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Abstract

It can be shown that the stress produced by a spatially uniform dislocation density field in a body
comprising a linear elastic material under no loads vanishes. We prove that the same result does
not hold in general in the geometrically nonlinear case. This problem of mechanics establishes
the purely geometrical result that the curl of a sufficiently smooth two-dimensional rotation
field cannot be a non-vanishing constant on a domain. It is classically known in continuum
mechanics, stated first by the brothers Cosserat [Shi73], that if a second order tensor field on
a simply connected domain is at most a curl-free field of rotations, then the field is necessarily
constant on the domain. It is shown here that, at least in dimension 2, this classical result is in
fact a special case of a more general situation where the curl of the given rotation field is only
known to be at most a constant.

1 Introduction

Dislocations are defects of compatibility in an elastic solid that often produce stress in the absence
of applied loads. However, there are many dislocation distributions that produce no stress, at
least in the limit of a linear or nonlinear continuum elastic description [Mur89, HHOT93, YG12].
Such distributions are physically important in the far-field description of grain boundaries, in
understanding the resistance produced to dislocation motion resulting in plastic deformation, and
for questions of patterning and microstructure in plastic deformation. To be specific, all dislocation
distributions resulting from a curl of any (linearized) rotation field on a domain form the collection
of stress-free dislocation distributions on that domain (for an appropriate class of stress response
functions) - clearly this is a large class of fields, both in the linear and nonlinear settings. An
interesting result in the linear theory of dislocations, that we give a proof of in Sec. 3, is that
any spatially uniform dislocation density field belongs to this class of stress-free dislocation density
fields. To our knowledge, whether such a result holds in the nonlinear elastic theory of dislocations
is not known. We prove such a result in the negative in Sec. 4 in the setting of two space dimensions.

The paper is organized as follows: the setting of the problem is described in Sec. 2. In Sec.
3 we provide an independent proof of the result in the linear case. Sec. 4 discusses the nonlinear
case. We use standard tensor notation. All tensor and vector components are written with respect
to the basis of a fixed Rectangular Cartesian coordinate system that is assumed to parametrize
ambient 3-d space with a generic point denoted as (x1, x2, x3). A subscript comma represents
partial differentiation and the summation convention is always used. The curl of a tensor field is
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represented in components by row-wise curls of the corresponding matrix of the tensor field w.r.t
the basis of the Rectangular Cartesian coordinate system in use.

The resolution of the question in space dimension 3 for constant dislocation density fields
without any further restriction is left for future work, as is exploring the possibility of necessary
conditions, solely in terms of the dislocation density and its higher derivatives, for the dislocation
density to be a curl of a finite rotation field. Of interest is also the question of characterizing stress-
free dislocation density distributions on a domain in situations when the elastic stress response
function of the material is non-monotone, and is known to admit a set of elastic distortions at
which the stress response function evaluates to zero.

2 Setting of the problem

The mathematical setting defining the stress field of a dislocation distribution is as follows. We
assume that a simply connected domain Ω is given with no external loads and with a dislocation
density distribution α specified on it. n is the outward unit normal field on the boundary of Ω.
This configuration of the body is generally in a stressed state with the symmetric Cauchy stress
field on it denoted by T . Because of the presence of dislocations in the body, there is no ‘coherent’
stress-free reference configuration that can be defined by a continuous (inverse) deformation of Ω
to the stress free state. The invertible-tensor valued map W : Ω → Inv(V3) mapping points in Ω
to the space of invertible tensors on the translation space V3 of 3-d Euclidean space is assumed to
realize this stress-free ‘configuration.’ Then the question is to determine the field F := W−1 on Ω
such that the system (3) below is satisfied. Defining U := F−I and assuming |U | (nondimensional)
pointwise is small on Ω, it is easy to see (through a Taylor expansion) that the approximation of
W = F−1 is W ≈ I −U . Also,

T (F ) = T (I) +DT (I)[U ] + o(|U |),

and with T (I) = 0 and DT (I) = C the fourth-order tensor of linear elastic moduli, T ≈ CU for
small U . Substituting these approximations, valid for small U , into (3), we obtain the system (1)
below.

3 The result in the linear case

Suppose the body comprises a generally non-homogeneous, linear elastic material whose elastic
modulus, C, has major and minor symmetries. The governing equations for the ‘internal’ stress
field, T ≈ CU , in the body are given by

curlU = α

div (CU) = 0

}
x ∈ Ω,

(CU)n = 0 x ∈ ∂Ω,
(1)

where U is the elastic distortion.
The symmetric part, ε := 1

2

(
U +UT

)
, of any solution of (1)1 satisfies the relation(

curl
(
(curlU)T

))
sym

= curl
(
(curl ε)T

)
= (curlαT )sym =: η, (2)

where η is Kröner’s incompatibility tensor. Equation (2) implies that the strain field of any solution
of (1) corresponding to a prescribed dislocation density with a vanishing incompatibility field is
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strain-compatible, i.e., it is the symmetrized gradient of a vector field on Ω, (2) then simply
becoming the St.-Venant compatibility condition for ε. But then (1)2,3 imply that ε = 0 (by
Kirchhoff’s uniqueness theorem for linear elastostatics), and consequently the stress of such a
dislocation density field vanishes. Of course, U in such cases is a skew tensor field, and spatially
non-uniform for α 6= 0. For α = 0, U is necessarily a constant skew tensor field on Ω. The first
equality in (2) suggests that

(
curl

(
(curlω)T

))
sym

= 0 for any skew-symmetric tensor field ω, so
that a necessary condition for a dislocation density field to be a curl of a skew-symmetric tensor field
is that its incompatibility (η) field vanishes. These results hold for the general three-dimensional
situation as well as for two-dimensional plane problems.

Clearly, a spatially uniform dislocation density field has vanishing incompatibility, and therefore
has a stress field that vanishes.

4 The nonlinear case

Now consider a generally nonlinear, frame-indifferent stress response function T (F ) for the Cauchy
stress taking invertible tensors as arguments and with the property that T (F ) = 0 if and only if
F is an orthogonal tensor. We shall denote F−1 =: W . The governing equations for the ‘internal’
stress field in the body in this nonlinear setting are given by [Wil67]

curlW = −α
div (T (F )) = 0

}
x ∈ Ω,

(T (F ))n = 0 x ∈ ∂Ω,
(3)

where F is the elastic distortion and, as before, α is considered as prescribed.
Henceforth, we restrict attention to the class of specified dislocation density tensor fields that

have α13 and α23 as the only possible non-vanishing components that are constant on Ω. Hence,
such a field is spatially uniform and we wish to determine whether there exists a C2, orthogonal
tensor-valued solution to (3)1, which would correspond to a stress-free solution to (3)2,3. We will
also restrict attention to fields that do not vary in the x3 (out-of-plane) direction in Ω.

Restricting attention to planar C2(Ω) solutions of (3)1 that correspond to rotations in the x1−x2
plane, we show in the following that there does not exist θ ∈ C2(Ω,R) such that curlR(θ) = −α
for any constant field α 6= 0 through a proof by contradiction, where the components of R(θ) are
defined in (4) below.

Let us assume that a θ ∈ C2(Ω,R) exists corresponding to a planar rotation-valued solution,
R, to (3)1 for some constant α 6= 0 field on Ω. The matrix representation of R with respect to the
fixed orthonormal basis corresponding to the x1 − x2 − x3 directions is given by

[R(θ)] =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (4)

The matrix R satisfies

e3jkRmk,j = −αm3 =⇒ e312Rm2,1 + e321Rm1,2 = −αm3 m = 1, 2,

where eijk is a component of the alternating tensor, which further implies that[
− cos θ sin θ
− sin θ − cos θ

] [
θ,1
θ,2

]
= −

[
α13

α23

]
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so that
θ,i = Aij(θ)aj , i, j = 1, 2 (5)

where

A(θ) =

[
− cos θ − sin θ
sin θ − cos θ

]
; a =

[
−α13

−α23

]
.

Since θ is C2(Ω), we have θ,im = θ,mi which implies

∂Aij

∂θ
θ,maj +Aijaj,m −

∂Amj

∂θ
θ,iaj −Amjaj,i = 0 =⇒ ∂Aij

∂θ
Ampapaj −

∂Amj

∂θ
Aipapaj = 0,

since α is spatially uniform by hypothesis. Thus we have(
∂A

∂θ
a

)
⊗ (Aa)− (Aa)⊗

(
∂A

∂θ
a

)
= 0 =⇒

(
∂A

∂θ
a

)
⊗ (Aa) is symmetric, (6)

where
∂A

∂θ
a =

[
a1 sin θ − a2 cos θ
a1 cos θ + a2 sin θ

]
; Aa =

[
−a1 cos θ − a2 sin θ
a1 sin θ − a2 cos θ

]
.

Consequently, we must have

(a1 sin θ − a2 cos θ)2 = −(a1 cos θ + a2 sin θ)2

which implies

a1 sin θ − a2 cos θ = 0

a1 cos θ + a2 sin θ = 0.
(7)

a1 = a2 = 0 is not allowable by hypothesis. If a1 6= 0, sin θ = a2
a1

cos θ and cos θ

[
1 +

(
a2
a1

)2]
= 0

which implies the absurdity that cos θ = 0 and sin θ = 0. The same absurd conclusion is reached if

a2 6= 0 which implies cos θ = a1
a2

sin θ and sin θ

[
1 +

(
a1
a2

)2]
= 0. Consequently, it must be true that

planar rotation solutions to (3)1 parametrized by a θ ∈ C2(Ω,R) field cannot exist for any constant
field α 6= 0 (with only α13 and α23 as possible non-zero components).

Thus, a non-vanishing, constant dislocation density field comprising straight edge dislocations
with arbitrary Burgers vector in the plane normal to the line direction cannot be stress-free when
the allowed class of elastic distortions are ‘planar’ fields varying only in (x1, x2) and satisfying
F31 = F32 = F13 = F23 = 0 and F33 = 1. Of course, it is easy to construct non-constant,
dislocation density fields comprising straight edge dislocations that are stress-free, both in the
linear and nonlinear settings.

We have obtained the result that if the curl of a field of (finite) rotations in two space dimensions
is constant, then it has to vanish. Assuming the domain is simply connected, this implies that the
rotation field is actually compatible with a deformation of the domain, with deformation gradient
as the given rotation field. But this implies that the given rotation field has to be a constant [Shi73].
Hence, we have proved that

Theorem 4.1 A 2-d rotation field on a simply connected domain is a constant if and only if its
curl is a constant.

The main result of this paper appears to be related to the recent Generalized Rigidity Estimate
of [MSZ14].
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