymers are long-chain, flexible molecules, made
of ‘monomer’ constituents. Their extreme flexibility comes from the fact that, generally, a
sequence of a more-or-less fixed number of monomers form rigid units, which are loosely
jointed to form the long-chains. This flexibility allows polymers to flow under stress above
their glass-transition temperature, i.e., in their fluid-like state. Elastomers (e.g., rubbers)
are polymers that are cross-linked, i.e., the long chains are linked together at some points,
thus giving the composite of many chains some rigidity. The shear modulus is much smaller
(x10™%) than in crystalline solids, while in bulk hydrostatic response they behave like in-
compressible liquids.

LCEs are elastomers whose polymer chains may consist of nematic liquid crystal monomers
or they may be ordinary elastomers with liquid crystal molecules as ‘hanging’ on pendant
side-chains. Due to this detail of constitution, the average nematic orientation - the director
- of a piece of LCE (even when not side-chain type) under homogeneous deformation, may
not conform to the orientation of a material fiber fixed to the LCE matrix under the same
applied deformation, when the material fiber and the director are aligned before deforma-
tion. Thus, LCEs have both positional elasticity - due to rubber-like, solid response of the
polymer chains - and orientational elasticity due to the separately deforming director.

A nematic liquid crystal glass (LCG) is, in its turn, a very highly cross-linked LCE such
that the director is effectively constrained to move with the matrix. This is unless, possibly,
when one is close to the defect cores, i.e., regions where there are severe changes in the
director orientation. Essentially, nematic glasses are transversely isotropic solids and, for
the problems to be dealt with in this note, they will be considered as elastic solids, often
with immobile disclination defects in the nematic director field. Disclinations are locations
where the director field is discontinuous/contains localized high gradients. An LCG has a
typical elastic modulus (in the strong direction) of 1 GPa (roughly a tenth of a typical
metal) while the LCE has a modulus of 1 MPa.

2.1 Actuation of nematic glass sheets

As explained in [5, 6, 7], the nematic mesogens, whether in LCE or LCG, are responsive
to heat and light. When cooled, the mesogens in a chain tend to order and therefore ‘line-
up’ in a single orientation, thus having the effect of elongating the chain by uncoiling the
spaghetti-like conformation. Heating has the opposite effect of increasing the disorder by a
return to the coiled conformation, and thus shortening the chain. Similarly, exposure to light
of particular wavelengths causes contraction or extension. When the mesoscale ordering is
spatially homogeneous in a macroscopic body, heating or exposure to light cause macroscopic
stretching/contractions of the body:.

For the purposes of actuation of a sheet, one considers an ordered state to begin with,
where the ordering may not be spatially homogeneous but patterned. Such patterning is
induced by utilizing two glass substrates with thin layers of liquid crystal polymer material,
that have the intended patterns of the eventual sheet imprinted on them by the use of
polarized ultra-violet light. The space in-between the layered substrates (cell) is then filled
with a nematic liquid crystal material, that aligns itself to the surface by anchoring boundary
conditions due to orientational elasticity. Then the whole cell is photopolymerized, i.e., the
nematic liquid crystal is changed to a liquid crystal polymer through the action of light,



undergoing chain-forming reactions that keep the alignment of the liquid crystal state, as
well as keeping the whole assembly heavily cross-linked. One now obtains the nematic glass
sheet with a predetermined pattern on extrication from the substrates. Subsequently, the
sheet is exposed to heat or light. This causes further ordering of the polymerized chains along
the directions of the imprinted local order, thus causing stretch along the pre-existing director
direction and contraction in the direction orthogonal to it, and vice-versa for disordering.
The mechanical effect on heating/light exposure can be summarized by a so-called ‘opto-
thermal Poisson’s ratio’ v, characterizing the fact that if a stretch of magnitude A\ occurs in
the ordering direction, then a stretch of magnitude A™ occurs in all transverse directions to
the director. This local deformation due to ordering/disordering from the patterned state is
often referred to as spontanecous deformation. If n represents the director orientation in the
sheet before being subjected to the stimuli, then the spontaneous deformation is given by
the following tensor field on the unstimulated flat sheet:

Apemn = A" Ids + (A= A @ n, (1)

where Idy is the identity tensor in the plane of the reference sheet, n depends upon position
in the sheet, while A and v, in general, depend only on temperature or characteristics of
incident light.

In what follows, we will take the point of view that the unstimulated or undeformed
membrane is not necessarily flat, since this generality is allowed by our mathematical for-
mulation and leads to interesting applications [24]. Let & be the ambient three-dimensional
Euclidean point space, and the two-dimensional surface U C &3 the undeformed membrane.
The elastic response functions of the membrane at any point z € U are assumed to be a
function of F(2)A;L (z), where F(z) is the deformation gradient between the tangent space
at z of U and the tangent space at y(z) of the deformed membrane, where y : U — & is
the deformation of the membrane. The director n in (1) corrresponding to A,en(2) for each
z € U then belongs to the tangent space of U at z , and Id, there is the identity tensor on
the same tangent space. Thus the energy density is assumed to be given by

V(F(2) A0 (2)) (2)

(before restrictions due to frame-indifference are imposed). The domain of the energy density
function ¢ : D — R is understood as follows: Consider the collection of the linear embeddings
of the (2D) tangent space to U at each of its points into the (3D) translation space of &s.
Consider now the set of orientation preserving invertible linear transformations between
any two members of this collection. Then consider the set of all such invertible linear
transformations generated from each such ordered pair of translation spaces. It is this last
set of objects that is considered as the domain D of . In addition, 9 is assumed to have
the property that it attains a minimum value if and only if its argument is of the form R,
where R is a rotation (proper orthogonal) tensor between any two of the translation spaces
involved in the definition of D.

For the purpose of finding equilibrium configurations of the sheet, A, e, (2) will be con-
sidered as a given field (unlike in the nematic elastomer case). Note that A, is analogous
to the plastic distortion tensor FP in elastoplasticity theory (see, e.g., [13, 14] for appli-
cations to soft materials), but now in the context of 2-d bodies occupying non-Euclidean
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subsets of &£; the main modeling hypothesis is that, to the extent allowed by compatibility
and displacement boundary conditions, the ‘total’ deformation gradient F' field attempts to
generate a right stretch tensor field that equals that of A,.,, pointwise in order to attain
minimum energy in the body.

It is important to note that in each local region of the sheet, this ordering/disordering
of the chain microstructure causes no stress in the region, if not constrained by the order-
ing/disordering in adjoining regions. This observation forms the physical basis of actuation.
The predetermined pattern in the sheet combined with the stimuli-induced stretching may
set up a local spontaneous stretch/metric field with nontrivial Gaussian curvature. If the
material of the sheet has to be stress-free, then it needs to take up this spontaneous stretch
of the LCG and therefore cannot remain in-plane. Bending out-of-plane may allow such
stress-free deformations, with a much lower bending penalty, due to thinness of the sheet.
Clearly, if no bending out-of plane can accommodate the spontaneous deformation field, then
further distortion of local material elements takes place beyond the spontaneous deformation,
resulting in higher energy states of the sheet.

The formulation proposed in this note capitalizes on the physical details of opto-thermal
stimulation of nematic glass materials and the geometry of sheets to identify non-trivial sheet
deformations that have no membrane stretching energy regardless of the frame-indifferent
constitutive response used for membrane deformation. A small amount of bending energy
may be involved and this we account for as a higher order effect in our design problems, but
exactly.

3 Design problems in actuation of nematic glass sheets

The intuition behind the posed design problems is as follows. Let o;, ¢ = 1,2 be two
prescribed scalar fields. Suppose we are successful in finding a compatible symmetric, positive
definite tensor field C' on the undeformed membrane U C &3, whose tensor square root has
the form

C(r) = o1(2)d(7) @ d(z) + o9(x)d* (7) @ d* (),

where d(z),d*(z) € T,U are two unit vectors belonging to the tangent space of U at each
x € U, which are mutually perpendicular. By ‘compatible’; we mean:

e in the language of mechanics, that there exists a deformation of the undeformed mem-
brane into 3d space whose Right Cauchy Green tensor field is given by C' (with right
stretch tensor field v/C).

e in the language of differential geometry, the components of C' viewed as those of a Rie-
mannian metric specified as a function of coordinates parametrizing U has an isometric
embedding into R3.

Physically, the o;-s could be the moduli {\, A"} in (1), defined as spontaneous principal
stretches in response to the opto-thermal stimuli.

If we now ‘pattern in,” or ‘write’ into the tangent spaces of U the field n(x) = d(z) for
each x € U ? using the field d determined above, then C' can be viewed as the right Cauchy

21t is easiest to think of this ‘writing’ when U is flat.



Green tensor field of a stress-free deformation ¢ : U — &; of the undeformed membrane with
deformation gradient F after opto-thermal stimulation, i.e., FTF = C. Further, d and d*
would be then the principal directions of the stretch tensor of this deformation, stretched
by the prescribed amounts ¢; and remaining mutually perpendicular, i.e., (ﬁ d) - (F dt) =0,
even though generally having moved out of the reference plane: (Fid) - M # 0, where M is
the unit normal field on the reference membrane.

Thus, the whole problem of inducing stress free deformations, or in other words actuation,
due to opto-thermal stimuli of the undeformed membrane reduces to:

(i) finding compatible stretch tensor fields with prescribed principal stretches,

(ii) for any one of these fields, doing a pointwise spectral decomposition to find the principal
direction fields,

(iii) writing in the nematic director field in the undeformed configuration along one of the
principal direction fields.

It is perhaps important here to mention the advantage of nematic glass material over a
nematic elastomer for such actuation. Considering a flat undeformed membrane, suppose the
opto-thermal stretch field is such that no in-plane compatible deformation can accommodate
it as a principal stretch field, but out-of-plane deformations can. In the LCG, energy mini-
mization would then force an out-of-plane deformation. However, in the LCE, it is possible
that the energy can be minimized by director reorientation accompanying in-plane material
deformation of the rubber matrix.

In the following,

e we refer to the question of determining deformed (actuated) shapes of the mem-
brane, given the undeformed (unactuated) configuration and the prescribed sponta-
neous stretches, as the forward design problem.

e The inverse design problem refers to the question of determining the undeformed
(unactuated) shape, given the deformed (actuated) configuration of the membrane and
the spontaneous prescribed stretches.

In both cases, the imprinting director distribution on the undeformed configuration is deter-
mined as in (ii) and (iii) above.

3.1 A membrane problem with prescribed principal stretches

In solving the forward problem, a surface S (the deformed membrane to be solved for)
constitutes the target with a given surface U (the undeformed membrane) as the reference.
For the inverse problem, U (the undeformed membrane) will be the target and a given S (the
deformed membrane) the reference. In the following, we will refer to the target membrane
as T and the reference membrane as R. We will also assume that (A1, \2) is a given pair

of positive real number fields on the reference R with 5\1 > )Xo; they could be formed from

the sets of generalized spontaneous principal stretches {oy, 09} or {%, %} (depending on

whether we want to solve the forward or the inverse problem).
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Denote a generic point on the reference membrane as X = Z?Zl X;c;, where (¢;,1 =
1,2, 3) is an orthonormal basis for &, and a generic point on the target as x = Zf’zl x;¢;. In
the following, we will invoke the summation convention, unless otherwise mentioned. Latin
indices will be range over (1,2,3) and Greek indices over (1, 2).

When there exists a deformation that maps the reference onto the target membrane, we
refer to its deformation gradient as F' and the Right Cauchy Green tensor of the deformation
map as C' = FTF. For the forward problem, we obtain the desired imprinting pattern directly
from the eigenframe field of C. For the inverse problem, we map the eigenframe field of C'
by F' (recall the definitions of the target and reference membranes for the inverse problem)
and normalize to obtain the pattern on U.

With respect to a local convected coordinate parametrization & = (€1, £?) of the reference
and the target (the existence of which implicitly induces a deformation between the two),
the natural bases for the coordinate system on the reference and target membranes are given
by E, := 0,X and 9,z, respectively. Defining G5 = 9, X - 95X and G = [Gag]_l as its
matrix inverse, with the - representing the dot product of two vectors in &3, the dual basis
on the reference membrane is £* = G**Eg. Then F = d,x ® E“ and

C=F"F=g,3E*®E", (3)
with gap := 0n2 - Osz. The characteristic equation of the tensor C' is
p? —tr(C)p + det(C) = 0, (4)
where
tr(C) =C:1d = gopE* @ E° : E, ® B = go30i G = go,G*"
and

det(C) — 012 x Dpx| \° _ det(g) |
|01 X X r X| det(QG)
where ¢, G are the matrices defined earlier. On solving for the two ordered roots of (4), the

governing equation for the deformation map x is given by the following nonlinear, first-order,
system

1(C) + /(& (C))? — 4det(C) = 2 (X1)2 |

.2 (5)
tr(C) — /(tr(C))2 — 4det(C) = 2 ()\2) ,

of 2 scalar partial differential equations for 3 fields defining the components of z(£) = z°(£)c;.

In the case of nematic glass sheets, the prescribed stretches are unequal and constant on
U. The formulation is general for the principal stretches prescribed as two fields \; (X (€))7 =
1,2. At any point where the prescribed stretches were to be equal, the pair of governing
equations would change to

tr(C) = 2)2,
det(C) = M,
where A is the common value of the prescribed principal stretch. It is clear that it is

best to consider problems where the specified principal stretch fields are such that they
are everywhere equal or everywhere unequal.



3.1.1 Global C! and local C® solutions

We assume the reference membrane R to be a compact, orientable surface; for simplicity
we assume that R can be parametrized by a single coordinate patch D C R? and the
parametrization X : D — &3 is of class C! (so that any such parametrization is as well, by the
standard smoothness between coordinate patches). Consider now any pair of orthonormal,
tangent vector fields, say P = (P;, P»), that is Holder continuous on R. We assume that the
prescribed principal stretch fields are Holder continuous on R as well. Then define

gos(X; P) = Fo(X) - [Z (W) PO @ PX)| Bs(X), XER (6)

i=1

and in the following we simply refer to the metric field so defined as g,5(P). Due to the fact
that R is a smooth embedded surface in & (with metric field G,z that is Holder continuous),
Theorem 2 of the review [16] describing the results of Nash [17] (improved by Kuiper) states
that there exists an isometric embedding with metric g,3(P), which in our setting may be
interpreted as the existence of a C' map = : D — &; satisfying 9,7 - dsz = gup(P). In
fact, due to the compactness of R in & and the continuity of g,s(P) on it, a short C*
embedding w.r.t. the metric g,s(P) can be produced by an appropriate constant scaling of
the function X : D — &3, i.e., if X is the short embedding, then 9,X93X < gus in the sense
of quadratic forms. Assuming that the Holder exponent of the g,g(P) field is > %, Corollary
2 and Remark 1 of Conti, De Lellis, and Szekelyhidi [18] implies that there exists an infinite
number of C1% o < %9, isometric embeddings « : D — &, each satisfying 0,x-0sx = gap(P),
for each fixed choice of the pair P. The vast collection of isometric embeddings arises from
the (proven) property [18] that the short embedding can be uniformly approximated by the
C1® embeddings on D, i.e., ||z — X||co < € for any € > 0.

Thus it is clear that the forward and inverse design problems actually have a huge class
of global solutions (when the prospect of varying the pair P is also taken into account).

In contrast to the abundant existence of C'* global isometric embeddings corresponding
to a given metric field, the known existence of embeddings of 2-d surfaces in 3-d space
with higher regularity, particularly of class C®, for metrics with Gauss curvature fields with
indefinite sign is scarce. Theorem 1.1 of Han [19] is typical of such local results, a part of
which states that if g is a C? metric field whose Gauss curvature vanishes at some point of a
coordinate neighborhood and its gradient does not vanish at the point, then ¢ admits a C®
isometric embedding in a neighborhood of that point. It is also classically known that two
C? compact surfaces with identical metric fields with positive Gauss curvature can at most
differ by a rigid deformation [18].

Thus, again, an infinite number of local solutions of higher regularity (class C?*) of the
forward and inverse design problems are guaranteed by utilizing the result just mentioned
[19] by using the metric defined in (6), but now with the P and X fields chosen to be of

appropriately high regularity.



3.2 A prescribed principal stretch problem from one given surface
into another

The considerations of Sec. 3.1.1 show that in fact there is a great deal of freedom in defining
deformations of a given surface with prescribed principal stretches. Given this information,
which is not necessarily convenient for practical design considerations due to the massive non-
uniqueness, it is natural to explore whether prescribed principal stretch deformations can be
defined between two arbitrarily chosen smooth surfaces. It turns out that this problem has
been studied in great detail, in the local context, by Deturck and Yang [20] and Gevirtz and
Chuaqui [21, 22] (these mathematical results require the strict inequality A1 > X2). They show,
for varying hypotheses, that the problem of local existence of deformations with prescribed
principal stretches between two equidimensional Riemannian manifolds leads to a study of
diagonal hyperbolic systems for which unique local solutions exist for appropriately specified
Cauchy data. In the following, we make the minor contribution of developing the explicit
form of the governing 2 x 2 nonlinear hyperbolic system that represents the deformation of
an open set of a given surface into another specified surface, satisfying the constraint that
it has prescribed principal stretch fields, meant for the practitioner of continuum mechanics
not familiar with the language of modern differential geometry.

Let the mappings X : D — & and = : d — &3 be parametric representations of two
given surfaces R, T, respectively, where D, d C R? are open sets. Thus, R = {X(§) : £ € D}
and T = {z(n) : n € d}. We define generic points in D as £ = (¢1,£?) and n = (n',7n?),
respectively. With some abuse of notation, we look for a differentiable injective map 7 :
D — d with pointwise non-vanishing determinant, the existence of which implicitly induces
a deformation X — z(X) of R through the composition z o o X! ( where X! is now
interpreted as a function on X(D)). We use the definition 8377—”2 = e, :d — V3 (V3 is the
translation space of &), with h,s(n) = e (n) - e5(n).

We define the two-point tensor

_on”

= 57O ealn(©) ® EA(€)

F(¢)

(the deformation ‘gradient’) from the tangent space at X () € R to the tangent space at
z(n(§)) € T and the Right Cauchy-Green tensor

- g_ZZ@) o (1(€)) Z—ZZ@ E°(§) ® E°(€) = gas(€) B (€) ® E*(¢),

on N _ o, om

from the tangent space at X (§) € R to itself. Substituting this expression for g (in terms of n
and the derivatives of the mapping 7) into (3), (4), and (5) we obtain the explicit expression
for the 2 x 2 nonlinear, first-order system for the function n : D — d (cf. [9]). As already
mentioned, the theory of local solutions to this system is well understood through the works
20, 21, 22]. Very interestingly, there is a direct connection between this formulation of the
problem and problems of slip-line fields in the theory of plasticity [21, 23].

FTF(¢)
(7)



3.3 A variational basis for computational approximation

In order to generate computational approximations of the target membrane given the the
reference, we propose the following functional of z : R — &3:

L(x):/R[

where p > 0 is a constant with p = 2 a natural choice, R is the reference membrane and
da is the area measure on it. Recall that F(Y) = 0,(x o X)(X 1Y) ® E“(Y),Y € R,
for X (-) being any parametrization of R. Any absolute (global) minimizer of L (that have
been shown already to exist) yields the solution of the prescribed principal stretch mapping
we seek. The solution of the problem automatically yields, by a ‘post-processing’ step, the
required imprinting director distribution, as explained in Sec. 3.1. The minimization problem
remains valid for the determination of approximately stress-free deformed membranes with
corresponding imprinting director distributions in the undeformed membrane.

The considerations in Sec. 3 indicate that solutions to the minimization problem, i.e.,
argmin L(z), suffer from ‘massive’ nonuniqueness. This observation, coupled with the con-
siderations of Sec. 3.2 suggests that the practical way to seek approximate solutions to the
problem is to consider an (L?) gradient flow of the ‘energy’ (8):

p

p(F) = (M) + |p2(F) = (A2)?

p] da, 8)

O x = —a(x),

where t is a fictitious time-scale and the right-hand-side of the equation is the variational
derivative of L, and look for its equilibria starting from appropriate initial conditions. These
initial conditions can be set to be any desired smooth target shape to be achieved, and
the observations in Sec 3.2 suggest that, at least locally, one can expect to achieve such
targets. The variational formulation allows significant liberty with respect to regularity and
global shapes may as well be attempted to be approached by the same procedure. Of course,
minimal boundary conditions need to be imposed to eliminate rigid modes, i.e., solutions
that differ from each other by rigid body deformations.

The determination of such deformations (and imprinting director field) may be, for exam-
ple, approached via a finite-element method based approximation scheme by discretizing the
reference membrane by finite elements in the usual way, beginning with a ‘membrane-only’
implementation. Let R" = U; A; be the discrete rendition of the reference membrane as the
union of finite elements, each A; parametrized by local coordinates coordinates £*,a = 1,2
forming the set [—1,1] x [~1,1] =: 0. Let N4(¢},£2?),A = 1...T be finite element test
and trial functions, where T corresponds to the number of nodes in the mesh. Then we
approximate positions on the target and reference membranes as

= ZﬁfNAci, Xh = ZXZANACZ-, (9)
Aji Ayi

where ! and X!, A=1...T,i=1...3 are the global Cartesian coordinates of the position
of the A" node of the mesh on the corresponding membranes. It is a property of the isopara-
metric finite element representation (9) that the function z”, appropriately interpreted, ends
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up being globally C° and piecewise C* on R". The corresponding approximate functional
(on a finite-dimensional space) becomes

p

} da”,

L") = /Rh [Ml(Fh> - (5\1> po(F") — (5\2>2

where F* = 0,2" ® (Eh)a (no sum on h, of course) and (Eh)a is the dual basis of 9, X",
and da” is the area measure on R". The contribution to L" from each such element is given

Al

Our general strategy accommodates curved undeformed membranes with non-trivial
topology (e.g., non-simply connected undeformed membranes), thus allowing the study, in
generality, of the interaction of defects in patterning with these aspects of the undeformed
membrane as explained in [24] .

p

+

2

p

i (@)~ (M(X"(€)

#atrroeion - (@) ],
01 X" (€) x 0, X"(€)] dg'de®.

3.4 A bending regularization

As already mentioned in Sections 2.1 and 3, the proposed formulation specific to the op-
tothermal stimulation of nematic glass sheets is guaranteed to result in vanishing membrane
stretching energy by design, independent of the membrane constitutive response, beyond
frame-indifference. Of course, the spontaneous principal stretches Aj, Ay are specific to the
constitution of the nematic glass material and thereby will affect the class of actuated shapes
produced for each specific material. What we have outlined up until now is certainly the
dominant part of the stated design problems. As a refinement, and to mitigate the lack of
uniqueness of solutions (as may be expected from the available results for C* embeddings
with positive Gauss curvature and the general C? isometric embeddings discussed in Sec.
3.1.1), it is natural to consider bending deformations, which is a higher order, small energy
effect compared to membrane stretching due to thinness of the sheets that, nevertheless,
can induce greater regularity in solutions. In essence, if the mathematical model does not
contain any bending energy penalty, the membrane stress-free shapes can occur with sharp
ridges and singular points where bending deformation, described by an appropriate function
of the second fundamental form of the deformed shape, can be singular. In physical real-
ity, such extreme bending coupled with the the thinness of the sheet will produce a small
amount of bending energy around such singular lines and points. To account for this re-
finement, it is natural to include a bending penalty in the governing functional (8) in terms
of a bending stiffness times an appropriate function of the deformation gradient F', and the
second-fundamental forms gradm := J,m ® e* and Grad M := 0,M ® E* where m and
M are the unit normal field on the target and reference, respectively, and e® = F~TE*. In
choosing a natural candidate for this bending penalty function, one may consider the fact
that the change in the second fundamental form of a surface penalizes deformations that may
not be physically related to bending (e.g., radial expansion of a right-circular cylinder), and
therefore use physically appropriate and kinematically exact bending strain measures [25].
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Of course, with such a bending regularization numerical approximations would require either
a mixed formulation with the normal field interpolated as a separate field or techniques like
isogeometric analysis.

4 Concluding remarks

The main contribution of this note is to develop a common mathematical framework for
solving the forward and inverse problems of design of thin sheets subjected to opto-thermal
stretching. That such a ‘symmetric’ framework can exist may be considered surprising based
on works in the existing literature, e.g., [10, Sec. 6.2] and [9, Sec. 1]. A critical realization is
that approaching the design problem of opto-thermal stretching of membranes by considering
the full metric as specified is sub-optimal, leading to particularly severe, and unnecessary,
difficulties in answering the question of determining the undeformed geometry and director
distribution on it, given the deformed membrane.

With respect to practicality of the design principle developed in the paper, there are
two types of questions. One relates to computing approximate solutions to the forward and
inverse design problems; some of these issues have been dealt with in Sections 3.3 and 3.4,
with backing from rigorous mathematical results. Since the interest here is definitely in
global minimizers, and it has already been established that (without bending regularization)
uniqueness of solutions is absent in a large class of functions that are less than C? regu-
lar; using the technique of I'-convergence on approximate finite-element solution sequences
parametrized by the mesh size appears worth pursuing. In addition, there is a vast literature
in plasticity theory and optimal design where questions of computing slip-line fields and
Hencky-Prandtl nets arise; it is natural to explore to what extent these approaches can be
adapted to the problem posed in Sec. 3.2.

The other question relates to how uniquely can the desired shapes be realized on actual,
physical, actuation with the computationally determined director distributions imprinted
in the undeformed configuration. This can only be answered with certainty on practical
testing, but the ‘rigidity’” in obtained shapes facilitated by smooth profiles due to physical
bending energy cost - that is expected to be invariably present in small amounts in real, thin
membranes - can only be expected to help.
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